

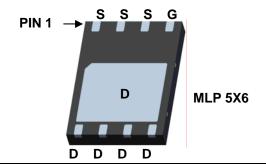
FDMS8690

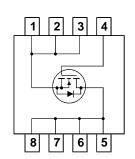
N-Channel PowerTrench® MOSFET

30V, 19.8A, 9mΩ

General Description

This device has been designed specifically to improve the efficiency of DC-DC converters. Using new techniques in MOSFET construction, the various components of gate charge and capacitance have been optimized to reduce switching losses. Low gate resistance and very low Miller charge enable excellent performance with both adaptive and fixed dead time gate drive circuits. Very low $r_{\text{DS(on)}}$ has been maintained to provide an extremely versatile device.


Applications


- High Efficiency DC-DC Converters
 - Notebook Vcore Power Supply
 - Multi purpose Point of Load

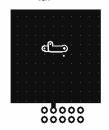
Features

- Max $r_{DS(on)} = 9.0 mΩ$ at $V_{GS} = 10 V$, $I_D = 19.8 A$
- Max $r_{DS(on)} = 12.5 m\Omega$ at $V_{GS} = 4.5 V$, $I_D = 11.5 A$
- High performance trench technology for extremely low r_{DS(on)} and gate charge
- Minimal Qgd (2.9 nC typical)
- RoHS Compliant

Absolute Maximum Ratings T _A =25°C unless otherwise noted				
Symbol	Parameter		Ratings	Units
V_{DS}	Drain-Source Voltage		30	V
V_{GS}	Gate-Source Voltage		±20	V
I _D	Drain Current - Continuous	(Note 1a)	19.8	А
	- Pulsed		90	
P _D	Power Dissipation for Single Operation	(Note 1a)	2.8	W
		(Note 1b)	1.1	
Ti, Teta	Operating and Storage Junction Tempera	ture Range	-55 to +150	°C

Thermal Characteristics

.				
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	44	°C/W
Raia	Thermal Resistance Junction-to-Ambient	(Note 1h)	115	


Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
FDMS8690	FDMS8690	7"	12mm	3000 units

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Char	acteristics	1			ı	ı
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, \qquad I_{D} = 250 \mu\text{A}$	30			V
<u>ΔBV_{DSS}</u> ΔT _J	Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, Referenced to 25°C		34		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 24 V, V _{GS} = 0 V			1	μА
I _{GSS}	Gate-Body Leakage	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nA
On Chara	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	1	1.6	3	V
$\Delta V_{GS(th)} \over \Delta T_J$	Gate Threshold Voltage Temperature Coefficient	I_D = 250 μ A, Referenced to 25°C		-4.5		mV/°C
DS(on)	Static Drain–Source On–Resistance	$ \begin{aligned} &V_{GS} = 10 \text{ V}, & I_D = 19.8 \text{ A} \\ &V_{GS} = 4.5 \text{ V}, & I_D = 11.5 \text{ A} \\ &V_{GS} = 10 \text{ V}, I_D = 19.8 \text{A}, T_J = 125^{\circ}\text{C} \end{aligned} $		7.4 9.9 10.6	9 12.5 13.3	mΩ
Dynamic	Characteristics					
C _{iss}	Input Capacitance	$V_{DS} = 15 \text{ V}, \qquad V_{GS} = 0 \text{ V},$		1260	1680	pF
Coss	Output Capacitance	f = 1.0 MHz		535	715	pF
C _{rss}	Reverse Transfer Capacitance			80	120	pF
R _G	Gate Resistance	f = 1.0 MHz		1.1		Ω
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 15 \text{ V}, \qquad I_D = 1 \text{ A},$		8	16	ns
r	Turn-On Rise Time	$V_{GS} = 10 \text{ V}, \qquad R_{GEN} = 6 \Omega$		1.8	10	ns
d(off)	Turn-Off Delay Time			26	42	ns
İ _f	Turn-Off Fall Time			19	35	ns
$Q_{g(TOT)}$	Total Gate Charge at V _{GS} = 10V	$V_{DS} = 15 \text{ V}, \qquad I_{D} = 14 \text{ A}$		18.8	27	nC
Q _{g(5)}	Total Gate Charge at V _{GS} = 5V			10	14	nC
Q_{gs}	Gate-Source Charge			3.5		nC
Q_{gd}	Gate-Drain Charge			2.9		nC
Drain-Sc	ource Diode Characteristics					
V_{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_{S} = 2.1 \text{ A} \text{(Note 2)}$		0.7	1.2	V
t _{rr}	Diode Reverse Recovery Time	I _F = 14 A,			45	ns
Q _{rr}	Diode Reverse Recovery Charge	di/dt = 100 A/µs			33	nC

Notes:

 $R_{\theta,JA}$ is determined with the device mounted on a $1 \text{in}^2 \text{pad 2}$ oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta,JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

44°C/W when mounted on a 1in² pad of 2 oz copper

115 °C/W when mounted on a minimum pad of 2 oz copper Scale 1 : 1 on letter size paper

2. Pulse Test: Pulse Width < 300μs, Duty Cycle < 2.0%

FDMS8690 Rev B(W) www.fairchildsemi.com

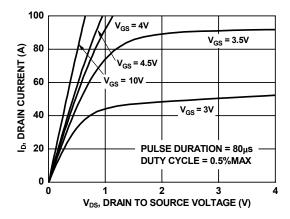


Figure 1. On Region Characteristics

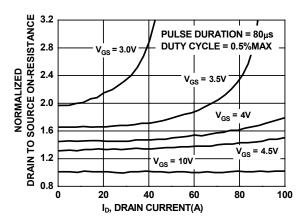


Figure 2. Normal On-Resistance vs Drain Current and Gate Voltage

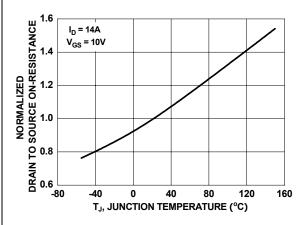


Figure 3. Normalized On Resistance vs Junction Temperature

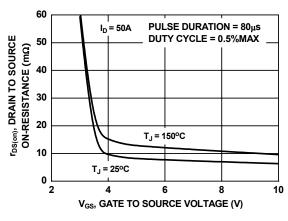


Figure 4. On-Resistance vs Gate to Source Voltage

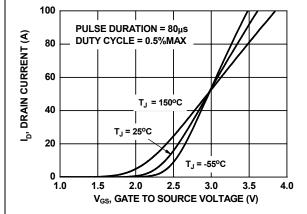


Figure 5. Transfer Characteristics

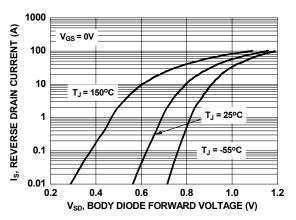
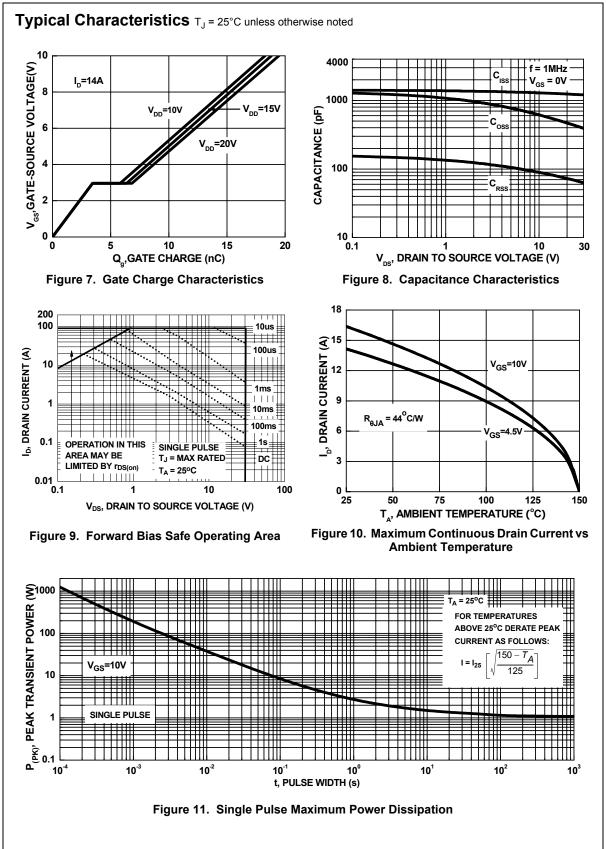



Figure 6. Source to Drain Diode Forward Voltage vs Source Current

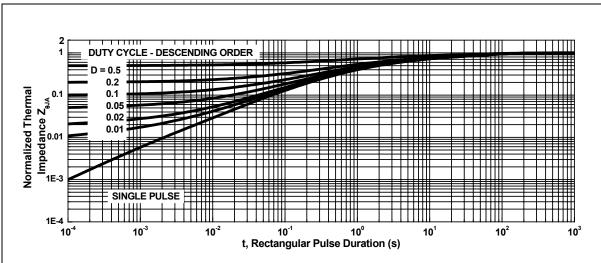
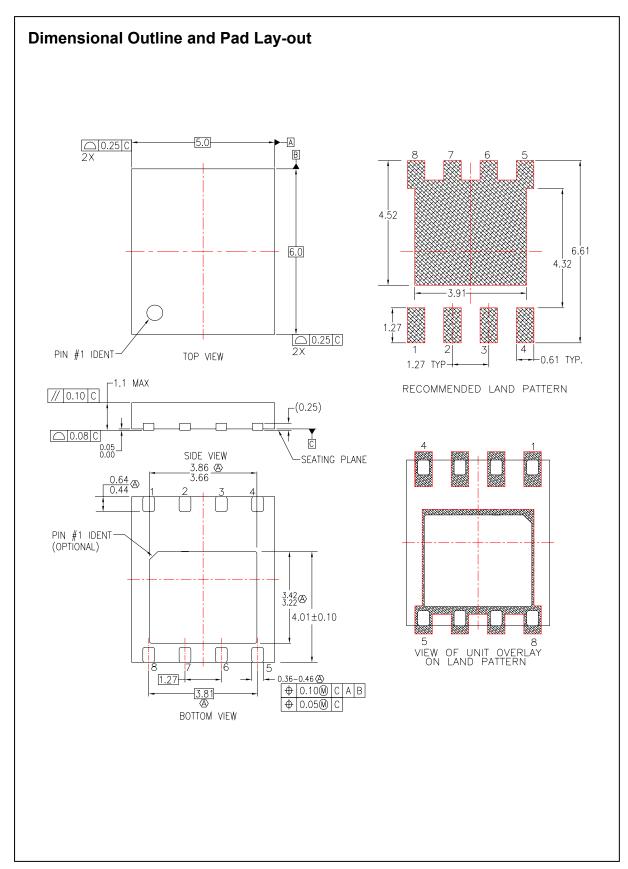



Figure 12. Transient Thermal Response Curve

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

	_			
ACEx™	FAST [®]	ISOPLANAR™	PowerSaver™	SuperSOT™-6
ActiveArray™	FASTr™	LittleFET™	PowerTrench [®]	SuperSOT™-8
Bottomless™	FPS™	MICROCOUPLER™	QFET [®]	SyncFET™
Build it Now™	FRFET™	MicroFET™	QS™	TCM™
CoolFET™	GlobalOptoisolator™	MicroPak™	QT Optoelectronics™	TinyLogic [®]
$CROSSVOLT^{TM}$	GTO™	MICROWIRE™	Quiet Series™	TINYOPTO™
DOME™	HiSeC™	MSX™	RapidConfigure™	TruTranslation™
EcoSPARK™	I ² C™	MSXPro™	RapidConnect™	UHC™
E ² CMOS™	i-Lo™	OCX™	µSerDes™	UltraFET [®]
EnSigna™	ImpliedDisconnect™	OCXPro™	ScalarPump™	UniFET™
FACT™	IntelliMAX™	OPTOLOGIC [®]	SILENT SWITCHER®	VCX™
FACT Quiet Series™		OPTOPLANAR™	SMART START™	Wire™
		PACMAN™	SPM™	

Across the board. Around the world. $^{\text{TM}}$ POP $^{\text{TM}}$ Stealth $^{\text{TM}}$ The Power Franchise $^{\text{\tiny B}}$ Power247 $^{\text{TM}}$ SuperFET $^{\text{TM}}$ Programmable Active Droop $^{\text{TM}}$ PowerEdge $^{\text{TM}}$ SuperSOT $^{\text{TM}}$ -3

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

7

Rev. I18