

Features

- Low Quiescent Current: 300μA
- - Low Quiescent Current: 300μA
- -7V to +12V Common-Mode Input Voltage Range
- Three-State Outputs
- 50ns Propagation Delays, 5ns Skew
- Half-Duplex Version Available
- Operate from a Single 5V Supply
- Allows up to 32 Transceivers on the Bus
- Data rate: 5 Mbps
- Current-Limiting and Thermal Shutdown for Driver Overload Protection
- Enhanced ESD Specifications:
- ±15kV IEC61000-4-2 Air Discharge
- ±8kV IEC61000-4-2 Contact Discharge

General Description

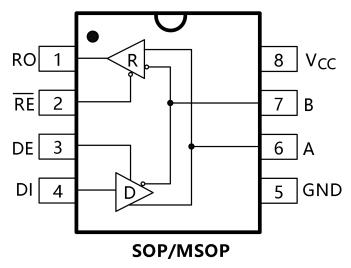
Applications

- Low power RS-485 systems
- DTE/DCE interface
- Packet switching
- Local area networks (LNAs)
- Data multiplexers
- Data concentration
- Integrated services digital network (ISDN)

The CBM485 is low-power transceivers for RS-485 and RS-422 communication. IC contains one driver and one receiver.

The driver slew rates of the CBM485 is not limited, allowing them to transmit up to 10 Mbps. These transceivers draw between 120μ A and 500μ A of supply current when unloaded or fully loaded with disabled drivers. All parts operate from a single 5V supply. Drivers are short-circuit current limited and are protected against excessive power dissipation by thermal shutdown circuitry that places the driver outputs into a high-impedance state.

The receiver input has a fail-safe feature that guarantees a logic-high output if the input is open circuit. The CBM485 is designed for half-duplex applications.



Catalog

Features1
Applications1
General Description
Catalog
Pin Configurations
Pin Descriptions
Absolute Maximum Ratings
DC Electrical Characteristics
Switching Characteristics
Test Circuits
Function Tables11
Typical Information11
Driver Output Protection
Propagation Delay12
Typical Applications
Package Outline Dimensions
SOP813
MSOP814
Package/Ordering Information

Pin Configurations

Pin Descriptions

PIN_N	SYMBOL MSOP/SOP(CBM485)	I/O	NAME AND FUNCTION
1	RO	0	Receiver Output: If A > B by 200mV, RO will be high; If A < B by 200mV, RO will be low.
2	RE		Receiver Output Enable. RO is enabled when -R—E – is low; RO is high impedance when -R—E– is high.
3	DE		Driver Output Enable. The driver outputs, Y and Z, are enabled by bringing DE high. They are high impedance when DE is low. If the driver outputs are enabled, the parts function as line drivers. While they are high impedance, they function as line receivers if $-R-E-$ is low.
4	DI	Driver Input. A low on DI forces output Y low a Z high. Similarly, a high on DI forces output Y output Z low.	
5	GND		Ground
6	А	I	Noninverting Receiver Input and Noninverting Driver Output
7	В	Ι	Inverting Receiver Input and Inverting Driver Output
8	Vcc		Positive Supply: $4.75V \le VCC \le 5.25V$

Absolute Maximum Ratings

Supply Voltage (V _{cc}) 12V	Continuous Power Dissipation (T _A = +70°C)
Control Input Voltage -0.5V to (V_{CC} + .5V)	8-Pin Plastic DIP (derate 9.09mW/°C above +70°C)
727mW	
Driver Input Voltage (D_l)-0.5V to (V_{CC} +0.5V)	8-Pin SOP (derate 5.88mW/°C above +70°C) 471mW
Driver Output Voltage (A, B) -8V to +12.5V	Operating Temperature Ranges -40°C to +125°C
Receiver Input Voltage (A,B) -8V to +12.5V	Storage Temperature Range -65°C to +160°C

* Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied.

Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DC Electrical Characteristics

COREBAI 芯佰微电子

$(V_{CC} = 5V \pm 5\%, T_A = T_{MIN}$	N to TMAX, unless otherwise noted.) ((Notes 1, 2)
---------------------------------------	---------------------------------------	--------------

PARAMETER	SYMBOL	CONDITIO	NS	MIN	ТҮР	МАХ	UNITS
Differential Driver Output (no load)	V _{OD1}					5	V
Differential Driver Output (with lead)		R = 50Ω (RS-	-422)	2			V
Differential Driver Output (with load)	V _{OD2}	R=274Ω (RS-485)	, Figure 0	1.5			V
Change in Magnitude of Driver Differential Output Voltage for Complementary Output States	ΔV_{OD}	R = 27Ω or 50Ω,	Figure 0			0.2	V
Driver Common-Mode Output Voltage	V _{oc}	R = 27Ω or 100Ω	, Figure 0			3	V
Change in Magnitude of Driver Common-Mode Output Voltage for Complementary Output States	ΔV_{OC}	R = 27Ω or 100Ω, Figure 0				0.2	V
Input High Voltage	V _{IH}	DE, DI, R	E	2.0			V
Input Low Voltage	V _{IL}	DE, DI, R	E			0.8	V
Input Current	I _{IN1}	DE, DI, R	E			±2	μA
		$DE = 0V \cdot V = 0V \text{ or } E 2EV$	V _{IN} =12V			1.0	A
Input Current (A, B)	I _{IN2}	$DE = 0V ; V_{CC} = 0V \text{ or } 5.25V; \qquad V_{IN} = -7V$				-0.8	mA
Receiver Differential Threshold Voltage	V _{TH}	$-7V \le V_{CM} \le 12V$		-0.2		0.2	V
Receiver Input Hysteresis	ΔV_{TH}	$V_{CM} = 0$	/		70		mV
Receiver Output High Voltage	V _{OH}	$I_{O} = -4mA, V_{ID} =$	200mV	3.5			V

FOCUS ON DEVELOPMENT • SINCERELY SERVICE • INNOVATIVE FUTURE

						CBM4
COREBAI 芯佰微电子						DATASHE
Receiver Output Low Voltage	V _{OL}	$I_{O} = 4mA$, $V_{ID} = -200mV$			0.4	V
Three-State (high impedance) Output Current at Receiver	I _{OZR}	$0.4V \le V_0 \le 2.4V$			±1	μΑ
Receiver Input Resistance	R _{IN}	$-7V \le V_{CM} \le 12V$	12			kΩ
		$DE = V_{CC}$		500	900	
No-Load Supply Current (Note 3)	I _{cc}	$RE = 0V \text{ or } V_{CC}$		300	500	
		DE = 0V				μA
Driver Short-Circuit Current,	I _{OSD1}	-7V≤V ₀ ≤12V (Note 4)	35		250	mA
V_{o} = High Driver Short-Circuit Current	I _{OSD2}	-7V≤V ₀ ≤12V (Note 4)	35		250	mA
V _o = Low Receiver Short-Circuit Current	I _{OSR}	$0V \le V_O \le V_{CC}$	7		95	mA
ESD Protection		A, B, Y and Z pins, tested using Human Body Model		15		kV

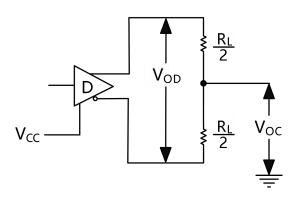
Switching Characteristics

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	МАХ	UNITS
	T _{PLH}	R _{DIFF} = 54	10	55	60	
Driver Input to Output	T _{PHL}	C _{L1} = C _{L2} = 100pF	10	55	60	ns
Driver Output Skew to Output	T _{SKEW}	$R_{DIFF} = 54, C_{L1} = C_{L2} = 100 pF$		5	10	ns
Driver Enable to Output High	T _{ZH}	C _L = 100pF, S2 closed		40	70	ns
Driver Enable to Output Low	T _{ZL}	$C_L = 100 pF$, S1 closed		40	70	ns
Driver Disable Time from Low	T _{LZ}	$C_L = 15 pF$, S1 closed		40	70	ns
Driver Disable Time from High	T _{HZ}	$C_L = 15 pF$, S2 closed		40	70	ns
	T _{PLH}		20	60	100	
Receiver Input to Output	T _{PHL}	$R_{DIFF} = 54 C_{L1} = C_{L2} = 100 pF$	20	60	100	ns
$ T_{PLH} - T_{PHL} $ Differential Receiver Skew		$R_{DIFF} = 54 C_{L1} = C_{L2} = 100 pF$				
Receiver Enable to Output Low	T _{ZL}	C _{RL} = 15pF, S1 closed	5			ns
Receiver Enable to Output High	Т _{zн}	C _{RL} = 15pF, S2 closed	10			ns
Receiver Disable Time from Low	T _{LZ}	C _{RL} = 15pF, S1 closed		30	50	ns
Receiver Disable Time from High	T _{HZ}	C _{RL} = 15pF, S2 closed		30	50	ns
Maximum Data Rate	F _{MAX}			30	50	Mbps

$(V_{CC} = 5V \pm 5\%, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted.) (Notes 1, 2)

Note 1: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device ground unless otherwise specified.

Note 2: All typical specifications are given for $V_{CC}=5V$ and $T_A=+25^{\circ}C$.


Note 3: Supply current specification is valid for loaded transmitters when DE=0V.

Note 4: Applies to peak current.

CBM485 DATASHEET

Test Circuits

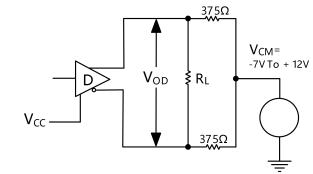


Figure 2. Driver V_{OD} and V_{OC}

Figure 3. Driver V_{OD} with Varying Common-Mode Voltage

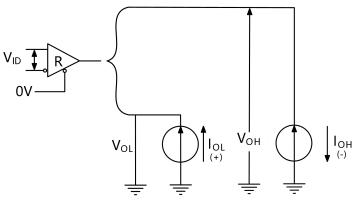


Figure 4. Receiver V_{OH} and V_{OL}

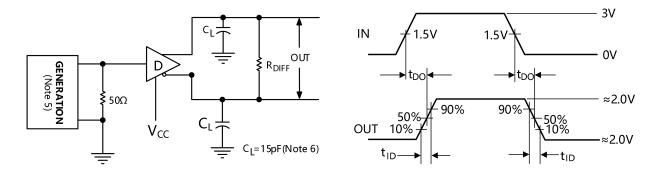


Figure 5. Driver Differential Output Delay and Transition Times

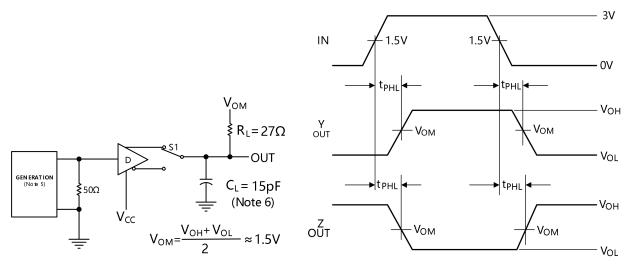


Figure 6. Driver Propagation Times

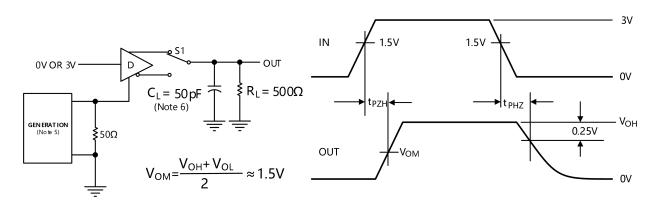


Figure 7. Driver Enable and Disable Times (T_{PZH} , T_{PSH} , T_{PHZ})

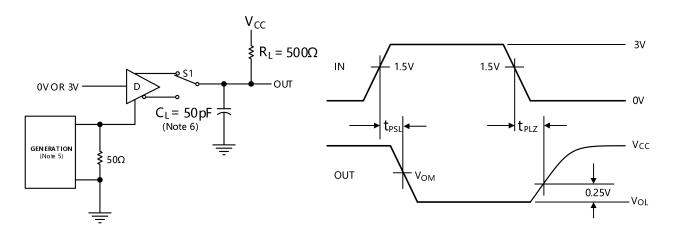


Figure 8. Driver Enable and Disable Times (T_{PZH} , T_{PSH} , T_{PHZ})

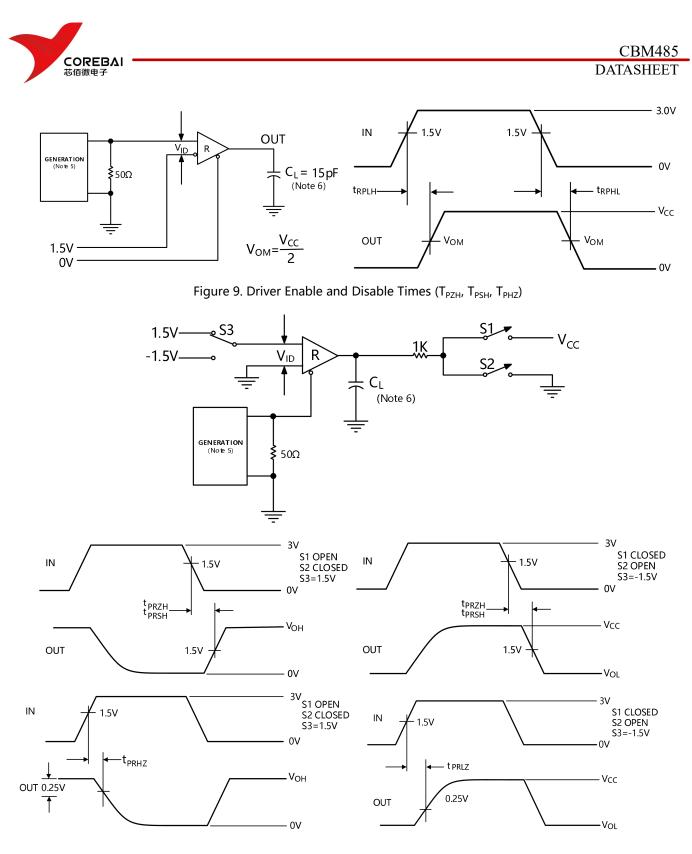


Figure 10. Driver Enable and Disable Times (T_{PZH} , T_{PSH} , T_{PHZ})

Note 5: The input pulse is supplied by a generator with the following characteristics: PRR = 250kHz, 50% duty cycle, tr ≤ 6.0 ns, Z₀ = 50 Ω .

Note 6: C_L includes probe and stray capacitance.

Function Tables

Transmitting							
INPUTS OUTPUTS X							
RE	DE	DI	Z	Y			
Х	1	1	0	1			
Х	1	0	1	0			
0	0	Х	Z	Z			
1	0	Х	Z	Z			

Receiving							
	INPUTS	5	OUTPUTS				
RE	DE	A-B	RO				
0	0	+0.2V	1				
0	0	-0.2V	0				
0	0	open	1				
1	0	Х	Z				

X-don't care

_

Z-high impedance

Typical Information

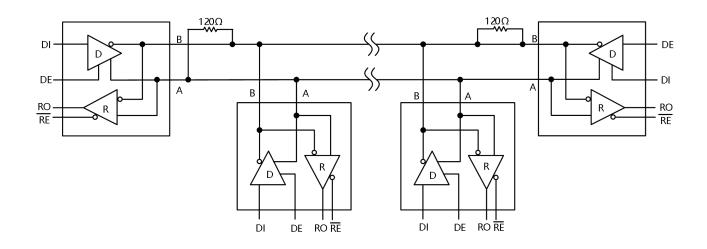


Figure 11. CBM485 Typical RS-485 Network

Driver Output Protection

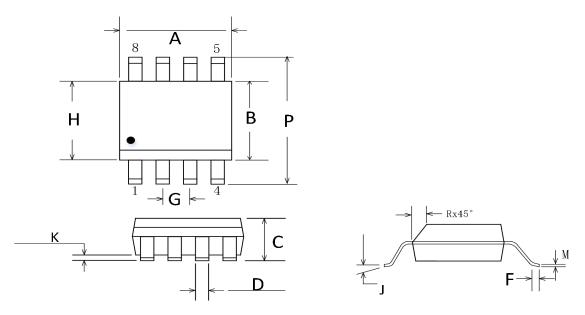
Excessive output current and power dissipation caused by faults or by bus contention are prevented by two mechanisms. A foldback current limit on the output stage provides immediate protection against short circuits over the whole common-mode voltage range. In addition, a thermal shutdown circuit forces the driver outputs into a high-impedance state if the die temperature rises excessively.

Propagation Delay

Skew time is simply the difference between the low-to-high and high-to-low propagation delay. Small driver/receiver skew times help maintain a symmetrical mark-space ratio (50% duty cycle). The receiver skew time, $|T_{PRLH} - T_{PRHL}|$, is under 10ns. The driver skew times are 5ns for the CBM485.

Typical Applications

CBM485 transceivers are designed for bidirectional data communications on multipoint bus transmission lines. Figure 10 shows typical network applications circuits. These parts can also be used as line repeaters, with cable lengths longer than 4000 feet.


To minimize reflections, the line should be terminated at both ends in its characteristic impedance, and stub lengths off the main line should be kept as short as possible.

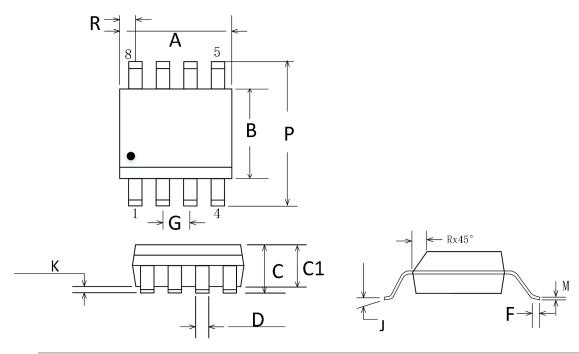
Package Outline Dimensions

SOP-8

_

NOTES: 1. Dimensions A and B do not include mold flash or protrusion.

2. Maximum mold flash or protrusion 0.15 mm (0.006) per side for A; for B - 0.25 mm (0.010) per side.


Sympol	Dimensions ,mm				
Symbol	Min	Мах			
А	4.8	5			
В	3.8	4			
С	1.35	1.75			
D	0.33	0.51			
F	0.4	1.27			
G	1.2	27			
Н	5.7	72			
J	0°	8°			
К	0.1	0.25			
М	0.19	0.25			
Р	5.8	6.2			
R	0.25	0.5			

FOCUS ON DEVELOPMENT • SINCERELY SERVICE • INNOVATIVE FUTURE

CBM485 DATASHEET

MSOP-8

COMMON DIMENSIONS						
CVMPOL	INC	HES	М	м		
SYMBOL	MIN.	MAX.	MIN.	MAX.		
А	0.116	0.120	2.95	3.05		
В	0.116	0.120	2.95	3.05		
С		0.043		1.10		
C1	0.030	0.037	0.75	0.95		
D	0.010	0.014	0.25	0.36		
F	0.016	0.026	0.41	0.66		
G	0.025	6BSC	0.65BSC			
J	0°	6°	0°	6°		
К	0.002	0.006	0.05	0.15		
М	0.005	0.007	0.13	0.18		
Р	0.188	0.198	4.78	5.03		
R	0.020	7BSC	0.525	OBSC		

Package/Ordering Information

PRODUCT TYPE	OPERATING TEMPERTURE	PACKAGE	PAKEAGE MARKING	NUMBER OF PACKAGES
CBM485AS8	-40℃~125℃	SOIC-8(SOP8)	CBM485A	Tape and Reel, 2500
CBM485AS8-RL	-40℃~125℃	SOIC-8(SOP8)	CBM485A	Tape and Reel, 3000
CBM485AS8-REEL	-40℃~125℃	SOIC-8(SOP8)	CBM485A	Tape and Reel, 4000
CBM485AMS8	-40℃~125℃	MSOP8	M85	Tape and Reel,3000