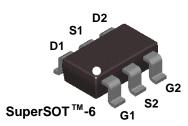
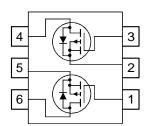
January 2001

FDC6312P Dual P-Channel 1.8V PowerTrench[®] Specified MOSFET

General Description

SEMICONDUCTOR IM


These P-Channel 1.8V specified MOSFETs are produced using Fairchild Semiconductor's advanced PowerTrench process that has been especially tailored to minimize on-state resistance and yet maintain low gate charge for superior switching performance.


Applications

- Power management
- Load switch

Features

- -2.3 A, -20 V. $R_{DS(ON)} = 115 \text{ m}\Omega @ V_{GS} = -4.5 \text{ V}$ $R_{DS(ON)} = 155 \text{ m}\Omega @ V_{GS} = -2.5 \text{ V}$ $R_{DS(ON)} = 225 \text{ m}\Omega @ V_{GS} = -1.8 \text{ V}$
- + High performance trench technology for extremely low $R_{_{\mbox{DS}(\mbox{ON})}}$
- SuperSOTTM-6 package: small footprint (72% smaller than standard SO-8); low profile (1mm thick)

Absolute Maximum Ratings T_{A=25°C} unless otherwise noted

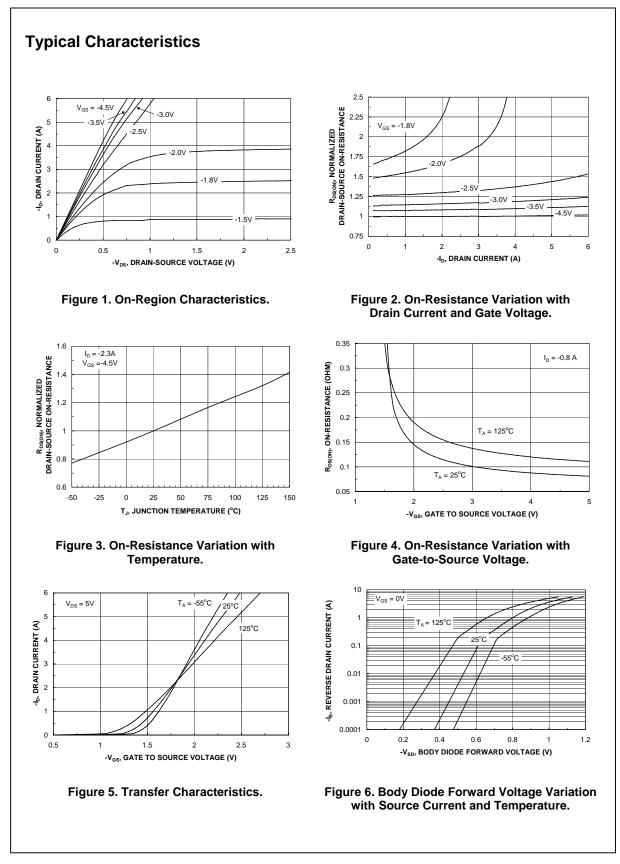
Symbol	Parameter		Ratings	Units
V _{DSS}	Drain-Source Voltage		-20	V
V _{GSS}	Gate-Source Voltage		±8	V
I _D	Drain Current – Continuous	(Note 1a)	-2.3	A
	– Pulsed		-7	
P _D	Power Dissipation for Single Operation	(Note 1a)	0.96	W
		(Note 1b)	0.9	
		(Note 1c)	0.7	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C

Thermal Characteristics

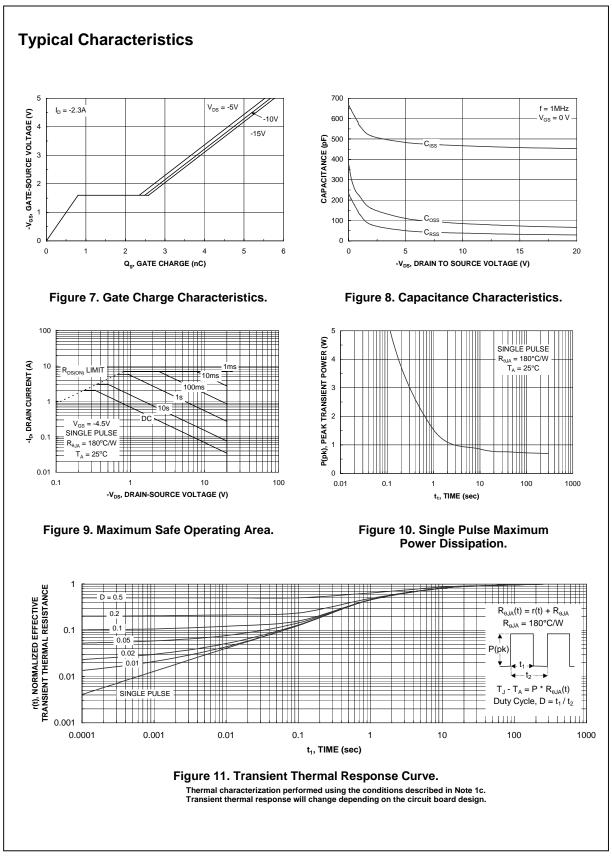
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	130	°C/W
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	(Note 1)	60	°C/W

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
.312	FDC6312P	13"	12mm	3000 units
.012	10000121	10	1211111	


©2001 Fairchild Semiconductor Corporation

FDC6312P


$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V mV/°C μA nA NA V mV/°C mΩ A S
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	mV/°C μA nA nA V mV/°C mΩ
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	μA nA nA V mV/°C mΩ
IGSSFGate-Body Leakage, Forward $V_{GS} = 8 \text{ V}$, $V_{DS} = 0 \text{ V}$ 100IGSSRGate-Body Leakage, Reverse $V_{GS} = -8 \text{ V}$, $V_{DS} = 0 \text{ V}$ -100On Characteristics (Note 2)VGS(th)Gate Threshold Voltage $V_{DS} = V_{GS}$, $I_D = -250 \ \mu\text{A}$ $-0.4 \ -0.9 \ -1.5$ $\Delta V_{GS(th)}$ Gate Threshold Voltage $I_D = -250 \ \mu\text{A}$, Referenced to 25°C2 ΔT_J Temperature Coefficient $I_D = -250 \ \mu\text{A}$, Referenced to 25°C2 $R_{DS(on)}$ Static Drain-Source $V_{GS} = -4.5 \text{ V}$, $I_D = -2.3 \text{ A}$ 92 $On-Resistance$ $V_{GS} = -1.8 \text{ V}$, $I_D = -1.6 \text{ A}$ 116 $V_{GS} = -1.8 \text{ V}$, $I_D = -2.3 \text{ A}$, $T_J = 125^{\circ}\text{C}$ 112 $I_{D(on)}$ On-State Drain Current $V_{GS} = -4.5 \text{ V}$, $V_{DS} = -5 \text{ V}$ -7 $I_{D(on)}$ On-State Drain Current $V_{GS} = -4.5 \text{ V}$, $V_{DS} = -5 \text{ V}$ -7 $I_{D(on)}$ On-State Drain Current $V_{GS} = -4.5 \text{ V}$, $I_D = -3.5 \text{ A}$ 5.3Dynamic Characteristics C_{ISS} Input Capacitance $V_{DS} = -10 \text{ V}$, $V_{GS} = 0 \text{ V}$,467 C_{ISS} Reverse Transfer Capacitance $I_D = -1.0 \text{ MHz}$ 38Switching Characteristics (Note 2) $I_D = -2.3 \text{ A}$ 38 $I_D = -3.5 \text{ A}$	
IGSSRGate-Body Leakage, Reverse $V_{GS} = -8 \text{ V}$, $V_{DS} = 0 \text{ V}$ -100On Characteristics (Note 2)(Note 2) $V_{GS}(th)$ Gate Threshold Voltage $V_{DS} = V_{GS}$, $I_D = -250 \ \mu\text{A}$ -0.4 -0.9 -1.5 $\Delta V_{GS}(th)$ ΔT_J Gate Threshold Voltage Temperature Coefficient $I_D = -250 \ \mu\text{A}$, Referenced to 25°C 2 $R_{DS}(on)$ Static Drain-Source On-Resistance $V_{GS} = -4.5 \text{ V}$, $I_D = -2.3 \text{ A}$ $V_{GS} = -1.8 \text{ V}$, $I_D = -1.6 \text{ A}$ $V_{GS} = -1.8 \text{ V}$, $I_D = -1.6 \text{ A}$ $V_{GS} = -1.8 \text{ V}$, $I_D = -2.3 \text{ A}$, $T_J = 125^{\circ}\text{C}$ 92115Ib(on)On-State Drain Current $V_{GS} = -4.5 \text{ V}$, $V_{DS} = -5 \text{ V}$ -7 77 g_{FS} Forward Transconductance $V_{DS} = -5 \text{ V}$, $I_D = -3.5 \text{ A}$ 5.37 Dynamic Characteristics C_{rss} Reverse Transfer Capacitance $V_{DS} = -10 \text{ V}$, $V_{GS} = 0 \text{ V}$, $f = 1.0 \text{ MHz}$ 46785Switching Characteristics (Note 2) $V_{OS} = -10 \text{ V}$ $V_{GS} = 0 \text{ V}$, $38 \text{ Interval of the transfer Capacitance}$ 85100	nA V mV/°C mΩ
On Characteristics (Note 2)(Note 2) $V_{GS(th)}$ Gate Threshold Voltage Temperature Coefficient $V_{DS} = V_{GS}$, $I_D = -250 \ \mu A$ -0.4 -0.9 -1.5 $\Delta V_{GS(th)}$ Gate Threshold Voltage Temperature Coefficient $I_D = -250 \ \mu A$, Referenced to 25° C22 $R_{DS(on)}$ Static Drain–Source On–Resistance $V_{GS} = -4.5 \ V$, $I_D = -2.3 \ A$ 92115 $V_{GS} = -1.8 \ V$, $I_D = -1.9 \ A$ 116155 $V_{GS} = -4.5 \ V$, $I_D = -1.6 \ A$ 166225 $V_{GS} = -4.5 \ V$, $I_D = -2.3A$, $T_J = 125^{\circ}$ C112150 $I_{D(on)}$ On–State Drain Current $V_{GS} = -4.5 \ V$, $I_D = -2.3A$, $T_J = 125^{\circ}$ C112 $I_{D(on)}$ On–State Drain Current $V_{GS} = -4.5 \ V$, $I_D = -3.5 \ A$ 5.3 Dynamic Characteristics $V_{DS} = -5 \ V$, $I_D = -3.5 \ A$ 5.3CissInput Capacitance $V_{DS} = -10 \ V$, $V_{GS} = 0 \ V$,467 C_{rss} Reverse Transfer Capacitance $I_B = 1.0 \ MHz$ 85Switching Characteristics (Note 2)State 2	V mV/°C mΩ A
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	mV/°C mΩ A
$ \begin{array}{c c c c c c c c c } \hline \Delta V_{GS}(h) \\ \Delta T_J & Gate Threshold Voltage Temperature Coefficient & I_D = -250 \ \mu A, Referenced to 25^{\circ}C & 2 \\ \hline R_{DS(on)} & Static Drain–Source On–Resistance & V_{GS} = -4.5 \ V, \ I_D = -2.3 \ A \\ V_{GS} = -2.5 \ V, \ I_D = -1.9 \ A \\ V_{GS} = -2.5 \ V, \ I_D = -1.9 \ A \\ V_{GS} = -1.8 \ V, \ I_D = -1.6 \ A \\ V_{GS} = -4.5 \ V, \ I_D = -2.3 \ A, \ T_J = 125^{\circ}C & 116 \\ 166 & 225 \\ 112 & 150 \\ \hline I_{D(on)} & On–State Drain Current & V_{GS} = -4.5 \ V, \ V_{DS} = -5 \ V & -7 & 12 \\ \hline I_{D(on)} & On–State Drain Current & V_{GS} = -4.5 \ V, \ V_{DS} = -5 \ V & -7 & 12 \\ \hline I_{D(on)} & On–State Drain Current & V_{GS} = -4.5 \ V, \ V_{DS} = -5 \ V & -7 & 12 \\ \hline I_{D(on)} & On–State Drain Current & V_{DS} = -5 \ V, \ I_D = -3.5 \ A & 5.3 & 12 \\ \hline Dynamic Characteristics \\ \hline C_{iss} & Input Capacitance & V_{DS} = -10 \ V, \ V_{GS} = 0 \ V, \\ \hline C_{oss} & Output Capacitance & f = 1.0 \ MHz & 85 \\ \hline C_{rss} & Reverse Transfer Capacitance & 38 \\ \hline Switching Characteristics \ (Note 2) & 12 \\ \hline \end{array}$	mV/°C mΩ A
$\begin{array}{c c c c c c c c c } & Temperature Coefficient & & & & & & & & & & & & & & & & & & &$	mΩ A
$ \begin{array}{ c c c c c c c } \hline On-Resistance & V_{GS}=-2.5 \ V, \ \ I_D=-1.9 \ A \\ V_{GS}=-1.8 \ V, \ \ I_D=-1.6 \ A \\ V_{GS}=-4.5 \ V, \ \ I_D=-1.6 \ A \\ V_{GS}=-4.5 \ V, \ \ I_D=-2.3 \ A, \ \ T_J=125^\circ C \\ \hline 112 & 150 \\ \hline 112 & 150$	A
V _{GS} =-4.5 V, I _D =-2.3A, T _J =125°C 112 150 I _{D(on)} On-State Drain Current V _{GS} = -4.5 V, V _{DS} = -5 V -7 g _{FS} Forward Transconductance V _{DS} = -5 V, I _D = -3.5 A 5.3 Dynamic Characteristics V _{DS} = -10 V, V _{GS} = 0 V, I _D = -3.5 A 5.3 C _{iss} Input Capacitance V _{DS} = -10 V, V _{GS} = 0 V, I _D = -3.5 A 85 C _{iss} Output Capacitance I = 1.0 MHz 85 C _{rss} Reverse Transfer Capacitance 38 38	
$I_{D(on)}$ On-State Drain Current $V_{GS} = -4.5 \text{ V}$, $V_{DS} = -5 \text{ V}$ -7 g_{FS} Forward Transconductance $V_{DS} = -5 \text{ V}$, $I_D = -3.5 \text{ A}$ 5.3 Dynamic Characteristics C_{iss} Input Capacitance $V_{DS} = -10 \text{ V}$, $V_{GS} = 0 \text{ V}$, 467 C_{oss} Output Capacitance $f = 1.0 \text{ MHz}$ 85 CrissReverse Transfer Capacitance 38 38 Switching Characteristics (Note 2)	
g_{FS} Forward Transconductance $V_{DS} = -5 \text{ V}$, $I_D = -3.5 \text{ A}$ 5.3 Dynamic Characteristics C_{iss} Input Capacitance $V_{DS} = -10 \text{ V}$, $V_{GS} = 0 \text{ V}$,467 C_{oss} Output Capacitancef = 1.0 MHz85 C_{rss} Reverse Transfer Capacitance38Switching Characteristics (Note 2)	
Dynamic Characteristics C _{iss} Input Capacitance V _{DS} = -10 V, V _{GS} = 0 V, 467 C _{oss} Output Capacitance f = 1.0 MHz 85 C _{rss} Reverse Transfer Capacitance 38 Switching Characteristics (Note 2) (Note 2)	5
Ciss Input Capacitance VDS = -10 V, VGS = 0 V, 467 Coss Output Capacitance f = 1.0 MHz 85 Crss Reverse Transfer Capacitance 38 Switching Characteristics (Note 2)	
Coss Output Capacitance f = 1.0 MHz 85 Crss Reverse Transfer Capacitance 38 Switching Characteristics (Note 2)	
Crss Reverse Transfer Capacitance 38 Switching Characteristics (Note 2)	pF
Switching Characteristics (Note 2)	pF
	pF
two Turn-On Delay Time $V_{12} = 10 V_{12} = 10$	
$v_{DD} = -10^{\circ} v$, $i_D = -1 A$, $0^{\circ} 10^{\circ} 10^{\circ}$	ns
t_r Turn–On Rise Time $V_{GS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$ 13 23	ns
t _{d(off)} Turn–Off Delay Time 18 32	ns
t _r Turn–Off Fall Time 8 16	ns
Q_g Total Gate Charge $V_{DS} = -10 V$, $I_D = -2.3 A$, $4.4 7$	nC
Q_{gs} Gate-Source Charge $V_{GS} = -4.5 V$ 1.0	nC
Q _{gd} Gate–Drain Charge 0.8	nC
Drain–Source Diode Characteristics and Maximum Ratings	
Is Maximum Continuous Drain–Source Diode Forward Current –0.8	Α
V_{SD} Drain-Source Diode Forward $V_{GS} = 0 V$, $I_S = -0.8 A$ (Note 2) $-0.7 -1.2$	V

2. Pulse Test: Pulse Width < 300 μ s, Duty Cycle < 2.0%

FDC6312P Rev C (W)

FDS6312P

FDS6312P

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ Bottomless™ CoolFET™ CROSSVOLT™ DenseTrench™ DOME™ **EcoSPARK™** E²CMOS[™] EnSigna™ FACT™ FACT Quiet Series™ FAST ® FASTr™ FRFET™ GlobalOptoisolator[™] POP[™] GTO™ HiSeC™ ISOPLANAR™ LittleFET™ MicroFET™ MicroPak™ MICROWIRE™

OPTOLOGIC™ OPTOPLANAR™ PACMAN™ Power247™ PowerTrench[®] QFET™ QS™ QT Optoelectronics[™] Quiet Series[™] SILENT SWITCHER®

SMART START™ VCX™ STAR*POWER™ Stealth™ SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 SyncFET™ TinyLogic™ TruTranslation[™] UHC™ UltraFET[®]

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY. FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
	In Design First Production Full Production