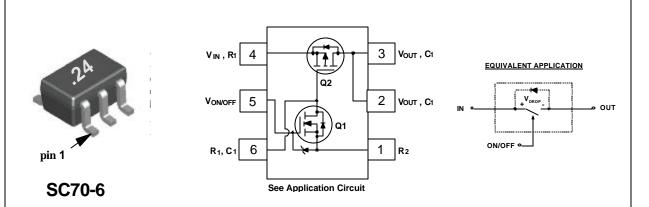
June 1999

FDG6324L **Integrated Load Switch**

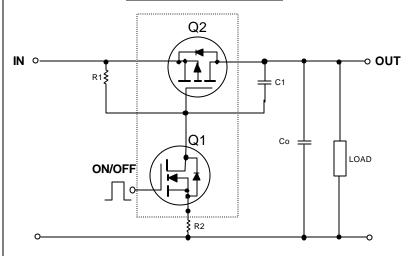

General Description

This device is intended to be configured as a load switch and is particularly suited for compact computer peripheral switching applications where 3V to 20V input and 0.6A output current capability are needed. This device features a small N-Channel MOSFET (Q1) together with a large P-Channel Power MOSFET (Q2) in a single SC70-6 package.

Features

- V_{DROP} =0.2V @ V_{IN} =12V, I_{L} =0.36A. $R_{(ON)}$ =0.55 Ω . V_{DROP} =0.2V @ $V_{IN}=5V$, $I_{L}=0.27A$. $R_{(ON)}=0.75\Omega$.
- Very small package outline (SC70-6).
- Control MOSFET (Q1) includes Zener protection for ESD ruggedness (> 6KV Human Body Model).
- High density cell design for extremely low on-resistance.

Symbol	Parameter	FDG6324L	Units
V _{IN}	Input Voltage Range	3 - 20	V
V _{ON/OFF}	On/Off Voltage Range	2.5 - 8	V
L	Load Current - Continuous (Note 1)	0.6	A
	- Pulsed (No	ote 1 & 3) 1.8	
P _D	Maximum Power Dissipation (Note 2)	0.3	W
T_J, T_{STG}	Operating and Storage Temperature Range	-55 to 150	°C
ESD	Electrostatic Discharge Rating Human Body Model (100pf/1500Ohm)	6	kV
THERMA	L CHARACTERISTICS	<u> </u>	•
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Note 2)	415	°C/W


Symbol	Parameter	Conditions	Min	Тур	Max	Units
OFF CHAI	RACTERISTICS					
I _{FL}	Forward Leakage Current	V _{IN} = 20 V, V _{ON/OFF} = 0 V			1	μΑ
ON CHAR	ACTERISTICS (Note 3)		*	•	•	
V _{DROP}	Conduction Voltage Drop	V_{IN} = 12 V, $V_{ON/OFF}$ = 3.3 V, I_L = 0.36 A		0.14	0.2	V
		V _{IN} = 5 V, V _{ON/OFF} = 3.3 V, I _L = 0.27 A		0.16	0.2	
R _(ON)	Q ₂ - Static On-Resistance	V _{GS} = -12 V, I _D = -0.6 A		0.37	0.55	Ω
		V _{GS} = -5 V, I _D = -0.5 A		0.58	0.75	
IL	Load Current	$V_{DROP} = 0.2 \text{ V}, V_{IN} = 12 \text{ V}, V_{ON/OFF} = 3.3 \text{ V}$	0.36			Α
		$V_{DROP} = 0.2 \text{ V}, V_{IN} = 5 \text{ V}, V_{ON/OFF} = 3.3 \text{ V}$	0.27			1

Notes:

- 1. Range of $V_{\rm in}$ can be up to 25V, but $R_{\rm 1}$ and $R_{\rm 2}$ must be scaled such that $V_{\rm GS}$ of Q2 does not exceed -20V.
- 2. $R_{\theta,A}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta,c}$ is guaranteed by design while $R_{\theta,c,A}$ is determined by the user's board design. Thermal ratings based on minimum mounting pad.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%

FDG6324L Load Switch Application

APPLICATION CIRCUIT

External Component Recommendation

For $Co \le 1uF$ applications:

R1 is required to turn Q2 off.

R2 and C1 are optional for slew rate control.

First select R2, 100 -1K Ω , for slew rate control.

Then select R1 such that the ratio R1/R2 is maintained between 10-100.

SPICE model (FDG6324L.MOD) available at www.fairchildsemi.com.

Typical Electrical Characteristics ($T_A = 25~^{\circ}\text{C}$ unless otherwise noted)

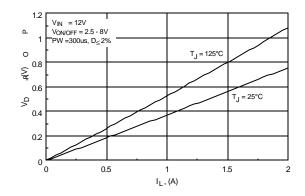


Figure 1. Conduction Voltage Drop Variation with Load Current.

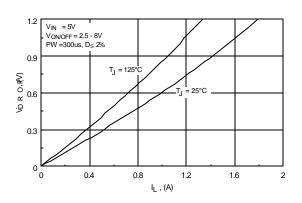


Figure 2. Conduction Voltage Drop Variation with Load Current.

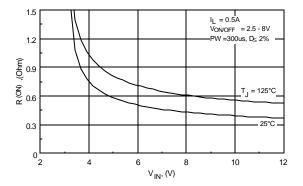


Figure 3. On-Resistance Variation with Input Voltage.

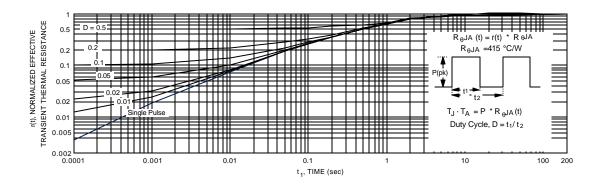


Figure 4. Transient Thermal Response Curve.

Thermal characterization performed using the conditions described in Note 2. Transient thermal response will change depending on the circuit board

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

E²CMOS[™] PowerTrench[™]

FACT™ QFET™ FACT Quiet Series™ QS™

 $\begin{array}{lll} \mathsf{FAST}^{\circledast} & \mathsf{Quiet}\,\mathsf{Series^{\mathsf{TM}}} \\ \mathsf{FASTr^{\mathsf{TM}}} & \mathsf{SuperSOT^{\mathsf{TM}}\text{-}3} \\ \mathsf{GTO^{\mathsf{TM}}} & \mathsf{SuperSOT^{\mathsf{TM}}\text{-}6} \\ \mathsf{HiSeC^{\mathsf{TM}}} & \mathsf{SuperSOT^{\mathsf{TM}}\text{-}8} \\ \end{array}$

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.