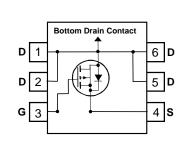


FDMA291P


Single P-Channel 1.8V Specified PowerTrench[®] MOSFET

General Description

This device is designed specifically for battery charge or load switching in cellular handset and other ultraportable applications. It features a MOSFET with low on-state resistance.

The MicroFET 2x2 package offers exceptional thermal performance for its physical size and is well suited to linear mode applications.

Pin 1 Drain Source MicroFET 2x2

• -6.6 A, -20V. $r_{DS(ON)} = 42 \text{ m}\Omega @ V_{GS} = -4.5V$

• Low profile - 0.8 mm maximum - in the new package

 $r_{\text{DS(ON)}} = 58 \text{ m}\Omega @ \text{V}_{\text{GS}} = -2.5 \text{V}$

 $r_{\text{DS(ON)}} = 98 \text{ m}\Omega @ \text{V}_{\text{GS}} = -1.8 \text{V}$

Features

MicroFET 2x2 mm

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol	Parameter		Ratings	Units
V _{DS}	Drain-Source Voltage		-20	V
V _{GS}	Gate-Source Voltage		±8	V
ID	Drain Current – Continuous	(Note 1a)	-6.6	А
	– Pulsed		-24	
P _D	Power Dissipation for Single Operation	(Note 1a)	2.4	W
		(Note 1b)	0.9	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C

Thermal Characteristics

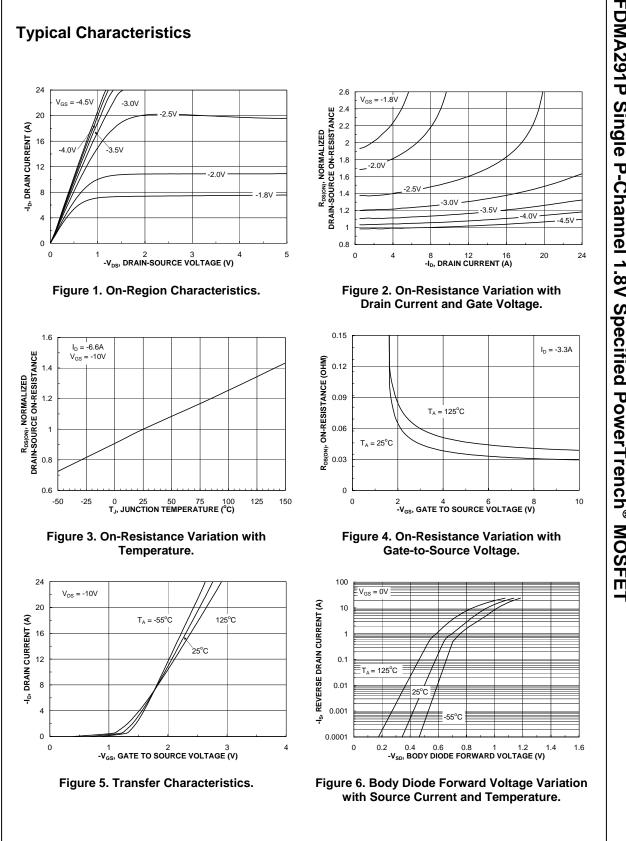
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	52	°C/W
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1b)	145	

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
291	FDMA291P	7"	8mm	3000 units

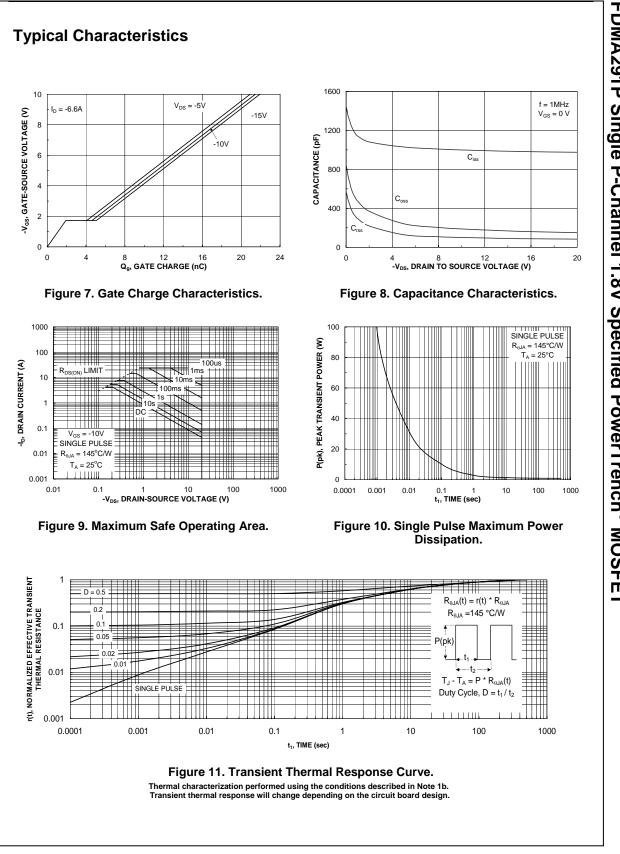
May 2006

©2006 Fairchild Semiconductor Corporation

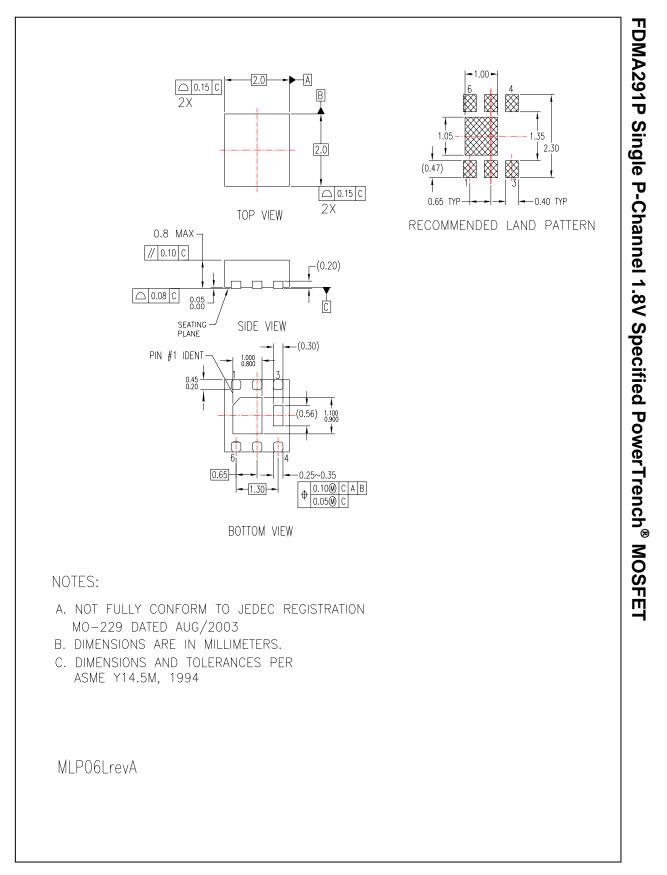

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
Symbol	T drameter			тур	Wax	Units
Off Char	acteristics		i	i	i	i
BV _{DSS}	Drain–Source Breakdown Voltage	$V_{GS} = 0 V$, $I_D = -250 \mu A$	-20			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	$I_D = -250 \ \mu$ A, Referenced to 25°C		-12		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{\text{DS}} = -16 \text{ V}, V_{\text{GS}} = 0 \text{ V}$			-1	μA
I _{GSS}	Gate–Body Leakage	$V_{GS} = \pm 8 \text{ V}, \qquad V_{DS} = 0 \text{ V}$			±100	nA
On Char	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = -250 \ \mu A$	-0.4	-0.7	-1.0	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	$I_D = -250 \ \mu$ A, Referenced to 25°C		3		mV/°C
r _{DS(on)}	Static Drain–Source On–Resistance	$ \begin{array}{l} V_{GS}=-4.5 \ V, I_{D}=-6.6 \ A \\ V_{GS}=-2.5 \ V, I_{D}=-5.1 \ A \\ V_{GS}=-1.8 \ V, I_{D}=-3.9 \ A \\ V_{GS}=-4.5 \ V, \ I_{D}=-6.6 \ A, \ T_{J}=125^{\circ}C \end{array} $		36 51 79 49	42 58 98 64	mΩ
g _{FS}	Forward Transconductance	$V_{DS} = -5 V$, $I_D = -6.6 A$		16		S
Dynamic	Characteristics	•				
C _{iss}	Input Capacitance	$V_{DS} = -10 V$, $V_{GS} = 0 V$,	1	1000	Ì	pF
Coss	Output Capacitance	f = 1.0 MHz		190		pF
						-
C _{rss}	Reverse Transfer Capacitance			100		pF
C _{rss}				100		pF
C _{rss} Switchin	Reverse Transfer Capacitance g Characteristics (Note 2) Turn–On Delay Time	V _{DD} = -10 V, I _D = -1 A,		100	23	pF ns
C _{rss}	g Characteristics (Note 2)	$V_{DD} = -10 \text{ V}, I_D = -1 \text{ A}, \\ V_{GS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$			23 18	,
C _{rss} Switchin t _{d(on)}	g Characteristics (Note 2) Turn–On Delay Time			13	-	ns
C _{rss} Switchin t _{d(on)} t _r	g Characteristics (Note 2) Turn–On Delay Time Turn–On Rise Time			13 9	18	ns ns
C _{rss} Switchin t _{d(on)} t _r t _{d(off)} t _f	g Characteristics (Note 2) Turn–On Delay Time Turn–On Rise Time Turn–Off Delay Time			13 9 42	18 68	ns ns ns
C _{rss} Switchin t _{d(on)} t _r t _{d(off)}	g Characteristics (Note 2) Turn–On Delay Time Turn–On Rise Time Turn–Off Delay Time Turn–Off Fall Time	$V_{GS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$		13 9 42 25	18 68 40	ns ns ns ns
$\begin{array}{c} C_{rss} \\ \hline \textbf{Switchin} \\ t_{d(on)} \\ t_r \\ t_{d(off)} \\ t_f \\ Q_g \end{array}$	g Characteristics (Note 2) Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge	$V_{GS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$ $V_{DS} = -10 \text{ V}, I_D = -6.6 \text{ A},$		13 9 42 25 10	18 68 40	ns ns ns ns nC
$\begin{array}{c} C_{rss} \\ \hline \textbf{Switchin} \\ t_{d(on)} \\ t_r \\ t_{d(off)} \\ t_f \\ \hline Q_g \\ \hline Q_{gs} \\ \hline Q_{gd} \\ \end{array}$	g Characteristics (Note 2) Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{GS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$ $V_{DS} = -10 \text{ V}, I_D = -6.6 \text{ A},$ $V_{GS} = -4.5 \text{ V}$		13 9 42 25 10 2	18 68 40	ns ns ns ns nC nC
$\begin{array}{c} C_{rss} \\ \hline \textbf{Switchin} \\ t_{d(on)} \\ t_r \\ t_{d(off)} \\ t_f \\ \hline Q_g \\ \hline Q_{gs} \\ \hline Q_{gd} \\ \end{array}$	g Characteristics (Note 2) Turn–On Delay Time Turn–On Rise Time Turn–Off Delay Time Turn–Off Fall Time Total Gate Charge Gate–Source Charge	$V_{GS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$ $V_{DS} = -10 \text{ V}, I_D = -6.6 \text{ A},$ $V_{GS} = -4.5 \text{ V}$ and Maximum Ratings		13 9 42 25 10 2	18 68 40	ns ns ns ns nC nC
Crss Switchin t _{d(on)} tr Qg Qgs Qgd Drain–Sc	g Characteristics (Note 2) Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Durce Diode Characteristics	$V_{GS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$ $V_{DS} = -10 \text{ V}, I_D = -6.6 \text{ A},$ $V_{GS} = -4.5 \text{ V}$ and Maximum Ratings		13 9 42 25 10 2	18 68 40 14	ns ns ns nC nC nC
Crss Switchin t _{d(on)} tr tq(off) tf Qg Qgs Qgd Drain–So	g Characteristics (Note 2) Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Durce Diode Characteristics Maximum Continuous Drain-Source Drain-Source Diode Forward	$V_{GS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$ $V_{DS} = -10 \text{ V}, I_D = -6.6 \text{ A},$ $V_{GS} = -4.5 \text{ V}$ and Maximum Ratings e Diode Forward Current		13 9 42 25 10 2 3	18 68 40 14 -2	ns ns ns nC nC nC A

Notes:

1. $R_{\theta JA}$ is determined with the device mounted on a 1 in² oz. copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta JC}$ is guaranteed by design while $R_{\theta JA}$ is determined by the user's board design. (a) $R_{0JA} = 52^{\circ}C/W$ when mounted on a 1in² pad of 2 oz copper, 1.5" x 1.5" x 0.062" thick PCB


(b) $R_{0JA} = 145^{\circ}C/W$ when mounted on a minimum pad of 2 oz copper

2. Pulse Test: Pulse Width < 300µs, Duty Cycle < 2.0%


FDMA291P Single P-Channel 1.8V Specified PowerTrench[®] MOSFET

FDMA291P Rev B (W)

FDMA291P Single P-Channel 1.8V Specified PowerTrench[®] MOSFET

FDMA291P Rev B (W)

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ FAST® ActiveArray™ FASTr™ Bottomless™ FPS™ Build it Now™ FRFET™ CoolFET™ GlobalOptoisolator™ GTO™ CROSSVOLT™ DOME™ HiSeC™ **EcoSPARK**[™] I²C™ E²CMOS™ i-Lo™ EnSigna™ ImpliedDisconnect[™] FACT™ IntelliMAX™ FACT Quiet Series™ Across the board. Around the world.™ The Power Franchise[®] Programmable Active Droop[™]

ISOPLANARTM LittleFETTM MICROCOUPLERTM MicroFETTM MicroPakTM MICROWIRETM MSXTM MSXProTM OCXTM OCXTM OCXProTM OCXProTM OPTOLOGIC[®] OPTOPLANARTM POPTM Power247TM

PowerEdgeTM PowerSaverTM PowerTrench[®] QFET[®] QSTM QT OptoelectronicsTM Quiet SeriesTM RapidConfigureTM RapidConnectTM µSerDesTM ScalarPumpTM SILENT SWITCHER[®] SMART STARTTM SPMTM StealthTM SuperFETTM SuperSOT^{TM-3} SuperSOT^{TM-6} SuperSOT^{TM-8} SyncFETTM TCMTM TinyLogic[®] TINYOPTOTM TruTranslationTM UHCTM UNIFETTM UltraFET[®] VCXTM WireTM

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Datasheet Identification	Product Status	Definition		
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.		
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.		
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor The datasheet is printed for reference information only.		

PRODUCT STATUS DEFINITIONS Definition of Terms