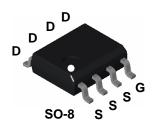
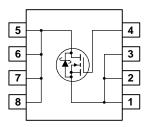
FAIRCHILE SEMICONDUCTOR

FDS6299S


30V N-Channel PowerTrench[®] SyncFET[™]

General Description

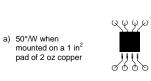
The FDS6299S is designed to replace a single SO-8 MOSFET and Schottky diode in synchronous DC:DC power supplies. This 30V MOSFET is designed to maximize power conversion efficiency, providing a low $R_{\text{DS}(ON)}$ and low gate charge. The FDS6299S includes a patented combination of a MOSFET monolithically integrated with a Schottky diode.


Applications

- Synchronous Rectifier for DC/DC Converters -
 - Notebook Vcore low side switch
 - Point of load low side switch

Features

- 21 A, 30 V. $R_{DS(ON)} = 3.9 \text{ m}\Omega @ V_{GS} = 10 \text{ V}$ $R_{DS(ON)} = 5.1 \text{ m}\Omega @ V_{GS} = 4.5 \text{ V}$
- Includes SyncFET Schottky body diode
- High performance trench technology for extremely low $R_{\text{DS}(\text{ON})}$ and fast switching
- High power and current handling capability
- 100% R_G (Gate Resistance) tested
- Termination is Lead-free and RoHS Compliant


Absolute Maximum Ratings T_A=25°C unless otherwise noted

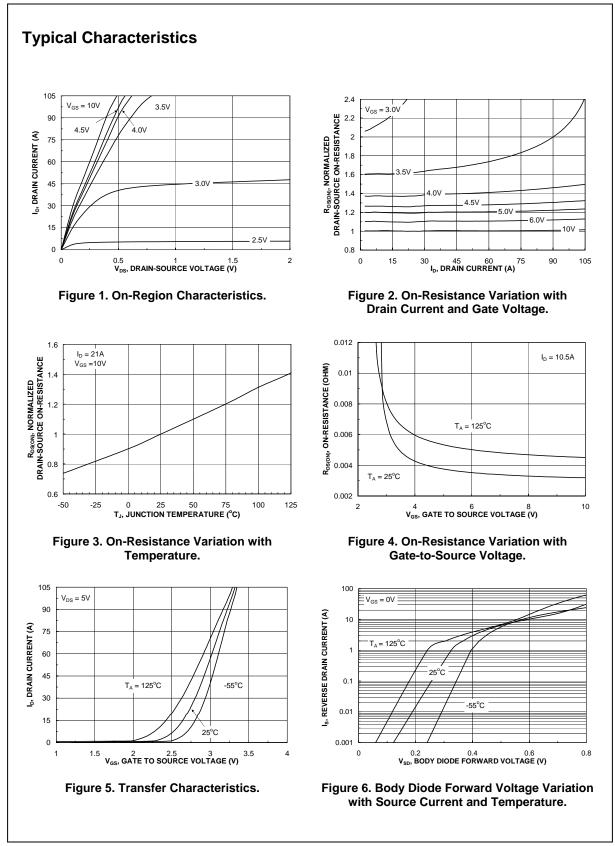
Symbol	Parameter			Ratings	Units
V _{DSS}	Drain-Sourc	e Voltage	30	V	
V _{GSS}	Gate-Source	Gate-Source Voltage		±20	V
I _D	Drain Curre	nt – Continuous	(Note 1a)	21	A
	– Pulsed			105	
P _D	Power Dissi	Power Dissipation for Single Operation (Note 1a) 2.5		W	
			(Note 1b)	1.2	
			(Note 1c)	1	
T _J , T _{STG}	Operating a	ng and Storage Junction Temperature Range		-55 to +150	°C
Therma	I Charact	eristics			
R _{θJA}	Thermal Resistance, Junction-to-Ambient (Note 1a) 50		°C/W		
R _{eJC}	Thermal Resistance, Junction-to-Case (Note 1)		(Note 1)	25	
Packag	e Marking	g and Ordering Ir	nformation		
Device I		Device	Reel Size	Tape width	Quantity
FDS6299S		FDS6299S	13"	12mm	2500 units

©2005 Fairchild Semiconductor Corporation

Symbol	Parameter	Test Conditions	Min	Тур	Мах	Units
Off Char	acteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 V$, $I_D = 1 mA$	30			V
<u>ΔBV_{DSS}</u> ΔTj	Breakdown Voltage Temperature Coefficient	I_D = 1 mA, Referenced to 25°C		32		mV/°C
DSS	Zero Gate Voltage Drain Current	$V_{DS} = 24 \text{ V}, \qquad V_{GS} = 0 \text{ V}$			500	μA
GSS	Gate-Body Leakage	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nA
On Chara	acteristics					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 1 \text{ mA}$	1	1.7	3	V
$\Delta V_{GS(th)}$ ΔT_J	Gate Threshold Voltage Temperature Coefficient	$I_D = 1$ mA, Referenced to 25°C		-4		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance			3.3 4.1 4.5	3.9 5.1 5.6	mΩ
J FS	Forward Transconductance	$V_{DS} = 10 \text{ V}, \qquad I_D = 21 \text{ A}$		94		S
Dvnamic	Characteristics					
Ciss	Input Capacitance	$V_{DS} = 15 V$, $V_{GS} = 0 V$,		3880		pF
Coss	Output Capacitance	f = 1.0 MHz		1030		pF
Crss	Reverse Transfer Capacitance			310		pF
R _G	Gate Resistance	$V_{GS} = 15 \text{ mV}, f = 1.0 \text{ MHz}$	0.4	1.8	3.1	Ω
Switchin	g Characteristics (Note 2)	·				
d(on)	Turn–On Delay Time	$V_{DD} = 15 V$, $I_D = 1 A$,		12	22	ns
r	Turn–On Rise Time			12	22	ns
d(off)	Turn-Off Delay Time			60	96	ns
f	Turn–Off Fall Time			35	56	ns
Q _{g(TOT)}	Total Gate Charge at V _{GS} =10V	$V_{DS} = 15 V$, $I_D = 21 A$		58	81	nC
\mathbf{J}^{d}	Total Gate Charge at V _{GS} =5V	1		31	43	nC
Q _{gs}	Gate-Source Charge	1		11		nC
Q _{gd}	Gate-Drain Charge	1		8		nC
Drain-So	ource Diode Characteristics an	d Maximum Ratings				
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 V$, $I_S = 3.5 A$ (Note 2)		420	700	mV
rr	Diode Reverse Recovery Time	I _F = 21 A,		32		ns
RM	Diode Reverse Recovery Current	$dI_F/dt = 300 \text{ A/}\mu\text{s}$ (Note 3)		2.1		Α
2 ⁿ	Diode Reverse Recovery Charge	1		34		nC

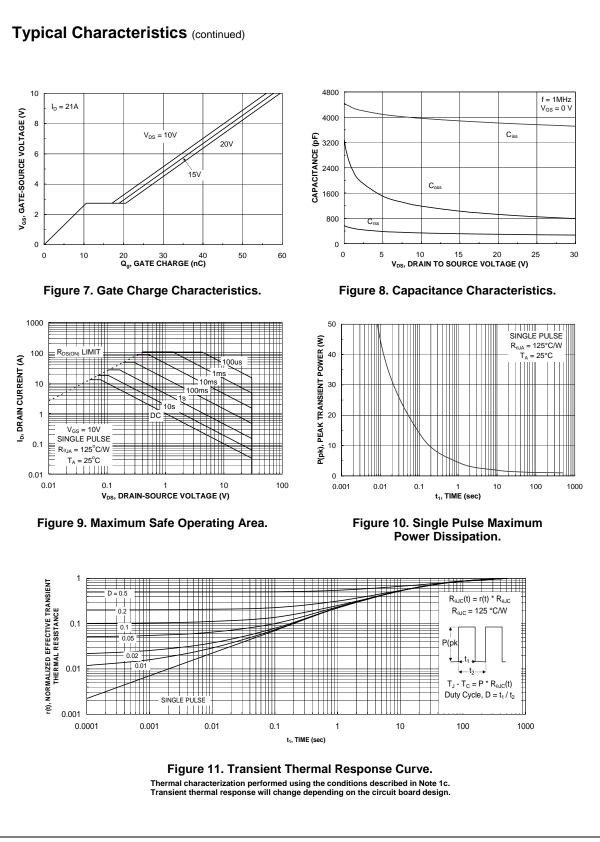
b) 105°/W when mounted on a .04 in² pad of 2 oz copper

c) 125°/W when mounted on a minimum pad.


Scale 1 : 1 on letter size paper

2. Pulse Test: Pulse Width < 300µs, Duty Cycle < 2.0%.

3. See "SyncFET Schottky body diode characteristics" below.


FDS6299S Rev C (W)

FDS6299S

FDS6299S

FDS6299S Rev C (W)

FDS6299S

FDS6299S Rev C (W)

Typical Characteristics (continued)

SyncFET Schottky Body Diode Characteristics

Fairchild's SyncFET process embeds a Schottky diode in parallel with PowerTrench MOSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET. Figure 12 shows the reverse recovery characteristic of the FDS6299S.

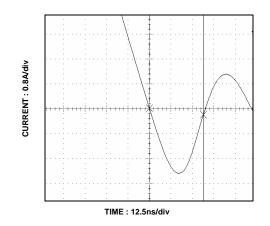
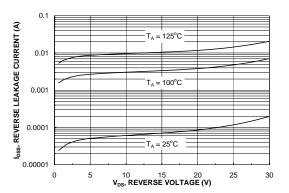
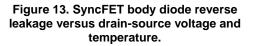




Figure 12. FDS6299S SyncFET body diode reverse recovery characteristic.

Schottky barrier diodes exhibit significant leakage at high temperature and high reverse voltage. This will increase the power in the device.

FDS6299S Rev C (W)

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx [™] ActiveArray [™] Bottomless [™] Build it Now [™] CoolFET [™] <i>CROSSVOLT</i> [™] DOME [™] EcoSPARK [™] E ² CMOS [™] EnSigna [™]	FAST [®] FASTr [™] FPS [™] FRFET [™] GlobalOptoisolator [™] GTO [™] HiSeC [™] I ² C [™] <i>i</i> -Lo [™] ImpliedDisconnect [™]	ISOPLANAR [™] LittleFET [™] MICROCOUPLER [™] MicroFET [™] MicroPak [™] MICROWIRE [™] MSX [™] MSXPro [™] OCX [™] OCX [™] OCXPro [™] OCXPro [™]	PowerSaver [™] PowerTrench [®] QFET [®] QS [™] QT Optoelectronics [™] Quiet Series [™] RapidConfigure [™] RapidConnect [™] µSerDes [™] SILENT SWITCHER [®] SMART START [™]	SuperSOT [™] -8 SyncFET [™] TinyLogic [®] TINYOPTO [™] TruTranslation [™] UHC [™] UltraFET [®] UniFET [™] VCX [™] Wire [™]
FACT™ FACT Quiet Serie	IntelliMAX [™]	OPTOLOGIC [®] OPTOPLANAR™	SMART START™ SPM™	
Across the board. Around the world. [™] The Power Franchise [®] Programmable Active Droop [™]		PACMAN [™] POP [™] Power247 [™] PowerEdge [™]	Stealth™ SuperFET™ SuperSOT™-3 SuperSOT™-6	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
		Rev. 116