

SCES803A - APRIL 2010 - REVISED JUNE 2015

SN74AUP1T17 Low Power, 1.8/2.5/3.3-V Input, 3.3-V CMOS Output, Single Schmitt-Trigger Buffer Gate

Features

- Single-Supply Voltage Translator
- Output Level Up to Supply V_{CC} CMOS Level
 - 1.8 V to 3.3 V (at $V_{CC} = 3.3 \text{ V}$)
 - 2.5 V to 3.3 V (at $V_{CC} = 3.3 \text{ V}$)
 - 1.8 V to 2.5 V (at $V_{CC} = 2.5 \text{ V}$)
 - 3.3 V to 2.5 V (at $V_{CC} = 2.5$ V
- Schmitt-Trigger Inputs Reject Input Noise and Provide Better Output Signal Integrity
- I_{off} Supports Partial Power Down ($V_{CC} = 0 \text{ V}$)
- Very Low Static Power Consumption: $0.1 \mu A$
- Very Low Dynamic Power Consumption: $0.9 \mu A$
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- Pb-Free Packages Available: SC-70 (DCK) 2 x 2.1 x 0.65 mm (Height 1.1 mm)
- More Gate Options Available at www.ti.com/littlelogic
- ESD Performance Tested Per JESD 22
 - 2000-V Human Body Model (A114-B, Class II)
 - 1000-V Charged-Device Model (C101)

Applications

- **AV Receivers**
- Audio Dock: Portable
- Blu-ray Players and Home Theaters
- MP3 Players and Recorders
- Personal Digital Assistant (PDA)
- Power: Telecom/Server AC/DC Supply: Single Controller: Analog and Digital
- Solid State Drive (SSD): Client and Enterprise
- TV: LCD/Digital and High-Definition (HDTV)
- Tablet: Enterprise
- Video Analytics: Servers
- Wireless Headsets, Keyboards, and Mice

3 Description

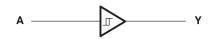
The SN74AUP1T17 performs the Boolean function Y = A with designation for logic-level translation applications with output referenced to supply V_{CC}.

AUP technology is the industry's lowest-power logic technology designed for use in extending battery-life in operating. All input levels that accept 1.8-V LVCMOS signals, while operating from either a single 3.3-V or 2.5-V V_{CC} supply. This product also maintains excellent signal integrity (see Figure 4 and Figure 1).

The wide V_{CC} range of 2.3 V to 3.6 V allows the possibility of switching output level to connect to external controllers or processors.

Schmitt-trigger inputs ($\Delta V_T = 210$ mV between positive and negative input transitions) offer improved noise immunity during switching transitions, which is especially useful on analog mixed-mode designs. Schmitt-trigger inputs reject input noise, ensure integrity of output signals, and allow for slow input signal transition.

I_{off} is a feature that allows for powered-down conditions $(V_{CC} = 0 \ V)$ and is important in portable and mobile applications. When $V_{CC} = 0 \text{ V}$, signals in the range from 0 V to 3.6 V can be applied to the inputs and outputs of the device. No damage occurs to the device under these conditions.


The SN74AUP1T17 is designed with optimized current-drive capability of 4 mA to reduce line reflections, overshoot, and undershoot caused by high-drive outputs.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)		
SN74AUP1T17DCK	SC70 (5)	2.00 mm x 1.25 mm		

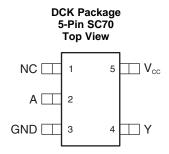
(1) For all available packages, see the orderable addendum at the end of the data sheet.

Simplified Schematic

Table of Contents

1 2	Features 1 Applications 1	6.12 Operating Characteristics
3 4 5 6	Description 1 Revision History 2 Pin Configuration and Functions 3 Specifications 3 6.1 Absolute Maximum Ratings 3 6.2 ESD Ratings 3 6.3 Recommended Operating Conditions 4 6.4 Thermal Information 4	7 Parameter Measurement Information 8 Detailed Description 8.1 Overview 8.2 Functional Block Diagram 8.3 Feature Description. 8.4 Device Functional Modes. 9 Application and Implementation 9.1 Application Information.
	6.5 Electrical Characteristics	9.2 Typical Application
	6.9 Switching Characteristics, V _{CC} = 3.3 V and V _I = 1.8 V	12.1 Community Resources

4 Revision History


Changes from Original (April 2010) to Revision A

Page

Submit Documentation Feedback

5 Pin Configuration and Functions

Pin Functions

PIN		I/O	DESCRIPTION
NAME	NO.	1/0	DESCRIPTION
NC	1	_	Not connected
Α	2	I	Input
GND	3	_	Ground
Υ	4	0	Output
V _{CC}	5	_	Power terminal

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

			MIN	MAX	UNIT
V_{CC}	Supply voltage		-0.5	4.6	V
VI	Input voltage ⁽²⁾		-0.5	4.6	V
Vo	Voltage applied to any output in the high-impedance or power-off state (2	-0.5	4.6	V	
Vo	Output voltage in the high or low state ⁽²⁾		-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V ₁ < 0		-50	mA
lok	Output clamp current	V _O < 0		-50	mA
Io	Continuous output current	·		±20	mA
	Continuous current through V _{CC} or GND			±50	mA
T _{stg}	Storage temperature		-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
V	Electrostatic	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	2000	V
V _(ESD)	discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	1000	V

¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

⁽²⁾ The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions⁽¹⁾

			MIN	MAX	UNIT
V_{CC}	Supply voltage		2.3	3.6	V
V_{I}	Input voltage		0	3.6	V
Vo	Output voltage		0	V _{CC}	V
	Liberta and and an entered	V _{CC} = 2.3 V		-3.1	A
I _{OH}	High-level output current	$V_{CC} = 3 V$		-4	mA
	Loughand autout aurrent	$V_{CC} = 2.3 \text{ V}$		3.1	A
I _{OL}	Low-level output current	$V_{CC} = 3 V$		4	mA
T _A	Operating free-air temperature		-40	85	°C

⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. See the TI application report *Implications* of Slow or Floating CMOS Inputs, SCBA004.

6.4 Thermal Information

		SN74AUP1T17	
	THERMAL METRIC ⁽¹⁾	DCK (SC70)	UNIT
		5 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	280	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V _{cc}	T _A =	T _A = 25°C		°C	UNIT	
			MIN	TYP MAX	MIN	MAX		
V _{T+}		2.3 V to 2.7 V	0.6	1.1	0.6	1.1	.,	
Positive-going input threshold voltage		3 V to 3.6 V	0.75	1.16	0.75	1.19) V	
V_{T-}		2.3 V to 2.7 V	0.35	0.6	0.35	0.6		
Negative-going input threshold voltage		3 V to 3.6 V	0.5	0.85	0.5	0.85	V	
ΔV_T		2.3 V to 2.7 V	0.23	0.6	0.1	0.6		
Hysteresis (V _{T+} – V _T)		3 V to 3.6 V	0.25	0.56	0.15	0.56	56 V	
	I _{OH} = -20 μA	2.3 V to 3.6 V	V _{CC} - 0.1		V _{CC} - 0.1			
	$I_{OH} = -2.3 \text{ mA}$	2.3 V	2.05		1.97			
V _{OH}	$I_{OH} = -3.1 \text{ mA}$	2.3 V	1.9		1.85		V	
	$I_{OH} = -2.7 \text{ mA}$	3 V	2.72		2.67			
	$I_{OH} = -4 \text{ mA}$	3 V	2.6		2.55			
	$I_{OL} = 20 \mu A$	2.3 V to 3.6 V		0.1		0.1		
	I _{OL} = 2.3 mA	2.3 V		0.31		0.33		
V _{OL}	I _{OL} = 3.1 mA	2.5 V		0.44		0.45	V	
	I _{OL} = 2.7 mA	3 V		0.31		0.33		
	I _{OL} = 4 mA	3 V		0.44		0.45		
I _I All inputs	V _I = 3.6 V or GND	0 V to 3.6 V		0.1		0.5	μA	
I _{off}	V_I or $V_O = 0 V$ to 3.6 V	0 V		0.1		0.5	μΑ	
ΔI_{off}	V_I or $V_O = 3.6 \text{ V}$	0 V to 0.2 V		0.2		0.5	μΑ	
I _{CC}	$V_I = 3.6 \text{ V or GND}, I_O = 0$	2.3 V to 3.6 V		0.5		0.9	μΑ	

Electrical Characteristics (continued)

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V _{CC}	T _A = 25°C	T _A = -40°C to 85°C	UNIT
			MIN TYP MAX	MIN MAX	
	One input at 0.3 V or 1.1 V, Other inputs at 0 or V_{CC} , $I_{O} = 0$	2.3 V to 2.7 V		4	
ΔI _{CC}	One input at 0.45 V or 1.2 V, Other inputs at 0 or V_{CC} , $I_{O} = 0$	3 V to 3.6 V		12	μΑ
C _i	V _I = V _{CC} or GND	3.3 V	1.5		pF
Co	$V_O = V_{CC}$ or GND	3.3 V	3		pF

6.6 Switching Characteristics, $V_{CC} = 2.5 \text{ V}$ and $V_I = 1.8 \text{ V}$

over recommended operating free-air temperature range, V_{CC} = 2.5 V ± 0.2 V, V_I = 1.8 V ± 0.15 V (unless otherwise noted) (see Figure 2)

PARAMETER	FROM	TO (OUTPUT)	CL	T,	\ = 25°	С	T _A = -	-40°C 5°C	UNIT	
	(INPUT)	(OUTPUT)	_	MIN	TYP	MAX	MIN	MAX		
	А	Y		5 pF	1.8	2.3	2.9	0.5	6.8	
			10 pF	2.3	2.8	3.4	1	7.9	20	
t _{pd}			15 pF	2.6	3.1	3.8	1	8.7	ns	
			30 pF	3.8	4.4	5.1	1.5	10.8		

6.7 Switching Characteristics, $V_{cc} = 2.5 \text{ V}$ and $V_{l} = 2.5 \text{ V}$

over recommended operating free-air temperature range, V_{CC} = 2.5 V ± 0.2 V, V_{I} = 2.5 V ± 0.2 V (unless otherwise noted) (see Figure 2)

PARAMETER	FROM	TO (OUTBUT)	CL	T	. = 25°C		T _A =	40°C 5°C	UNIT	
	(INPUT)	(OUTPUT)		MIN	TYP	MAX	MIN	MAX		
		Y		5 pF	1.8	2.3	3.1	0.5	6	
	۸		10 pF	2.2	2.8	3.5	1	7.1	20	
^t pd	A		15 pF	2.6	3.2	5.2	1	7.9	ns	
			30 pF	3.7	4.4	5.2	1.5	10		

6.8 Switching Characteristics, $V_{CC} = 2.5 \text{ V}$ and $V_I = 3.3 \text{ V}$

over recommended operating free-air temperature range, V_{CC} = 2.5 V ± 0.2 V, V_{I} = 3.3 V ± 0.3 V (unless otherwise noted) (see Figure 2)

PARAMETER	FROM	TO (OUTPUT)	CL	T	= 25°C		T _A =	40°C 5°C	UNIT	
	(INPUT)	(OUTPUT)		MIN	TYP	MAX	MIN	MAX		
	А	Y		5 pF	2	2.7	3.5	0.5	5.5	
			10 pF	2.4	3.1	3.9	1	6.5	20	
^t pd			15 pF	2.8	3.5	4.3	1	7.4	ns	
			30 pF	4	4.7	5.5	1.5	9.5		

6.9 Switching Characteristics, $V_{CC} = 3.3 \text{ V}$ and $V_I = 1.8 \text{ V}$

over recommended operating free-air temperature range, V_{CC} = 3.3 V ± 0.3 V, V_I = 1.8 V ± 0.15 V (unless otherwise noted) (see Figure 2)

PARAMETER	FROM	TO (OUTPUT)	C _L	T,	λ = 25°C		T _A = -	40°C 5°C	UNIT	
	(INPUT)	(001F01)		MIN	TYP	MAX	MIN	MAX		
			5 pF	1.6	2	2.5	0.5	8		
	Δ.	V	10 pF	2 2.4 2.9	1	8.5				
t _{pd}	A	Y	Ť	15 pF	2.3	2.8	3.3	1	9.1	ns
				30 pF	3.4	3.9	4.4	1.5	9.8	

6.10 Switching Characteristics, $V_{CC} = 3.3 \text{ V}$ and $V_I = 2.5 \text{ V}$

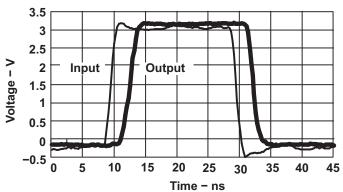
over recommended operating free-air temperature range, V_{CC} = 3.3 V ± 0.3 V, V_I = 2.5 V ± 0.2 V (unless otherwise noted) (see Figure 2)

PARAMETER	FROM	TO (OUTPUT)	C _L	T,	(= 25°C		T _A =	40°C 5°C	UNIT	
	(INPUT)	(OUTPUT)		MIN	TYP	MAX	MIN	MAX		
			5 pF	1.6	1.9	2.4	0.5	5.3		
	Δ.		10 pF	2	2.3	2.7	1	6.1	20	
t _{pd}	A	15 pl	15 pF	2.3	2.7	3.1	1	6.8	ns	
			30 pF	3.4	3.8	4.2	1.5	8.5		

6.11 Switching Characteristics, $V_{CC} = 3.3 \text{ V}$ and $V_I = 3.3 \text{ V}$

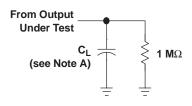
over recommended operating free-air temperature range, $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$, $V_I = 3.3 \text{ V} \pm 0.3 \text{ V}$ (unless otherwise noted) (see Figure 2)

PARAMETER	FROM	TO (OUTPUT)	CL	T	\ = 25°C		T _A =	40°C 5°C	UNIT	
	(INPUT)	(OUTPUT)		MIN	TYP	MAX	MIN	MAX		
			5 pF	1.6	2.1	2.7	0.5	4.7		
	۸	V	10 pF	2	2.4	3	1	5.7	20	
t _{pd}	А	Y	15 pF	2.3	2.7	3.3	1	6.2	ns	
					30 pF	3.4	3.8	4.4	1.5	7.8

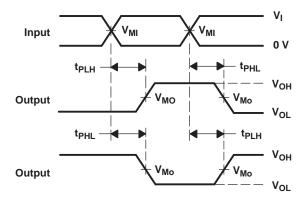

6.12 Operating Characteristics

 $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	V _{CC} = 2.5 V	V _{CC} = 3.3 V	UNIT	
	FARAIVIETER	TEST CONDITIONS	TYP	TYP	UNIT	
C_{pd}	Power dissipation capacitance	f = 10 MHz	4	5	pF	


6.13 Typical Characteristics

AUP1G08 data at C_L = 15 pF


Figure 1. Switching Characteristics at 25 MHz

7 Parameter Measurement Information

LOAD CIRCUIT

	V _{CC} = 2.5 V ± 0.2 V	V_{CC} = 3.3 V \pm 0.3 V
C _L	5, 10, 15, 30 pF	5, 10, 15, 30 pF
V _{MI}	V _I /2	V _I /2
V _{MO}	V _{CC} /2	V _{CC} /2

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS

NOTES: A. C_L includes probe and jig capacitance.

- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, slew rate \geq 1 V/ns.
- C. The outputs are measured one at a time, with one transition per measurement.
- D. t_{PLH} and t_{PHL} are the same as t_{pd} .

Figure 2. Load Circuit and Voltage Waveforms

8 Detailed Description

8.1 Overview

The SN74AUP1T17 device contains one Schmitt trigger buffer and performs the Boolean function Y = A. The device functions as an independent buffer, but because of Schmitt action, it will have different input threshold levels for a positive-going (V_T+) and negative-going signals.

This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

8.2 Functional Block Diagram

8.3 Feature Description

The distinguishing feature of the SN74AUP1T17 versus its standard-logic counterpart, the SN74AUP1G17, is the lowered switching input threshold. The SN74AUP1T17 will switch to a high output at a lower voltage threshold, which allows up-translation from signals that may not reach V_{CC} levels.

The I_{OFF} feature prevents the outputs from sinking current when $V_{CC} = 0$ V, providing extra isolation in systems where not all modules are powered simultaneously.

8.4 Device Functional Modes

Table 1 lists the functional modes for SN74AUP1T17.

Table 1. Function Table

INPUT A	OUTPUT Y
Н	Н
L	L

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The SN74AUP1T17 is a low-power CMOS device that can be used for a multitude of buffer type functions where the input is slow or noisy. The inputs are 5.5-V tolerant allowing it to translate down to V_{CC} . In addition, the device can translate a signal up to V_{CC} when the input is at least V_T + (max).

9.2 Typical Application

This application is for a low-cost oscillator. The SN74AUP1T17 at the output cleans up the noise from the clock generator so that it can be used in the system.

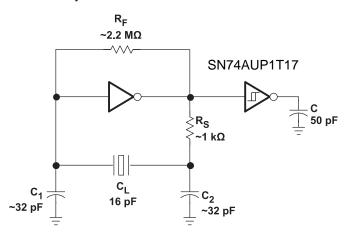


Figure 3. Low-Cost Oscillator

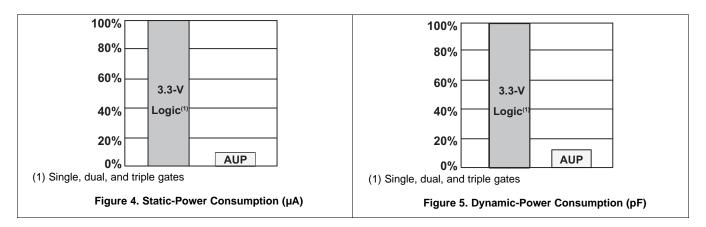
9.2.1 Design Requirements

This device uses CMOS technology and has balanced output drive. Take care to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive will also create fast edges into light loads so routing and load conditions should be considered to prevent ringing.

9.2.2 Detailed Design Procedure

- 1. Recommended Input Conditions
 - Specified high and low levels. See (VT₊ and VT₋) in the Recommended Operating Conditions table.
 - Inputs are overvoltage tolerant allowing them to go as high as (V_1 max) in the *Recommended Operating Conditions* table at any valid V_{CC} .

2. Recommend Output Conditions


- Load currents should not exceed (I_O max) per output and should not exceed (continuous current through V_{CC} or GND) total current for the part. These limits are located in the *Absolute Maximum Ratings* table.
- Outputs should not be pulled above V_{CC}.

Typical Application (continued)

9.2.3 Application Curves

Figure 4 and Figure 5 show the power consumption with the AUP family.

10 Power Supply Recommendations

The power supply can be any voltage between the min and max supply voltage rating located in the *Recommended Operating Conditions* table.

Each V_{CC} pin should have a good bypass capacitor to prevent power disturbance. For devices with a single supply a 0.1- μ F capacitor is recommended and if there are multiple Vcc pins then a 0.01- μ F or 0.022- μ F capacitor is recommended for each power pin. It is ok to parallel multiple bypass caps to reject different frequencies of noise. 0.1- μ F and 1- μ F capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power pin as possible for best results.

11 Layout

11.1 Layout Guidelines

When using multiple bit logic devices inputs should not ever float. In many cases, functions or parts of functions of digital logic devices are unused, for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such input terminals should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. Specified below are the rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to Gnd or Vcc whichever make more sense or is more convenient.

11.2 Layout Example

Figure 6. Layout Example Schematic

12 Device and Documentation Support

12.1 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Lise

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.2 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGE OPTION ADDENDUM

19-Jun-2015

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Diawing		Giy	(2)	(6)	(3)		(4/5)	
SN74AUP1T17DCKR	ACTIVE	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(675 ~ 67F)	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

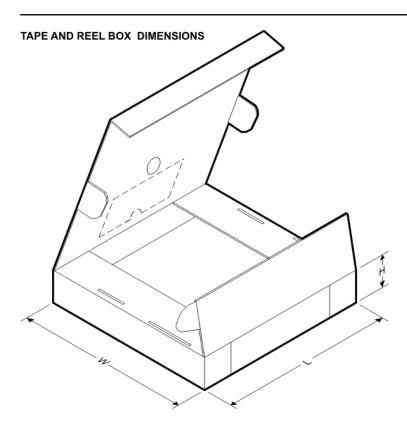
19-Jun-2015

PACKAGE MATERIALS INFORMATION

www.ti.com 9-Jul-2016

TAPE AND REEL INFORMATION

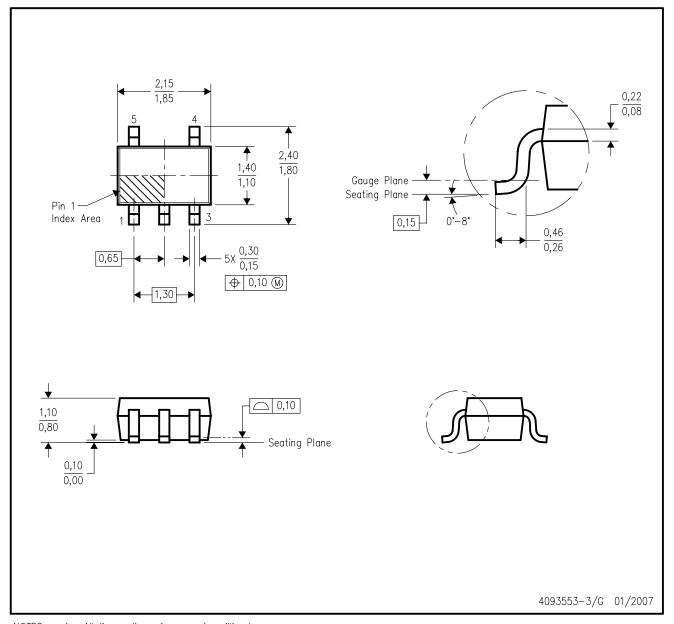
	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74AUP1T17DCKR	SC70	DCK	5	3000	178.0	9.2	2.4	2.4	1.22	4.0	8.0	Q3
SN74AUP1T17DCKR	SC70	DCK	5	3000	178.0	9.0	2.4	2.5	1.2	4.0	8.0	Q3

www.ti.com 9-Jul-2016

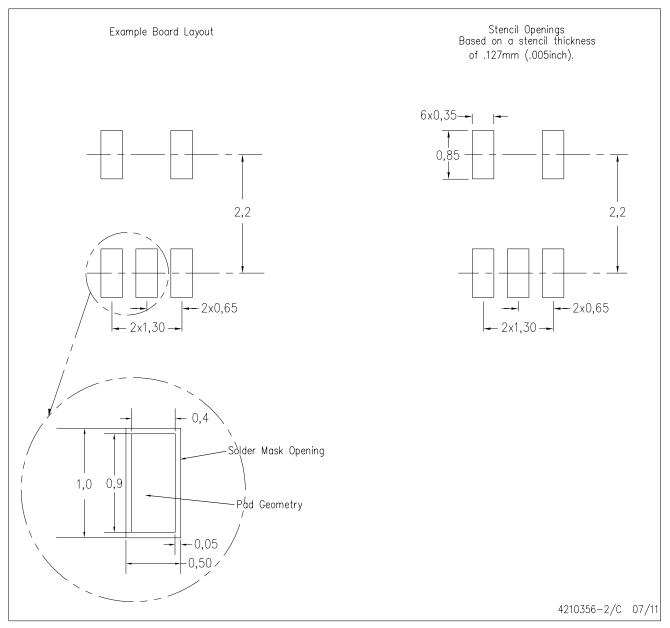


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74AUP1T17DCKR	SC70	DCK	5	3000	180.0	180.0	18.0
SN74AUP1T17DCKR	SC70	DCK	5	3000	180.0	180.0	18.0

DCK (R-PDSO-G5)

PLASTIC SMALL-OUTLINE PACKAGE


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Falls within JEDEC MO-203 variation AA.

DCK (R-PDSO-G5)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity