## FAIRCHILD

## FDS6875

## Dual P-Channel 2.5V Specified PowerTrench ${ }^{\text {TM }}$ MOSFET

## General Description

These P-Channel 2.5 V specified MOSFETs are produced using Fairchild Semiconductor's advanced PowerTrench process that has been especially tailored to minimize the on-state resistance and yet maintain low gate charge for superior switching performance.

These devices are well suited for portable electronics applications: load switching and power management, battery charging and protection circuits.

## Features

- $-6 \mathrm{~A},-20 \mathrm{~V} . \mathrm{R}_{\mathrm{DS}(\mathrm{ON})}=0.030 \Omega @ \mathrm{~V}_{\mathrm{GS}}=-4.5 \mathrm{~V}$, $R_{\mathrm{DS}(0 \mathrm{~N})}=0.040 \Omega @ \mathrm{~V}_{\mathrm{GS}}=-2.5 \mathrm{~V}$.
- Low gate charge ( 23 nC typical).
- High performance trench technology for extremely low $\mathrm{R}_{\text {DS(ON) }}$.
- High power and current handling capability.

| SOT-23 | SuperSOT $^{\text {TM }}$-6 | SuperSOT $^{T M}-8$ | SO-8 | SOT-223 |
| :---: | :---: | :---: | :---: | :---: |




Electrical Characteristics $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

| Symbol | Parameter | Conditions | Min | Typ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OFF CHARACTERISTICS |  |  |  |  |  |  |
| $B V_{\text {DSS }}$ | Drain-Source Breakdown Voltage | $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$ | -20 |  |  | V |
| $\Delta \mathrm{BV}_{\text {DSs }} / \Delta \mathrm{T}_{\mathrm{J}}$ | Breakdown Voltage Temp. Coefficient | $\mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$, Referenced to $25^{\circ} \mathrm{C}$ |  | -21 |  | $\mathrm{mV} /{ }^{\circ} \mathrm{C}$ |
| $\mathrm{l}_{\text {DSS }}$ | Zero Gate Voltage Drain Current | $\mathrm{V}_{\mathrm{DS}}=-16 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$ |  |  | -1 | $\mu \mathrm{A}$ |
|  |  | $\mathrm{T}_{\mathrm{j}}=55^{\circ} \mathrm{C}$ |  |  | -10 | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\text {GSsF }}$ | Gate - Body Leakage, Forward | $\mathrm{V}_{\mathrm{GS}}=8 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$ |  |  | 100 | nA |
| $\mathrm{I}_{\text {GSSR }}$ | Gate - Body Leakage, Reverse | $\mathrm{V}_{\mathrm{GS}}=-8 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$ |  |  | -100 | nA |
| ON CHARACTERISTICS (Note 2) |  |  |  |  |  |  |
| $\mathrm{V}_{\text {GS }(1)}$ | Gate Threshold Voltage | $\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{~A}$ | -0.4 | -0.8 | -1.5 | V |
| $\Delta \mathrm{V}_{\text {GS(tr) }} / \Delta \mathrm{T}_{\mathrm{J}}$ | Gate Threshold Voltage Temp. Coefficient | $\mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$, Referenced to $25^{\circ} \mathrm{C}$ |  | 2.8 |  | $\mathrm{mV} /{ }^{\circ} \mathrm{C}$ |
| $\mathrm{R}_{\text {DS(ON) }}$ | Static Drain-Source On-Resistance | $\mathrm{V}_{\text {GS }}=-4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-6 \mathrm{~A}$ |  | 0.024 | 0.03 | $\Omega$ |
|  |  | $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$ |  | 0.033 | 0.048 |  |
|  |  | $\mathrm{V}_{\text {GS }}=-2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-5.3 \mathrm{~A}$ |  | 0.032 | 0.04 |  |
| $\mathrm{I}_{\text {Dow }}$ | On-State Drain Current | $\mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=-5 \mathrm{~V}$ | -20 |  |  | A |
| $\mathrm{g}_{\mathrm{Fs}}$ | Forward Transconductance | $\mathrm{V}_{\text {DS }}=-4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-6 \mathrm{~A}$ |  | 22 |  | S |
| DYNAMIC CHARACTERISTICS |  |  |  |  |  |  |
| $\mathrm{C}_{\text {iss }}$ | Input Capacitance | $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \\ & \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$ |  | 2250 |  | pF |
| $\mathrm{C}_{\text {oss }}$ | Output Capacitance |  |  | 500 |  | pF |
| $\mathrm{C}_{\text {rss }}$ | Reverse Transfer Capacitance |  |  | 200 |  | pF |
| SWITCHING CHARACTERISTICS (Note 2) |  |  |  |  |  |  |
| $\mathrm{t}_{\text {(on) }}$ | Turn - On Delay Time | $\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=-1 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GEN}}=-4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=6 \Omega \end{aligned}$ |  | 8 | 16 | ns |
| $\mathrm{t}_{\mathrm{t}}$ | Turn - On Rise Time |  |  | 15 | 27 | ns |
| $\mathrm{t}_{\text {D(aft }}$ | Turn - Off Delay Time |  |  | 98 | 135 | ns |
| $t_{\text {t }}$ | Turn - Off Fall Time |  |  | 35 | 55 | ns |
| $\mathrm{Q}_{\mathrm{g}}$ | Total Gate Charge | $\begin{aligned} & V_{D S}=-10 \mathrm{~V}, I_{D}=-6 \mathrm{~A}, \\ & V_{G S}=-5 \mathrm{~V} \end{aligned}$ |  | 23 | 31 | nC |
| $\mathrm{Q}_{\mathrm{gs}}$ | Gate-Source Charge |  |  | 3.9 |  | nC |
| $\mathrm{Q}_{\mathrm{gd}}$ | Gate-Drain Charge |  |  | 5.5 |  | nC |

## DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS

| $\mathrm{I}_{\text {S }}$ | Maximum Continuous Drain-Source Diode Forward Current |  |  | -1.3 | A |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {SD }}$ | Drain-Source Diode Forward Voltage | $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1.3 \mathrm{~A}$ (Note 2) | -0.7 | -1.2 | V | design while $R_{\theta C A}$ is determined by the user's board design.



Scale 1: 1 on letter size paper
2. Pulse Test: Pulse Width $\leq 300 \mu \mathrm{~s}$, Duty Cycle $\leq 2.0 \%$.

## Typical Electrical Characteristics



Figure 1. On-Region Characteristics.


Figure 3. On-Resistance Variation with Temperature.


Figure 5. Transfer Characteristics.


Figure 2. On-Resistance Variation with Dain Current and Gate Voltage.


Figure 4. On-Resistance Variation with Gate-to-Source Voltage.


Figure 6. Body Diode Forw ard Voltage Variation with Source Current and Temperature.

Typical Electrical Characteristics (continued)


Figure 7. Gate Charge Characteristics.


Figure 9. Maximum Safe Operating Area.


Figure 8. Capacitance Characteristics.


Figure 10. Single Pulse Maximum Power Dissipation.


Figure 11. Transient Thermal Response Curve.
Thermal characterization performed using the conditions described in Note 1c.
Transient thermal response will change depending on the circuit board design.

## TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

| ACEx ${ }^{\text {TM }}$ | ISOPLANAR ${ }^{\text {TM }}$ | TinyLogic ${ }^{\text {TM }}$ |
| :---: | :---: | :---: |
| CoolFET ${ }^{\text {Tm }}$ | MICROWIRE ${ }^{\text {TM }}$ | UHC ${ }^{\text {™ }}$ |
| CROSSVOLT ${ }^{\text {™ }}$ | РОРтм | VCX ${ }^{\text {™ }}$ |
| $\mathrm{E}^{2} \mathrm{CMOS}^{\text {M }}$ | PowerTrench ${ }^{\text {TM }}$ |  |
| FACT ${ }^{\text {т }}$ | QFET ${ }^{\text {TM }}$ |  |
| FACT Quiet Series ${ }^{\text {™ }}$ | QS ${ }^{\text {TM }}$ |  |
| FAST ${ }^{\circledR}$ | Quiet Series ${ }^{\text {TM }}$ |  |
| FASTr ${ }^{\text {TM }}$ | SuperSOT ${ }^{\text {TM }}$-3 |  |
| GTO ${ }^{\text {¹ }}$ | SuperSOT™-6 |  |
| HiSeC ${ }^{\text {¹ }}$ | SuperSOT™-8 |  |

## DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

## LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

## PRODUCT STATUS DEFINITIONS

Definition of Terms

| Datasheet Identification | Product Status | Definition |
| :--- | :--- | :--- |
| Advance Information | Formative or <br> In Design | This datasheet contains the design specifications for <br> product development. Specifications may change in <br> any manner without notice. |
| Preliminary | First Production | This datasheet contains preliminary data, and <br> supplementary data will be published at a later date. <br> Fairchild Semiconductor reserves the right to make <br> changes at any time without notice in order to improve <br> design. |
| No Identification Needed | Full Production | This datasheet contains final specifications. Fairchild <br> Semiconductor reserves the right to make changes at <br> any time without notice in order to improve design. |
| Obsolete | Not In Production | This datasheet contains specifications on a product <br> that has been discontinued by Fairchild semiconductor. <br> The datasheet is printed for reference information only. |

