January 2005

Features

- -6.7 A, -12 V. $R_{DS(ON)} = 28 \text{ m}\Omega @ V_{GS} = -4.5 \text{ V}$ $\begin{array}{l} \mathsf{R}_{DS(ON)} = 41 \ \text{m}\Omega \ @ \ \mathsf{V}_{GS} = -2.5 \ \mathsf{V} \\ \mathsf{R}_{DS(ON)} = 90 \ \text{m}\Omega \ @ \ \mathsf{V}_{GS} = -1.8 \ \mathsf{V} \end{array}$
- Fast switching speed

FAIRCHILD

- High performance trench technology for extremely low R_{DS(ON)}
- High power and current handling capability

Applications

DC/DC converter

General Description

This P-Channel 1.8V Specified MOSFET uses Fairchild's advanced low voltage PowerTrench process. It has been optimized for battery power management.

Absolute Maximum Ratings TA=25°C unless otherwise noted

Symbol	Parameter		Ratings	Units	
V _{DSS}	Drain-Source Voltage		-12	V	
V _{GSS}	Gate-Source Voltage		±8	V	
ID	Drain Current – Continuous	(Note 3)	-6.7	Α	
	– Pulsed	(Note 1a)	-54		
P _D	Power Dissipation for Single Operation	(Note 1)	52	W	
		(Note 1a)	3.8		
		(Note 1b)	1.6		
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +175	°C	
Thermal Cha	aracteristics				
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	(Note 1)	2.9	°C/W	
R _{θJA}	Thermal Resistance, Junction-to-Ambient	(Note 1a)	40	°C/W	
R _{0JA}	Thermal Resistance, Junction-to-Ambient	(Note 1b)	96	°C/W	

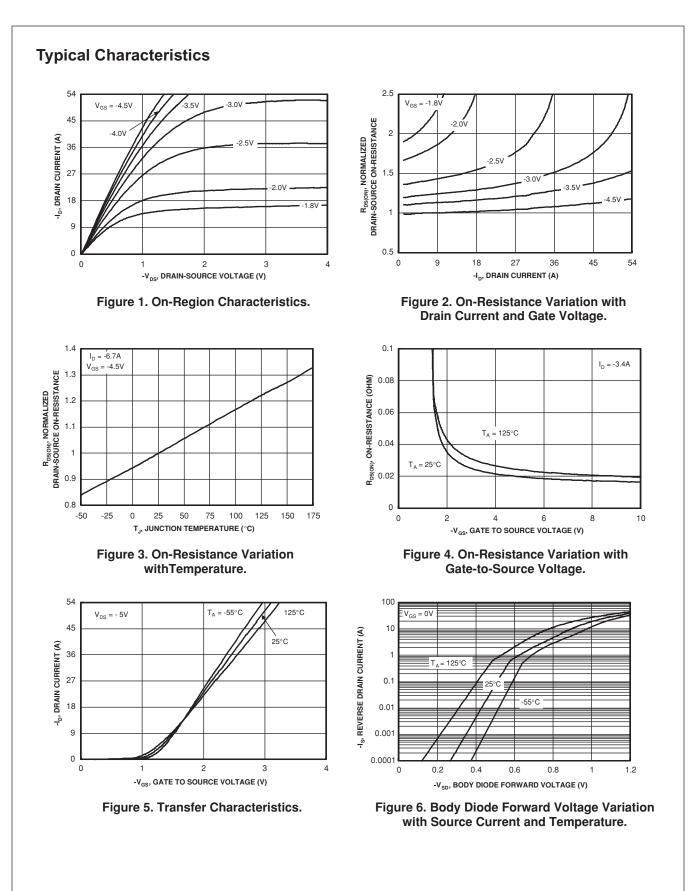
Package Marking and Ordering Information

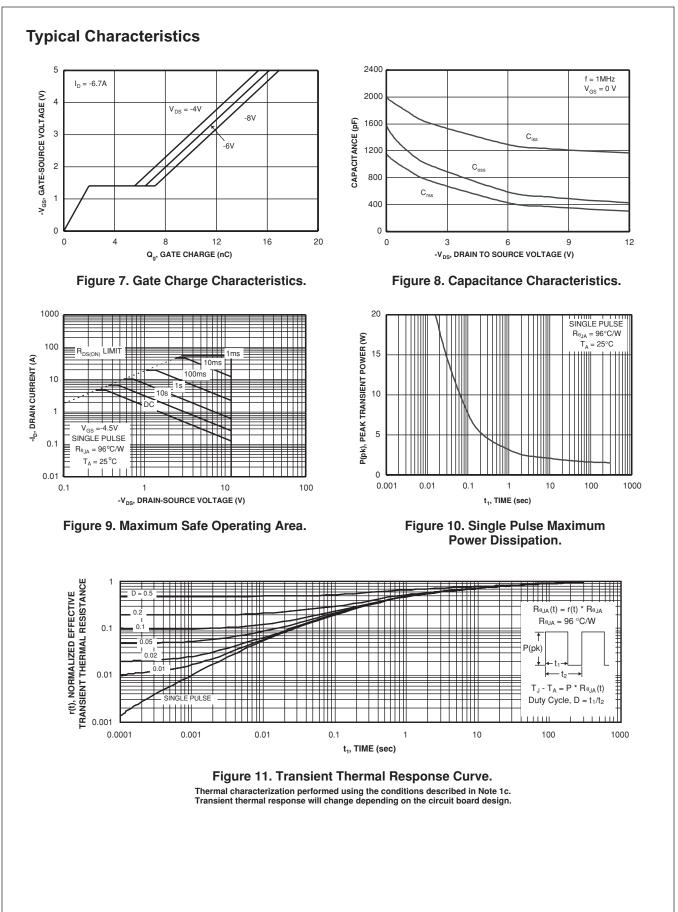
Device Marking	Device	Reel Size	Tape width	Quantity
FDD306P	FDD306P	13"	12mm	2500 units

FDD306P
P-Channel 1.
8V Specified
P-Channel 1.8V Specified PowerTrench [®] MOSFE
MOSFET

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Charac	teristics					
BV _{DSS}	Drain–Source Breakdown Voltage	$V_{GS} = 0 V, I_D = -250 \mu A$	-12			V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	$I_D = -250 \ \mu\text{A}$, Referenced to 25°C		-0.6		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V}$			-1	μA
I _{GSSF}	Gate-Body Leakage	$V_{GS} = \pm 8V, V_{DS} = 0 V$			±100	nA
On Charac	cteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = -250 \ \mu A$	-0.4	-0.5	-1.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	$I_D = -250 \ \mu\text{A}$, Referenced to 25°C		2.2		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance	$ \begin{array}{l} V_{GS} = -4.5 \; V, \; I_D = -6.7 \; A \\ V_{GS} = -2.5 \; V, \; I_D = -6.1 \; A \\ V_{GS} = -1.8 \; V, \; I_D = -4.8 \; A \\ V_{GS} = -4.5 \; V, \; I_D = -6.7 \; A, \; T_J = 125^\circ C \end{array} $		21 29 42 25	28 41 90	mΩ
I _{D(on)}	On-State Drain Current	$V_{GS} = -4.5 \text{ V}, V_{DS} = -5 \text{ V}$	-45			Α
9 _{FS}	Forward Transconductance	$V_{DS} = -5 V, I_{D} = -6.7 A$		22		S
Dynamic C	Characteristics	•				
C _{iss}	Input Capacitance	$V_{DS} = -6 V, V_{GS} = 0 V,$		1290		pF
C _{oss}	Output Capacitance	f = 1.0 MHz		590		pF
C _{rss}	Reverse Transfer Capacitance			430		pF
R _G	Gate Resistance	V _{GS} = 15 mV, f = 1.0 MHz		4.2		Ω
Switching	Characteristics (Note 2)					
t _{d(on)}	Turn–On Delay Time	$V_{DD} = -6 V, I_D = -1 A,$		16	29	ns
t _r	Turn–On Rise Time	$V_{GS} = -4.5 \text{ V}, \text{ R}_{GEN} = 6 \Omega$		8	16	ns
t _{d(off)}	Turn–Off Delay Time			34	54	ns
t _f	Turn–Off Fall Time			41	65	ns
Qg	Total Gate Charge	$V_{DS} = -6V, I_D = -6.7 A,$		15	21	nC
Q _{gs}	Gate-Source Charge	$V_{GS} = -4.5 V$		2.0		nC
Q _{gd}	Gate-Drain Charge			4.4		nC
Drain–Sou	rce Diode Characteristics and Maximum Ra	atings				
I _S	Maximum Continuous Drain-Source Diode Fo	orward Current			-3.2	A
V _{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 V, I_S = -3.2 A$ (Note 2)		-0.8	-1.2	V
Trr	Diode Reverse Recovery Time	IF = -6.7 A,		37		ns
Irm	Diode Reverse Recovery Current	diF/dt = 100 A/µs (Note 3)		0.9		Α
Qrr	Diode Reverse Recovery Charge]		17		nC

Notes: 1. $R_{\theta JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design. a) $R_{\theta JA} = 40^{\circ}C/W$ when mounted on a 1in² pad of 2 oz copper b) $R_{\theta,JA} = 96^{\circ}C/W$ when mounted on a minimum pad.




Scale 1 : 1 on letter size paper

2. Pulse Test: Pulse Width < 300µs, Duty Cycle < 2.0%

 $\sqrt{\frac{P_D}{R_{DS(ON)}}}$ where P_D is maximum power dissipation at T_C = 25°C and R_{DS(on)} is at T_{J(max)} and V_{GS} = 10V. 3. Maximum current is calculated as:

4. Starting T_J = 25°C, L = TBD, I_{AS} = -6.7A

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FAST®	IntelliMAX™	POP™	SPM™
ActiveArray™	FASTr™	ISOPLANAR™	Power247™	Stealth™
Bottomless™	FPS™	LittleFET™	PowerEdge™	SuperFET™
CoolFET™	FRFET™	MICROCOUPLER™	PowerSaver™	SuperSOT™-3
CROSSVOLT™	GlobalOptoisolator™	MicroFET™	PowerTrench [®]	SuperSOT™-6
DOME™	GTO™	MicroPak™	QFET [®]	SuperSOT™-8
EcoSPARK™	HiSeC™	MICROWIRE™	QS™	SyncFET™
E ² CMOS™	I²C™	MSX™	QT Optoelectronics [™]	TinyLogic [®]
EnSigna™	<i>i-Lo</i> ™	MSXPro™	Quiet Series [™]	TINYOPTO™
FACT™	ImpliedDisconnect [™]	OCX™	RapidConfigure™	TruTranslation™
FACT Quiet Seri		OCXPro™	RapidConnect™	UHC™
Across the boar	d. Around the world.™	OPTOLOGIC[®]	µSerDes™	UltraFET [®]
The Power Franchise [®]		OPTOPLANAR™	SILENT SWITCHER [®]	UniFET™
		PACMAN™	SMART START™	VCX™
Programmable Active Droop™		IAOMAN	SMALL STALL	VOX

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.