74AUP1G17 Low-power Schmitt trigger

Rev. 13 — 13 January 2022

1. General description

The 74AUP1G17 is a single buffer with Schmitt-trigger input. This device ensures very low static and dynamic power consumption across the entire V_{CC} range from 0.8 V to 3.6 V. This device is fully specified for partial power down applications using I_{OFF} . The I_{OFF} circuitry disables the output, preventing the potentially damaging backflow current through the device when it is powered down.

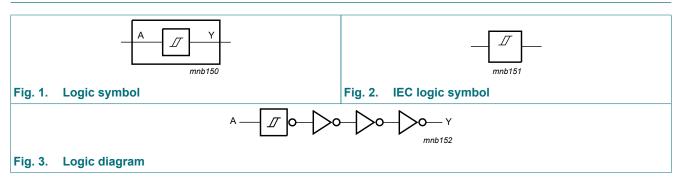
2. Features and benefits

- Wide supply voltage range from 0.8 V to 3.6 V
- CMOS low power dissipation
- High noise immunity
- Overvoltage tolerant inputs to 3.6 V
- Low noise overshoot and undershoot < 10 % of V_{CC}
- I_{OFF} circuitry provides partial Power-down mode operation
- Latch-up performance exceeds 100 mA per JESD 78 Class II Level B
- Low static power consumption; I_{CC} = 0.9 µA (maximum)
- Complies with JEDEC standards:
 - JESD8-12 (0.8 V to 1.3 V)
 - JESD8-11 (0.9 V to 1.65 V)
 - JESD8-7 (1.2 V to 1.95 V)
 - JESD8-5 (1.8 V to 2.7 V)
 - JESD8C (2.7 V to 3.6 V)
- ESD protection:
 - HBM: ANSI/ESDA/JEDEC JS-001 Class 3A exceeds 5000 V
 - CDM: ANSI/ESDA/JEDEC JS-002 Class C3 exceeds 1000 V
 - MM: JESD22-A115-A exceeds 200 V
- Multiple package options
- Specified from -40 ° C to +85 ° C and -40 ° C to +125 ° C

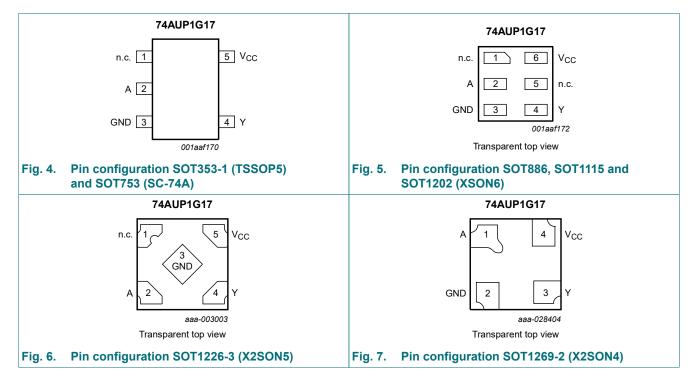
ne<mark>x</mark>peria

3. Ordering information

Table	1.	Ordering	information


Type number	Package			
	Temperature range	Name	Description	Version
74AUP1G17GW	-40 ° C to +125 ° C	TSSOP5	plastic thin shrink small outline package; 5 leads; body width 1.25 mm	SOT353-1
74AUP1G17GV	-40 ° C to +125 ° C	SC-74A	plastic surface-mounted package; 5 leads	SOT753
74AUP1G17GM	-40 ° C to +125 ° C	XSON6	plastic extremely thin small outline package; no leads; 6 terminals; body 1 × 1.45 × 0.5 mm	SOT886
74AUP1G17GN	-40 ° C to +125 ° C	XSON6	extremely thin small outline package; no leads; 6 terminals; body 0.9 × 1.0 × 0.35 mm	SOT1115
74AUP1G17GS	-40 ° C to +125 ° C	XSON6	extremely thin small outline package; no leads; 6 terminals; body 1.0 × 1.0 × 0.35 mm	SOT1202
74AUP1G17GX	-40 ° C to +125 ° C	X2SON5	plastic thermal enhanced extremely thin small outline package; no leads; 5 terminals; body 0.8 × 0.8 × 0.32 mm	SOT1226-3
74AUP1G17GX4	-40 °C to +125 °C	X2SON4	plastic thermal enhanced extremely thin small outline package; no leads; 4 terminals; body 0.6 × 0.6 × 0.32 mm	SOT1269-2

4. Marking


Table 2. Marking	
Type number	Marking code[1]
74AUP1G17GW	pJ
74AUP1G17GV	þJ
74AUP1G17GM	pJ
74AUP1G17GN	þJ
74AUP1G17GS	pJ
74AUP1G17GX	pJ
74AUP1G17GX4	bl

[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.

5. Functional diagram

6. Pinning information

6.1. Pinning

6.2. Pin description

Symbol	Pin	Description						
	SC-74A, TSSOP5 and X2SON5	XSON6	X2SON4					
n.c.	1	1, 5	-	not connected				
A	2	2	1	data input				
GND	3	3	2	ground (0 V)				
Y	4	4	3	data output				
V _{CC}	5	6	4	supply voltage				

7. Functional description

Table 4. Function table

H = HIGH voltage level; L = LOW voltage level.

Input	Output
A	Y
L	L
Н	Н

8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Мах	Unit
V _{CC}	supply voltage			-0.5	+4.6	V
I _{IK}	input clamping current	V ₁ < 0 V		-50	-	mA
VI	input voltage		[1]	-0.5	+4.6	V
I _{OK}	output clamping current	V _O < 0 V		-50	-	mA
Vo	output voltage	Active mode and Power-down mode	[1]	-0.5	+4.6	V
I _O	output current	$V_{O} = 0 V \text{ to } V_{CC}$		-	±20	mA
I _{CC}	supply current			-	+50	mA
I _{GND}	ground current			-50	-	mA
T _{stg}	storage temperature			-65	+150	°C
P _{tot}	total power dissipation	T_{amb} = -40 °C to +125 °C				
		TSSOP5, SC-74A, XSON6 and X2SON5 package	[2]	-	250	mW
		X2SON4 package	[3]	-	150	mW

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] For SOT353-1 (TSSOP5) package: P_{tot} derates linearly with 3.3 mW/K above 74 °C.

For SOT753 (SC-74A) package: P_{tot} derates linearly with 3.8 mW/K above 85 °C. For SOT886 (XSON6) package: P_{tot} derates linearly with 3.3 mW/K above 74 °C. For SOT1115 (XSON6) package: P_{tot} derates linearly with 3.2 mW/K above 71 °C. For SOT1202 (XSON6) package: P_{tot} derates linearly with 3.3 mW/K above 74 °C. For SOT1226-3 (X2SON5) package: P_{tot} derates linearly with 3.0 mW/K above 67 °C.

[3] For SOT1269-2 (X2SON4) package: Ptot derates linearly with 1.7 mW/K above 57 °C.

9. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		0.8	3.6	V
VI	input voltage		0	3.6	V
Vo	output voltage	Active mode	0	V _{CC}	V
		Power-down mode; V _{CC} = 0 V	0	3.6	V
T _{amb}	ambient temperature		-40	+125	°C

Table 6. Recommended operating conditions

10. Static characteristics

Table 7. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
T _{amb} = 25	5 °C					
V _{OH}	HIGH-level output voltage	$V_{I} = V_{T+} \text{ or } V_{T-}$				
Tamb = 25 °I VOH H VOH H VOL L II II IOFF P ΔIOFF a ICC a		I_{O} = -20 µA; V_{CC} = 0.8 V to 3.6 V	V _{CC} - 0.1	-	-	V
		I _O = -1.1 mA; V _{CC} = 1.1 V	0.75 × V _{CC}	-	· · · · · · · · · · · · · ·	V
		I _O = -1.7 mA; V _{CC} = 1.4 V	1.11	-	-	V
		I _O = -1.9 mA; V _{CC} = 1.65 V	1.32	-	-	V
		I _O = -2.3 mA; V _{CC} = 2.3 V	or $V_{T.}$ - 20 μ A; $V_{CC} = 0.8 V$ to $3.6 V$ $V_{CC} - 0.1$ 1.1 mA; $V_{CC} = 1.1 V$ $0.75 \times V_{CC}$ 1.7 mA; $V_{CC} = 1.4 V$ 1.11 1.9 mA; $V_{CC} = 1.65 V$ 1.32 2.3 mA; $V_{CC} = 2.3 V$ 2.05 3.1 mA; $V_{CC} = 2.3 V$ 2.05 3.1 mA; $V_{CC} = 3.0 V$ 2.72 4.0 mA; $V_{CC} = 3.0 V$ 2.72 4.0 mA; $V_{CC} = 3.0 V$ 2.6 or $V_{T.}$ - 0 μ A; $V_{CC} = 0.8 V$ to $3.6 V$ - .1 mA; $V_{CC} = 1.1 V$ - .1 mA; $V_{CC} = 1.4 V$ - .1 mA; $V_{CC} = 1.4 V$ - .2 mA; $V_{CC} = 1.4 V$ - .3 mA; $V_{CC} = 1.4 V$ - .3 mA; $V_{CC} = 3.0 V$ - .1 mA; $V_{CC} = 3.0 V$ - .1 mA; $V_{CC} = 3.0 V$ - .0 mA; $V_{CC} = 3.0 V$ - .0 mA; $V_{CC} = 0 V$ to $3.6 V$ - .0 to $3.6 V; V_{CC} = 0 V$ - .0 to $3.6 V; V_{CC} = 0 V$ - .0 to $3.6 V; V_{CC} = 0 A;$ - .0 to $V_{CC}; I_{O} = 0 A;$ - <td>-</td> <td>-</td> <td>V</td>	-	-	V
Tamb = 25 ° VOH H VOL L II II IOFF F ΔIOFF F CI II		I _O = -3.1 mA; V _{CC} = 2.3 V	1.9	-	-	V
		I _O = -2.7 mA; V _{CC} = 3.0 V	2.72	-	-	V
		I _O = -4.0 mA; V _{CC} = 3.0 V	2.6	-	-	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{T+}$ or V_{T-}			$\begin{array}{c} - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - $	
		I_{O} = 20 µA; V_{CC} = 0.8 V to 3.6 V	-	-	0.1	V
		I _O = 1.1 mA; V _{CC} = 1.1 V	-	-	0.3 × V _{CC}	V
		I _O = 1.7 mA; V _{CC} = 1.4 V	-	-	0.31	V
		I _O = 1.9 mA; V _{CC} = 1.65 V	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.31	V	
		I _O = 2.3 mA; V _{CC} = 2.3 V	-	$\begin{array}{c cccc} & & & & & & & \\ \hline & & & & & & & \\ \hline & & & &$	V	
		I _O = 3.1 mA; V _{CC} = 2.3 V	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.44	V	
V _{OL} II IOFF ICC CI		I _O = 2.7 mA; V _{CC} = 3.0 V	-	-	0.31	V
		I _O = 4.0 mA; V _{CC} = 3.0 V	-	-	0.44	V
l _l	input leakage current	V_{I} = GND to 3.6 V; V_{CC} = 0 V to 3.6 V	-	-	±0.1	μA
I _{OFF}	power-off leakage current	V_{I} or V_{O} = 0 V to 3.6 V; V_{CC} = 0 V	-	-	±0.2	μA
ΔI _{OFF}	additional power-off leakage current	$V_{I} \text{ or } V_{O} = 0 \text{ V to } 3.6 \text{ V};$ $V_{CC} = 0 \text{ V to } 0.2 \text{ V}$	-	-	±0.2	μA
I _{CC}	supply current	$V_{I} = GND \text{ or } V_{CC}; I_{O} = 0 \text{ A}; \\ V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$	-	-	0.5	μA
ΔI _{CC}	additional supply current	$V_{I} = V_{CC} - 0.6 \text{ V}; I_{O} = 0 \text{ A}; V_{CC} = 3.3 \text{ V}$	-	-	40	μA
CI	input capacitance	V_I = GND or V_{CC} ; V_{CC} = 0 V to 3.6 V	-	1.1	-	pF
Co	output capacitance	$V_0 = GND; V_{CC} = 0 V$	-	1.7	-	pF

Low-power Schmitt trigger

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
T _{amb} = -4	10 °C to +85 °C			1		-
V _{OH}	HIGH-level output voltage	$V_{I} = V_{T+}$ or V_{T-}				
Tamb = -40 ° V _{OH} H V _{OL} L V _{OL} L I _I in I _{OFF} pc ΔI _{OFF} ac		I_{O} = -20 µA; V_{CC} = 0.8 V to 3.6 V	V _{CC} - 0.1	-	-	V
		I _O = -1.1 mA; V _{CC} = 1.1 V	0.7 × V _{CC}	-	-	V
		I _O = -1.7 mA; V _{CC} = 1.4 V	1.03	-	-	V
		I _O = -1.9 mA; V _{CC} = 1.65 V	1.30	-	-	V
		I _O = -2.3 mA; V _{CC} = 2.3 V	1.97	-	-	V
		I _O = -3.1 mA; V _{CC} = 2.3 V	1.85	-	-	V
		I _O = -2.7 mA; V _{CC} = 3.0 V	2.67	-	-	V
		I _O = -4.0 mA; V _{CC} = 3.0 V	2.55	-	-	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{T+}$ or V_{T-}				
		I_{O} = 20 µA; V_{CC} = 0.8 V to 3.6 V	-	-	0.1	V
		I _O = 1.1 mA; V _{CC} = 1.1 V	-	-	$0.3 \times V_{CC}$	V
		I _O = 1.7 mA; V _{CC} = 1.4 V	-	-	0.37	V
		I _O = 1.9 mA; V _{CC} = 1.65 V	-	-	0.35	V
		I _O = 2.3 mA; V _{CC} = 2.3 V	-	-	0.33	V
		I _O = 3.1 mA; V _{CC} = 2.3 V	-	-	0.45	V
		I _O = 2.7 mA; V _{CC} = 3.0 V	-	-	0.33	V
		I _O = 4.0 mA; V _{CC} = 3.0 V	-	-	0.45	V
l _l	input leakage current	V_I = GND to 3.6 V; V_{CC} = 0 V to 3.6 V	-	-	±0.5	μA
I _{OFF}	power-off leakage current	V_{I} or V_{O} = 0 V to 3.6 V; V_{CC} = 0 V	-	-	±0.5	μA
ΔI _{OFF}	additional power-off leakage current	$V_1 \text{ or } V_0 = 0 \text{ V to } 3.6 \text{ V};$ $V_{CC} = 0 \text{ V to } 0.2 \text{ V}$	-	-	±0.6	μA
I _{CC}	supply current	$V_{I} = GND \text{ or } V_{CC}; I_{O} = 0 \text{ A};$ $V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$	-	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		μA
ΔI _{CC}	additional supply current	$V_{I} = V_{CC} - 0.6 \text{ V}; I_{O} = 0 \text{ A}; V_{CC} = 3.3 \text{ V}$	-	-	50	μA

Low-power Schmitt trigger

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
T _{amb} = -4	10 °C to +125 °C					1
V _{OH}	HIGH-level output voltage	$V_{I} = V_{T+}$ or V_{T-}				
Tamb = -40 ° VOH HI VOL LC VOL LC II ini IOFF ac ΔIOFF ac		I_{O} = -20 µA; V_{CC} = 0.8 V to 3.6 V	V _{CC} - 0.11	-	-	V
		I _O = -1.1 mA; V _{CC} = 1.1 V	0.6 × V _{CC}	Number Number V _{CC} - 0.11 - - 1 0.6 × V _{CC} - - 1 0.93 - - 1 1.17 - - 1 1.77 - - 1 1.67 - - 1 2.40 - - 1 2.30 - - 1 - 0.11 1 1 - 0.33 × V _{CC} 1 1 - 0.33 × V _{CC} 1 1 - 0.31 1 1 - 0.33 V _{CC} 1 1 - 0.31 1 1 1 - 0.33 V _{CC} 1 1 - 0.36 1 1 1 - 0.50 1 1 1 - 10.75 1 1 1 - - 1.4 1 1	V	
		I _O = -1.7 mA; V _{CC} = 1.4 V	0.93		V	
V _{OL}		I _O = -1.9 mA; V _{CC} = 1.65 V	1.17	-	-	V
		I _O = -2.3 mA; V _{CC} = 2.3 V	1.77	-	-	V
		I _O = -3.1 mA; V _{CC} = 2.3 V	1.67	-	-	V
		I _O = -2.7 mA; V _{CC} = 3.0 V	2.40	-	-	V
		I _O = -4.0 mA; V _{CC} = 3.0 V	2.30	-	-	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{T+} \text{ or } V_{T-}$	e = 0.8 V to 3.6 V 0.11			
		I_{O} = 20 µA; V_{CC} = 0.8 V to 3.6 V	-	-	0.11	V
		I _O = 1.1 mA; V _{CC} = 1.1 V	-	-	0.33 × V _{CC}	V
		I _O = 1.7 mA; V _{CC} = 1.4 V	-	-	0.41	V
		I _O = 1.9 mA; V _{CC} = 1.65 V	-	-	0.39	V
		I _O = 2.3 mA; V _{CC} = 2.3 V	-	- 0.11 - 0.33 × V _{CC} - 0.41 - 0.39 - 0.36 - 0.50 - 0.36	V	
		I _O = 3.1 mA; V _{CC} = 2.3 V	-	-	0.50	V
		I _O = 2.7 mA; V _{CC} = 3.0 V	-	-	0.36	V
		I _O = 4.0 mA; V _{CC} = 3.0 V	-	-	0.50	V
l _l	input leakage current	V_I = GND to 3.6 V; V_{CC} = 0 V to 3.6 V	-	-	±0.75	μA
I _{OFF}	power-off leakage current	V_{I} or V_{O} = 0 V to 3.6 V; V_{CC} = 0 V	-	-	±0.75	μA
ΔI _{OFF}	additional power-off leakage current	$V_1 \text{ or } V_0 = 0 \text{ V to } 3.6 \text{ V};$ $V_{CC} = 0 \text{ V to } 0.2 \text{ V}$	-	-	±0.75	μA
I _{CC}	supply current	$V_{I} = GND \text{ or } V_{CC}; I_{O} = 0 \text{ A};$ $V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$	-	-	1.4	μA
ΔI _{CC}	additional supply current	$V_{I} = V_{CC} - 0.6 \text{ V}; I_{O} = 0 \text{ A}; V_{CC} = 3.3 \text{ V}$	-	-	75	μA

11. Dynamic characteristics

Table 8. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit see Fig. 9

Symbol	Parameter	Conditions		25 °C		-40 °C to	o +85 °C	-40 °C to	o +125 °C	Unit
			Min	Typ[1]	Max	Min	Max	Min	Max	
C _L = 5 p	F	1		1						
t _{pd}	propagation delay	A to Y; see <u>Fig. 8</u> [2]								
		V _{CC} = 0.8 V	-	19.0	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	2.6	5.7	10.6	2.5	10.9	2.5	11.1	ns
		V _{CC} = 1.4 V to 1.6 V	2.4	4.2	6.5	2.3	7.1	2.3	7.4	ns
		V _{CC} = 1.65 V to 1.95 V	2.0	3.6	5.5	1.9	6.1	1.9	6.3	ns
		V_{CC} = 2.3 V to 2.7 V	1.9	3.0	4.2	1.8	4.6	1.8	4.8	ns
		V _{CC} = 3.0 V to 3.6 V	1.8	2.7	3.6	1.5	3.8	1.5	4.0	ns
C _L = 10	pF									
t _{pd}	propagation	A to Y; see <u>Fig. 8</u> [2]								
	delay	V _{CC} = 0.8 V	-	22.5	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	2.9	6.6	12.4	2.7	12.9	2.7	13.0	ns
		V _{CC} = 1.4 V to 1.6 V	2.6	4.8	7.8	2.4	8.3	2.4	8.7	ns
		V _{CC} = 1.65 V to 1.95 V	2.5	4.2	6.3	2.4	6.8	2.4	7.1	ns
		V_{CC} = 2.3 V to 2.7 V	2.3	3.5	4.8	2.1	5.3	2.1	5.6	ns
		V _{CC} = 3.0 V to 3.6 V	2.1	3.3	4.4	2.0	4.6	2.0	4.8	ns
C _L = 15	pF									
t _{pd}	propagation	A to Y; see <u>Fig. 8</u> [2]								
	delay	V _{CC} = 0.8 V	-	26.0	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	3.2	7.4	14.1	3.1	14.7	3.1	14.9	ns
		V _{CC} = 1.4 V to 1.6 V	3.1	5.4	8.7	2.8	9.5	2.8	9.9	ns
		V _{CC} = 1.65 V to 1.95 V	2.7	4.7	7.1	2.7	7.8	2.7	8.2	ns
		V _{CC} = 2.3 V to 2.7 V	2.6	4.0	5.6	2.5	6.0	2.5	6.3	ns
		V_{CC} = 3.0 V to 3.6 V	2.5	3.7	4.9	2.2	5.2	2.2	5.5	ns
C _L = 30	pF			·		·				
t _{pd}	propagation	A to Y; see <u>Fig. 8</u> [2]								
	delay	V _{CC} = 0.8 V	-	36.3	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	3.9	9.7	19.0	3.7	19.8	3.7	20.1	ns
		V _{CC} = 1.4 V to 1.6 V	3.5	7.0	11.2	3.6	12.4	3.6	13.0	ns
		V _{CC} = 1.65 V to 1.95 V	3.5	6.0	9.2	3.4	10.1	3.4	10.7	ns
		V _{CC} = 2.3 V to 2.7 V	3.4	5.1	7.0	3.2	7.5	3.2	7.9	ns
		V _{CC} = 3.0 V to 3.6 V	3.3	4.8	6.2	3.1	7.1	3.1	7.5	ns

Low-power Schmitt trigger

Symbol	Parameter	Conditions	25 °C		-40 °C to +85 °C		-40 °C to +125 °C		Unit				
			Min	Typ[1]	Max	Min	Max	Min	Max				
C _L = 5 p	F, 10 pF, 15 pF	and 30 pF							1				
C _{PD}	power	f = 1 MHz; V_I = GND to V_{CC} [3]											
	dissipation capacitance	V _{CC} = 0.8 V	-	2.5	-	-	-	-	-	pF			
		Capacitance	Capacitance	Capacitance	V _{CC} = 1.1 V to 1.3 V	-	2.7	-	-	-	-	-	pF
						V _{CC} = 1.4 V to 1.6 V	-	2.8	-	-	-	-	-
		V _{CC} = 1.65 V to 1.95 V	-	3.0	-	-	-	-	-	pF			
		V_{CC} = 2.3 V to 2.7 V	-	3.5	-	-	-	-	-	pF			
		V _{CC} = 3.0 V to 3.6 V	-	4.0	-	-	-	-	-	pF			

[1] All typical values are measured at nominal V_{CC} .

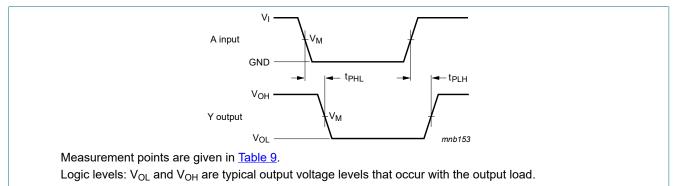
[2] t_{pd} is the same as t_{PLH} and t_{PHL}

[3] \dot{C}_{PD} is used to determine the dynamic power dissipation (P_D in μ W).

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} \times N + \sum (C_{L} \times V_{CC}^{2} \times f_{o}) \text{ where:}$

f_i = input frequency in MHz;

f_o = output frequency in MHz;


 C_L = output load capacitance in pF;

V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\sum (C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs.

11.1. Waveform and test circuit

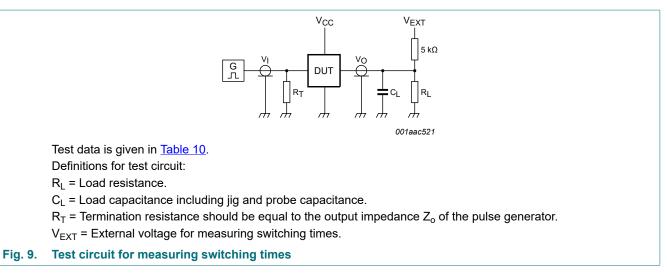


Fig. 8. The data input (A) to output (Y) propagation delays

Table 9. Measurement points

Supply voltage	Output	Input		
V _{cc}	V _M	V _M	VI	t _r = t _f
0.8 V to 3.6 V	0.5 x V _{CC}	0.5 x V _{CC}	V _{CC}	≤ 3.0 ns

Low-power Schmitt trigger

Table 10. Test data

Supply voltage	Load		V _{EXT}		
V _{cc}	CL	R _L [1]	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}
0.8 V to 3.6 V	5 pF, 10 pF, 15 pF and 30 pF	5 kΩ or 1 MΩ	open	GND	$2 \times V_{CC}$

[1] For measuring enable and disable times, $R_L = 5 k\Omega$.

For measuring propagation delays, setup and hold times and pulse width R_L = 1 M Ω .

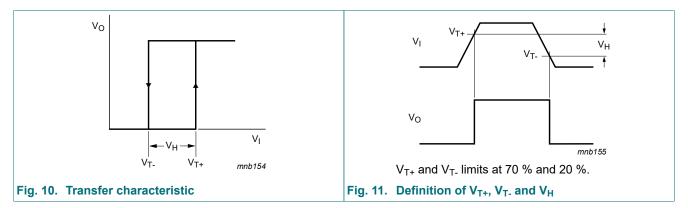
74AUP1G17

12. Transfer characteristics

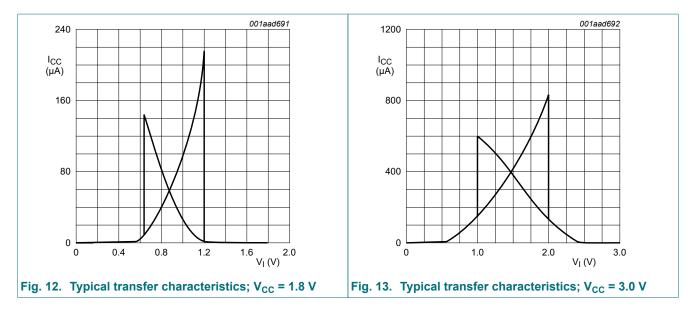
Table 11. Transfer characteristics

Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = 2	5 °C					
V _{T+}	positive-going threshold	see <u>Fig. 10</u> and <u>Fig. 11</u>				
	voltage	V _{CC} = 0.8 V	0.30	-	0.60	V
		V _{CC} = 1.1 V	0.53	0.30 - (0) 0.53 - (0) 0.74 - (1) 0.74 - (1) 0.91 - (1) 0.91 - (1) 0.91 - (1) 0.37 - (1) 0.88 - (2) 0.10 - (0) 0.26 - (0) 0.26 - (0) 0.39 - (0) 0.47 - (0) 0.69 - (1) 0.69 - (1) 0.69 - (1) 0.69 - (1) 0.69 - (1) 0.69 - (1) 0.10 - (0) 0.10 - (0)	0.90	V
		V _{CC} = 1.4 V	0.74	-	1.11	V
		V _{CC} = 1.65 V	0.91	-	1.29	V
		V _{CC} = 2.3 V	1.37	-	1.77	V
		V _{CC} = 3.0 V	1.88	-	2.29	V
V _{T-}	negative-going threshold	see <u>Fig. 10</u> and <u>Fig. 11</u>				
	voltage $V_{CC} = 0.8 V$ $V_{CC} = 1.1 V$	V _{CC} = 0.8 V	0.10	-	0.60	V
		V _{CC} = 1.1 V	0.26	-	0.65	V
		V _{CC} = 1.4 V	0.39	-	0.75	V
		V _{CC} = 1.65 V	0.47	-	0.84	V
		V _{CC} = 2.3 V	0.69	-	1.04	V
		V _{CC} = 3.0 V	0.88	-	1.24	V
V _H	hysteresis voltage	see <u>Fig. 10</u> , <u>Fig. 11</u> , <u>Fig. 12</u> and <u>Fig. 13</u>				
		V _{CC} = 0.8 V	0.07	-	0.50	V
		V _{CC} = 1.1 V	0.08	-	0.46	V
		V _{CC} = 1.4 V	0.18	-	0.56	V
		V _{CC} = 1.65 V	0.27	-	0.66	V
		V _{CC} = 2.3 V	0.53	-	0.92	V
		V _{CC} = 3.0 V	0.79	-	1.31	V


Low-power Schmitt trigger

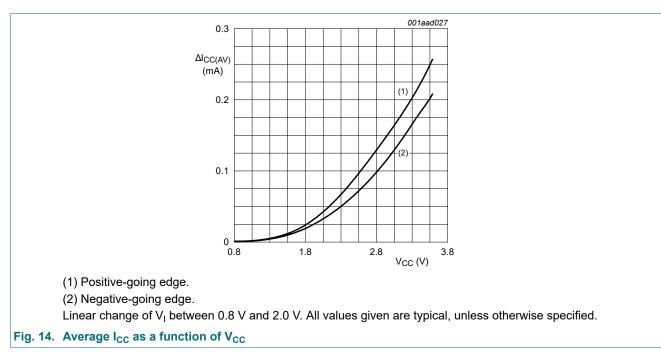
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
T _{amb} = -4	10 °C to +85 °C		I			
V _{T+}	positive-going threshold	see <u>Fig. 10</u> and <u>Fig. 11</u>				
	voltage	hold $\frac{\text{see Fig. 10 and Fig. 11}}{V_{CC} = 0.8 \text{ V}} \qquad 0.30 \qquad - \qquad 0 \\ V_{CC} = 1.1 \text{ V} \qquad 0.53 \qquad - \qquad 0 \\ V_{CC} = 1.4 \text{ V} \qquad 0.74 \qquad - \qquad 1 \\ V_{CC} = 1.65 \text{ V} \qquad 0.91 \qquad - \qquad 1 \\ V_{CC} = 2.3 \text{ V} \qquad 1.37 \qquad - \qquad 1 \\ V_{CC} = 3.0 \text{ V} \qquad 1.88 \qquad - \qquad 2 \\ \text{shold} \qquad \frac{\text{see Fig. 10 and Fig. 11}}{V_{CC} = 0.8 \text{ V}} \qquad 0.10 \qquad - \qquad 0 \\ V_{CC} = 1.1 \text{ V} \qquad 0.26 \qquad - \qquad 0 \\ V_{CC} = 1.4 \text{ V} \qquad 0.39 \qquad - \qquad 0 \\ V_{CC} = 1.4 \text{ V} \qquad 0.39 \qquad - \qquad 0 \\ V_{CC} = 1.4 \text{ V} \qquad 0.39 \qquad - \qquad 0 \\ V_{CC} = 1.4 \text{ V} \qquad 0.39 \qquad - \qquad 0 \\ V_{CC} = 1.4 \text{ V} \qquad 0.39 \qquad - \qquad 0 \\ V_{CC} = 1.65 \text{ V} \qquad 0.47 \qquad - \qquad 0 \\ V_{CC} = 2.3 \text{ V} \qquad 0.69 \qquad - \qquad 1 \\ V_{CC} = 3.0 \text{ V} \qquad 0.69 \qquad - \qquad 1 \\ V_{CC} = 3.0 \text{ V} \qquad 0.88 \qquad - \qquad 1 \\ \text{see Fig. 10, Fig. 11, Fig. 12 and} \qquad - \\ \frac{\text{see Fig. 10, Fig. 11, Fig. 12 and}{\text{Fig. 13}} \qquad - \\ \frac{\text{see Fig. 10, Fig. 11, Fig. 12 and}{\text{Fig. 13}} \qquad - \\ \frac{\text{v}_{CC} = 1.4 \text{ V} \qquad 0.08 \qquad - \qquad 0 \\ \text{v}_{CC} = 1.4 \text{ V} \qquad 0.18 \qquad - \qquad 0 \\ \text{v}_{CC} = 1.65 \text{ V} \qquad 0.07 \qquad - \qquad 0 \\ \text{v}_{CC} = 1.65 \text{ V} \qquad 0.27 \qquad - \qquad 0 \\ \text{v}_{CC} = 2.3 \text{ V} \qquad 0.53 \qquad - \qquad 0 \\ \text{v}_{CC} = 2.3 \text{ V} \qquad 0.53 \qquad - \qquad 0 \\ \text{v}_{CC} = 2.3 \text{ V} \qquad 0.53 \qquad - \qquad 0 \\ \text{v}_{CC} = 2.3 \text{ V} \qquad 0.53 \qquad - \qquad 0 \\ \text{v}_{CC} = 2.3 \text{ V} \qquad 0.53 \qquad - \qquad 0 \\ \text{v}_{CC} = 2.3 \text{ V} \qquad 0.53 \qquad - \qquad 0 \\ \text{v}_{CC} = 2.3 \text{ V} \qquad 0.53 \qquad - \qquad 0 \\ \text{v}_{CC} = 2.3 \text{ V} \qquad 0.53 \qquad - \qquad 0 \\ \text{v}_{CC} = 2.3 \text{ V} \qquad 0.53 \qquad - \qquad 0 \\ \text{v}_{CC} = 2.3 \text{ V} \qquad 0.53 \qquad - \qquad 0 \\ \text{v}_{CC} = 2.3 \text{ V} \qquad 0.53 \qquad - \qquad 0 \\ \text{v}_{CC} = 2.3 \text{ V} \qquad 0.53 \qquad - \qquad 0 \\ \text{v}_{CC} = 2.3 \text{ V} \qquad 0.53 \qquad - \qquad 0 \\ \text{v}_{CC} = 2.3 \text{ V} \qquad 0.53 \qquad - \qquad 0 \\ \text{v}_{CC} = 2.3 \text{ V} \qquad 0.53 \qquad - \qquad 0 \\ \text{v}_{CC} = 2.3 \text{ V} \qquad 0.53 \qquad - \qquad 0 \\ \text{v}_{CC} = 2.3 \text{ V} \qquad 0.53 \qquad - \qquad 0 \\ \text{v}_{CC} = 2.3 \text{ V} \qquad 0.53 \qquad - \qquad 0 \\ \text{v}_{CC} = 2.3 \text{ V} \qquad 0.53 \qquad - \qquad 0 \\ 0 \qquad 0 \\ \text{v}_{CC} = 2.3 \text{ V} \qquad 0.53 \qquad - \qquad 0 \\ 0 \qquad 0 \\ \text{v}_{CC} = 2.3 \text{ V} \qquad 0.53 \qquad - \qquad 0 \\ 0 \qquad 0 \\ 0 \qquad 0 \\ 0 \qquad 0 \qquad 0 \qquad 0 \\ 0 \qquad 0 \qquad$	0.60	V		
		V _{CC} = 1.1 V	0.53	-	0.90	V
		V _{CC} = 1.4 V	0.74	-	1.11	V
		V _{CC} = 1.65 V	0.91	-	1.29	V
		V _{CC} = 2.3 V	1.37	-	1.77	V
		V _{CC} = 3.0 V	1.88	-	2.29	V
V _{T-}	$\begin{array}{c c} r. & negative-going threshold \\ voltage & & \\ voltage & & \\ \hline \\ & & \\$	see <u>Fig. 10</u> and <u>Fig. 11</u>				
		0.10	-	0.60	V	
		V _{CC} = 1.1 V	0.26	-	0.65	V
		V _{CC} = 1.4 V	0.39	-	0.75	V
		V _{CC} = 1.65 V	0.47	-	0.84	V
		V _{CC} = 2.3 V	0.69	-	1.04	V
		V _{CC} = 3.0 V	0.88	-	1.24	V
V _H	hysteresis voltage					
		V _{CC} = 0.8 V	0.07	-	0.50	V
		V _{CC} = 1.1 V	0.08	-	0.46	V
		V _{CC} = 1.4 V	0.18	-	0.56	V
		V _{CC} = 1.65 V	0.27	-	0.66	V
		V _{CC} = 2.3 V	0.53	-	0.92	V
		V _{CC} = 3.0 V	0.79	-	1.31	V


Low-power Schmitt trigger

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
T _{amb} = -4	40 °C to +125 °C		1			
V _{T+}	positive-going threshold	see <u>Fig. 10</u> and <u>Fig. 11</u>				
	voltage	V _{CC} = 0.8 V	0.30	-	0.62	V
	mb = -40 °C to +125 °C positive-going threshold voltage negative-going threshold voltage	V _{CC} = 1.1 V	0.53	-	0.92	V
		V _{CC} = 1.4 V	0.74	-	1.13	V
		V _{CC} = 1.65 V	0.91	-	1.31	V
		V _{CC} = 2.3 V	1.37	-	1.80	V
		V _{CC} = 3.0 V	1.88	-	2.32	V
V _{T-}	negative-going threshold	see <u>Fig. 10</u> and <u>Fig. 11</u>				
$V_{CC} = 3.0 V$ V_{T} negative-going threshold voltage $V_{CC} = 0.8 V$ $V_{CC} = 1.1 V$ $V_{CC} = 1.4 V$ $V_{CC} = 1.65 V$	V _{CC} = 0.8 V	0.10	-	0.60	V	
		V _{CC} = 1.1 V	0.26	-	0.65	V
		V _{CC} = 1.4 V	0.39	-	0.75	V
		V _{CC} = 1.65 V	0.47	-	0.84	V
		V _{CC} = 2.3 V	0.69	-	1.04	V
		V _{CC} = 3.0 V	0.88	-	1.24	V
V _H hyster	hysteresis voltage	see Fig. 10, Fig. 11, Fig. 12 and Fig. 13				
		V _{CC} = 0.8 V	0.07	-	0.50	V
		V _{CC} = 1.1 V	0.08	-	0.46	V
		V _{CC} = 1.4 V	0.18	-	0.56	V
		V _{CC} = 1.65 V	0.27	-	0.66	V
		V _{CC} = 2.3 V	0.53	-	0.92	V
		V _{CC} = 3.0 V	0.79	-	1.31	V

12.1. Waveforms transfer characteristics

Low-power Schmitt trigger


13. Application information

The slow input rise and fall times cause additional power dissipation, this can be calculated using the following formula:

 $P_{ad} = f_i x (t_r x I_{CC(AV)} + t_f x I_{CC(AV)}) x V_{CC}$ where:

- P_{ad} = additional power dissipation (μW);
- f_i = input frequency (MHz);
- t_r = input rise time (ns); 10 % to 90 %;
- t_f = input fall time (ns); 90 % to 10 %;
- I_{CC(AV)} = average additional supply current (µA).

Average I_{CC} differs with positive or negative input transitions, as shown in Fig. 14.

Low-power Schmitt trigger

14. Package outline

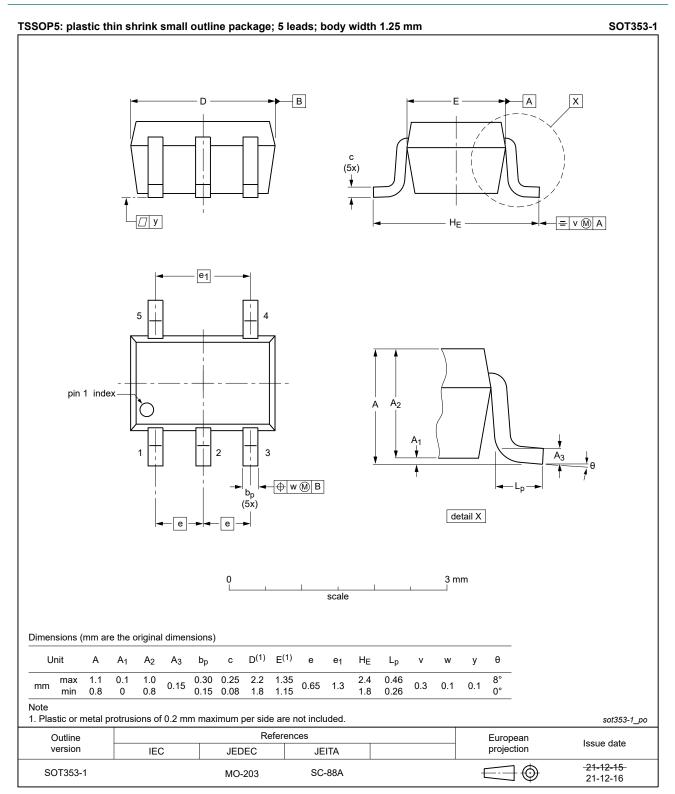


Fig. 15. Package outline SOT353-1 (TSSOP5)

74AUP1G17

Low-power Schmitt trigger

SOT753

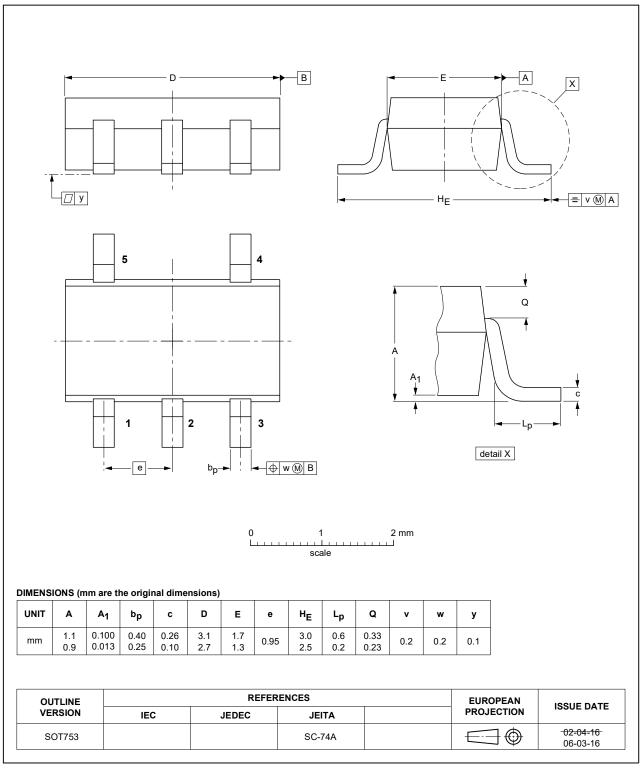


Fig. 16. Package outline SOT753 (SC-74A)

© Nexperia B.V. 2022. All rights reserved

Low-power Schmitt trigger

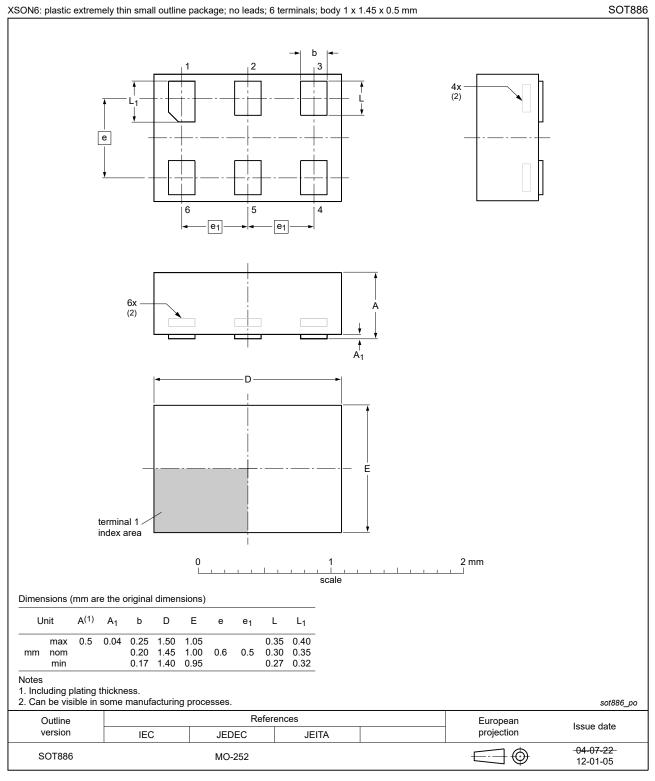
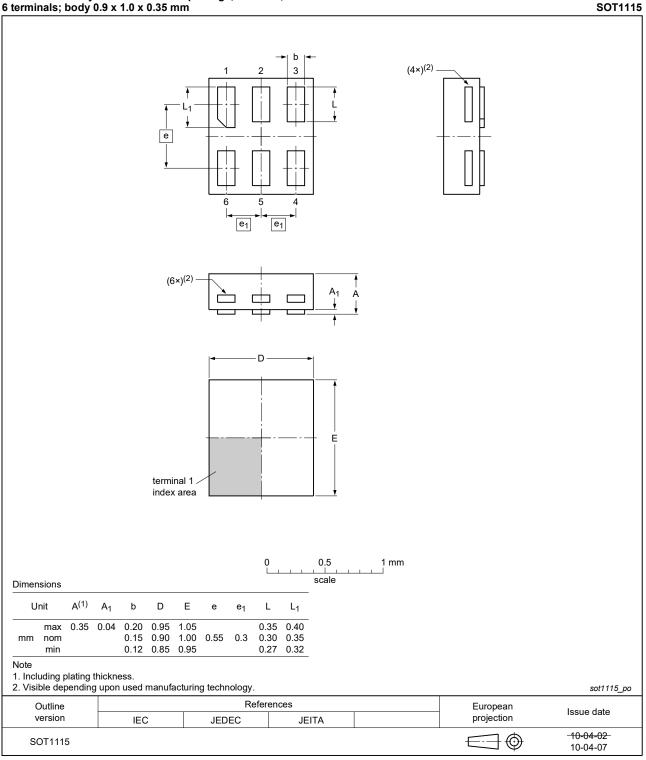
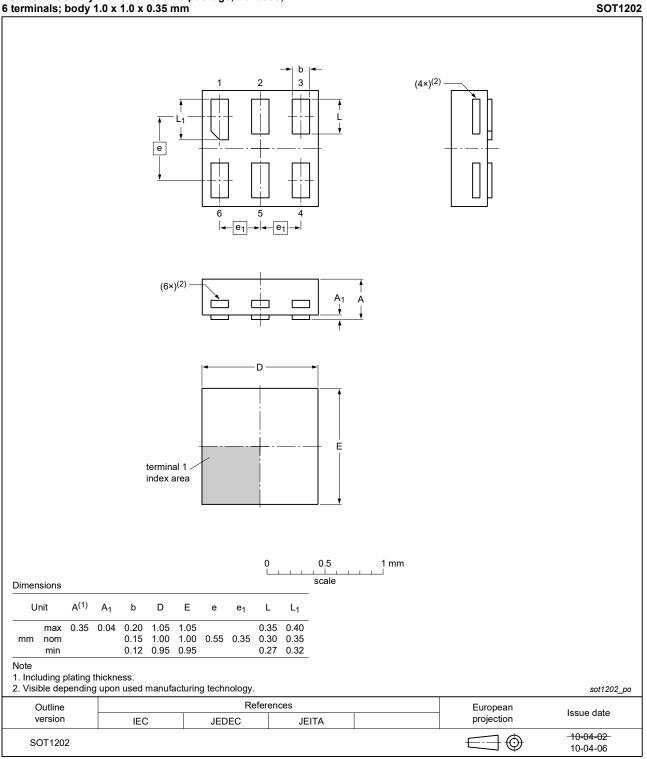
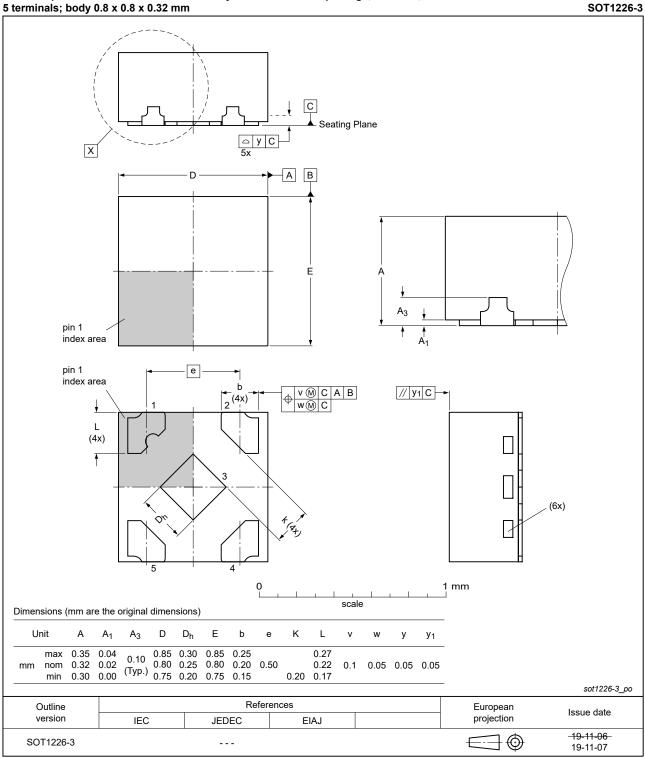



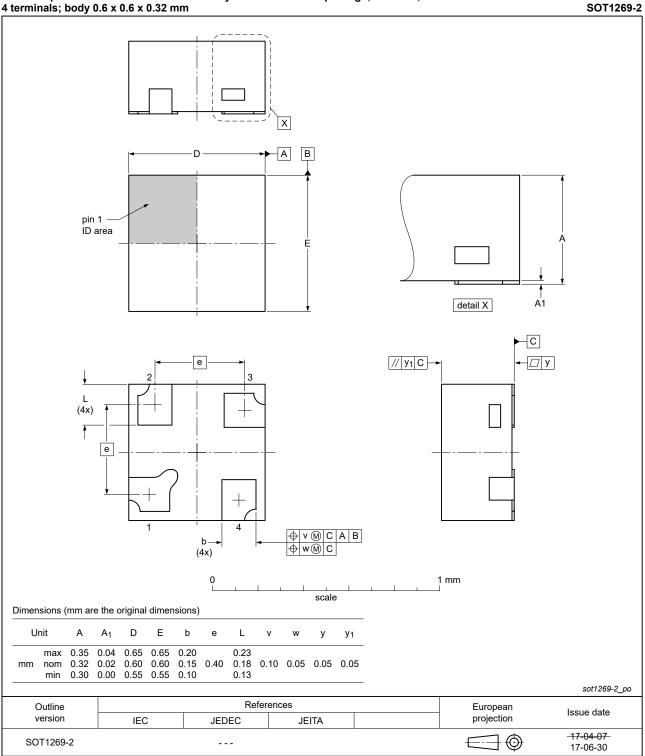
Fig. 17. Package outline SOT886 (XSON6)

Low-power Schmitt trigger


XSON6: extremely thin small outline package; no leads; 6 terminals; body 0.9 x 1.0 x 0.35 mm


Low-power Schmitt trigger

XSON6: extremely thin small outline package; no leads;	
6 terminals; body 1.0 x 1.0 x 0.35 mm	


Low-power Schmitt trigger

X2SON5: plastic thermal enhanced extremely thin small outline package; no leads; 5 terminals; body 0.8 x 0.8 x 0.32 mm

Fig. 20. Package outline SOT1226-3 (X2SON5)

Low-power Schmitt trigger

X2SON4: plastic thermal enhanced extremely thin small outline package; no leads; 4 terminals; body 0.6 x 0.6 x 0.32 mm

Fig. 21. Package outline SOT1269-2 (X2SON4)

15. Abbreviations

Acronym	Description
CDM	Charged Device Model
CMOS	Complementary Metal-Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
HBM	Human Body Model
MM	Machine Model

16. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74AUP1G17 v.13	20220113	Product data sheet	-	74AUP1G17 v.12
Modifications:	• Fig. 15: Packa	ge outline drawing for SOT353	-1 (TSSOP5) has chang	ed.
74AUP1G17 v.12	20210707	Product data sheet	-	74AUP1G17 v.11
Modifications:	Type number 7	SON5) package changed to SC 74AUP1G17GF (SOT891/XSOI ng values for P _{tot} total power d	N6) removed.	
74AUP1G17 v.11	20180608	Product data sheet	-	74AUP1G17 v.10
Modifications:	Added type nu	mber 74AUP1G17GX4 (SOT12	269-2)	·
74AUP1G17 v.10	20170519	Product data sheet	-	74AUP1G17 v.9
Modifications:	Nexperia.	his data sheet has been redesi ve been adapted to the new co		
74AUP1G17 v.9	20161104	Product data sheet	-	74AUP1G17 v.8
Modifications:	Added type nu	mber 74AUP1G17GV (SOT75	3)	
74AUP1G17 v.8	20150115	Product data sheet	-	74AUP1G17 v.7
Modifications:	Marking code	Table 2: typo corrected in type	number 74AUP1G17GX	
74AUP1G17 v.7	20120716	Product data sheet	-	74AUP1G17 v.6
Modifications:	Package outlin	e drawing of SOT1226 (<u>Fig. 20</u>) modified.	·
74AUP1G17 v.6	20120412	Product data sheet	-	74AUP1G17 v.5
Modifications:		mber 74AUP1G17GX (SOT122) e drawing of SOT886 (<u>Fig. 17</u>)		
74AUP1G17 v.5	20111124	Product data sheet	-	74AUP1G17 v.4
Modifications:	 Legal pages up 	odated.		
74AUP1G17 v.4	20100715	Product data sheet	-	74AUP1G17 v.3
74AUP1G17 v.3	20090710	Product data sheet	-	74AUP1G17 v.2
74AUP1G17 v.2	20060727	Product data sheet	-	74AUP1G17 v.1
74AUP1G17 v.1	20050726	Product data sheet	-	-

Low-power Schmitt trigger

17. Legal information

Data sheet status

Document status [1][2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

 Please consult the most recently issued document before initiating or completing a design.

- [2] The term 'short data sheet' is explained in section "Definitions".
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at <u>https://www.nexperia.com</u>.

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal

injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at <u>http://www.nexperia.com/profile/terms</u>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Low-power Schmitt trigger

Contents

1. General description	1
2. Features and benefits	1
3. Ordering information	2
4. Marking	2
5. Functional diagram	2
6. Pinning information	3
6.1. Pinning	3
6.2. Pin description	3
7. Functional description	3
8. Limiting values	4
9. Recommended operating conditions	4
10. Static characteristics	5
11. Dynamic characteristics	8
11.1. Waveform and test circuit	9
12. Transfer characteristics	11
12.1. Waveforms transfer characteristics	13
13. Application information	14
14. Package outline	15
15. Abbreviations	22
16. Revision history	22
17. Legal information	23

© Nexperia B.V. 2022. All rights reserved

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 13 January 2022