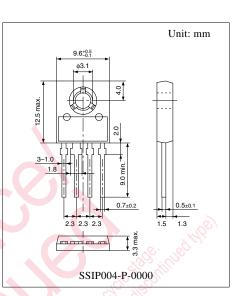
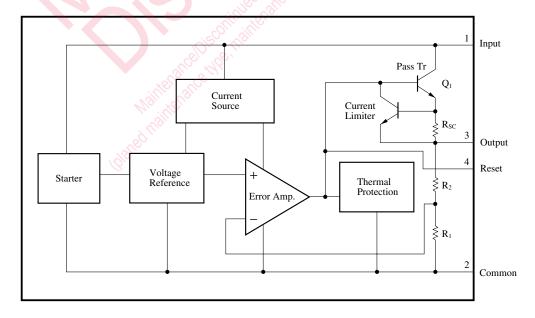
AN78xxR/AN78MxxR Series


4-pin positive output voltage regulator with reset pin (1 A/500 mA type)

Overview


The AN78xxR series and the AN78MxxR series are the fixed positive output type monolithic voltage regulators with reset pin. Stabilized fixed output voltage is obtained from unstable DC input voltage without using any external components. Three types of output voltage, 5V, 9V and 12V, are available for the AN78xxR series, and four types, 5V, 8V, 9V and 12V, are available for the AN78MxxR series. They can be used in power circuits with current capacity of 1A/500mA. On/off of output voltage can be controlled by the reset pin.

Features

- No external components
- Maximum output current: 1A (AN78xxR)
 - 500mA (AN78MxxR)
- Output voltage:5V, 9V, 12V (AN78xxR) 5V, 8V, 9V, 12V (AN78MxxR)
- Built-in overcurrent limit circuit
- Built-in thermal overload protection circuit
- Built-in ASO (area of safe operation) protection circuit
- On/off of output voltage can be controlled by reset pin

Block Diagram

■ Absolute Maximum Ratings at $T_a = 25^{\circ}C$

Parameter	Symbol	Rating	Unit
Input voltage	VI	35	V
Power dissipation	PD	10 *	W
Operating ambient temperature	T _{opr}	-20 to +80	°C
Storage temperature	T _{stg}	-55 to +150	°C

* Follow the derating curve. When T_j exceeds 150°C, the internal circuit cuts off the output.

■ Electrical Characteristics at T_a = 25°C

[1] AN78xxR series

• AN7805R (1A, 5V type)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output voltage	Vo	$T_j = 25^{\circ}C$	4.8	5	5.2	V
Output voltage tolerance	Vo	$\label{eq:VI} \begin{array}{l} V_{\rm I} = 8 \text{ to } 20 \text{V}, I_{\rm O} = 5 \text{mA to } 1\text{A}, \\ T_{\rm j} = 0 \text{ to } 125^{\circ}\text{C}, P_{\rm D} \leq 15 \text{W} \end{array}$	4.75	-	5.25	or v
Line regulation	REGIN	$V_{I} = 7.5$ to 25V, $T_{j} = 25^{\circ}C$		3	100	mV
Line regulation	KLOIN	$V_{I} = 8$ to 12V, $T_{j} = 25^{\circ}C$	_	<u>8</u>	50	mV
Load regulation	REGL	$I_0 = 5$ mA to 1.5A, $T_j = 25^{\circ}$ C		15	100	mV
Load regulation	KEUL	$I_0 = 250$ to 750mA, $T_j = 25^{\circ}C$		5	50	mV
Bias current	I _{Bias}	$T_j = 25^{\circ}C$	6000	3.9	8	mA
Bias current fluctuation to input	$\Delta I_{Bias(IN)}$	$V_{I} = 7.5$ to 25V, $T_{j} = 25^{\circ}C$	in the second		1.3	mA
Bias current fluctuation to load	$\Delta I_{Bias(L)}$	$I_0 = 5$ mA to 1A, $T_j = 25^{\circ}$ C	<u></u>		0.5	mA
Output noise voltage	V _{no}	f = 10Hz to 100kHz	_	40		μV
Ripple rejection ratio	RR	$V_{I} = 8$ to 18V, $I_{O} = 100$ mA, $f = 120$ Hz	62			dB
Minimum input/output voltage difference	V _{DIF(min)}	$I_0 = 1A, T_j = 25^{\circ}C$		2		v
Output impedance	Zo	f = 1kHz		17		mΩ
Output short-circuit current	I _{O(Short)}	$V_{I} = 35V, T_{j} = 25^{\circ}C$		700		mA
Peak output current	I _{O(Peak)}	$T_j = 25^{\circ}C$		2		А
Output voltage temperature coefficient	$\Delta V_0/T_a$	$I_0 = 5$ mA, $T_j = 0$ to 125° C		- 0.3		mV/°C
Output voltage at reset	V _{O(Reset)}	$T_j = 25^{\circ}C, I_{I(Reset)} = 1mA$			1	V
Reset input current	I _{I(Reset)}	$T_j = 25^{\circ}C$			1	mA

Note 1) The specified condition $T_j = 25^{\circ}C$ means that the test should be carried out within so short a test time (within 10ms) that the characteristic value drift due to the chip junction temperature rise can be ignored. Note 2) Unless otherwise specified, $V_1 = 10V$, $I_0 = 500$ mA, $C_1 = 0.33\mu$ F, $C_0 = 0.1\mu$ F and $T_j = 0$ to 125° C

■ Electrical Characteristics at T_a = 25°C (continued)

• AN7809R (1A, 9V type)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output voltage	Vo	$T_j = 25^{\circ}C$	8.65	9	9.35	V
Output voltage tolerance	Vo	$\label{eq:VI} \begin{array}{l} V_{\rm I} = 12 \text{ to } 24 \text{V}, I_{\rm O} = 5 \text{mA to } 1\text{A}, \\ T_{\rm j} = 0 \text{ to } 125^\circ\text{C}, P_{\rm D} \leq 15 \text{W} \end{array}$	8.55		9.45	v
Line regulation	REGIN	$V_I = 11.5$ to 26V, $T_j = 25^{\circ}C$		7	180	mV
Line regulation	KLOIN	$V_{I} = 12$ to 18V, $T_{j} = 25^{\circ}C$		2	90	mV
Lood manufaction	DEC	$I_0 = 5$ mA to 1.5A, $T_j = 25^{\circ}$ C		12	180	mV
Load regulation	REG _L $I_0 = 250 \text{ to } 750 \text{mA}, T_j = 25^{\circ}\text{C}$		4	90	mV	
Bias current	I _{Bias}	$T_j = 25^{\circ}C$		3.9	8	mA
Bias current fluctuation to input	$\Delta I_{Bias(IN)}$	$V_{I} = 11.5$ to 26V, $T_{j} = 25^{\circ}C$		—	1	mA
Bias current fluctuation to load	$\Delta I_{Bias(L)}$	$I_0 = 5$ mA to 1A, $T_j = 25$ °C		—	0.5	mA
Output noise voltage	V _{no}	f = 10Hz to 100kHz	—	57		μV
Ripple rejection ratio	RR	$V_I = 12$ to 22V, $I_0 = 100$ mA, $f = 120$ Hz	56			dB
Minimum input/output voltage difference	$V_{\text{DIF}(\text{min})}$	$I_0 = 1A, T_j = 25^{\circ}C$		2		V
Output impedance	Zo	f = 1kHz	—	16	—	mΩ
Output short-circuit current	I _{O(Short)}	$V_1 = 26V, T_j = 25^{\circ}C$		700	a	mA
Peak output current	I _{O(Peak)}	$T_j = 25^{\circ}C$		2	S and the	A
Output voltage temperature coefficient	$\Delta V_0/T_a$	$I_0 = 5mA$, $T_j = 0$ to $125^{\circ}C$	_	-0.5	<u>01 </u>	mV/°C
Output voltage at reset	V _{O(Reset)}	$T_j = 25^{\circ}C, I_{I(Reset)} = 1mA$		N-JP	1	V
Reset input current	I _{I(Reset)}	$T_j = 25^{\circ}C$	- G	. <u>60 ^</u>	1	mA

Note 1) The specified condition $T_j = 25^{\circ}C$ means that the test should be carried out within so short a test time (within 10ms) that the characteristic value drift due to the chip junction temperature rise can be ignored.

Note 2) Unless otherwise specified, $V_I = 15V$, $I_0 = 500$ mA, $C_I = 0.33\mu$ F, $C_0 = 0.1\mu$ F and $T_j = 0$ to 125° C

• AN7812R (1A, 12V type)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output voltage	Vo	$T_i = 25^{\circ}C$	11.5	12	12.5	v
Output voltage tolerance	Vo	$V_I = 15 \text{ to } 27V, I_O = 5\text{mA to } 1\text{A}, T_j = 0 \text{ to } 125^\circ\text{C}, P_D \le 15\text{W}$	11.4		12.6	v
Line regulation	REGIN	$V_1 = 14.5$ to 30V, $T_j = 25^{\circ}C$		10	240	mV
Line regulation	KLOIN	$V_I = 16$ to 22V, $T_j = 25^{\circ}C$		3	120	mV
Load regulation	REG	$I_0 = 5$ mA to 1.5A, $T_j = 25^{\circ}$ C		12	240	mV
	KEGL	$I_0 = 250$ to 750mA, $T_j = 25^{\circ}C$		4	120	mV
Bias current	IBias	$T_j = 25^{\circ}C$		4	8	mA
Bias current fluctuation to input	$\Delta I_{Bias(IN)}$	$V_{I} = 14.5$ to 30V, $T_{j} = 25^{\circ}C$			1	mA
Bias current fluctuation to load	$\Delta I_{Bias(L)}$	$I_0 = 5mA$ to 1A, $T_j = 25^{\circ}C$			0.5	mA
Output noise voltage	V _{no}	f = 10Hz to 100kHz		75		μV
Ripple rejection ratio	RR	$V_I = 15$ to 25V, $I_O = 100$ mA, $f = 120$ Hz	55			dB
Minimum input/output voltage difference	V _{DIF(min)}	$I_0 = 1A, T_j = 25^{\circ}C$		2		v
Output impedance	Zo	f = 1kHz		18		mΩ
Output short-circuit current	I _{O(Short)}	$V_{I} = 35V, T_{j} = 25^{\circ}C$		700		mA
Peak output current	I _{O(Peak)}	$T_j = 25^{\circ}C$		2		A
Output voltage temperature coefficient	$\Delta V_0/T_a$	$I_0 = 5mA$, $T_j = 0$ to $125^{\circ}C$		- 0.8		mV/°C
Output voltage at reset	V _{O(Reset)}	$T_j = 25^{\circ}C, I_{I(Reset)} = 1mA$			1	V
Reset input current	I _{I(Reset)}	$T_j = 25^{\circ}C$			1	mA

Note 1) The specified condition $T_j = 25^{\circ}C$ means that the test should be carried out within so short a test time (within 10ms) that the characteristic value drift due to the chip junction temperature rise can be ignored.

Note 2) Unless otherwise specified, $V_I = 19V$, $I_O = 500$ mA, $C_I = 0.33\mu$ F, $C_O = 0.1\mu$ F and $T_j = 0$ to 125° C

■ Electrical Characteristics at T_a = 25°C (continued)

[2] AN78MxxR series

• AN78M05R (500mA, 5V type)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output voltage	Vo	$T_j = 25^{\circ}C$	4.8	5	5.2	V
Output voltage tolerance	Vo	$ \begin{array}{l} V_{\rm I} = 7.5 \mbox{ to } 20 \mbox{V}, I_{\rm O} = 5 \mbox{ to } 350 \mbox{mA}, \\ T_{\rm j} = 0 \mbox{ to } 125^{\circ} \mbox{C}, P_{\rm D} \leq 15 \mbox{W} \end{array} $	4.75		5.25	v
Line regulation	REGIN	$V_{I} = 7.5$ to 25V, $T_{j} = 25^{\circ}C$		3	100	mV
	KLOIN	$V_I = 8$ to 25V, $T_j = 25^{\circ}C$		1	5.25 3 100	mV
Load regulation	REGL	$I_0 = 5$ to 500mA, $T_j = 25^{\circ}C$		20	100	mV
	KEUL	$I_0 = 5$ to 200mA, $T_j = 25^{\circ}C$	—	10	50	mV
Bias current	$\mathbf{I}_{\mathrm{Bias}}$	$T_j = 25^{\circ}C$		4.6	6	mA
Bias current fluctuation to input	$\Delta I_{Bias(IN)}$	$V_I = 8$ to 25V, $T_j = 25^{\circ}C$		—	0.8	mA
Bias current fluctuation to load	$\Delta I_{Bias(L)}$	$I_0 = 5 \text{ to } 350 \text{mA}, T_j = 25^{\circ}\text{C}$	—	—	0.5	mA
Output noise voltage	V _{no}	f = 10Hz to $100kHz$	—	40		μV
Ripple rejection ratio	RR	$V_{I} = 8$ to 18V, $I_{O} = 100$ mA, $f = 120$ Hz	62			dB
Minimum input/output voltage difference	V _{DIF(min)}	$I_0 = 500 \text{mA}, T_j = 25^{\circ}\text{C}$		2		⊗ v
Output short-circuit current	I _{O(Short)}	$V_{I} = 35V, T_{j} = 25^{\circ}C$		300	<u>6</u>	mA
Peak output current	I _{O(Peak)}	$T_j = 25^{\circ}C$		700	S and the second	mA
Output voltage temperature coefficient	$\Delta V_0/T_a$	$I_0 = 5mA$, $T_j = 0$ to $125^{\circ}C$		-0.5	<u>0[</u>	mV/°C
Output voltage at reset	V _{O(Reset)}	$T_j = 25^{\circ}C, I_{I(Reset)} = 1mA$		<u> H</u> -H	1	V
Reset input current	I _{I(Reset)}	$T_j = 25^{\circ}C$	the state	$\frac{2}{2}$	1	mA

Note 1) The specified condition $T_j = 25^{\circ}$ C means that the test should be carried out within so short a test time (within 10ms) that the characteristic value drift due to the chip junction temperature rise can be ignored.

Note 2) Unless otherwise specified, $V_1 = 10V$, $I_0 = 350$ mA, $C_1 = 0.33\mu$ F, $C_0 = 0.1\mu$ F and $T_j = 0$ to 125° C

Parameter	Symbol	Conditions	Min	Тур	Мах	Unit
Output voltage	Vo	$T_i = 25^{\circ}C$	7.7	8	8.3	V
Output voltage tolerance	Vo		7.6		8.4	v
Line regulation	REGIN	$V_{I} = 10.5$ to 25V, $T_{j} = 25^{\circ}C$		6	100	mV
Line regulation	· KEOIN	$V_{I} = 11$ to 25V, $T_{j} = 25^{\circ}C$		2	50	mV
Load monlation	REGL	$I_0 = 5$ to 500mA, $T_j = 25^{\circ}C$		25	160	mV
Load regulation	REGL	$I_0 = 5$ to 200mA, $T_j = 25^{\circ}C$		10	80	mV
Bias current	I _{Bias}	$T_j = 25^{\circ}C$		4.1	6	mA
Bias current fluctuation to input	ΔI _{Bias(IN)}	$V_{I} = 10.5$ to 25V, $T_{j} = 25^{\circ}C$			0.8	mA
Bias current fluctuation to load	$\Delta I_{Bias(L)}$	$I_0 = 5$ to 350mA, $T_j = 25^{\circ}C$			0.5	mA
Output noise voltage	V_{no}	f = 10Hz to $100kHz$		52		μV
Ripple rejection ratio	RR	$V_{I} = 11.5$ to 21.5V, $I_{O} = 100$ mA, $f = 120$ Hz	56			dB
Minimum input/output voltage difference	$V_{\text{DIF}(min)}$	$I_0 = 500 \text{mA}, T_j = 25^{\circ}\text{C}$		2		v
Output short-circuit current	I _{O(Short)}	$V_I = 35V, T_j = 25^{\circ}C$		300		mA
Peak output current	I _{O(Peak)}	$T_j = 25^{\circ}C$		0.7		A
Output voltage temperature coefficient	$\Delta V_0/T_a$	$I_0 = 5mA, T_j = 0 \text{ to } 125^{\circ}C$		- 0.5		mV/°C
Output voltage at reset	V _{O(Reset)}	$T_j = 25^{\circ}C, I_{I(Reset)} = 1mA$			1	v
Reset input current	I _{I(Reset)}	$T_j = 25^{\circ}C$			1	mA

• AN78M08R (500mA, 8V type)

Note 1) The specified condition $T_j = 25^{\circ}C$ means that the test should be carried out within so short a test time (within 10ms) that the characteristic value drift due to the chip junction temperature rise can be ignored.

Note 2) Unless otherwise specified, $V_I = 14V$, $I_O = 350$ mA, $C_I = 0.33\mu$ F, $C_O = 0.1\mu$ F and $T_j = 0$ to 125° C

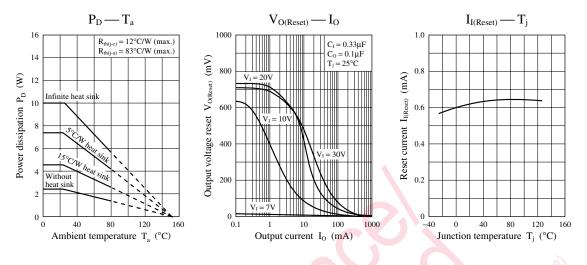
Electrical Characteristics at $T_a = 25^{\circ}C$ (continued)

• AN78M09R (500mA, 9V type)

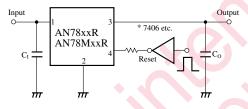
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output voltage	Vo	$T_j = 25^{\circ}C$	8.65	9	9.35	v
Output voltage tolerance	Vo	$\begin{array}{l} V_{\rm I} = 11.5 \mbox{ to } 24 \mbox{V}, I_{\rm O} = 5 \mbox{ to } 350 \mbox{mA}, \\ T_{\rm j} = 0 \mbox{ to } 125^{\circ} \mbox{C}, P_{\rm D} \leq 15 \mbox{W} \end{array}$	8.55		9.45	v
Line regulation	REGIN	$V_{\rm I}$ = 11.5 to 25V, $T_{\rm j}$ = 25°C		7	100	mV
Line regulation	KLO _{IN}	$V_I = 12$ to 25V, $T_j = 25^{\circ}C$		2	50	mV
L and recordition	REG	$I_0 = 5$ to 500mA, $T_j = 25^{\circ}C$		25	180	mV
Load regulation	KEUL	$I_0 = 5$ to 200mA, $T_j = 25^{\circ}C$		10	90	mV
Bias current	$\mathbf{I}_{\mathrm{Bias}}$	$T_j = 25^{\circ}C$		4.1	6.0	mA
Bias current fluctuation to input	$\Delta I_{Bias(IN)}$	$V_1 = 12$ to 25V, $T_j = 25^{\circ}C$		—	0.8	mA
Bias current fluctuation to load	$\Delta I_{Bias(L)}$	$I_0 = 5 \text{ to } 350 \text{mA}, T_j = 25^{\circ}\text{C}$			0.5	mA
Output noise voltage	V_{no}	f = 10Hz to 100kHz	—	60		μν
Ripple rejection ratio	RR	$V_{I} = 12$ to 22V, $I_{O} = 100$ mA, $f = 120$ Hz	56			dB
Minimum input/output voltage difference	V _{DIF(min)}	$I_0 = 500 \text{mA}, T_j = 25^{\circ}\text{C}$		2		V
Output short-circuit current	$I_{O(Short)}$	$V_{I} = 35V, T_{j} = 25^{\circ}C$		300		mA
Peak output current	I _{O(Peak)}	$T_j = 25^{\circ}C$		0.7	2	A
Output voltage temperature coefficient	$\Delta V_0/T_a$	$I_0 = 5mA$, $T_j = 0$ to $125^{\circ}C$	_	- 0.5	S the	mV/°C
Output voltage at reset	V _{O(Reset)}	$T_j = 25^{\circ}C, I_{I(Reset)} = 1mA$. 2	o ⁶⁷ 1	v
Reset input current	I _{I(Reset)}	$T_j = 25^{\circ}C$	<u>.</u>	K_K	1	mA

Note 1) The specified condition $T_j = 25^{\circ}C$ means that the test should be carried out within so short a test time (within 10ms) that the characteristic value drift due to the chip junction temperature rise can be ignored.

Note 2) Unless otherwise specified, $V_I = 15V$, $I_O = 350$ mA, $C_I = 0.33 \mu$ F, $C_O = 0.1 \mu$ F and $T_j = 0$ to 125° C


Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output voltage	Vo	$T_j = 25^{\circ}C$	11.5	12	12.5	V
Output voltage tolerance	Vo		11.4		12.6	v
Line regulation	REGIN	$V_1 = 14.5$ to 30V, $T_j = 25^{\circ}C$		8	100	mV
	KLOIN	$V_{I} = 16$ to 30V, $T_{j} = 25^{\circ}C$		2	50	mV
Load regulation	REGL	$I_0 = 5$ to 500mA, $T_j = 25^{\circ}C$		25	240	mV
Load regulation	KEUL	$I_0 = 5$ to 200mA, $T_j = 25^{\circ}C$		10	120	mV
Bias current	I _{Bias}	$T_j = 25^{\circ}C$		4.3	6	mA
Bias current fluctuation to input	$\Delta I_{Bias(IN)}$	$V_{I} = 14.5$ to 30V, $T_{j} = 25^{\circ}C$		—	0.8	mA
Bias current fluctuation to load	$\Delta I_{Bias(L)}$	$I_0 = 5 \text{ to } 350 \text{mA}, T_j = 25^{\circ}\text{C}$		—	0.5	mA
Output noise voltage	V _{no}	f = 10Hz to $100kHz$		75		μV
Ripple rejection ratio	RR	$V_{I} = 15$ to 25V, $I_{O} = 100$ mA, $f = 120$ Hz	55			dB
Minimum input/output voltage difference	V _{DIF(min)}	$I_0 = 500 \text{mA}, T_j = 25^{\circ}\text{C}$		2		v
Output short-circuit current	I _{O(Short)}	$V_I = 35V, T_j = 25^{\circ}C$		300		mA
Peak output current	I _{O(Peak)}	$T_j = 25^{\circ}C, V_I = 35V$		700		mA
Output voltage temperature coefficient	$\Delta V_0/T_a$	$I_0 = 5mA, T_j = 0 \text{ to } 125^{\circ}C$		- 0.5		mV/°C
Output voltage at reset	V _{O(Reset)}	$T_j = 25^{\circ}C, I_{I(Reset)} = 1mA$			1	v
Reset input current	I _{I(Reset)}	$T_j = 25^{\circ}C$			1	mA

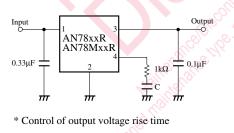
• AN78M12R (500mA, 12V type)

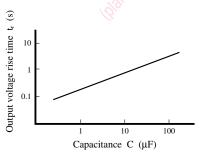

Note 1) The specified condition $T_j = 25^{\circ}C$ means that the test should be carried out within so short a test time (within 10ms) that the characteristic value drift due to the chip junction temperature rise can be ignored.

Note 2) Unless otherwise specified, $V_I = 19V$, $I_0 = 350$ mA, $C_I = 0.33\mu$ F, $C_0 = 0.1\mu$ F and $T_j = 0$ to 125° C

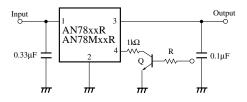
Main Characteristics

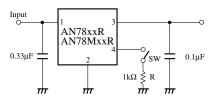
Basic Regulator Circuit




* For TTL, an open collector type inverter, buffer, gate etc. can be used.

Beware of the breakdown of TTL, as the reset pin bears voltage higher than the output voltage V_0 by 1 to 2V.


 C_1 is necessary when the input line is long. C_0 improves the transient response.


- Application Circuit Example
- 1. Soft start circuit

2. Several output reset circuits

Request for your special attention and precautions in using the technical information and semiconductors described in this book

- (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
- (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products, and no license is granted under any intellectual property right or other right owned by our company or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.
- (3) The products described in this book are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).
 - Consult our sales staff in advance for information on the following applications:
 - Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
 - Any applications other than the standard applications intended.
- (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment. Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure
 - mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.
- (6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.
- (7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of Matsushita Electric Industrial Co., Ltd.