

FQA24N50 500V N-Channel MOSFET

General Description

These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switch mode power supply, power factor correction, motor drive, and welding machine.

Features

- 24A, 500V, $R_{DS(on)} = 0.2\Omega @V_{GS} = 10 V$ Low gate charge (typical 90 nC)
- Low Crss (typical 55 pF)
- Fast switching
- · 100% avalanche tested
- · Improved dv/dt capability

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Parameter		FQA24N50	Units
V _{DSS}	Drain-Source Voltage		500	V
I _D	Drain Current - Continuous (T _C = 25°C)		24	А
	- Continuous (T _C = 100°C)		15.2	А
I _{DM}	Drain Current - Pulsed	(Note 1)	96	А
V _{GSS}	Gate-Source Voltage		± 30	V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	1100	mJ
I _{AR}	Avalanche Current	(Note 1)	24	А
E _{AR}	Repetitive Avalanche Energy	(Note 1)	29	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	4.5	V/ns
PD	Power Dissipation (T _C = 25°C)		290	W
	- Derate above 25°C		2.33	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C
TL	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300	°C

Thermal Characteristics

Symbol	Parameter	Тур	Max	Units
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction-to-Case		0.43	°C/W
$R_{\theta CS}$	Thermal Resistance, Case-to-Sink	0.24		°C/W
R_{\thetaJA}	Thermal Resistance, Junction-to-Ambient		40	°C/W

©2000 Fairchild Semiconductor International

April 2000

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Cha	aracteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} = 0 V, I _D = 250 μA	500			V
ΔΒV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient	I_D = 250 µA, Referenced to 25°C		0.53		V/°C
I _{DSS} Zero		V _{DS} = 500 V, V _{GS} = 0 V			1	μA
	Zero Gate Voltage Drain Current	V _{DS} = 400 V, T _C = 125°C			10	μA
I _{GSSF}	Gate-Body Leakage Current, Forward	V _{GS} = 30 V, V _{DS} = 0 V			100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	V _{GS} = -30 V, V _{DS} = 0 V			-100	nA
On Cha	venteriation				r	
	Gate Threshold Voltage	V _{DS} = V _{GS} , I _D = 250 μA	3.0		5.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 12 \text{ A}$		0.156	0.2	Ω
9 _{FS}	Forward Transconductance	V _{DS} = 50 V, I _D = 12 A (Note 4)		22		S
C	Input Capacitance	$V_{DS} = 25 V, V_{GS} = 0 V,$		3500	4500	pF
C		$V_{DS} = 25 V, V_{GS} = 0 V,$		520	4500	рг
033					670	pF
C _{rss}	Reverse Transfer Capacitance	-		55	670 70	pF pF
C _{rss} Switchi	Reverse Transfer Capacitance ng Characteristics Turn-On Delay Time			55 80	670 70 170	pF pF ns
C _{rss} Switchi t _{d(on)} t _r	Reverse Transfer Capacitance ng Characteristics Turn-On Delay Time Turn-On Rise Time	V _{DD} = 250 V, I _D = 24 A,		80 250	670 70 170 500	pF pF ns
$\frac{C_{rss}}{Switchi}$ $\frac{t_{d(on)}}{t_r}$ $t_{d(off)}$	Reverse Transfer Capacitance ng Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time	- V _{DD} = 250 V, I _D = 24 A, R _G = 25 Ω	 	80 250 200	670 70 170 500 400	pF pF ns ns
C _{rss} Switchi t _{d(on)} t _r t _{d(off)} t _f	Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time	V _{DD} = 250 V, I _D = 24 A, R _G = 25 Ω (Note 4, 5)	 	80 250 200 155	670 70 170 500 400 320	pF pF ns ns ns
C _{rss} Switchi t _{d(on)} t _r t _{d(off)} t _f Q _n	Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge	V _{DD} = 250 V, I _D = 24 A, R _G = 25 Ω (Note 4, 5)	 	80 250 200 155 90	670 70 170 500 400 320 120	pF pF ns ns ns ns
C_{rss} Switchi $t_{d(on)}$ t_r $t_{d(off)}$ t_f Q_g Q_{as}	Reverse Transfer Capacitance Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge	$V_{DD} = 250 \text{ V}, \text{ I}_{D} = 24 \text{ A},$ $R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = 400 \text{ V}, \text{ I}_{D} = 24 \text{ A},$ $V_{CS} = 10 \text{ V}$	 	80 250 200 155 90 23	670 70 170 500 400 320 120 	pF pF ns ns ns nC nC
C _{rss} Switchi t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gs} Q _{ad}	Reverse Transfer Capacitance Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{DD} = 250 \text{ V}, \text{ I}_{D} = 24 \text{ A},$ $R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = 400 \text{ V}, \text{ I}_{D} = 24 \text{ A},$ $V_{GS} = 10 \text{ V}$ (Note 4, 5)	 	80 250 200 155 90 23 44	670 70 170 500 400 320 120 	pF pF ns ns ns nC nC
$\frac{\mathbf{C}_{rss}}{\mathbf{Switchi}}$ $\frac{t_{d(on)}}{t_{r}}$ $\frac{t_{d(off)}}{t_{f}}$ $\frac{Q_{g}}{Q_{gs}}$ Q_{gd}	Reverse Transfer Capacitance Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{DD} = 250 \text{ V}, \text{ I}_{D} = 24 \text{ A},$ $R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = 400 \text{ V}, \text{ I}_{D} = 24 \text{ A},$ $V_{GS} = 10 \text{ V}$ (Note 4, 5)	 	80 250 200 155 90 23 44	670 70 170 500 400 320 120 	pF pF ns ns ns nC nC
C_{rss} Switchi $t_{d(on)}$ t_r $t_{d(off)}$ t_f Q_g Q_{gs} Q_{gd} Drain-S	Reverse Transfer Capacitance Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Maximum Captimum Datis Comparison	$V_{DD} = 250 \text{ V}, \text{ I}_{D} = 24 \text{ A},$ $R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = 400 \text{ V}, \text{ I}_{D} = 24 \text{ A},$ $V_{GS} = 10 \text{ V}$ (Note 4, 5) (Note 4, 5)	 	80 250 200 155 90 23 44	670 70 170 500 400 320 120 	pF pF ns ns ns nC nC nC
C_{rss} Switchi $t_{d(on)}$ t_r $t_{d(off)}$ t_f Q_g Q_{gg} Q_{gg} Drain-S I_s	Reverse Transfer Capacitance ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Source Diode Characteristics ar Maximum Continuous Drain-Source Dio	$V_{DD} = 250 \text{ V}, \text{ I}_{D} = 24 \text{ A},$ $R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = 400 \text{ V}, \text{ I}_{D} = 24 \text{ A},$ $V_{GS} = 10 \text{ V}$ (Note 4, 5) (N	 	80 250 200 155 90 23 44	670 70 170 500 400 320 120 24	pF pF ns ns ns nC nC nC

 $V_{GS} = 0 V, I_{S} = 24 A,$

 dI_F / dt = 100 A/µs

(Note 4)

400

4.3

--

ns

μĊ

(2	!r	r	
			_	

t_{rr}

Notes: 1. Repetitive Rating : Pulse width limited by maximum junction temperature 2. L = 3.4mH, I_{AS} = 24A, V_{DD} = 50V, R_G = 25 Ω , Starting T_J = 25°C 3. I_{SD} \leq 24A, di/dt \leq 200A/µs, V_{DD} \leq BV_{DSS}, Starting T_J = 25°C 4. Pulse Test : Pulse width \leq 300µs, Duty cycle \leq 2% 5. Essentially independent of operating temperature

Reverse Recovery Time

Reverse Recovery Charge

FQA24N50

©2000 Fairchild Semiconductor International

Rev. A, April 2000

©2000 Fairchild Semiconductor International

Rev. A, April 2000

©2000 Fairchild Semiconductor International

FQA24N50

©2000 Fairchild Semiconductor International

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx[™] Bottomless[™] CoolFET[™] CROSSVOLT[™] E^2 CMOS[™] FACT[™] FACT Quiet Series[™] FAST[®] FAST[®] FASTr[™] GTO[™] HiSeC[™] ISOPLANAR[™] MICROWIRE[™] POP[™] PowerTrench[®] QFET[™] QS[™] Quiet Series[™] SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 SyncFET[™] TinyLogic[™] UHC[™] VCX[™]

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to

result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.