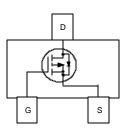
September 2001

FDN340P

Single P-Channel, Logic Level, PowerTrench[®] MOSFET

General Description


This P-Channel Logic Level MOSFET is produced using Fairchild Semiconductor advanced Power Trench process that has been especially tailored to minimize the on-state resistance and yet maintain low gate charge for superior switching performance.

These devices are well suited for portable electronics applications: load switching and power management, battery charging circuits, and DC/DC conversion.

Features

- Low gate charge (7.2 nC typical).
- High performance trench technology for extremely low $R_{\text{DS}(\text{ON})}$.
- High power version of industry Standard SOT-23 package. Identical pin-out to SOT-23 with 30% higher power handling capability.

Absolute Maximum Ratings TA=25°C unless otherwise noted

Symbol	Parameter		Ratings	Unit
V _{DSS}	Drain-Source Voltage		-20	V
V _{GSS}	Gate-Source Voltage		±8	V
l _D	Drain Current – Continuous	(Note 1a)	-2	A
	– Pulsed		-10	
P₀	Power Dissipation for Single Operation	(Note 1a)	0.5	۱۸/
		(Note 1b)	0.46	W
T _J , T _{STG}	Operating and Storage Junction Temperat	ure Range	-55 to +150	°C
Therma	al Characteristics			
D	Thermal Resistance, Junction-to-Ambient	(Note 1a)	250	°C/M
$R_{\theta JA}$	-			

Device Marking	Device	Reel Size	Tape width	Quantity
340	FDN340P	7"	8mm	3000 units
		•	•	

©2001 Fairchild Semiconductor Corporation

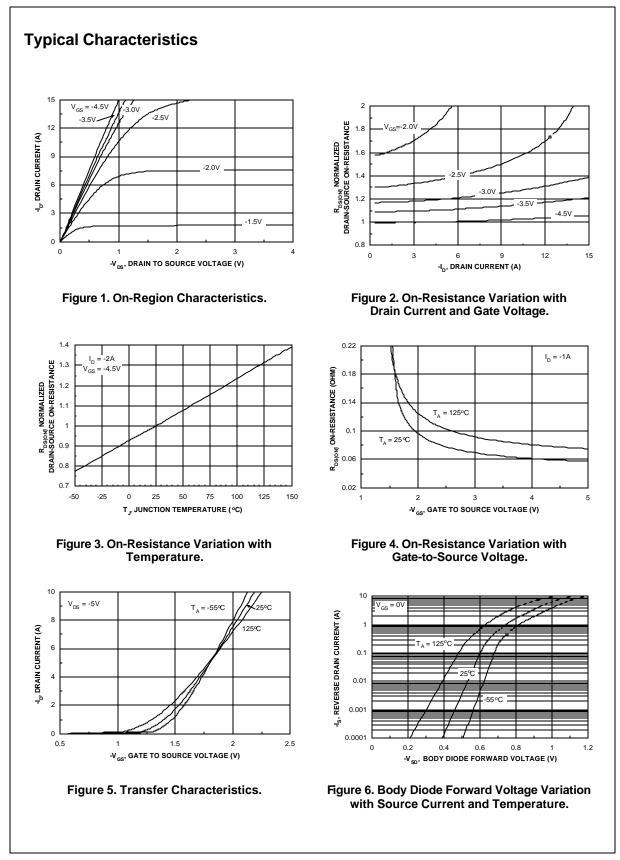
Symbol	Parameter	Test Conditions	Min	Тур	Мах	Units
Off Char	acteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, \text{ I}_{D} = -250 \mu\text{A}$	-20			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	$I_D = -250 \ \mu\text{A}, \text{Referenced to } 25^\circ\text{C}$		-12		mV/°C
DSS	Zero Gate Voltage Drain Current	$V_{DS} = -16 V$, $V_{GS} = 0 V$ $V_{DS} = -16 V$, $V_{GS} = 0 V$, $T_J=55^{\circ}C$			-1 -10	μA
GSSF	Gate-Body Leakage, Forward	$V_{GS} = 8 V, V_{DS} = 0 V$			100	nA
IGSSR	Gate–Body Leakage, Reverse	$V_{GS} = -8 V$, $V_{DS} = 0 V$			-100	nA
On Char	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = -250 \ \mu A$	-0.4	-0.8	-1.5	V
$\Delta V_{GS(th)} \Delta T_J$	Gate Threshold Voltage Temperature Coefficient	$I_D = -250 \ \mu\text{A}, \text{Referenced to } 25^{\circ}\text{C}$		3		mV/°C
R _{DS(on)}	Static Drain–Source	$V_{GS} = -4.5 \text{ V}, I_D = -2 \text{ A}$		60	70	Ω
On–Resistance	On-Resistance	$V_{GS} = -4.5 \text{ V}, I_D = -2 \text{ A}, T_J = 125^{\circ}\text{C}$		77	120	
		V_{GS} = -2.5 V, I_D = -1.7A,		82	110	
I _{D(on)}	On–State Drain Current	$V_{GS} = -4.5 \text{ V}, V_{DS} = -5 \text{ V}$	-5			Α
g fs	Forward Transconductance	$V_{DS} = -4.5 V$, $I_D = -2 A$		9		S
Dynamic	c Characteristics					
600	Input Capacitance	$V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V},$		779		pF
175	Output Capacitance	f = 1.0 MHz		121		pF
80	Reverse Transfer Capacitance	7		56		pF
Switchin	g Characteristics (Note 2)					
t _{d(on)}	Turn–On Delay Time	$V_{DD} = -10 V$, $I_D = -1 A$,		10	20	ns
tr	Turn–On Rise Time	$V_{GS} = -4.5 \text{ V}, \qquad R_{GEN} = 6 \Omega$		9	10	ns
t _{d(off)}	Turn–Off Delay Time	7		27	43	ns
t _f	Turn–Off Fall Time			11	20	ns
Qg	Total Gate Charge	$V_{DS} = -10V, \qquad I_D = -3.5 \text{ A},$		7.2	10	nC
Q _{gs}	Gate–Source Charge	$V_{GS} = -4.5 V$		1.7		nC
Q _{gd}	Gate–Drain Charge			1.5		nC
Drain-S	ource Diode Characteristics a	and Maximum Ratings				
ls	Maximum Continuous Drain-Source I				-0.42	Α
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 V$, $I_S = -0.42 A$ (Note 2)		-0.7	-1.2	V

Notes:

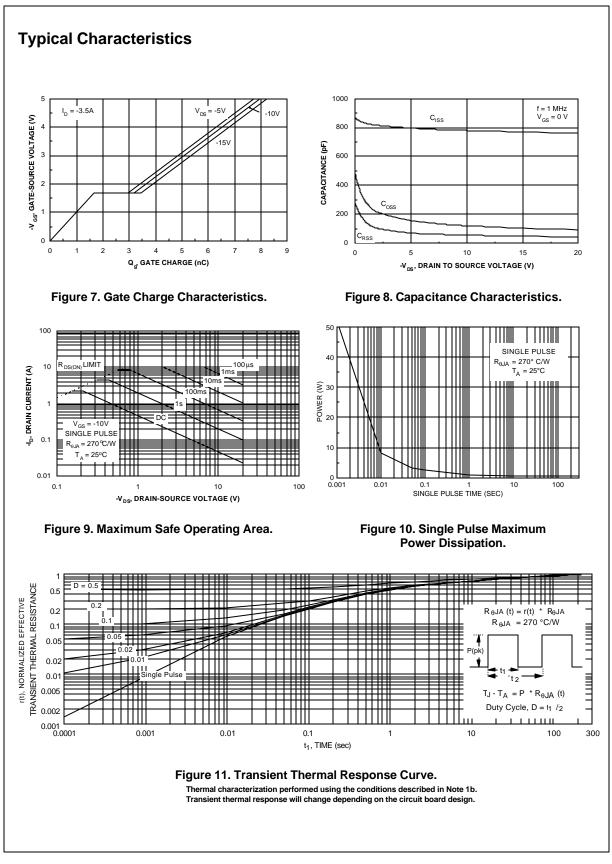
1. R_{0JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $\rm R_{\theta JC}$ is guaranteed by design while $\rm R_{\theta CA}$ is determined by the user's board design.

a. 250°C/W when mounted on a 0.02in² pad of 2 oz copper

Å


b. 270°C/W when mounted on a .001 in² pad of 2 oz copper

Scale 1 : 1 on letter size paper


2. Pulse Test: Pulse Width < 300 μ s, Duty Cycle < 2.0%

FDN340P Rev E (W)

FDN340P

FDN340P

FDN340P

FDN340P Rev E (W)

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ Bottomless™ CoolFET™ CROSSVOLT™ DenseTrench™ DOME™ **EcoSPARK™** E²CMOS[™] EnSigna™ FACT™ FACT Quiet Series™ FAST ® FASTr™ FRFET™ GlobalOptoisolator[™] POP[™] GTO™ HiSeC™ ISOPLANAR™ LittleFET™ MicroFET™ MicroPak™ MICROWIRE™

OPTOLOGIC™ OPTOPLANAR™ PACMAN™ Power247™ PowerTrench[®] QFET™ QS™ QT Optoelectronics[™] Quiet Series[™] SILENT SWITCHER®

SMART START™ VCX™ STAR*POWER™ Stealth™ SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 SyncFET™ TinyLogic™ TruTranslation[™] UHC™ UltraFET[®]

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY. FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
	In Design First Production Full Production