

T_J, T_{STG}

Thermal Characteristics

Symbol

 V_{DSS}

V_{GSS}

 I_D

 P_{D}

Package Marking and Ordering Information

- Pulsed

Operating and Storage Junction Temperature Range

Absolute Maximum Ratings T_A = 25°C unless otherwise noted

Parameter

Device Marking	Device	Reel Size	Tape width	Quantity
.55B	FDC655BN	7"	8mm	3000 units

(Note 1a)

(Note 1a)

(Note 1b)

(Note 1a)

(Note 1)

April 2005

Units

v

V

А

W

°C

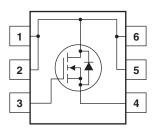
°C/W

°C/W

- $R_{DS(ON)} = 25 \text{ m}\Omega @ V_{GS} = 10 \text{ V}$ $R_{DS(ON)} = 33 \text{ m}\Omega @ V_{GS} = 4.5 \text{ V}$
- Fast switching
- Low gate charge
- High performance trench technology for extremely low Rdson

This N-Channel Logic Level MOSFET is produced using Fairchild Semiconductor's advanced PowerTrench process that has been especially tailored to minimized on-state resistance and yet maintain superior switching performance.

These devices are well suited for low voltage and battery powered applications where low in-line power loss and fast switching are required.



Drain-Source Voltage

Gate-Source Voltage

Drain Current - Continuous

Maximum Power Dissipation

Ratings

30

±20

6.3

20

1.6

0.8

- 55 to +150

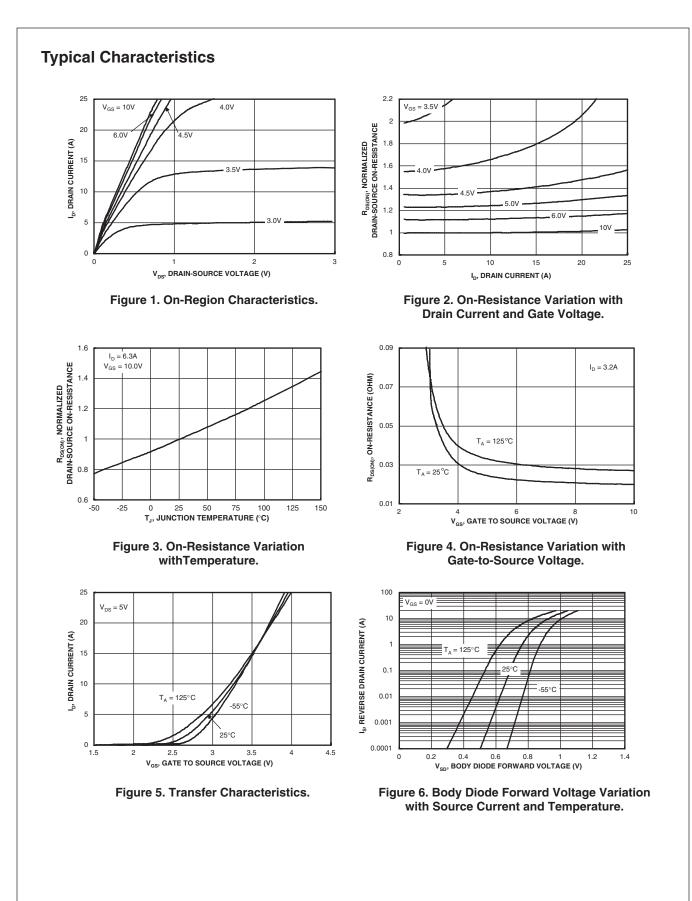
78

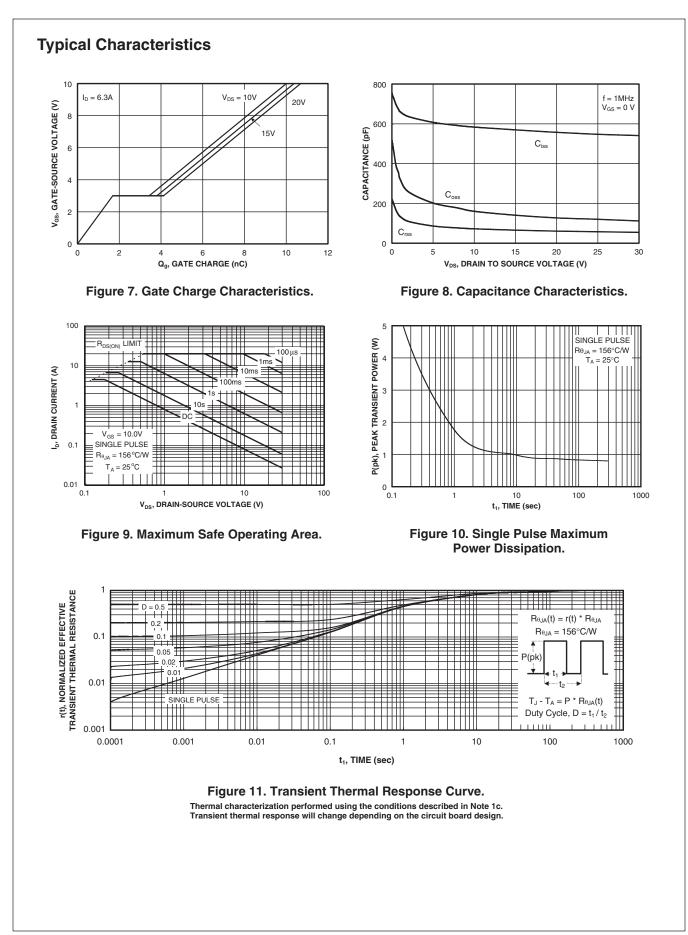
30

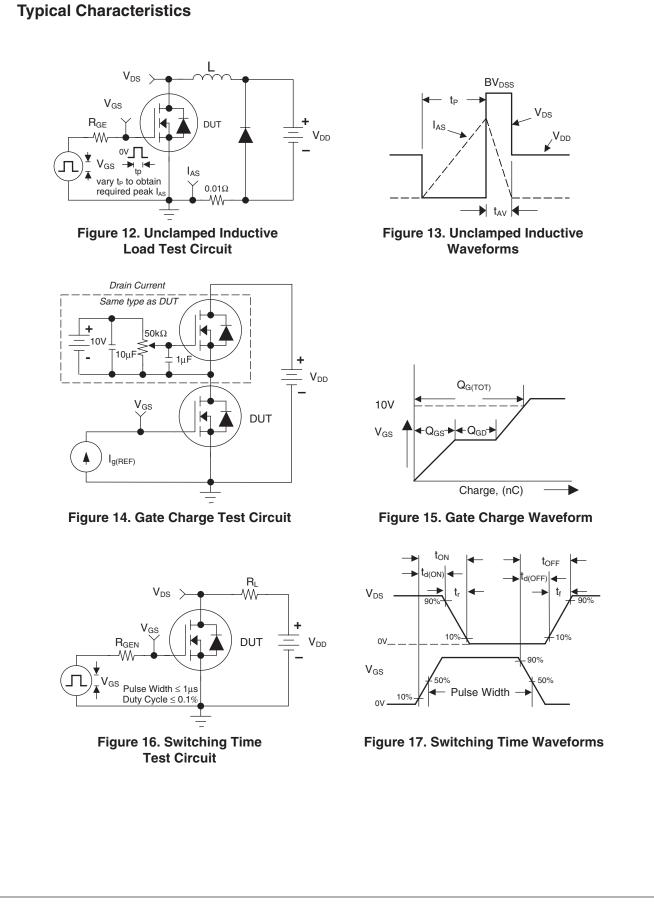
FDC655BN

FDC655BN
N Single N-Channel,
Logic Leve
l, PowerTrench [®]
[®] MOSFET

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Characte	eristics	1	I	1	11	
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, \text{ I}_{D} = 250 \mu\text{A}$	30			V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, Referenced to 25°C		23		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V} V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}, T_J = -55^{\circ}\text{C}$			1 10	μA
I _{GSS}	Gate-Body Leakage	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nA
On Characte	eristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$	1	1.9	3	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, Referenced to 25°C		- 4.1		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance			20 26 27	25 33 45	mΩ
9 _{FS}	Forward Transconductance	$V_{DS} = 10 \text{ V}, \text{ I}_{D} = 6.3 \text{ A}$		20		S
Dynamic Ch	aracteristics					
C _{iss}	Input Capacitance	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V},$		570		pF
C _{oss}	Output Capacitance	f = 1.0 MHz		140		pF
C _{rss}	Reverse Transfer Capacitance			70		pF
R _G	Gate Resistance	V _{GS} = 15 mV, f = 1.0 MHz		2.1		Ω
Switching C	haracteristics (Note 2)	•	ł			
t _{d(on)}	Turn–On Delay Time	$V_{DD} = 15 \text{ V}, \text{ I}_{D} = 1 \text{ A},$		8	16	ns
t _r	Turn–On Rise Time	$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$		4	8	ns
t _{d(off)}	Turn–Off Delay Time			22	35	ns
t _f	Turn–Off Fall Time			3	6	ns
Q _{g(TOT)}	Total Gate Charge at Vgs=10V	$V_{DD} = 15 \text{ V}, \text{ I}_{D} = 6.3 \text{ A},$		10	15	nC
Q _{g(TOT)}	Total Gate Charge at Vgs=5V			6	8	nC
Q _{gs}	Gate–Source Charge			1.7		nC
Q _{gd}	Gate-Drain Charge			2.1		nC
Drain–Sourc	e Diode Characteristics and Maxim	um Ratings				
I _S	Maximum Continuous Drain-Source	Diode Forward Current			1.3	А
V _{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 V, I_S = 1.3 A$ (Note 2)		0.8	1.2	V
t _{rr}	Diode Reverse Recovery Time	$I_F = 6.3 \text{ A}, d_{IF}/d_t = 100 \text{ A}/\mu\text{s}$		18		ns
Q _{rr}	Diode Reverse Recovery Charge	7		9		nC


Notes:


1. R_{6JA} is the sum of the junction-to-case and case-to-ambient resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{6JC} is guaranteed by design while R_{6CA} is determined by the user's board design.


a. 78°C/W when mounted on a 1in² pad of 2oz copper on FR-4 board.

b. 156°C/W when mounted on a minimum pad.

2. Pulse Test: Pulse Width \leq 300 $\mu s,$ Duty Cycle \leq 2.0%

5

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FAST [®]	IntelliMAX™	POP™	SPM™
ActiveArray™	FASTr™	ISOPLANAR™	Power247™	Stealth™
Bottomless™	FPS™	LittleFET™	PowerEdge™	SuperFET™
CoolFET™	FRFET™	MICROCOUPLER™	PowerSaver™	SuperSOT™-3
CROSSVOLT™	GlobalOptoisolator™	MicroFET™	PowerTrench [®]	SuperSOT™-6
DOME™	GTO™່	MicroPak™	QFET [®]	SuperSOT™-8
EcoSPARK™	HiSeC™	MICROWIRE™	QS™	SyncFET™
E ² CMOS™	I ² C™	MSX™	QT Optoelectronics [™]	TinyLogic®
EnSigna™	<i>i-Lo</i> ™	MSXPro™	Quiet Series [™]	TINYOPTO™
FACT™	ImpliedDisconnect [™]	OCX™	RapidConfigure™	TruTranslation™
FACT Quiet Series™		OCXPro™	RapidConnect™	UHC™
Across the board. Around the world.™		OPTOLOGIC[®]	μSerDes™	UltraFET [®]
The Power Franchise [®]		OPTOPLANAR™	SILENT SWITCHER [®]	UniFET™
Programmable Active Droop™		PACMAN™	SMART START™	VCX™
r regrammable, terre Breep				

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.