
TUSB3410, TUSB3410I
USB to Serial Port Controller

January 2010 Connectivity Interface Solutions

Data Manual

SLLS519H

Contents

iiiMay 2008 SLLS519G

Contents
Section Page

1 Introduction 1 .
1.1 Controller Description 1 .
1.2 Ordering Information 2 .
1.3 Revision History 3 .

2 Main Features 5 .
2.1 USB Features 5 .
2.2 General Features 5 .
2.3 Enhanced UART Features 5 .
2.4 Terminal Assignment 6 .

3 Detailed Controller Description 9 .
3.1 Operating Modes 9 .
3.2 USB Interface Configuration 9 .

3.2.1 External Memory Case 9 .
3.2.2 Host Download Case 9 .

3.3 USB Data Movement 9 .
3.4 Serial Port Setup 9 .
3.5 Serial Port Data Modes 9 .

3.5.1 RS-232 Data Mode 10 .
3.5.2 RS-485 Data Mode 10 .
3.5.3 IrDA Data Mode 10 .

4 MCU Memory Map 13 .
4.1 Miscellaneous Registers 14 .

4.1.1 ROMS: ROM Shadow Configuration Register (Addr:FF90h) 14
4.1.2 Boot Operation (MCU Firmware Loading) 14 .
4.1.3 WDCSR: Watchdog Timer, Control, and Status Register (Addr:FF93h) 15

4.2 Buffers + I/O RAM Map 15 .
4.3 Endpoint Descriptor Block (EDB−1 to EDB−3) 18 .

4.3.1 OEPCNF_n: Output Endpoint Configuration (n = 1 to 3)
(Base Addr: FF08h, FF10h, FF18h) 19 .

4.3.2 OEPBBAX_n: Output Endpoint X-Buffer Base Address (n = 1 to 3) (Offset 1) 19
4.3.3 OEPBCTX_n: Output Endpoint X Byte Count (n = 1 to 3) (Offset 2) 20
4.3.4 OEPBBAY_n: Output Endpoint Y-Buffer Base Address (n = 1 to 3) (Offset 5) 20
4.3.5 OEPBCTY_n: Output Endpoint Y-Byte Count (n = 1 to 3) (Offset 6) 20
4.3.6 OEPSIZXY_n: Output Endpoint X-/Y-Buffer Size (n = 1 to 3) (Offset 7) 21
4.3.7 IEPCNF_n: Input Endpoint Configuration (n = 1 to 3)

(Base Addr: FF48h, FF50h, FF58h) 21 .
4.3.8 IEPBBAX_n: Input Endpoint X-Buffer Base Address (n = 1 to 3) (Offset 1) 21
4.3.9 IEPBCTX_n: Input Endpoint X-Byte Count (n = 1 to 3) (Offset 2) 22
4.3.10 IEPBBAY_n: Input Endpoint Y-Buffer Base Address (n = 1 to 3) (Offset 5) 22
4.3.11 IEPBCTY_n: Input Endpoint Y-Byte Count (n = 1 to 3) (Offset 6) 22
4.3.12 IEPSIZXY_n: Input Endpoint X-/Y-Buffer Size (n = 1 to 3) (Offset 7) 23

4.4 Endpoint-0 Descriptor Registers 23 .
4.4.1 IEPCNFG_0: Input Endpoint-0 Configuration Register (Addr:FF80h) 23
4.4.2 IEPBCNT_0: Input Endpoint-0 Byte Count Register (Addr:FF81h) 24
4.4.3 OEPCNFG_0: Output Endpoint-0 Configuration Register (Addr:FF82h) 24
4.4.4 OEPBCNT_0: Output Endpoint-0 Byte Count Register (Addr:FF83h) 24

Contents

iv May 2008SLLS519G

Section Page

5 USB Registers 25 .
5.1 FUNADR: Function Address Register (Addr:FFFFh) 25 .
5.2 USBSTA: USB Status Register (Addr:FFFEh) 25 .
5.3 USBMSK: USB Interrupt Mask Register (Addr:FFFDh) 26 .
5.4 USBCTL: USB Control Register (Addr:FFFCh) 27 .
5.5 MODECNFG: Mode Configuration Register (Addr:FFFBh) 27 .
5.6 Vendor ID/Product ID 28 .
5.7 SERNUM7: Device Serial Number Register (Byte 7) (Addr:FFEFh) 28 .
5.8 SERNUM6: Device Serial Number Register (Byte 6) (Addr:FFEEh) 29 .
5.9 SERNUM5: Device Serial Number Register (Byte 5) (Addr:FFEDh) 29 .
5.10 SERNUM4: Device Serial Number Register (Byte 4) (Addr:FFECh) 29 .
5.11 SERNUM3: Device Serial Number Register (Byte 3) (Addr:FFEBh) 29 .
5.12 SERNUM2: Device Serial Number Register (Byte 2) (Addr:FFEAh) 30 .
5.13 SERNUM1: Device Serial Number Register (Byte 1) (Addr:FFE9h) 30 .
5.14 SERNUM0: Device Serial Number Register (Byte 0) (Addr:FFE8h) 30 .
5.15 Function Reset And Power-Up Reset Interconnect 31 .
5.16 Pullup Resistor Connect/Disconnect 31 .

6 DMA Controller 33 .
6.1 DMA Controller Registers 33 .

6.1.1 DMACDR1: DMA Channel Definition Register (UART Transmit Channel)
(Addr:FFE0h) 34 .

6.1.2 DMACSR1: DMA Control And Status Register (UART Transmit Channel)
(Addr:FFE1h) 34 .

6.1.3 DMACDR3: DMA Channel Definition Register (UART Receive Channel)
(Addr:FFE4h) 35 .

6.1.4 DMACSR3: DMA Control And Status Register (UART Receive Channel)
(Addr:FFE5h) 36 .

6.2 Bulk Data I/O Using the EDB 36 .
6.2.1 IN Transaction (TUSB3410 to Host) 37 .
6.2.2 OUT Transaction (Host to TUSB3410) 38 .

7 UART 39 .
7.1 UART Registers 39 .

7.1.1 RDR: Receiver Data Register (Addr:FFA0h) 39 .
7.1.2 TDR: Transmitter Data Register (Addr:FFA1h) 39 .
7.1.3 LCR: Line Control Register (Addr:FFA2h) 40 .
7.1.4 FCRL: UART Flow Control Register (Addr:FFA3h) 41 .
7.1.5 Transmitter Flow Control 42 .
7.1.6 MCR: Modem-Control Register (Addr:FFA4h) 43 .
7.1.7 LSR: Line-Status Register (Addr:FFA5h) 44 .
7.1.8 MSR: Modem-Status Register (Addr:FFA6h) 46 .
7.1.9 DLL: Divisor Register Low Byte (Addr:FFA7h) 46 .
7.1.10 DLH: Divisor Register High Byte (Addr:FFA8h) 47 .
7.1.11 Baud-Rate Calculation 47 .
7.1.12 XON: Xon Register (Addr:FFA9h) 47 .
7.1.13 XOFF: Xoff Register (Addr:FFAAh) 48 .
7.1.14 MASK: UART Interrupt-Mask Register (Addr:FFABh) 48 .

Contents

vMay 2008 SLLS519G

Section Page

7.2 UART Data Transfer 48 .
7.2.1 Receiver Data Flow 48 .
7.2.2 Hardware Flow Control 49 .
7.2.3 Auto RTS (Receiver Control) 49 .
7.2.4 Auto CTS (Transmitter Control) 49 .
7.2.5 Xon/Xoff Receiver Flow Control 50 .
7.2.6 Xon/Xoff Transmit Flow Control 50 .

8 Expanded GPIO Port 51 .
8.1 Input/Output and Control Registers 51 .

8.1.1 PUR_3: GPIO Pullup Register For Port 3 (Addr:FF9Eh) 51 .
9 Interrupts 53 .

9.1 8052 Interrupt and Status Registers 53 .
9.1.1 8052 Standard Interrupt Enable (SIE) Register 53 .
9.1.2 Additional Interrupt Sources 53 .
9.1.3 VECINT: Vector Interrupt Register (Addr:FF92h) 54 .
9.1.4 Logical Interrupt Connection Diagram (Internal/External) 55 .

10 I2C Port 57 .
10.1 I2C Registers 57 .

10.1.1 I2CSTA: I2C Status and Control Register (Addr:FFF0h) 57 .
10.1.2 I2CADR: I2C Address Register (Addr:FFF3h) 58 .
10.1.3 I2CDAI: I2C Data-Input Register (Addr:FFF2h) 58 .
10.1.4 I2CDAO: I2C Data-Output Register (Addr:FFF1h) 58 .

10.2 Random-Read Operation 58 .
10.3 Current-Address Read Operation 59 .
10.4 Sequential-Read Operation 59 .
10.5 Byte-Write Operation 60 .
10.6 Page-Write Operation 61 .

11 TUSB3410 Bootcode Flow 63 .
11.1 Introduction 63 .
11.2 Bootcode Programming Flow 63 .
11.3 Default Bootcode Settings 64 .

11.3.1 Device Descriptor 64 .
11.3.2 Configuration Descriptor 65 .
11.3.3 Interface Descriptor 66 .
11.3.4 Endpoint Descriptor 66 .
11.3.5 String Descriptor 66 .

11.4 External I2C Device Header Format 68 .
11.4.1 Product Signature 68 .
11.4.2 Descriptor Block 69 .

11.5 Checksum in Descriptor Block 69 .
11.6 Header Examples 69 .

11.6.1 TUSB3410 Bootcode Supported Descriptor Block 69 .
11.6.2 USB Descriptor Header 69 .
11.6.3 Autoexec Binary Firmware 71 .

11.7 USB Host Driver Downloading Header Format 72 .

Contents

vi May 2008SLLS519G

Section Page

11.8 Built-In Vendor Specific USB Requests 72 .
11.8.1 Reboot 72 .
11.8.2 Force Execute Firmware 72 .
11.8.3 External Memory Read 73 .
11.8.4 External Memory Write 73 .
11.8.5 I2C Memory Read 73 .
11.8.6 I2C Memory Write 73 .
11.8.7 Internal ROM Memory Read 74 .

11.9 Bootcode Programming Consideration 74 .
11.9.1 USB Requests 74 .
11.9.2 Hardware Reset Introduced by the Firmware 77 .

11.10 File Listings 78 .
12 Electrical Specifications 79 .

12.1 Absolute Maximum Ratings 79 .
12.2 Commercial Operating Condition (3.3 V) 79 .
12.3 Electrical Characteristics 79 .

13 Application Notes 81 .
13.1 Crystal Selection 81 .
13.2 External Circuit Required for Reliable Bus Powered Suspend Operation 81
13.3 Wakeup Timing (WAKEUP or RI/CP Transitions) 82 .
13.4 Reset Timing 82 .

List of Illustrations

viiMay 2008 SLLS519G

List of Illustrations
Figure Title Page
1−1 Data Flow 1 .

1−2 USB-to-Serial (Single Channel) Controller Block Diagram 2 .

3−1 RS-232 and IR Mode Select 11 .

3−2 USB-to-Serial Implementation (RS-232) 12 .

3−3 RS-485 Bus Implementation 12 .

4−1 MCU Memory Map 13 .

5−1 Reset Diagram 31 .

5−2 Pullup Resistor Connect/Disconnect Circuit 31 .

7−1 MSR and MCR Registers in Loop-Back Mode 45 .

7−2 Receiver/Transmitter Data Flow 49 .

7−3 Auto Flow Control Interconnect 49 .

9−1 Internal Vector Interrupt 55 .

11−1 Control Read Transfer 75 .

11−2 Control Write Transfer Without Data Stage 76 .

13−1 Crystal Selection 81 .

13−2 External Circuit 81 .

13−3 Reset Timing 82 .

List of Tables

viii May 2008SLLS519G

List of Tables
Table Title Page
2−1 Terminal Functions 7 .
4−1 ROM/RAM Size Definition Table 14 .
4−2 XDATA Space 15 .
4−3 Memory-Mapped Registers Summary (XDATA Range = FF80h ” FFFFh) 16 .
4−4 EDB Memory Locations 17 .
4−5 Endpoint Registers and Offsets in RAM (n = 1 to 3) 19 .
4−6 Endpoint Registers Base Addresses 19 .
4−7 Input/Output EDB-0 Registers 23 .
6−1 DMA Controller Registers 33 .
6−2 DMA IN-Termination Condition 36 .
7−1 UART Registers Summary 39 .
7−2 Transmitter Flow-Control Modes 42 .
7−3 Receiver Flow-Control Possibilities 42 .
7−4 DLL/DLH Values and Resulted Baud Rates 47 .
9−1 8052 Interrupt Location Map 53 .
9−2 Vector Interrupt Values 54 .
11−1 Device Descriptor 65 .
11−2 Configuration Descriptor 65 .
11−3 Interface Descriptor 66 .
11−4 Output Endpoint1 Descriptor 66 .
11−5 String Descriptor 67 .
11−6 USB Descriptors Header 70 .
11−7 Autoexec Binary Firmware 72 .
11−8 Host Driver Downloading Format 72 .
11−9 Bootcode Response to Control Read Transfer 75 .
11−10 Bootcode Response to Control Write Without Data Stage 76 .
11−11 Vector Interrupt Values and Sources 77 .

Introduction

1SLLS519H—January 2010 TUSB3410, TUSB3410I

1 Introduction

1.1 Controller Description

The TUSB3410 provides bridging between a USB port and an enhanced UART serial port. The TUSB3410
contains all the necessary logic to communicate with the host computer using the USB bus. It contains an 8052
microcontroller unit (MCU) with 16K bytes of RAM that can be loaded from the host or from the external
on-board memory via an I2C bus. It also contains 10K bytes of ROM that allow the MCU to configure the USB
port at boot time. The ROM code also contains an I2C boot loader. All device functions, such as the USB
command decoding, UART setup, and error reporting, are managed by the internal MCU firmware under the
auspices of the PC host.

The TUSB3410 can be used to build an interface between a legacy serial peripheral device and a PC with USB
ports, such as a legacy-free PC. Once configured, data flows from the host to the TUSB3410 via USB OUT
commands and then out from the TUSB3410 on the SOUT line. Conversely, data flows into the TUSB3410
on the SIN line and then into the host via USB IN commands.

Host
(PC or On-The-Go
Dual-Role Device)

USB

Out

In

TUSB3410

SOUT

SIN

Legacy
Serial

Peripheral

Figure 1−1. Data Flow

Introduction

2 SLLS519H—January 2010TUSB3410, TUSB3410I

8052
Core

Clock
Oscillator

12 MHz

PLL
and

Dividers

10K × 8
ROM

8 8
2 × 16-Bit

Timers

16K × 8
RAM

8
8 4

Port 3

2K × 8
SRAM

8

8
I2C

Controller

8

UART−1

CPU-I/F
Suspend/
Resume

8

UBM
USB Buffer

Manager

88

USB
Serial

Interface
Engine

USB
TxR

TDM
Control
Logic

P3.4
P3.3
P3.1
P3.0

I2C Bus

DP, DM

8

DMA-1
DMA-3

RTS
CTS
DTR
DSR

M
U
X

IR
Encoder

SOUT/IR_SOUT

M
U
X

IR
Decoder SIN/IR_SIN

24 MHz

SIN
SOUT

Figure 1−2. USB-to-Serial (Single Channel) Controller Block Diagram

Introduction

3SLLS519H—January 2010 TUSB3410, TUSB3410I

1.2 Ordering Information

T
PACKAGED DEVICES

COMMENTTA 32-TERMINAL LQFP PACKAGE 32-TERMINAL QFN PACKAGE
COMMENT

40°C to 85°C

TUSB3410 I VF TUSB3410 I RHB
Industrial temperature range

Shipped in trays
−40°C to 85°C

TUSB3410 I RHBR
Industrial temperature range

Tape and Reel Option

0°C to 70°C
TUSB3410 VF TUSB3410 RHB Shipped in trays

0°C to 70°C
TUSB3410 RHBR Tape and Reel Option

1.3 Revision History

Version Date Changes

Mar−2002 Initial Release

A Apr−2002 1. General grammatical corrections
2. Added Design−in warning on cover sheet
3. Removed references to Optional preprogrammed VID/PID Registers from Section 5.1.6 through 5.1.11. Re-

number the remainder of Section 5.1 accordingly – option no longer supported.
4. Clarified GPIO pin availability

B Jun−2002 1. Removed Design−in warning from cover sheet
2. Added Note 8 to Terminal Functions Table for GPIO Pins.
3. Removed Section 3.2.3 – Production Programming Mode – Mode no longer supported.
4. Added Clock Output Control description to section 5.1.5.
5. Removed Section 11.6.4 USB Descriptor with Binary Firmware
6. Added Icc Spec to Table 12.3

C Nov−2003 1. Added Industrial Temperature Option and Information
2. Added USB Logo to Cover

D July 2005 1. General grammatical corrections
2. Numerous technical corrections

F July 2007 1. Added ordering information for TUSB3410IRHBR and TUSB3410RHBR

G May 2008 1. Added terminal assignments for RHB package

H Jan 2010 1. Removed reference to 48-MHz in 13.4

Introduction

4 SLLS519H—January 2010TUSB3410, TUSB3410I

Main Features

5SLLS519H—January 2010 TUSB3410, TUSB3410I

2 Main Features

2.1 USB Features
• Fully compliant with USB 2.0 full speed specifications: TID #40340262

• Supports 12-Mbps USB data rate (full speed)

• Supports USB suspend, resume, and remote wakeup operations

• Supports two power source modes:

− Bus-powered mode

− Self-powered mode

• Can support a total of three input and three output (interrupt, bulk) endpoints

2.2 General Features
• Integrated 8052 microcontroller with

− 256 × 8 RAM for internal data

− 10K × 8 ROM (with USB and I2C boot loader)

− 16K × 8 RAM for code space loadable from host or I2C port

− 2K × 8 shared RAM used for data buffers and endpoint descriptor blocks (EDB)

− Four GPIO terminals from 8052 port 3

− Master I2C controller for EEPROM device access

− MCU operates at 24 MHz providing 2 MIPS operation

− 128-ms watchdog timer

• Built-in two-channel DMA controller for USB/UART bulk I/O

• Operates from a 12-MHz crystal

• Supports USB suspend and resume

• Supports remote wake-up

• Available in 32-terminal LQFP

• 3.3-V operation with 1.8-V core operating voltage provided by on-chip 1.8-V voltage regulator

2.3 Enhanced UART Features
• Software/hardware flow control:

− Programmable Xon/Xoff characters

− Programmable Auto-RTS/DTR and Auto-CTS/DSR

• Automatic RS-485 bus transceiver control, with and without echo

• Selectable IrDA mode for up to 115.2 kbps transfer

• Software selectable baud rate from 50 to 921.6 k baud

• Programmable serial-interface characteristics

− 5-, 6-, 7-, or 8-bit characters

− Even, odd, or no parity-bit generation and detection

− 1-, 1.5-, or 2-stop bit generation

Main Features

6 SLLS519H—January 2010TUSB3410, TUSB3410I

• Line break generation and detection

• Internal test and loop-back capabilities

• Modem-control functions (CTS, RTS, DSR, DTR, RI, and DCD)

• Internal diagnostics capability

− Loopback control for communications link-fault isolation

− Break, parity, overrun, framing-error simulation

2.4 Terminal Assignment
VF PACKAGE
(TOP VIEW)

23 22 21 20 19

1 2

25

26

27

28

29

30

31

32

16

15

14

13

12

11

10

9

RI/CP
DCD
DSR
CTS
WAKEUP
SCL
SDA
RESET

VCC
X2

X1/CLKI
GND
P3.4
P3.3
P3.1
P3.0

24 18

3 4 5 6 7 8

17

T
E

S
T

1
T

E
S

T
0

C
LK

O
U

T
D

T
R

R
T

S
S

O
U

T
/IR

_S
O

U
T

G
N

D
S

IN
/IR

_S
IN

V
R

E
G

E
N

S
U

S
P

E
N

D
V

C
C

V
D

D
18

P
U

R
D

P
D

M
G

N
D

RHB PACKAGE
(BOTTOM VIEW)

1 2 3 4 6 7 8

24 23 22 21 19 18 17

9

10

11

12

13

14

15

16

32

31

30

29

28

27

26

25

V
R

E
G

E
N

S
U

S
P

E
N

D
V

C
C

V
D

D
18

P
U

R
D

P
D

M
G

N
D

T
E

S
T

1
T

E
S

T
0

C
LK

O
U

T

S
O

U
T

/IR
_S

O
U

T
G

N
D

S
IN

/IR
_S

IN

D
T

R
R

T
S

RESET

WAKEUP
CTS
DSR
DCD
RI

SDA
SCL

/CP

P3.0
P3.1
P3.3
P3.4
GND

X1/CLKI
X2

VCC
20

Main Features

7SLLS519H—January 2010 TUSB3410, TUSB3410I

Table 2−1. Terminal Functions
TERMINAL

I/O DESCRIPTION
NAME NO.

I/O DESCRIPTION

CLKOUT 22 O Clock output (controlled by bits 2 (CLKOUTEN) and 3(CLKSLCT) in the MODECNFG register (see
Section 5.5 and Note 1)

CTS 13 I UART: Clear to send (see Note 4)

DCD 15 I UART: Data carrier detect (see Note 4)

DM 7 I/O Upstream USB port differential data minus

DP 6 I/O Upstream USB port differential data plus

DSR 14 I UART: Data set ready (see Note 4)

DTR 21 O UART: Data terminal ready (see Note 1)

GND 8, 18, 28 GND Digital ground

P3.0 32 I/O General-purpose I/O 0 (port 3, terminal 0) (see Notes 3, 5, and 8)

P3.1 31 I/O General-purpose I/O 1 (port 3, terminal 1) (see Notes 3, 5, and 8)

P3.3 30 I/O General-purpose I/O 3 (port 3, terminal 3) (see Notes 3, 5, and 8)

P3.4 29 I/O General-purpose I/O 4 (port 3, terminal 4) (see Notes 3, 5, and 8)

PUR 5 O Pull-up resistor connection (see Note 2)

RESET 9 I Device master reset input (see Note 4)

RI/CP 16 I UART: Ring indicator (see Note 4)

RTS 20 O UART: Request to send (see Note 1)

SCL 11 O Master I2C controller: clock signal (see Note 1)

SDA 10 I/O Master I2C controller: data signal (see Notes 1 and 5)

SIN/IR_SIN 17 I UART: Serial input data / IR Serial data input (see Note 6)

SOUT/IR_SOUT 19 O UART: Serial output data / IR Serial data output (see Note 7)

SUSPEND 2 O Suspend indicator terminal (see Note 3). When this terminal is asserted high, the device is in
suspend mode.

TEST0 23 I Test input (for factory test only) (see Note 5). This terminal must be tied to VCC through a 10-kΩ
resistor.

TEST1 24 I Test input (for factory test only) (see Note 5). This terminal must be tied to VCC through a 10-kΩ
resistor.

VCC 3, 25 PWR 3.3 V

VDD18 4 PWR 1.8-V supply. An internal voltage regulator generates this supply voltage when terminal VREGEN is
low. When VREGEN is high, 1.8 V must be supplied externally.

VREGEN 1 I This active-low terminal is used to enable the 3.3-V to 1.8-V voltage regulator.

WAKEUP 12 I Remote wake-up request terminal. When low, wakes up system (see Note 5)

X1/CLKI 27 I 12-MHz crystal input or clock input

X2 26 O 12-MHz crystal output

NOTES: 1. 3-state CMOS output (±4-mA drive/sink)
2. 3-state CMOS output (±8-mA drive/sink)
3. 3-state CMOS output (±12-mA drive/sink)
4. TTL-compatible, hysteresis input
5. TTL-compatible, hysteresis input, with internal 100-μA active pullup resistor
6. TTL-compatible input without hysteresis, with internal 100-μA active pullup resistor
7. Normal or IR mode: 3-state CMOS output (±4-mA drive/sink)
8. The MCU treats the outputs as open drain types in that the output can be driven low continuously, but a high output is driven for two

clock cycles and then the output is high impedance.

Main Features

8 SLLS519H—January 2010TUSB3410, TUSB3410I

Detailed Controller Description

9SLLS519H—January 2010 TUSB3410, TUSB3410I

3 Detailed Controller Description
3.1 Operating Modes

The TUSB3410 controls its USB interface in response to USB commands, and this action is independent of
the serial port mode selected. On the other hand, the serial port can be configured in three different modes.

As with any interface device, data movement is the main function of the TUSB3410, but typically the initial
configuration and error handling consume most of the support code. The following sections describe the
various modes the device can be used in and the means of configuring the device.

3.2 USB Interface Configuration
The TUSB3410 contains onboard ROM microcode, which enables the MCU to enumerate the device as a USB
peripheral. The ROM microcode can also load application code into internal RAM from either external memory
via the I2C bus or from the host via the USB.

3.2.1 External Memory Case
After reset, the TUSB3410 is disconnected from the USB. Bit 7 (CONT) in the USBCTL register (see
Section 5.4) is cleared. The TUSB3410 checks the I2C port for the existence of valid code; if it finds valid code,
then it uploads the code from the external memory device into the RAM program space. Once loaded, the
TUSB3410 connects to the USB by setting the CONT bit and enumeration and configuration are performed.
This is the most likely use of the device.

3.2.2 Host Download Case
If the valid code is not found at the I2C port, then the TUSB3410 connects to the USB by setting bit 7 (CONT)
in the USBCTL register (see Section 5.4), and then an enumeration and default configuration are performed.
The host can download additional microcode into RAM to tailor the application. Then, the MCU causes a
disconnect and reconnect by clearing and setting the CONT bit, which causes the TUSB3410 to be
re-enumerated with a new configuration.

3.3 USB Data Movement
From the USB perspective, the TUSB3410 looks like a USB peripheral device. It uses endpoint 0 as its control
endpoint, as do all USB peripherals. It also configures up to three input and three output endpoints, although
most applications use one bulk input endpoint for data in, one bulk output endpoint for data out, and one
interrupt endpoint for status updates. The USB configuration likely remains the same regardless of the serial
port configuration.

Most data is moved from the USB side to the UART side and from the UART side to the USB side using on-chip
DMA transfers. Some special cases may use programmed I/O under control of the MCU.

3.4 Serial Port Setup
The serial port requires a few control registers to be written to configure its operation. This configuration likely
remains the same regardless of the data mode used. These registers include the line control register that
controls the serial word format and the divisor registers that control the baud rate.

These registers are usually controlled by the host application.

3.5 Serial Port Data Modes
The serial port can be configured in three different, although similar, data modes: the RS-232 data mode, the
RS-485 data mode, and the IrDA data mode. Similar to the USB mode, once configured for a specific
application, it is unlikely that the mode would be changed. The different modes affect the timing of the serial
input and output or the use of the control signals. However, the basic serial-to-parallel conversion of the
receiver and parallel-to-serial conversion of the transmitter remain the same in all modes. Some features are
available in all modes, but are only applicable in certain modes. For instance, software flow control via Xoff/Xon
characters can be used in all modes, but would usually only be used in RS-232 or IrDA mode because the
RS-485 mode is half-duplex communication. Similarly, hardware flow control via RTS/CTS (or DTR/DSR)
handshaking is available in RS-232 or IrDA mode. However, this would probably be used only in RS-232 mode,
since in IrDA mode only the SIN and SOUT paths are optically coupled.

Detailed Controller Description

10 SLLS519H—January 2010TUSB3410, TUSB3410I

3.5.1 RS-232 Data Mode

The default mode is called the RS-232 mode and is typically used for full duplex communication on SOUT and
SIN. In this mode, the modem control outputs (RTS and DTR) communicate to a modem or are general
outputs. The modem control inputs (CTS, DSR, DCD, and RI/CP) communicate to a modem or are general
inputs. Alternatively, RTS and CTS (or DTR and DSR) can throttle the data flow on SOUT and SIN to prevent
receive FIFO overruns. Finally, software flow control via Xoff/Xon characters can be used for the same
purpose.

This mode represents the most general-purpose applications, and the other modes are subsets of this mode.

3.5.2 RS-485 Data Mode

The RS-485 mode is very similar to the RS-232 mode in that the SOUT and SIN formats remain the same.
Since RS-485 is a bus architecture, it is inherently a single duplex communication system. The TUSB3410
in RS-485 mode controls the RTS and DTR signals such that either can enable an RS-485 driver or RS-485
receiver. When in RS-485 mode, the enable signals for transmitting are automatically asserted whenever the
DMA is set up for outbound data. The receiver can be left enabled while the driver is enabled to allow an echo
if desired, but when receive data is expected, the driver must be disabled. Note that this precludes use of
hardware flow control, since this is a half-duplex operation, it would not be effective. Software flow control is
supported, but may be of limited value.

The RS-485 mode is enabled by setting bit 7 (485E) in the FCRL register (see Section 7.1.4), and bit 1 (RCVE)
in the MCR register (see Section 7.1.6) allows the receiver to eavesdrop while in the RS-485 mode.

3.5.3 IrDA Data Mode

The IrDA mode encodes SOUT and decodes SIN in the manner prescribed by the IrDA standard, up to
115.2 kbps. Connection to an external IrDA transceiver is required. Communications is usually full duplex.
Generally, in an IrDA system, only the SOUT and SIN paths are connected so hardware flow control is usually
not an option. Software flow control is supported.

The IrDA mode is enabled by setting bit 6 (IREN) in the USBCTL register (see Section 5.4).

The IR encoder and decoder circuitry work with the UART to change the serial bit stream into a series of pulses
and back again. For every zero bit in the outbound serial stream, the encoder sends a low-to-high-to-low pulse
with the duration of 3/16 of a bit frame at the middle of the bit time. For every one bit in the serial stream, the
output remains low for the entire bit time.

The decoding process consists of receiving the signal from the IrDA receiver and converting it into a series
of zeroes and ones. As the converse to the encoder, the decoder converts a pulse to a zero bit and the lack
of a pulse to a one bit.

Detailed Controller Description

11SLLS519H—January 2010 TUSB3410, TUSB3410I

From
UART

M
U
X

IR
Encoder

SOUT/IR_SOUT
Terminal

1

0

IR_TX

SOUT

UART
BaudOut

Clock

IREN (in
USBCTL
Register)

M
U
X

1

0

SOFTSW (in
MODECNFG

Register)

TXCNTL (in
MODECNFG

Register)

M
U
X

1

0

CLKOUT
TerminalCLKOUTEN

(in
MODECNFG

Register)

3.556 MHz

M
U
X

1

0

CLKSLCT (in
MODECNFG

Register)

To
UART

Receiver
IR

Decoder
IR_RX

SIN/IR_SIN
Terminal

3.3 V

SOUT

SIN

Figure 3−1. RS-232 and IR Mode Select

Detailed Controller Description

12 SLLS519H—January 2010TUSB3410, TUSB3410I

4

7

1

6

8

3

2

Transceivers

DTR

RTS

DCD

DSR

CTS

SOUT

SIN

P3.0
P3.1
P3.3

Serial Port

GPIO Terminals for
Other Onboard
Control Function

TUSB3410

12 MHz

USB-0

DB9
Connector

RI/CP

P3.4

X1/CLKI

X2

DP
DM

Figure 3−2. USB-to-Serial Implementation (RS-232)

12 MHz

USB-0 RS-485
Transceiver

RTS

DTR

SOUT

SIN

TUSB3410

RS-485 Bus

2-Bit Time 1-Bit Max

Receiver is Disabled if RCVE = 0

SOUT

DTR

RTS

X1/CLKI

X2

DP
DM

Figure 3−3. RS-485 Bus Implementation

MCU Memory Map

13SLLS519H—January 2010 TUSB3410, TUSB3410I

4 MCU Memory Map

Figure 4−1 illustrates the MCU memory map under boot and normal operation.

NOTE:
The internal 256 bytes of RAM are not shown, since they are assumed to be in the standard
8052 location (0000h to 00FFh). The shaded areas represent the internal ROM/RAM.

• When bit 0 (SDW) of the ROMS register is 0 (boot mode)

The 10K ROM is mapped to address (0x0000−0x27FF) and is duplicated in location (0x8000−0xA7FF) in
code space. The internal 16K RAM is mapped to address range (0x0000−0x3FFF) in data space. Buffers,
MMR, and I/O are mapped to address range (0xF800−0xFFFF) in data space.

• When bit 0 (SDW) is 1 (normal mode)

The 10K ROM is mapped to (0x8000−0xA7FF) in code space. The internal 16K RAM is mapped to
address range (0x0000−0x3FFF) in code space. Buffers, MMR, and I/O are mapped to address range
(0xF800−0xFFFF) in data space.

Normal Mode (SDW = 1)

0000h

CODE XDATA

16K
Code RAM
Read Only

2K Data

MMR

10K Boot ROM

Boot Mode (SDW = 0)

CODE XDATA

10K Boot ROM

2K Data

MMR

10K Boot ROM

(16K)
Read/Write

27FFh

3FFFh

8000h

A7FFh

F800h

FF7Fh
FF80h

FFFFh

Figure 4−1. MCU Memory Map

MCU Memory Map

14 SLLS519H—January 2010TUSB3410, TUSB3410I

4.1 Miscellaneous Registers

4.1.1 ROMS: ROM Shadow Configuration Register (Addr:FF90h)

This register is used by the MCU to switch from boot mode to normal operation mode (boot mode is set on
power-on reset only). In addition, this register provides the device revision number and the ROM/RAM
configuration.

7 6 5 4 3 2 1 0

ROA S1 S0 RSVD RSVD RSVD RSVD SDW

R/O R/O R/O R/O R/O R/O R/O R/W

BIT NAME RESET FUNCTION

0 SDW 0 This bit enables/disables boot ROM. (Shadow the ROM).

SDW = 0 When clear, the MCU executes from the 10K boot ROM space. The boot ROM appears in two
locations: 0000h and 8000h. The 16K RAM is mapped to XDATA space; therefore, a read/write
operation is possible. This bit is set by the MCU after the RAM load is completed. The MCU
cannot clear this bit; it is cleared on power-up reset or watchdog time-out reset.

SDW = 1 When set by the MCU, the 10K boot ROM maps to location 8000h, and the 16K RAM is mapped
to code space, starting at location 0000h. At this point, the MCU executes from RAM, and the
write operation is disabled (no write operation is possible in code space).

4−1 RSVD No effect These bits are always read as 0000b.

6−5 S[1:0] No effect Code space size. These bits define the ROM or RAM code-space size (bit 7 (ROA) defines ROM or
RAM). These bits are permanently set to 10b, indicating 16K bytes of code space, and are not affected
by reset (see Table 4−1).

00 = 4K bytes code space size

01 = 8K bytes code space size

10 = 16K bytes code space size

11 = 32K bytes code space size

7 ROA No effect ROM or RAM version. This bit indicates whether the code space is RAM or ROM based. This bit is
permanently set to 1, indicating the code space is RAM, and is not affected by reset (see Table 4−1).

ROA = 0 Code space is ROM

ROA = 1 Code space is RAM

Table 4−1. ROM/RAM Size Definition Table
ROMS REGISTER

BOOT ROM RAM CODE ROM CODE
ROA S1 S0

BOOT ROM RAM CODE ROM CODE

0 0 0 None None 4K

0 0 1 None None 8K

0 1 0 None None 16K (reserved)

1 1 1 None None 32K (reserved)

1 0 0 10K 4K None

1 0 1 10K 8K None

1† 1† 0† 10K† 16K† None†

1 1 1 10K 32K (reserved) None
† This is the hardwired setting.

4.1.2 Boot Operation (MCU Firmware Loading)

Since the code space is in RAM (with the exception of the boot ROM), the TUSB3410 firmware must be loaded
from an external source. Two sources are available for booting: one from an external serial EEPROM
connected to the I2C bus and the other from the host via the USB. On device reset, bit 0 (SDW) in the ROMS
register (see Section 4.1.1) and bit 7 (CONT) in the USBCTL register (see Section 5.4) are cleared. This
configures the memory space to boot mode (see Table 4−3) and keeps the device disconnected from the host.
The first instruction is fetched from location 0000h (which is in the 10K ROM). The 16K RAM is mapped to
XDATA space (location 0000h). The MCU executes a read from an external EEPROM and tests whether it
contains the code (by testing for boot signature). If it contains the code, then the MCU reads from EEPROM

MCU Memory Map

15SLLS519H—January 2010 TUSB3410, TUSB3410I

and writes to the 16K RAM in XDATA space. If it does not contain the code, then the MCU proceeds to boot
from the USB.

Once the code is loaded, the MCU sets the SDW bit to 1 in the ROMS register. This switches the memory map
to normal mode; that is, the 16K RAM is mapped to code space, and the MCU starts executing from location
0000h. Once the switch is done, the MCU sets the CONT bit to 1 in the USBCTL register. This connects the
device to the USB and results in normal USB device enumeration.

4.1.3 WDCSR: Watchdog Timer, Control, and Status Register (Addr:FF93h)

A watchdog timer (WDT) with 1-ms clock is provided. If this register is not accessed for a period of 128 ms,
then the WDT counter resets the MCU (see Figure 5−1). The watchdog timer is enabled by default and can
be disabled by writing a pattern of 101010b into the WDD[5:0] bits. The 1-ms clock for the watchdog timer is
generated from the SOF pulses. Therefore, in order for the watchdog timer to count, bit 7 (CONT) in the
USBCTL register (see Section 5.4) must be set.

7 6 5 4 3 2 1 0

WDD0 WDR WDD5 WDD4 WDD3 WDD2 WDD1 WDT

R/W R/C R/W R/W R/W R/W R/W W/O

BIT NAME RESET FUNCTION

0 WDT 0 MCU must write a 1 to this bit to prevent the watchdog timer from resetting the MCU. If the MCU does not
write a 1 in a period of 128 ms, the watchdog timer resets the device. Writing a 0 has no effect on the
watchdog timer. (The watchdog timer is a 7-bit counter using a 1-ms CLK.) This bit is read as 0.

5−1 WDD[5:1] 00000 These bits disable the watchdog timer. For the timer to be disabled these bits must be set to 10101b and
bit 7 (WDD0) must also be set to 0. If any other pattern is present, then the watchdog timer is in operation.

6 WDR 0 Watchdog reset indication bit. This bit indicates if the reset occurred due to power-on reset or watchdog
timer reset.

WDR = 0 A power-up reset occurred

WDR = 1 A watchdog time-out reset occurred. To clear this bit, the MCU must write a 1. Writing a 0 has no
effect.

7 WDD0 1 This bit is one of the six disable bits for the watchdog timer. This bit must be cleared in order for the
watchdog timer to be disabled.

4.2 Buffers + I/O RAM Map

The address range from F800h to FFFFh (2K bytes) is reserved for data buffers, setup packet, endpoint
descriptors block (EDB), and all I/O. There are 128 locations reserved for memory-mapped registers (MMR).
Table 4−2 represents the XDATA space allocation and access restriction for the DMA, USB buffer manager
(UBM), and MCU.

Table 4−2. XDATA Space
DESCRIPTION ADDRESS RANGE UBM ACCESS DMA ACCESS MCU ACCESS

Internal MMRs
(Memory-Mapped Registers)

FFFFh−FF80h
No

(Only EDB-0)
No

(only data register and EDB-0)
Yes

EDB
(Endpoint Descriptors Block)

FF7Fh−FF08h Only for EDB update Only for EDB update Yes

Setup Packet FF07h−FF00h Yes No Yes

Input Endpoint-0 Buffer FEFFh−FEF8h Yes Yes Yes

Output Endpoint-0 Buffer FEF7h−FEF0h Yes Yes Yes

Data Buffers FEEFh−F800h Yes Yes Yes

MCU Memory Map

16 SLLS519H—January 2010TUSB3410, TUSB3410I

Table 4−3. Memory-Mapped Registers Summary (XDATA Range = FF80h → FFFFh)
ADDRESS REGISTER DESCRIPTION

FFFFh FUNADR Function address register

FFFEh USBSTA USB status register

FFFDh USBMSK USB interrupt mask register

FFFCh USBCTL USB control register

FFFBh MODECNFG Mode configuration register

FFFAh−FFF4h Reserved

FFF3h I2CADR I2C-port address register

FFF2h I2CDATI I2C-port data input register

FFF1h I2CDATO I2C-port data output register

FFF0h I2CSTA I2C-port status register

FFEFh SERNUM7 Serial number byte 7 register

FFEEh SERNUM6 Serial number byte 6 register

FFEDh SERNUM5 Serial number byte 5 register

FFECh SERNUM4 Serial number byte 4 register

FFEBh SERNUM3 Serial number byte 3 register

FFEAh SERNUM2 Serial number byte 2 register

FFE9h SERNUM1 Serial number byte 1 register

FFE8h SERNUM0 Serial number byte 0 register

FFE7h−FFE6h Reserved

FFE5h DMACSR3 DMA-3: Control and status register

FFE4h DMACDR3 DMA-3: Channel definition register

FFE3h−FFE2h Reserved

FFE1h DMACSR1 DMA-1: Control and status register

FFE0h DMACDR1 DMA-1: Channel definition register

FFDFh−FFACh Reserved

FFABh MASK UART: Interrupt mask register

FFAAh XOFF UART: Xoff register

FFA9h XON UART: Xon register

FFA8h DLH UART: Divisor high-byte register

FFA7h DLL UART: Divisor low-byte register

FFA6h MSR UART: Modem status register

FFA5h LSR UART: Line status register

FFA4h MCR UART: Modem control register

FFA3h FCRL UART: Flow control register

FFA2h LCR UART: Line control registers

FFA1h TDR UART: Transmitter data registers

FFA0h RDR UART: Receiver data registers

FF9Eh PUR_3 GPIO: Pullup register for port 3

MCU Memory Map

17SLLS519H—January 2010 TUSB3410, TUSB3410I

Table 4−3. Memory-Mapped Registers Summary (XDATA Range = FF80h → FFFFh) (Continued)

ADDRESS REGISTER DESCRIPTION

FF9Dh−FF94h

FF93h

Reserved

WDCSR Watchdog timer control and status register

FF92h VECINT Vector interrupt register

FF91h Reserved

FF90h ROMS ROM shadow configuration register

FF8Fh−FF84h Reserved

FF83h OEPBCNT_0 Output endpoint_0: Byte count register

FF82h OEPCNFG_0 Output endpoint_0: Configuration register

FF81h IEPBCNT_0 Input endpoint_0: Byte count register

FF80h IEPCNFG_0 Input endpoint_0: Configuration register

Table 4−4. EDB Memory Locations
ADDRESS REGISTER DESCRIPTION

FF7Fh−FF60h Reserved

FF5Fh IEPSIZXY_3 Input endpoint_3: X-Y buffer size

FF5Eh IEPBCTY_3 Input endpoint_3: Y-byte count

FF5Dh IEPBBAY_3 Input endpoint_3: Y-buffer base address

FF5Ch − Reserved

FF5Bh − Reserved

FF5Ah IEPBCTX_3 Input endpoint_3: X-byte count

FF59h IEPBBAX Input endpoint_3: X-buffer base address

FF58h IEPCNF_3 Input endpoint_3: Configuration

FF57h IEPSIZXY_2 Input endpoint_2: X-Y buffer size

FF56h IEPBCTY_2 Input endpoint_2: Y-byte count

FF55h IEPBBAY_2 Input endpoint_2: Y-buffer base address

FF54h − Reserved

FF53h − Reserved

FF52h IEPBCTX_2 Input endpoint_2: X-byte count

FF51h IEPBBAX_2 Input endpoint_2: X-buffer base address

FF50h IEPCNF_2 Input endpoint_2: Configuration

FF4Fh IEPSIZXY_1 Input endpoint_1: X-Y buffer size

FF4Eh IEPBCTY_1 Input endpoint_1: Y-byte count

FF4Dh IEPBBAY_1 Input endpoint_1: Y-buffer base address

FF4Ch − Reserved

FF4Bh − Reserved

FF4Ah IEPBCTX_1 Input endpoint_1: X-byte count

FF49h IEPBBAX_1 Input endpoint_1: X-buffer base address

FF48h IEPCNF_1 Input endpoint_1: Configuration

FF47h

↑ Reserved

FF20h

FF1Fh OEPSIZXY_3 Output endpoint_3: X-Y buffer size

FF1Eh OEPBCTY_3 Output endpoint_3: Y-byte count

FF1Dh OEPBBAY_3 Output endpoint_3: Y-buffer base address

FF1Bh−FF1Ch − Reserved

MCU Memory Map

18 SLLS519H—January 2010TUSB3410, TUSB3410I

Table 4−4. EDB Memory Locations (Continued)

ADDRESS REGISTER DESCRIPTION

FF1Ah OEPBCTX_3 Output endpoint_3: X-byte count

FF19h OEPBBAX_3 Output endpoint_3: X-buffer base address

FF18h OEPCNF_3 Output endpoint_3: Configuration

FF17h OEPSIZXY_2 Output endpoint_2: X-Y buffer size

FF16h OEPBCTY_2 Output endpoint_2: Y-byte count

FF15h OEPBBAY_2 Output endpoint_2: Y-buffer base address

FF14h−FF13h − Reserved

FF12h OEPBCTX_2 Output endpoint_2: X-byte count

FF11h OEPBBAX_2 Output endpoint_2: X-buffer base address

FF10h OEPCNF_2 Output endpoint_2: Configuration

FF0Fh OEPSIZXY_1 Output endpoint_1: X-Y buffer size

FF0Eh OEPBCTY_1 Output endpoint_1: Y-byte count

FF0Dh OEPBBAY_1 Output endpoint_1: Y-buffer base address

FF0Ch−FF0Bh − Reserved

FF0Ah OEPBCTX_1 Output endpoint_1: X-byte count

FF09h OEPBBAX_1 Output endpoint_1: X-buffer base address

FF08h OEPCNF_1 Output endpoint_1: Configuration

FF07h

↑ (8 bytes) Setup packet block

FF00h

FEFFh

↑ (8 bytes) Input endpoint_0 buffer

FEF8h

FEF7h

↑ (8 bytes) Output endpoint_0 buffer

FEF0h

FEEFh TOPBUFF Top of buffer space

↑ Buffer space↑

F800h STABUFF Start of buffer space

4.3 Endpoint Descriptor Block (EDB−1 to EDB−3)

Data transfers between the USB, the MCU, and external devices that are defined by an endpoint descriptor
block (EDB). Three input and three output EDBs are provided. With the exception of EDB-0 (I/O endpoint-0),
all EDBs are located in SRAM as per Table 4−3. Each EDB contains information describing the X- and
Y-buffers. In addition, each EDB provides general status information.

Table 4−5 describes the EDB entries for EDB−1 to EDB−3. EDB−0 registers are described in Table 4−6.

MCU Memory Map

19SLLS519H—January 2010 TUSB3410, TUSB3410I

Table 4−5. Endpoint Registers and Offsets in RAM (n = 1 to 3)
OFFSET ENTRY NAME DESCRIPTION

07 EPSIZXY_n I/O endpoint_n: X/Y-buffer size

06 EPBCTY_n I/O endpoint_n: Y-byte count

05 EPBBAY_n I/O endpoint_n: Y-buffer base address

04 SPARE Not used

03 SPARE Not used

02 EPBCTX_n I/O endpoint_n: X-byte count

01 EPBBAX_n I/O endpoint_n: X-buffer base address

00 EPCNF_n I/O endpoint_n: Configuration

Table 4−6. Endpoint Registers Base Addresses
BASE ADDRESS DESCRIPTION

FF08h Output endpoint 1

FF10h Output endpoint 2

FF18h Output endpoint 3

FF48h Input endpoint 1

FF50h Input endpoint 2

FF58h Input endpoint 3

4.3.1 OEPCNF_n: Output Endpoint Configuration (n = 1 to 3) (Base Addr: FF08h, FF10h,
FF18h)

7 6 5 4 3 2 1 0

UBME ISO=0 TOGLE DBUF STALL USBIE RSV RSV

R/W R/W R/W R/W R/W R/W R/W R/W

BIT NAME RESET FUNCTION

1−0 RSV x Reserved = 0

2 USBIE x USB interrupt enable on transaction completion. Set/cleared by the MCU.
USBIE = 0 No interrupt on transaction completion
USBIE = 1 Interrupt on transaction completion

3 STALL 0 USB stall condition indication. Set/cleared by the MCU.

STALL = 0
STALL = 1

No stall
USB stall condition. If set by the MCU, then a STALL handshake is initiated and the bit is
cleared by the MCU.

4 DBUF x Double-buffer enable. Set/cleared by the MCU.
DBUF = 0 Primary buffer only (X-buffer only)
DBUF = 1 Toggle bit selects buffer

5 TOGLE x USB toggle bit. This bit reflects the toggle sequence bit of DATA0, DATA1.

6 ISO x ISO = 0 Nonisochronous transfer. This bit must be cleared by the MCU since only nonisochronous transfer
is supported.

7 UBME x USB buffer manager (UBM) enable/disable bit. Set/cleared by the MCU.
UBME = 0 UBM cannot use this endpoint
UBME = 1 UBM can use this endpoint

4.3.2 OEPBBAX_n: Output Endpoint X-Buffer Base Address (n = 1 to 3) (Offset 1)
7 6 5 4 3 2 1 0

A10 A9 A8 A7 A6 A5 A4 A3

R/W R/W R/W R/W R/W R/W R/W R/W

BIT NAME RESET FUNCTION

7−0 A[10:3] x A[10:3] of X-buffer base address (padded with 3 LSBs of zeros for a total of 11 bits). This value is set by
the MCU. The UBM or DMA uses this value as the start-address of a given transaction. Note that the UBM
or DMA does not change this value at the end of a transaction.

MCU Memory Map

20 SLLS519H—January 2010TUSB3410, TUSB3410I

4.3.3 OEPBCTX_n: Output Endpoint X Byte Count (n = 1 to 3) (Offset 2)

7 6 5 4 3 2 1 0

NAK C6 C5 C4 C3 C2 C1 C0

R/W R/W R/W R/W R/W R/W R/W R/W

BIT NAME RESET FUNCTION

6−0 C[6:0] x X-buffer byte count:
X000.0000b Count = 0
X000.0001b Count = 1 byte
:
:
X011.1111b Count = 63 bytes
X100.0000b Count = 64 bytes
Any value ≥ 100.0001b may result in unpredictable results.

7 NAK x NAK = 0
NAK = 1

No valid data in buffer. Ready for host OUT
Buffer contains a valid packet from host (gives NAK response to Host OUT request)

4.3.4 OEPBBAY_n: Output Endpoint Y-Buffer Base Address (n = 1 to 3) (Offset 5)

7 6 5 4 3 2 1 0

A10 A9 A8 A7 A6 A5 A4 A3

R/W R/W R/W R/W R/W R/W R/W R/W

BIT NAME RESET FUNCTION

7−0 A[10:3] x A[10:3] of Y-buffer base address (padded with 3 LSBs of zeros for a total of 11 bits). This value is set by
the MCU. The UBM or DMA uses this value as the start-address of a given transaction. Furthermore, UBM
or DMA does not change this value at the end of a transaction.

4.3.5 OEPBCTY_n: Output Endpoint Y-Byte Count (n = 1 to 3) (Offset 6)

7 6 5 4 3 2 1 0

NAK C6 C5 C4 C3 C2 C1 C0

R/W R/W R/W R/W R/W R/W R/W R/W

BIT NAME RESET FUNCTION

6−0 C[6:0] x Y-byte count:
X000.0000b Count = 0
X000.0001b Count = 1 byte
:
:
X011.1111b Count = 63 bytes
X100.0000b Count = 64 bytes
Any value ≥ 100.0001b may result in unpredictable results.

7 NAK x NAK = 0
NAK = 1

No valid data in buffer. Ready for host OUT
Buffer contains a valid packet from host (gives NAK response to Host OUT request)

MCU Memory Map

21SLLS519H—January 2010 TUSB3410, TUSB3410I

4.3.6 OEPSIZXY_n: Output Endpoint X-/Y-Buffer Size (n = 1 to 3) (Offset 7)

7 6 5 4 3 2 1 0

RSV S6 S5 S4 S3 S2 S1 S0

R/W R/W R/W R/W R/W R/W R/W R/W

BIT NAME RESET FUNCTION

6−0 S[6:0] x X- and Y-buffer size:
0000.0000b Size = 0
0000.0001b Size = 1 byte
:
:
0011.1111b Size = 63 bytes
0100.0000b Size = 64 bytes
Any value ≥ 100.0001b may result in unpredictable results.

7 RSV x Reserved = 0

4.3.7 IEPCNF_n: Input Endpoint Configuration (n = 1 to 3) (Base Addr: FF48h, FF50h,
FF58h)

7 6 5 4 3 2 1 0

UBME ISO=0 TOGLE DBUF STALL USBIE RSV RSV

R/W R/W R/W R/W R/W R/W R/W R/W

BIT NAME RESET FUNCTION

1−0 RSV x Reserved = 0

2 USBIE x USB interrupt enable on transaction completion
USBIE = 0 No interrupt on transaction completion
USBIE = 1 Interrupt on transaction completion

3 STALL 0 USB stall condition indication. Set by the UBM but can be set/cleared by the MCU
STALL = 0 No stall
STALL = 1 USB stall condition. If set by the MCU, then a STALL handshake is initiated and the bit is
 cleared automatically.

4 DBUF x Double buffer enable
DBUF = 0 Primary buffer only (X-buffer only)
DBUF = 1 Toggle bit selects buffer

5 TOGLE x USB toggle bit. This bit reflects the toggle sequence bit of DATA0, DATA1

6 ISO x ISO = 0 Nonisochronous transfer. This bit must be cleared by the MCU since only nonisochronous
transfer is supported

7 UBME x UBM enable/disable bit. Set/cleared by the MCU
UBME = 0 UBM cannot use this endpoint
UBME = 1 UBM can use this endpoint

4.3.8 IEPBBAX_n: Input Endpoint X-Buffer Base Address (n = 1 to 3) (Offset 1)

7 6 5 4 3 2 1 0

A10 A9 A8 A7 A6 A5 A4 A3

R/W R/W R/W R/W R/W R/W R/W R/W

BIT NAME RESET FUNCTION

7−0 A[10:3] x A[10:3] of X-buffer base address (padded with 3 LSBs of zeros for a total of 11 bits). This value is set by
the MCU. The UBM or DMA uses this value as the start-address of a given transaction, but note that the
UBM or DMA does not change this value at the end of a transaction.

MCU Memory Map

22 SLLS519H—January 2010TUSB3410, TUSB3410I

4.3.9 IEPBCTX_n: Input Endpoint X-Byte Count (n = 1 to 3) (Offset 2)

7 6 5 4 3 2 1 0

NAK C6 C5 C4 C3 C2 C1 C0

R/W R/W R/W R/W R/W R/W R/W R/W

BIT NAME RESET FUNCTION

6−0 C[6:0] x X-Buffer byte count:
X000.0000b Count = 0
X000.0001b Count = 1 byte
:
:
X011.1111b Count = 63 bytes
X100.0000b Count = 64 bytes
Any value ≥ 100.0001b may result in unpredictable results.

7 NAK x NAK = 0
NAK = 1

Buffer contains a valid packet for host-IN transaction
Buffer is empty (gives NAK response to host-IN request)

4.3.10 IEPBBAY_n: Input Endpoint Y-Buffer Base Address (n = 1 to 3) (Offset 5)

7 6 5 4 3 2 1 0

A10 A9 A8 A7 A6 A5 A4 A3

R/W R/W R/W R/W R/W R/W R/W R/W

BIT NAME RESET FUNCTION

7−0 A[10:3] x A[10:3] of Y-buffer base address (padded with 3 LSBs of zeros for a total of 11 bits). This value is set by
the MCU. The UBM or DMA uses this value as the start-address of a given transaction, but note that the
UBM or DMA does not change this value at the end of a transaction.

4.3.11 IEPBCTY_n: Input Endpoint Y-Byte Count (n = 1 to 3) (Offset 6)

7 6 5 4 3 2 1 0

NAK C6 C5 C4 C3 C2 C1 C0

R/W R/W R/W R/W R/W R/W R/W R/W

BIT NAME RESET FUNCTION

6−0 C[6:0] x Y-Byte count:
X000.0000b Count = 0
X000.0001b Count = 1 byte
:
:
X011.1111b Count = 63 bytes
X100.0000b Count = 64 bytes
Any value ≥ 100.0001b may result in unpredictable results.

7 NAK x NAK = 0
NAK = 1

Buffer contains a valid packet for host-IN transaction
Buffer is empty (gives NAK response to host-IN request)

MCU Memory Map

23SLLS519H—January 2010 TUSB3410, TUSB3410I

4.3.12 IEPSIZXY_n: Input Endpoint X-/Y-Buffer Size (n = 1 to 3) (Offset 7)

7 6 5 4 3 2 1 0

RSV S6 S5 S4 S3 S2 S1 S0

R/W R/W R/W R/W R/W R/W R/W R/W

BIT NAME RESET FUNCTION

6−0 S[6:0] x X- and Y-buffer size:
0000.0000b Size = 0
0000.0001b Size = 1 byte
:
:
0011.1111b Size = 63 bytes
0100.0000b Size = 64 bytes
Any value ≥ 100.0001b may result in unpredictable results.

7 RSV x Reserved = 0

4.4 Endpoint-0 Descriptor Registers

Unlike registers EDB-1 to EDB-3, which are defined as memory entries in SRAM, endpoint-0 is described by
a set of four registers (two for output and two for input). The registers and their respective addresses, used
for EDB-0 description, are defined in Table 4−7. EDB-0 has no buffer base-address register, since these
addresses are hardwired to FEF8h and FEF0h. Note that the bit positions have been preserved to provide
consistency with EDB-n (n = 1 to 3).

Table 4−7. Input/Output EDB-0 Registers
ADDRESS REGISTER NAME DESCRIPTION BUFFER BASE ADDRESS

FF83h
FF82h

OEPBCNT_0
OEPCNFG_0

Output endpoint_0: Byte count register
Output endpoint_0: Configuration register FEF0h

FF81h
FF80h

IEPBCNT_0
IEPCNFG_0

Input endpoint_0: Byte count register
Input endpoint_0: Configuration register FEF8h

4.4.1 IEPCNFG_0: Input Endpoint-0 Configuration Register (Addr:FF80h)

7 6 5 4 3 2 1 0

UBME RSV TOGLE RSV STALL USBIE RSV RSV

R/W R/O R/O R/O R/W R/W R/O R/O

BIT NAME RESET FUNCTION

1−0 RSV 0 Reserved = 0

2 USBIE 0 USB interrupt enable on transaction completion. Set/cleared by the MCU.
USBIE = 0 No interrupt
USBIE = 1 Interrupt on transaction completion

3 STALL 0 USB stall condition indication. Set/cleared by the MCU
STALL = 0 No stall
STALL = 1 USB stall condition. If set by the MCU, then a STALL handshake is initiated and the bit is
 cleared automatically by the next setup transaction.

4 RSV 0 Reserved = 0

5 TOGLE 0 USB toggle bit. This bit reflects the toggle sequence bit of DATA0, DATA1.

6 RSV 0 Reserved = 0

7 UBME 0 UBM enable/disable bit. Set/cleared by the MCU
UBME = 0 UBM cannot use this endpoint
UBME = 1 UBM can use this endpoint

MCU Memory Map

24 SLLS519H—January 2010TUSB3410, TUSB3410I

4.4.2 IEPBCNT_0: Input Endpoint-0 Byte Count Register (Addr:FF81h)
7 6 5 4 3 2 1 0

NAK RSV RSV RSV C3 C2 C1 C0

R/W R/O R/O R/O R/W R/W R/W R/W

BIT NAME RESET FUNCTION

3−0 C[3:0] 0h Byte count:
0000b Count = 0
:
:
0111b Count = 7
1000b Count = 8
1001b to 1111b are reserved. (If used, they default to 8)

6−4 RSV 0 Reserved = 0

7 NAK 1 NAK = 0
NAK = 1

Buffer contains a valid packet for host-IN transaction
Buffer is empty (gives NAK response to host-IN request)

4.4.3 OEPCNFG_0: Output Endpoint-0 Configuration Register (Addr:FF82h)
7 6 5 4 3 2 1 0

UBME RSV TOGLE RSV STALL USBIE RSV RSV

R/W R/O R/O R/O R/W R/W R/O R/O

BIT NAME RESET FUNCTION

1−0 RSV 0 Reserved = 0

2 USBIE 0 USB interrupt enable on transaction completion. Set/cleared by the MCU.
USBIE = 0 No interrupt on transaction completion
USBIE = 1 Interrupt on transaction completion

3 STALL 0 USB stall condition indication. Set/cleared by the MCU
STALL = 0 No stall
STALL = 1 USB stall condition. If set by the MCU, a STALL handshake is initiated and the bit is cleared automatically.

4 RSV 0 Reserved = 0

5 TOGLE 0 USB \toggle bit. This bit reflects the toggle sequence bit of DATA0, DATA1.

6 RSV 0 Reserved = 0

7 UBME 0 UBM enable/disable bit. Set/cleared by the MCU
UBME = 0 UBM cannot use this endpoint
UBME = 1 UBM can use this endpoint

4.4.4 OEPBCNT_0: Output Endpoint-0 Byte Count Register (Addr:FF83h)
7 6 5 4 3 2 1 0

NAK RSV RSV RSV C3 C2 C1 C0

R/W R/O R/O R/O R/O R/O R/O R/O

BIT NAME RESET FUNCTION

3−0 C[3:0] 0h Byte count:
0000b Count = 0
:
:
0111b Count = 7
1000b Count = 8
1001b to 1111b are reserved

6−4 RSV 0 Reserved = 0

7 NAK 1 NAK =0
NAK = 1

No valid data in buffer. Ready for host OUT
Buffer contains a valid packet from host (gives NAK response to host-OUT request).

USB Registers

25SLLS519H—January 2010 TUSB3410, TUSB3410I

5 USB Registers

5.1 FUNADR: Function Address Register (Addr:FFFFh)

This register contains the device function address.

7 6 5 4 3 2 1 0

RSV FA6 FA5 FA4 FA3 FA2 FA1 FA0

R/O R/W R/W R/W R/W R/W R/W R/W

BIT NAME RESET FUNCTION

6−0 FA[6:0] 0 These bits define the current device address assigned to the function. The MCU writes a value to this
register because of the SET-ADDRESS host command.

7 RSV 0 Reserved = 0

5.2 USBSTA: USB Status Register (Addr:FFFEh)

All bits in this register are set by the hardware and are cleared by the MCU when writing a 1 to the proper bit
location (writing a 0 has no effect). In addition, each bit can generate an interrupt if its corresponding mask
bit is set (R/C notation indicates read and clear only by the MCU).

7 6 5 4 3 2 1 0

RSTR SUSR RESR RSV URRI SETUP WAKEUP STPOW

R/C R/C R/C R/O R/C R/C R/C R/C

BIT NAME RESET FUNCTION

0 STPOW 0 SETUP overwrite bit. Set by hardware when a setup packet is received while there is already a packet
in the setup buffer.

STPOW = 0
STPOW = 1

MCU can clear this bit by writing a 1 (writing 0 has no effect).
SETUP overwrite

1 WAKEUP 0 Remote wakeup bit

WAKEUP = 0
WAKEUP = 1

The MCU can clear this bit by writing a 1 (writing 0 has no effect).
Remote wakeup request from WAKEUP terminal

2 SETUP 0 SETUP transaction received bit. As long as SETUP is 1, IN and OUT on endpoint-0 are NAKed,
regardless of their real NAK bits value.

SETUP = 0
SETUP = 1

MCU can clear this bit by writing a 1 (writing 0 has no effect).
SETUP transaction received

3 URRI 0 UART RI (ring indicate) status bit – a rising edge causes this bit to be set.

URRI = 0
URRI = 1

The MCU can clear this bit by writing a 1 (writing 0 has no effect).
Ring detected, which is used to wake the chip up (bring it out of suspend).

4 RSV 0 Reserved

5 RESR 0 Function resume request bit

RESR = 0
RESR = 1

The MCU can clear this bit by writing a 1 (writing 0 has no effect).
Function resume is detected

6 SUSR 0 Function suspended request bit. This bit is set in response to a global or selective suspend condition.

SUSR = 0
SUSR = 1

The MCU can clear this bit by writing a 1 (writing 0 has no effect).
Function suspend is detected

7 RSTR 0 Function reset request bit. This bit is set in response to the USB host initiating a port reset. This bit is
not affected by the USB function reset.

RSTR = 0
RSTR = 1

The MCU can clear this bit by writing a 1 (writing 0 has no effect).
Function reset is detected

USB Registers

26 SLLS519H—January 2010TUSB3410, TUSB3410I

5.3 USBMSK: USB Interrupt Mask Register (Addr:FFFDh)

7 6 5 4 3 2 1 0

RSTR SUSR RESR RSV URRI SETUP WAKEUP STPOW

R/W R/W R/W R/O R/W R/W R/W R/W

BIT NAME RESET FUNCTION

0 STPOW 0 SETUP overwrite interrupt-enable bit

STPOW = 0
STPOW = 1

STPOW interrupt disabled
STPOW interrupt enabled

1 WAKEUP 0 Remote wakeup interrupt enable bit

WAKEUP = 0
WAKEUP = 1

WAKEUP interrupt disable
WAKEUP interrupt enable

2 SETUP 0 SETUP interrupt enable bit

SETUP = 0
SETUP = 1

SETUP interrupt disabled
SETUP interrupt enabled

3 URRI 0 UART RI interrupt enable bit

URRI = 0
URRI = 1

UART RI interrupt disable
UART RI interrupt enable

4 RSV 0 Reserved

5 RESR 0 Function resume interrupt enable bit

RESR = 0
RESR = 1

Function resume interrupt disabled
Function resume interrupt enabled

6 SUSR 0 Function suspend interrupt enable

SUSR = 0
SUSR = 1

Function suspend interrupt disabled
Function suspend interrupt enabled

7 RSTR 0 Function reset interrupt bit. This bit is not affected by USB function reset.

RSTR = 0
RSTR = 1

Function reset interrupt disabled
Function reset interrupt enabled

USB Registers

27SLLS519H—January 2010 TUSB3410, TUSB3410I

5.4 USBCTL: USB Control Register (Addr:FFFCh)

Unlike the rest of the registers, this register is cleared by the power-up reset signal only. The USB reset cannot
reset this register (see Figure 5−1).

7 6 5 4 3 2 1 0

CONT IREN RWUP FRSTE RSV RSV SIR DIR

R/W R/W R/C R/W R/W R/W R/W R/W

BIT NAME RESET

0 DIR 0 As a response to a setup packet, the MCU decodes the request and sets/clears this bit to reflect the data transfer
direction.

DIR = 0
DIR = 1

USB data-OUT transaction (from host to TUSB3410)
USB data-IN transaction (from TUSB3410 to host)

1 SIR 0 SETUP interrupt-status bit. This bit is controlled by the MCU to indicate to the hardware when the SETUP interrupt
is being serviced.

SIR = 0
SIR = 1

SETUP interrupt is not served. The MCU clears this bit before exiting the SETUP interrupt routine.
SETUP interrupt is in progress. The MCU sets this bit when servicing the SETUP interrupt.

2 RSV 0 Reserved = 0

3 RSV 0 This bit must always be written as 0.

4 FRSTE 1 Function reset-connection bit. This bit connects/disconnects the USB function reset to/from the MCU reset.

FRSTE = 0
FRSTE = 1

Function reset is not connected to MCU reset
Function reset is connected to MCU reset

5 RWUP 0 Device remote wakeup request. This bit is set by the MCU and is cleared automatically.

RWUP = 0
RWUP = 1

Writing a 0 to this bit has no effect
When MCU writes a 1, a remote-wakeup pulse is generated.

6 IREN 0 IR mode enable. This bit is set and cleared by firmware.

IREN = 0
IREN = 1

IR encoder/decoder is disabled, UART mode is selected
IR encoder/decoder is enabled, UART mode is deselected

7 CONT 0 Connect/disconnect bit

CONT = 0
CONT = 1

Upstream port is disconnected. Pullup disabled.
Upstream port is connected. Pullup enabled.

5.5 MODECNFG: Mode Configuration Register (Addr:FFFBh)

This register is cleared by the power-up reset signal only. The USB reset cannot reset this register.

7 6 5 4 3 2 1 0

RSV RSV RSV RSV CLKSLCT CLKOUTEN SOFTSW TXCNTL

R/O R/O R/O R/O R/W R/W R/W R/W

BIT NAME RESET FUNCTION

0 TXCNTL 0 Transmit output control: Hardware or firmware switching select for 3-state serial output buffer.

TXCNTL = 0
TXCNTL = 1

Hardware automatic switching is selected
Firmware toggle switching is selected

1 SOFTSW 0 Soft switch: Firmware controllable 3-state output buffer enable for serial output terminal.

SOFTSW = 0
SOFTSW = 1

Serial output buffer is enabled
Serial output buffer is disabled

2 CLKOUTEN 0 Clock output enable: Enables/disables the clock output at CLKOUT terminal.

CLKOUTEN = 0
CLKOUTEN = 1

Clock output is disabled. Device drives low at CLKOUT terminal.
Clock output is enabled

3 CLKSLCT 0 Clock output source select: Selects between 3.556-MHz fixed clock or UART baud out clock as output
clock source.

CLKSLCT = 0
CLKSLCT = 1

UART baud out clock is selected as clock output
Fixed 3.556-MHz free running clock is selected as clock output

4−7 RSV 0 Reserved

USB Registers

28 SLLS519H—January 2010TUSB3410, TUSB3410I

Clock Output Control

Bit 2 (CLKOUTEN) in the MODECNFG register enables or disables the clock output at the CLKOUT terminal
of the TUSB3410. The power up default of CLKOUT is disabled. Firmware can write a 1 to enable the clock
output if needed.

Bit 3 (CLKSLCT) in the MODECNFG register selects the output clock source from either a fixed 3.556-MHz
free-running clock or the UART BaudOut clock.

5.6 Vendor ID/Product ID

USB−IF and Microsoft WHQL certification requires that end equipment makers use their own unique vendor
ID and product ID for each product (model). OEMs cannot use silicon vendor’s (for instance, TI’s default)
VID/PID in their end products. A unique VID/PID combination will avoid potential driver conflicts and enable
logo certification. See www.usb.org for more information.

5.7 SERNUM7: Device Serial Number Register (Byte 7) (Addr:FFEFh)

Each TUSB3410 device has a unique 64-bit serial die id number, which is generated during manufacturing.
The die id is incremented sequentially, however there is no assurance that numbers will not be skipped. The
device serial number registers mirror this unique 64-bit serial die id value.

After power-up reset, this read-only register (SERNUM7) contains the most significant byte (byte 7) of the
complete 64-bit device serial number. This register cannot be reset.

7 6 5 4 3 2 1 0

D63 D62 D61 D60 D59 D58 D57 D56

R/O R/O R/O R/O R/O R/O R/O R/O

BIT NAME RESET FUNCTION

7−0 D[63:56] Device serial number byte 7 value Device serial number byte 7 value

Procedure to load device serial number value in shared RAM:

• After power-up reset, the boot code copies the predefined USB descriptors to shared RAM. As a result,
the default serial number hard-coded in the boot code (0x00 hex) is copied to the shared RAM data space.

• The boot code checks to see if an EEPROM is present on the I2C port. If an EEPROM is present and
contains a valid device serial number as part of the USB device descriptor information stored in EEPROM,
then the boot code overwrites the serial number value stored in shared RAM with the one found in
EEPROM. Otherwise, the device serial number value stored in shared RAM remains unchanged. If
firmware is stored in the EEPROM, then it is executed. This firmware can read the SERNUM7 through
SERNUM0 registers and overwrite the serial number stored in RAM or store a custom number in RAM.

• In summary, the serial number value in external EEPROM has the highest priority to be loaded into shared
RAM data space. The serial number value stored in shared RAM is used as part of the valid device
descriptor information during normal operation.

USB Registers

29SLLS519H—January 2010 TUSB3410, TUSB3410I

5.8 SERNUM6: Device Serial Number Register (Byte 6) (Addr:FFEEh)

The device serial number registers mirror the unique 64-bit die id value.

After power-up reset, this read-only register (SERNUM6) contains byte 6 of the complete 64-bit device serial
number. This register cannot be reset.

7 6 5 4 3 2 1 0

D55 D54 D53 D52 D51 D50 D49 D48

R/O R/O R/O R/O R/O R/O R/O R/O

BIT NAME RESET FUNCTION

7−0 D[55:48] Device serial number byte 6 value Device serial number byte 6 value

NOTE: See the procedure described in the SERNUM7 register (see Section 5.7) to load the device serial number into shared RAM.

5.9 SERNUM5: Device Serial Number Register (Byte 5) (Addr:FFEDh)

The device serial number registers mirror the unique 64-bit die id value.

After power-up reset, this read-only register (SERNUM5) contains byte 5 of the complete 64-bit device serial
number. This register cannot be reset.

7 6 5 4 3 2 1 0

D47 D46 D45 D44 D43 D42 D41 D40

R/O R/O R/O R/O R/O R/O R/O R/O

BIT NAME RESET FUNCTION

7−0 D[47:40] Device serial number byte 5 value Device serial number byte 5 value

NOTE: See the procedure described in the SERNUM7 register (see Section 5.7) to load the device serial number into shared RAM.

5.10 SERNUM4: Device Serial Number Register (Byte 4) (Addr:FFECh)

The device serial number registers mirror the unique 64-bit die id value.

After power-up reset, this read-only register (SERNUM4) contains byte 4 of the complete 64-bit device serial
number. This register cannot be reset.

7 6 5 4 3 2 1 0

D39 D38 D37 D36 D35 D34 D33 D32

R/O R/O R/O R/O R/O R/O R/O R/O

BIT NAME RESET FUNCTION

7−0 D[39:32] Device serial number byte 4 value Device serial number byte 4 value

NOTE: See the procedure described in the SERNUM7 register (see Section 5.7) to load the device serial number into shared RAM.

5.11 SERNUM3: Device Serial Number Register (Byte 3) (Addr:FFEBh)

The device serial number registers mirror the unique 64-bit die id value.

After power-up reset, this read-only register (SERNUM3) contains byte 3 of the complete 64-bit device serial
number. This register cannot be reset.

7 6 5 4 3 2 1 0

D31 D30 D29 D28 D27 D26 D25 D24

R/O R/O R/O R/O R/O R/O R/O R/O

BIT NAME RESET FUNCTION

7−0 D[31:24] Device serial number byte 3 value Device serial number byte 3 value

NOTE: See the procedure described in the SERNUM7 register (see Section 5.7) to load the device serial number into shared RAM.

USB Registers

30 SLLS519H—January 2010TUSB3410, TUSB3410I

5.12 SERNUM2: Device Serial Number Register (Byte 2) (Addr:FFEAh)

The device serial number registers mirror the unique 64-bit die id value.

After power-up reset, this read-only register (SERNUM2) contains byte 2 of the complete 64-bit device serial
number. This register cannot be reset.

7 6 5 4 3 2 1 0

D23 D22 D21 D20 D19 D18 D17 D16

R/O R/O R/O R/O R/O R/O R/O R/O

BIT NAME RESET FUNCTION

7−0 D[23:16] 0 Device serial number byte 2 value

NOTE: See the procedure described in the SERNUM7 register (see Section 5.7) to load the device serial number into shared RAM.

5.13 SERNUM1: Device Serial Number Register (Byte 1) (Addr:FFE9h)

The device serial number registers mirror the unique 64-bit die id value.

After power-up reset, this read-only register (SERNUM1) contains byte 1 of the complete 64-bit device serial
number. This register cannot be reset.

7 6 5 4 3 2 1 0

D15 D14 D13 D12 D11 D10 D9 D8

R/O R/O R/O R/O R/O R/O R/O R/O

BIT NAME RESET FUNCTION

7−0 D[15:8] Device serial number byte 1 value Device serial number byte 1 value

NOTE: See the procedure described in the SERNUM7 register (see Section 5.7) to load the device serial number into shared RAM.

5.14 SERNUM0: Device Serial Number Register (Byte 0) (Addr:FFE8h)

The device serial number registers mirror the unique 64-bit die id value.

After power-up reset, this read-only register (SERNUM0) contains byte 0 of the complete 64-bit device serial
number. This register cannot be reset.

7 6 5 4 3 2 1 0

D7 D6 D5 D4 D3 D2 D1 D0

R/O R/O R/O R/O R/O R/O R/O R/O

BIT NAME RESET FUNCTION

7−0 D[7:0] Device serial number byte 0 value Device serial number byte 0 value

NOTE: See the procedure described in the SERNUM7 register (see Section 5.7) to load the device serial number into shared RAM.

USB Registers

31SLLS519H—January 2010 TUSB3410, TUSB3410I

5.15 Function Reset And Power-Up Reset Interconnect

Figure 5−1 represents the logical connection of the USB-function reset (USBR) signal and the power-up reset
(RESET) terminal. The internal RESET signal is generated from the RESET terminal (PURS signal) or from
the USB reset (USBR signal). The USBR can be enabled or disabled by bit 4 (FRSTE) in the USBCTL register
(see Section 5.4) (on power up, FRSTE = 0). The internal RESET is used to reset all registers and logic, with
the exception of the USBCTL and MODECNFG registers which are cleared by the PURS signal only.

USBCTL Register
MODECNFG Register

PURS

USBR
RESET

MCU

FRSTE

USB Function Reset

To Internal MMRs

RESET

G2

WDD[5:0]

WDT Reset

Figure 5−1. Reset Diagram

5.16 Pullup Resistor Connect/Disconnect

The TUSB3410 enumeration can be activated by the MCU (there is no need to disconnect the cable
physically). Figure 5−2 represents the implementation of the TUSB3410 connect and disconnect from a USB
up-stream port. When bit 7 (CONT) is 1 in the USBCTL register (see Section 5.4), the CMOS driver sources
VDD to the pullup resistor (PUR terminal) presenting a normal connect condition to the USB host. When CONT
is 0, the PUR terminal is driven low. In this state, the 1.5-kΩ resistor is connected to GND, resulting in the device
disconnection state. The PUR driver is a CMOS driver that can provide (VDD − 0.1 V) minimum at 8-mA source
current.

HOST

D+

D−

15 kΩ
TUSB3410

1.5 kΩ

CMOS
PUR CONT Bit

DP0

DM0

Figure 5−2. Pullup Resistor Connect/Disconnect Circuit

USB Registers

32 SLLS519H—January 2010TUSB3410, TUSB3410I

DMA Controller

33SLLS519H—January 2010 TUSB3410, TUSB3410I

6 DMA Controller

Table 6−1 outlines the DMA channels and their associated transfer directions. Two channels are provided for
data transfer between the host and the UART.

Table 6−1. DMA Controller Registers
DMA CHANNEL TRANSFER DIRECTION COMMENTS

DMA−1 Host to UART DMA writes to UART TDR register

DMA−3 UART to host DMA reads from UART RDR register

6.1 DMA Controller Registers

Each DMA channel can point to one of three EDBs (EDB-1 to EDB-3) and transfer data to/from the UART
channel. The DMA can move data from a given out-point buffer (defined by the EDB) to the destination port.
Similarly, the DMA can move data from a port to a given input-endpoint buffer.

At the end of a block transfer, the DMA updates the byte count and bit 7 (NAK) in the EDB (see Section 4.3)
when receiving. In addition, it uses bit 4 (XY) in the DMACDR register to switch automatically, without
interrupting the MCU (the XY bit toggle is performed by the UBM). The DMA stops only when a time-out or
error condition occurs. When the DMA is transmitting (from the X/Y buffer) it continues alternating between
X/Y buffers until it detects a byte count smaller than the buffer size (buffer size is typically 64 bytes). At that
point it completes the transfer and stops.

DMA Controller

34 SLLS519H—January 2010TUSB3410, TUSB3410I

6.1.1 DMACDR1: DMA Channel Definition Register (UART Transmit Channel)
(Addr:FFE0h)

These registers define the EDB number that the DMA uses for data transfer to the UARTS. In addition, these
registers define the data transfer direction and selects X or Y as the transaction buffer.

7 6 5 4 3 2 1 0

EN INE CNT XY T/R E2 E1 E0

R/W R/W R/W R/W R/O R/W R/W R/W

BIT NAME RESET FUNCTION

2−0 E[2:0] 0 Endpoint descriptor pointer. This field points to a set of EDB registers that is to be used for a given transfer.

3 T/R 0 This bit is always 1, indicating that the DMA data transfer is from SRAM to the UART TDR register (see Section 7.1.2).
(The MCU cannot change this bit.)

4 XY 0 X/Y buffer select bit.

XY = 0
XY = 1

Next buffer to transmit/receive is the X buffer
Next buffer to transmit/receive is the Y buffer

5 CNT 0 DMA continuous transfer control bit. This bit defines the mode of the DMA transfer. This bit must always be
written as 1.

In this mode, the DMA and UBM alternate between the X- and Y-buffers. The DMA sets bit 4 (XY) and the UBM uses
it for the transfer. The DMA alternates between the X-/Y-buffers and continues transmitting (from X-/Y-buffer) without
MCU intervention. The DMA terminates, and interrupts the MCU, under the following conditions:
1. When the UBM byte count < buffer size (in EDB), the DMA transfers the partial packet and interrupt the MCU on

completion.
2. Transaction timer expires. The DMA interrupts the MCU.

6 INE 0 DMA Interrupt enable/disable bit. This bit enables/disables the interrupt on transfer completion.

INE = 0 Interrupt is disabled. In addition, bit 0 (PPKT) in the DMACSR1 register (see Section 6.1.2) does not clear
bit 7 (EN) and the DMAC is not disabled.

INE = 1 Enables the EN interrupt. When this bit is set, the DMA interrupts the MCU on a 1 to 0 transition of the
bit 7 (EN). (When transfer is completed, EN = 0.)

7 EN 0 DMA channel enable bit. The MCU sets this bit to start the DMA transfer. When the transfer completes, or when it
is terminated due to error, this bit is cleared. The 1 to 0 transition of this bit generates an interrupt (if the interrupt is
enabled).

EN = 0 DMA is halted. The DMA is halted when the byte count reaches zero or transaction time-out occurs. When
halted, the DMA updates the byte count, sets NAK = 0 in the output endpoint byte count register, and
interrupts the MCU (if bit 6 (INE) = 1).

EN = 1 Setting this bit starts the DMA transfer.

6.1.2 DMACSR1: DMA Control And Status Register (UART Transmit Channel)
(Addr:FFE1h)

This register defines the transaction time-out value. In addition, it contains a completion code that reports any
errors or a time-out condition.

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 PPKT

R R R R R R R R/C

BIT NAME RESET FUNCTION

0 PPKT 0 Partial packet condition bit. This bit is set by the DMA and cleared by the MCU.

PPKT = 0 No partial-packet condition

PPKT = 1 Partial-packet condition detected. When INE = 0, this bit does not clear bit 7 (EN) in the DMACDR1
register; therefore, the DMAC stays enabled, ready for the next transaction. Clears when MCU
writes a 1. Writing a 0 has no effect.

7−1 − 0 These bits are read-only and return 0s when read.

DMA Controller

35SLLS519H—January 2010 TUSB3410, TUSB3410I

6.1.3 DMACDR3: DMA Channel Definition Register (UART Receive Channel)
(Addr:FFE4h)

These registers define the EDB number that the DMA uses for data transfer from the UARTS. In addition, these
registers define the data transfer direction and selects X or Y as the transaction buffer.

7 6 5 4 3 2 1 0

EN INE CNT XY T/R E2 E1 E0

R/W R/W R/W R/W R/O R/W R/W R/W

BIT NAME RESET FUNCTION

2−0 E[2:0] 0 Endpoint descriptor pointer. This field points to a set of EDB registers that are used for a given transfer.

3 T/R 1 This bit is always read as 1. This bit must be written as 0 to update the X/Y buffer bit (bit 4 in this
register) which must only be performed in burst mode.

4 XY 0 X/Y buffer select bit.

XY = 0
XY = 1

Next buffer to transmit/receive is X
Next buffer to transmit/receive is Y

5 CNT 0 DMA continuous transfer control bit. This bit defines the mode of the DMA transfer. This bit must always
be written as 1.

In this mode, the DMA and UBM alternate between the X- and Y-buffers. The UBM sets bit 4 (XY) and the
DMA uses it for the transfer. The DMA alternates between the X-/Y-buffers and continues receiving (to
X-/Y-buffer) without MCU intervention. The DMA terminates the transfer and interrupts the MCU, under the
following conditions:
1. Transaction time-out expired: DMA updates EDB and interrupts the MCU. UBM transfers the partial

packet to the host.
2. UART receiver error condition: DMA updates EDB and does not interrupt the MCU. UBM transfers the

partial packet to the host.

6 INE 0 DMA interrupt enable/disable bit. This bit enables/disables the interrupt on transfer completion.

INE = 0 Interrupt is disabled. In addition, bit 0 (OVRUN) and bit 1 (TXFT) in the DMACSR3 register (see
Section 6.1.4) do not clear bit 7 (EN) and the DMAC is not disabled.

INE = 1 Enables the EN interrupt. When this bit is set, the DMA interrupts the MCU on a 1-to-0 transition
of bit 7 (EN). (When transfer is completed, EN = 0).

7 EN 0 DMA channel enable bit. The MCU sets this bit to start the DMA transfer. When transfer completes, or
when terminated due to error, this bit is cleared. The 1-to-0 transition of this bit generates an interrupt (if
the interrupt is enabled).

EN = 0 DMA is halted. The DMA is halted when transaction time-out occurs, or under a UART
receiver-error condition. When halted, the DMA updates the byte count and sets NAK = 0 in the
input endpoint byte count register. If the termination is due to transaction time-out, then the DMA
generates an interrupt. However, if the termination is due to a UART error condition, then the
DMA does not generate an interrupt. (The UART generates the interrupt.)

EN = 1 Setting this bit starts the DMA transfer.

DMA Controller

36 SLLS519H—January 2010TUSB3410, TUSB3410I

6.1.4 DMACSR3: DMA Control And Status Register (UART Receive Channel)
(Addr:FFE5h)

This register defines the transaction time-out value. In addition, it contains a completion code that reports any
errors or a time-out condition.

7 6 5 4 3 2 1 0

TEN C4 C3 C2 C1 C0 TXFT OVRUN

R/W R/W R/W R/W R/W R/W R/C R/C

BIT NAME RESET FUNCTION

0 OVRUN 0 Overrun condition bit. This bit is set by DMA and cleared by the MCU (see Table 6−2)

OVRUN = 0 No overrun condition

OVRUN = 1 Overrun condition detected. When IEN = 0, this bit does not clear bit 7 (EN) in the DMACDR
register; therefore, the DMAC stays enabled, ready for the next transaction. Clears when the
MCU writes a 1. Writing a 0 has no effect.

1 TXFT 0 Transfer time-out condition bit (see Table 6−2)

TXFT = 0 DMA stopped transfer without time-out

TXFT =1 DMA stopped due to transaction time-out. When IEN = 0, this bit does not clear bit 7 (EN) in the
DMACDR3 register (see Section 6.1.3); therefore, the DMAC stays enabled, ready for the next
transaction. Clears when the MCU writes a 1. Writing a 0 has no effect.

6−2 C[4:0] 00000b This field defines the transaction time-out value in 1-ms increments. This value is loaded to a down counter every
time a byte transfer occurs. The down counter is decremented every SOF pulse (1 ms). If the counter decrements
to zero, then it sets bit 1 (TXFT) = 1 and halts the DMA transfer. The counter starts counting only when bit 7
(TEN) = 1 and bit 7 (EN) = 1 in the DMACDR3 register and the first byte has been received.
00000 = 0-ms time-out
:
:
11111 = 31-ms time-out

7 TEN 0 Transaction time-out counter enable/disable bit

TEN = 0
TEN = 1

Counter is disabled (does not time-out)
Counter is enabled

Table 6−2. DMA IN-Termination Condition
IN TERMINATION TXFT OVRUN COMMENTS

UART error 0 0 UART error condition detected

UART partial packet 1 0 This condition occurs when UART receiver has no more data for the host (data
starvation).

UART overrun 1 1 This condition occurs when X- and Y-input buffers are full and the UART FIFO is full (host
is busy).

6.2 Bulk Data I/O Using the EDB

The UBM (USB buffer manager) and the DMAC (DMA controller) access the EDB to fetch buffer parameters
for IN and OUT transactions (IN and OUT are with respect to host). In this discussion, it is assumed that:

• The MCU initialized the EDBs
• DMA-continuous mode is being used
• Double buffering is being used
• The X/Y toggle is controlled by the UBM

DMA Controller

37SLLS519H—January 2010 TUSB3410, TUSB3410I

6.2.1 IN Transaction (TUSB3410 to Host)
1. The MCU initializes the IEDB (64-byte packet, and double buffering is used) and the following DMA

registers:

• DMACSR3: Defines the transaction time-out value.

• DMACDR3: Defines the IEDB being used and the DMA mode of operation (continuous mode). Once
this register is set with EN = 1, the transfer starts.

2. The DMA transfers data from the UART to the X buffer. When a block of 64 bytes is transferred, the DMA
updates the byte count and sets NAK to 0 in the input endpoint byte count register (indicating to the UBM
that the X buffer is ready to be transferred to host). The UBM starts X-buffer transfer to host using the
byte-count value in the input endpoint byte count register and toggles the X/Y bit. The DMA continues
transferring data from a device to Y-buffer. At the end of the block transfer, the DMA updates the byte count
and sets NAK to 0 in the input endpoint byte count register (indicating to the UBM that the Y-buffer is ready
to be transferred to host). The DMA continues the transfer from the device to host, alternating between
X-and Y-buffers without MCU intervention.

3. Transfer termination: As mentioned, the DMA/UBM continues the data transfer, alternating between the
X- and Y-buffers. Termination of the transfer can happen under the following conditions:

• Stop Transfer: The host notifies the MCU (via control-end-point) to stop the transfer. Under this
condition, the MCU sets bit 7 (EN) to 0 in the DMACDR register.

• Partial Packet: The device receiver has no data to be transferred to host. Under this condition, the
byte-count value is less than 64 when the transaction timer time-out occurs. When the DMA detects
this condition, it sets bit 1 (TXFT) to 1 and bit 0 (OVRUN) to 0 in the DMACSR3 register, updates the
byte count and NAK bit in the the input endpoint byte count register, and interrupts the MCU. The UBM
transfers the partial packet to host.

• Buffer Overrun: The host is busy, X- and Y-buffers are full (X-NAK = 0 and Y-NAK = 0), and the DMA
cannot write to these buffers. The transaction time-out stops the DMA transfer, the DMA sets bit 1
(TXFT) to 1 and bit 0 (OVRUN) to 1 in the DMACSR3 register, and interrupts the MCU.

• UART Error Condition: When receiving from a UART, a receiver-error condition stops the DMA and
sets bit 1 (TXFT) to 1 and bit 0 (OVRUN) to 0 in the DMACSR3 register, but the EN bit remains set at 1.
Therefore, the DMA does not interrupt the MCU. However, the UART generates a status interrupt,
notifying the MCU that an error condition has occurred.

DMA Controller

38 SLLS519H—January 2010TUSB3410, TUSB3410I

6.2.2 OUT Transaction (Host to TUSB3410)
1. The MCU initializes the OEDB (64-byte packet, and double buffering is used) and the following DMA

registers:

• DMACSR1: Provides an indication of a partial packet.

• DMACDR1: Defines the output endpoint being used, and the DMA mode of operation (continuous
mode). Once the EN bit is set to 1 in this register, the transfer starts.

2. The UBM transfers data from host to X-buffer. When a block of 64 bytes is transferred, the UBM updates
the byte count and sets NAK to 1 in the output endpoint byte count register (indicating to DMA that the
X-buffer is ready to be transferred to the UART). The DMA starts X-buffer transfer using the byte-count
value in the output endpoint byte count register. The UBM continues transferring data from host to Y-buffer.
At the end of the block transfer, the UBM updates the byte count and sets NAK to 1 in the output endpoint
byte count register (indicating to DMA that the Y-buffer is ready to be transferred to device). The DMA
continues the transfer from the X-/Y-buffers to the device, alternating between X- and Y-buffers without
MCU intervention.

3. Transfer termination: The DMA/UBM continues the data transfer alternating between X- and Y-buffers.
The termination of the transfer can happen under the following conditions:

• Stop Transfer: The host notifies the MCU (via control-end point) to stop the transfer. Under this
condition, the MCU sets EN to 0 in the DMACDR1 register.

• Partial-Packet: UBM receives a partial packet from host. Under this condition, the byte-count value is
less than 64. When the DMA detects this condition, it transfers the partial packet to the device, sets
PPKT to 1, updates NAK to 0 in the output endpoint byte count register, and interrupts the MCU.

UART

39SLLS519H—January 2010 TUSB3410, TUSB3410I

7 UART

7.1 UART Registers

Table 7−1 summarizes the UART registers. These registers are used for data I/O, control, and status
information. UART setup is done by the MCU. Data transfer is typically performed by the DMAC. However,
the MCU can perform data transfer without a DMA; this is useful when debugging the firmware.

Table 7−1. UART Registers Summary
REGISTER ADDRESS REGISTER NAME ACCESS FUNCTION COMMENTS

FFA0h RDR R/O UART receiver data register Can be accessed by MCU or DMA

FFA1h TDR W/O UART transmitter data register Can be accessed by MCU or DMA

FFA2h LCR R/W UART line control register

FFA3h FCRL R/W UART flow control register

FFA4h MCR R/W UART modem control register

FFA5h LSR R/O UART line status register Can generate an interrupt

FFA6h MSR R/O UART modem status register Can generate an interrupt

FFA7h DLL R/W UART divisor register (low byte)

FFA8h DLH R/W UART divisor register (high byte)

FFA9h XON R/W UART Xon register

FFAAh XOFF R/W UART Xoff register

FFABh MASK R/W UART interrupt mask register Can control three interrupt sources

7.1.1 RDR: Receiver Data Register (Addr:FFA0h)

The receiver data register consists of a 32-byte FIFO. Data received via the SIN terminal is converted from
serial-to-parallel format and stored in this FIFO. Data transfer from this register to the RAM buffer is the
responsibility of the DMA controller.

7 6 5 4 3 2 1 0

D7 D6 D5 D4 D3 D2 D1 D0

R/O R/O R/O R/O R/O R/O R/O R/O

BIT NAME RESET FUNCTION

7−0 D[7:0] 0 Receiver byte

7.1.2 TDR: Transmitter Data Register (Addr:FFA1h)

The transmitter data register is double buffered. Data written to this register is loaded into the shift register,
and shifted out on SOUT. Data transfer from the RAM buffer to this register is the responsibility of the DMA
controller.

7 6 5 4 3 2 1 0

D7 D6 D5 D4 D3 D2 D1 D0

W/O W/O W/O W/O W/O W/O W/O W/O

BIT NAME RESET FUNCTION

7−0 D[7:0] 0 Transmit byte

UART

40 SLLS519H—January 2010TUSB3410, TUSB3410I

7.1.3 LCR: Line Control Register (Addr:FFA2h)

This register controls the data communication format. The word length, number of stop bits, and parity type
are selected by writing the appropriate bits to the LCR.

7 6 5 4 3 2 1 0

FEN BRK FPTY EPRTY PRTY STP WL1 WL0

R/W R/W R/W R/W R/W R/W R/W R/W

BIT NAME RESET FUNCTION

1:0 WL[1:0] 0 Specifies the word length for transmit and receive
00b = 5 bits
01b = 6 bits
10b = 7 bits
11b = 8 bits

2 STP 0 Specifies the number of stop bits for transmit and receive

STP = 0
STP = 1
STP = 1

1 stop bit (word length = 5, 6, 7, 8)
1.5 stop bits (word length = 5)
2 stop bits (word length = 6, 7, 8)

3 PRTY 0 Specifies whether parity is used

PRTY = 0
PRTY = 1

No parity
Parity is generated

4 EPRTY 0 Specifies whether even or odd parity is generated

EPRTY = 0
EPRTY = 1

Odd parity is generated (if bit 3 (PRTY) = 1)
Even parity is generated (if PRTY = 1)

5 FPTY 0 Selects the forced parity bit

FPTY = 0
FPTY = 1

Parity is not forced
Parity bit is forced. If bit 4 (EPRTY) = 0, the parity bit is forced to 1

6 BRK 0 This bit is the break-control bit

BRK = 0
BRK = 1

Normal operation
Forces SOUT into break condition (logic 0)

7 FEN 0 FIFO enable. This bit disables/enables the FIFO. To reset the FIFO, the MCU clears and then sets this bit.

FEN = 0
FEN = 1

The FIFO is cleared and disabled. When disabled, the selected receiver flow control is activated.
The FIFO is enabled and it can receive data.

UART

41SLLS519H—January 2010 TUSB3410, TUSB3410I

7.1.4 FCRL: UART Flow Control Register (Addr:FFA3h)

This register provides the flow-control modes of operation (see Table 7−3 for more details).

7 6 5 4 3 2 1 0

485E DTR RTS RXOF DSR CTS TXOA TXOF

R/W R/W R/W R/W R/W R/W R/W R/W

BIT NAME RESET FUNCTION

0 TXOF 0 This bit controls the transmitter Xon/Xoff flow control.

TXOF = 0
TXOF = 1

Disable transmitter Xon/Xoff flow control
Enable transmitter Xon/Xoff flow control

1 TXOA 0 This bit controls the transmitter Xon-on-any/Xoff flow control

TXOA = 0
TXOA = 1

Disable the transmitter Xon-on-any/Xoff flow control
Enable the transmitter Xon-on-any/Xoff flow control

2 CTS 0 Transmitter CTS flow-control enable bit

CTS = 0
CTS = 1

Disables transmitter CTS flow control
CTS flow control is enabled, that is, when CTS input terminal is high, transmission is halted; when
the CTS terminal is low, transmission resumes. When loopback mode is enabled, this bit must be
set if flow control is also required.

3 DSR 0 Transmitter DSR flow-control enable bit

DSR = 0
DSR = 1

Disables transmitter DSR flow control
DSR flow control is enabled, that is, when DSR input terminal is high, transmission is halted; when
the DSR terminal is low, transmission resumes. When loopback mode is enabled, this bit must be
set if flow control is also required.

4 RXOF 0 This bit controls the receiver Xon/Xoff flow control.

RXOF = 0
RXOF = 1

Receiver does not attempt to match Xon/Xoff characters
Receiver searches for Xon/Xoff characters

5 RTS 0 Receiver RTS flow control enable bit

RTS = 0
RTS = 1

Disables receiver RTS flow control
Receiver RTS flow control is enabled. RTS output terminal goes high when the receiver FIFO HALT
trigger level is reached; it goes low, when the receiver FIFO RESUME receiving trigger level is
reached.

6 DTR 0 Receiver DTR flow-control enable bit

DTR = 0
DTR = 1

Disables receiver DTR flow control
Receiver DTR flow control is enabled. DTR output terminal goes high when the receiver FIFO HALT
trigger level is reached; it goes low, when the receiver FIFO RESUME receiving trigger level is
reached.

7 485E 0 RS-485 enable bit. This bit configures the UART to control external RS-485 transceivers. When configured in
half-duplex mode (485E = 1), RTS or DTR can be used to enable the RS-485 driver or receiver. See
Figure 3−3.

485E = 0
485E = 1

UART is in normal operation mode (full duplex)
The UART is in half duplex RS-485 mode. In this mode, RTS and DTR are active with opposite
polarity (when RTS = 0, DTR = 1). When the DMA is ready to transmit, it drives RTS = 1 (and
DTR = 0) 2-bit times before the transmission starts. When the DMA terminates the transmission,
it drives RTS = 0 (and DTR = 1) after the transmission stops. When 485E is set to 1, bit 4 (DTR)
and bit 5 (RTS) in the MCR register (see Section 7.1.6) have no effect. Also, see bit 1 (RCVE) in
the MCR register.

UART

42 SLLS519H—January 2010TUSB3410, TUSB3410I

7.1.5 Transmitter Flow Control

On reset (power up, USB, or soft reset) the transmitter defaults to the Xon state and the flow control is set to
mode-0 (flow control is disabled).

Table 7−2. Transmitter Flow-Control Modes
BIT 3 BIT 2 BIT 1 BIT 0

DSR CTS TXOA TXOF

All flow control is disabled 0 0 0 0

Xon/Xoff flow control is enabled 0 0 0 1

Xon on any/ Xoff flow control 0 0 1 0

Not permissible (see Note 9) X X 1 1

CTS flow control 0 1 0 0

Combination flow control (see Note 10) 0 1 0 1

Combination flow control 0 1 1 0

DSR flow control 1 0 0 0

1 0 0 1

1 0 1 0

Combination flow control 1 1 0 0Combination flow control

1 1 0 1

1 1 1 0

NOTES: 9. This is a nonpermissible combination. If used, TXOA and TXOF are cleared.
10. Combination example: Transmitter stops when either CTS or Xoff is detected. Transmitter resumes when both CTS is negated and

Xon is detected.

Table 7−3. Receiver Flow-Control Possibilities

MODE
BIT 6 BIT 5 BIT 4

MODE
DTR RTS RXOF

0 All flow control is disabled 0 0 0

1 Xon/Xoff flow control is enabled 0 0 1

2 RTS flow control 0 1 0

3 Combination flow control (see Note 11) 0 1 1

4 DTR flow control 1 0 0

5 Combination flow control 1 0 1

6 Combination flow control (see Note 12) 1 1 0

7 Combination flow control 1 1 1

NOTES: 11. Combination example: Both RTS is asserted and Xoff transmitted when the FIFO is full. Both RTS is deasserted and Xon is
transmitted when the FIFO is empty.

12. Combination example: Both DTR and RTS are asserted when the FIFO is full. Both DTR and RTS are deasserted when the FIFO
is empty.

UART

43SLLS519H—January 2010 TUSB3410, TUSB3410I

7.1.6 MCR: Modem-Control Register (Addr:FFA4h)

This register provides control for modem interface I/O and definition of the flow control mode.

7 6 5 4 3 2 1 0

LCD LRI RTS DTR RSV LOOP RCVE URST

R/W R/W R/W R/W R/W R/W R/W R/W

BIT NAME RESET FUNCTION

0 URST 0 UART soft reset. This bit can be used by the MCU to reset the UART.

URST = 0 Normal operation. Writing a 0 by MCU has no effect.

URST = 1 When the MCU writes a 1 to this bit, a UART reset is generated (ORed with hard reset). When
the UART exits the reset state, URST is cleared. The MCU can monitor this bit to determine if the
UART completed the reset cycle.

1 RCVE 0 Receiver enable bit. This bit is valid only when bit 7 (485E) in the FCRL register (see Section 7.1.4) is 1 (RS-485
mode). When 485E = 0, this bit has no effect on the receiver.

RCVE = 0 When 485E = 1, the UART receiver is disabled when RTS = 1, i.e., when data is being transmitted,
the UART receiver is disabled.

RCVE = 1 When 485E = 1, the UART receiver is enabled regardless of the RTS state, i.e., UART receiver
is enabled all the time. This mode can detect collisions on the RS-485 bus when received data
does not match transmitted data.

2 LOOP 0 This bit controls the normal-/loop-back mode of operation (see Figure 7−1).

LOOP = 0 Normal operation

LOOP = 1 Enable loop-back mode of operation. In this mode the following occur:

� SOUT is set high

� SIN is disconnected from the receiver input.

� The transmitter serial output is looped back into the receiver serial input.

� The four modem-control inputs: CTS, DSR, DCD, and RI/CP are disconnected.

� DTR, RTS, LRI and LCD are internally connected to the four modem-control inputs, and read
in the MSR register (see Section 7.1.8) as described below. Note: the FCRL register (see
Section 7.1.4) must be configured to enable bits 2 (CTS) and 3 (DSR) to maintain proper
operation with flow control and loop back.

� DTR is reflected in MSR register bit 4 (LCTS)

� RTS is reflected in MSR register bit 5 (LDSR)

� LRI is reflected in MSR register bit 6 (LRI)

� LCD is reflected in MSR register bit 7 (LCD)

3 RSV 0 Reserved

4 DTR 0 This bit controls the state of the DTR output terminal (see Figure 7−1). This bit has no effect when auto-flow
control is used or when bit 7 (485E) = 1 (in the FCRL register, see Section 7.1.4).

DTR = 0 Forces the DTR output terminal to inactive (high)

DTR = 1 Forces the DTR output terminal to active (low)

5 RTS 0 This bit controls the state of the RTS output terminal (see Figure 7−1). This bit has no effect when auto-flow
control is used or when bit 7 (485E) = 1 (in the FCRL register, see Section 7.1.4).

RTS = 0 Forces the RTS output terminal to inactive (high)

RTS = 1 Forces the RTS output terminal to active (low)

6 LRI 0 This bit is used for loop-back mode only. When in loop-back mode, this bit is reflected in bit 6 (LRI) in the MSR
register, see Section 7.1.8 (see Figure 7−1).

LRI = 0 Clears the MSR register bit 6 to 0

LRI = 1 Sets the MSR register bit 6 to 1

7 LCD 0 This bit is used for loop-back mode only. When in loop-back mode, this bit is reflected in bit 7 (LCD) in the MSR
register, see Section 7.1.8 (see Figure 7−1).

LCD = 0 Clears the MSR register bit 7 to 0

LCD = 1 Sets the MSR register bit 7 to 1

UART

44 SLLS519H—January 2010TUSB3410, TUSB3410I

7.1.7 LSR: Line-Status Register (Addr:FFA5h)

This register provides the status of the data transfer. DMA transfer is halted when any of bit 0 (OVR), bit 1
(PTE), bit 2 (FRE), or bit 3 (BRK) is 1.

7 6 5 4 3 2 1 0

RSV TEMT TxE RxF BRK FRE PTE OVR

R/O R/O R/O R/O R/C R/C R/C R/C

BIT NAME RESET FUNCTION

0 OVR 0 This bit indicates the overrun condition of the receiver. If set, it halts the DMA transfer and generates a
status interrupt (if enabled).

OVR = 0
OVR = 1

No overrun error
Overrun error has occurred. Clears when the MCU writes a 1. Writing a 0 has no effect.

1 PTE 0 This bit indicates the parity condition of the received byte. If set, it halts the DMA transfer and generates a
status interrupt (if enabled).

PTE = 0
PTE = 1

No parity error in data received
Parity error in data received. Clears when the MCU writes a 1. Writing a 0 has no effect.

2 FRE 0 This bit indicates the framing condition of the received byte. If set, it halts the DMA transfer and generates
a status interrupt (if enabled).

FRE = 0
FRE = 1

No framing error in data received
Framing error in data received. Clears when MCU writes a 1. Writing a 0 has no effect.

3 BRK 0 This bit indicates the break condition of the received byte. If set, it halts the DMA transfer and generates a
status interrupt (if enabled).

BRK = 0
BRK = 1

No break condition
A break condition in data received was detected. Clears when the MCU writes a 1. Writing a 0
has no effect.

4 RxF 0 This bit indicates the condition of the receiver data register. Typically, the MCU does not monitor this bit
since data transfer is done by the DMA controller.

RxF = 0
RxF = 1

No data in the RDR
RDR contains data. Generates Rx interrupt (if enabled).

5 TxE 1 This bit indicates the condition of the transmitter data register. Typically, the MCU does not monitor this bit
since data transfer is done by the DMA controller.

TxE = 0
TxE = 1

TDR is not empty
TDR is empty. Generates Tx interrupt (if enabled).

6 TEMT 1 This bit indicates the condition of both transmitter data register and shift register is empty.

TEMT = 0
TEMT = 1

Either TDR or TSR is not empty
Both TDR and TSR are empty

7 RSV 0 Reserved = 0

UART

45SLLS519H—January 2010 TUSB3410, TUSB3410I

CTS

Modem
Status

Register

Modem
Control

Register

Bit 4 LCTS

Bit 5 LDSR

Bit 6 LRI

Bit 7 LCD

Bit 5 RTS

Bit 4 DTR

Bit 6 LRI

Bit 7 LCD

Bit 2 LOOP

DSR

RI/CP

DCD

RTS

DTR

FCRL Register Setting

FCRL Register Setting

Device Terminals

Figure 7−1. MSR and MCR Registers in Loop-Back Mode

UART

46 SLLS519H—January 2010TUSB3410, TUSB3410I

7.1.8 MSR: Modem-Status Register (Addr:FFA6h)

This register provides information about the current state of the control lines from the modem.

7 6 5 4 3 2 1 0

LCD LRI LDSR LCTS ΔCD TRI ΔDSR ΔCTS

R/O R/O R/O R/O R/C R/C R/C R/C

BIT NAME RESET FUNCTION

0 ΔCTS 0 This bit indicates that the CTS input has changed state. Cleared when the MCU writes a 1 to this bit. Writing a
0 has no effect.

1 ΔDSR 0 This bit indicates that the DSR input has changed state. Cleared when the MCU writes a 1 to this bit. Writing a
0 has no effect.

ΔDSR = 0
ΔDSR = 1

Indicates no change in the DSR input
Indicates that the DSR input has changed state since the last time it was read. Clears when the MCU
writes a 1. Writing a 0 has no effect.

2 TRI 0 Trailing edge of the ring indicator. This bit indicates that the RI/CP input has changed from low to high. This bit
is cleared when the MCU writes a 1 to this bit. Writing a 0 has no effect.

TRI = 0
TRI = 1

Indicates no applicable transition on the RI/CP input
Indicates that an applicable transition has occurred on the RI/CP input.

3 ΔCD 0 This bit indicates that the CD input has changed state. Cleared when the MCU writes a 1 to this bit. Writing a 0
has no effect.

ΔCD = 0
ΔCD = 1

Indicates no change in the CD input
Indicates that the CD input has changed state since the last time it was read.

4 LCTS 0 During loopback, this bit reflects the status of bit 4 (DTR) in the MCR register, see Section 7.1.6 (see
Figure 7−1)

LCTS = 0
LCTS = 1

CTS input is high
CTS input is low

5 LDSR 0 During loop back, this bit reflects the status of bit 5 (RTS) in the MCR register, see Section 7.1.6 (see
Figure 7−1)

LDSR = 0
LDSR= 1

DSR input is high
DSR input is low

6 LRI 0 During loop back, this bit reflects the status of bit 6 (LRI) in the MCR register, see Section 7.1.6 (see
Figure 7−1)

LRI = 0
LRI = 1

RI/CP input is high
RI/CP input is low

7 LCD 0 During loopback, this bit reflects the status of bit 7 (LCD) in the MCR register, see Section 7.1.6 (see
Figure 7−1)

LCD = 0
LCD = 0

CD input is high
CD input is low

7.1.9 DLL: Divisor Register Low Byte (Addr:FFA7h)

This register contains the low byte of the baud-rate divisor.

7 6 5 4 3 2 1 0

D7 D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

BIT NAME RESET FUNCTION

7−0 D[7:0] 08h Low-byte value of the 16-bit divisor for generation of the baud clock in the baud-rate generator.

UART

47SLLS519H—January 2010 TUSB3410, TUSB3410I

7.1.10 DLH: Divisor Register High Byte (Addr:FFA8h)

This register contains the high byte of the baud-rate divisor.

7 6 5 4 3 2 1 0

D15 D14 D13 D12 D11 D10 D9 D8

R/W R/W R/W R/W R/W R/W R/W R/W

BIT NAME RESET FUNCTION

7−0 D[15:8] 00h High-byte value of the 16-bit divisor for generation of the baud clock in the baud-rate generator.

7.1.11 Baud-Rate Calculation

The following formulas calculate the baud-rate clock and the divisors. The baud-rate clock is derived from the
96-MHz master clock (dividing by 6.5). The table below presents the divisors used to achieve the desired baud
rates, together with the associate rounding errors.

Baud CLK �
96 MHz

6.5
� 14.76923077 MHz

Divisor � 14.76923077 � 106

Desired Baud Rate � 16

Table 7−4. DLL/DLH Values and Resulted Baud Rates

DESIRED BAUD DLL/DLH VALUE ACTUAL BAUD
ERROR %

DESIRED BAUD
RATE DECIMAL HEXADECIMAL

ACTUAL BAUD
RATE ERROR %

1 200 769 0301 1 200.36 0.03

2 400 385 0181 2 397.60 0.01

4 800 192 00C0 4 807.69 0.16

7 200 128 0080 7 211.54 0.16

9 600 96 0060 9 615.38 0.16

14 400 64 0040 14 423.08 0.16

19 200 48 0030 19 230.77 0.16

38 400 24 0018 38 461.54 0.16

57 600 16 0010 57 692.31 0.16

115 200 8 0008 115 384.62 0.16

230 400 4 0004 230 769.23 0.16

460 800 2 0002 461 538.46 0.16

921 600 1 0001 923 076.92 0.16

NOTE: The TUSB3410 does support baud rates lower than 1200 bps, which are not
listed due to less interest.

7.1.12 XON: Xon Register (Addr:FFA9h)

This register contains a value that is compared to the received data stream. Detection of a match interrupts
the MCU (only if the interrupt enable bit is set). This value is also used for Xon transmission.

7 6 5 4 3 2 1 0

D7 D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

BIT NAME RESET FUNCTION

7−0 D[7:0] 0000 Xon value to be compared to the incoming data stream

UART

48 SLLS519H—January 2010TUSB3410, TUSB3410I

7.1.13 XOFF: Xoff Register (Addr:FFAAh)

This register contains a value that is compared to the received data stream. Detection of a match halts the
DMA transfer, and interrupts the MCU (only if the interrupt enable bit is set). This value is also used for Xoff
transmission.

7 6 5 4 3 2 1 0

D7 D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

BIT NAME RESET FUNCTION

7−0 D[7:0] 0000 Xoff value to be compared to the incoming data stream

7.1.14 MASK: UART Interrupt-Mask Register (Addr:FFABh)

This register controls the UARTs interrupt sources.

7 6 5 4 3 2 1 0

RSV RSV RSV RSV RSV TRI SIE MIE

R/O R/O R/O R/O R/O R/W R/W R/W

BIT NAME RESET FUNCTION

0 MIE 0 This bit controls the UART-modem interrupt.

MIE = 0
MIE = 1

Modem interrupt is disabled
Modem interrupt is enabled

1 SIE 0 This bit controls the UART-status interrupt.

SIE = 0
SIE = 1

Status interrupt is disabled
Status interrupt is enabled

2 TRI 0 This bit controls the UART-TxE/RxF interrupts

TRI = 0
TRI = 1

TxE/RxF interrupts are disabled
TxE/RxF interrupts are enabled

7−3 RSV 0 Reserved = 0

7.2 UART Data Transfer

Figure 7−2 illustrates the data transfer between the UART and the host using the DMA controller and the USB
buffer manager (UBM). A buffer of 512 bytes is reserved for buffering the UART channel (transmit and receive
buffers). The UART channel has 64 bytes of double-buffer space (X- and Y-buffer). When the DMA writes to
the X-buffer, the UBM reads from the Y-buffer. Similarly, when the DMA reads from the X-buffer, the UBM writes
to the Y-buffer. The DMA channel is configured to operate in the continuous mode (by setting bit 5 (CNT) in
the DMACDR registers = 1). Once the MCU enables the DMA, data transfer toggles between the UMB and
the DMA without MCU intervention. See Section 6.2.1, IN Transaction (TUSB3410 to Host), for DMA
transfer-termination condition.

7.2.1 Receiver Data Flow

The UART receiver has a 32-byte FIFO. The receiver FIFO has two trigger levels. One is the high-level mark
(HALT), which is set to 12 bytes, and the other is the low-level mark (RESUME), which is set to 4 bytes. When
the HALT mark is reached, either the RTS terminal goes high or Xoff is transmitted (depending on the auto
setting). When the FIFO reaches the RESUME mark, then either the RTS terminal goes low or Xon is
transmitted.

UART

49SLLS519H—January 2010 TUSB3410, TUSB3410I

64-Byte
Y-Buffer

64-Byte
X-Buffer

DMA
DMACDR3

USB
Buffer

Manager

X/Y

4 8

Receiver

Halt on Error or Time-Out

RDR: 32-Byte FIFO

RTS/DTR = 1
or Xoff Transmitted

RTS/DTR = 0
or Xon Transmitted

Xoff/Xon

CTS/DTR = 1/0

64-Byte
Y-Buffer

64-Byte
X-Buffer

DMA
DMACDR1

SIN

SOUT

TDR

Pause/Run

Host

Figure 7−2. Receiver/Transmitter Data Flow

7.2.2 Hardware Flow Control
Figure 7−3 illustrates the connection necessary to achieve hardware flow control. The CTS and RTS signals
are provided for this purpose. Auto CTS and auto RTS (and Xon/Xoff) can be enabled/disabled independently
by programming the UART flow control register (FCRL).

TUSB3410

SIN

RTS

SOUT

CTS

External Device

SOUT

CTS

SIN

RTS

Figure 7−3. Auto Flow Control Interconnect

7.2.3 Auto RTS (Receiver Control)
In this mode, the RTS output terminal signals the receiver-FIFO status to an external device. The RTS output
signal is controlled by the high- and low-level marks of the FIFO. When the high-level mark is reached, RTS
goes high, signaling to an external sending device to halt its transfer. Conversely, when the low-level mark is
reached, RTS goes low, signaling to an external sending device to resume its transfer.

Data transfer from the FIFO to the X-/Y-buffer is performed by the DMA controller. See Section 6.2.1, IN
Transaction (TUSB3410 to Host), for DMA transfer-termination condition.

7.2.4 Auto CTS (Transmitter Control)
In this mode, the CTS input terminal controls the transfer from internal buffer (X or Y) to the TDR. When the
DMA controller transfers data from the Y-buffer to the TDR and the CTS input terminal goes high, the DMA
controller is suspended until CTS goes low. Meanwhile, the UBM is transferring data from the host to the
X-buffer. When CTS goes low, the DMA resumes the transfer. Data transfer continues alternating between
the X- and Y-buffers, without MCU intervention. See Section 6.2.2, OUT Transaction (Host to TUSB3410), for
DMA transfer-termination condition.

UART

50 SLLS519H—January 2010TUSB3410, TUSB3410I

7.2.5 Xon/Xoff Receiver Flow Control

To enable Xon/Xoff flow control, certain bits within the modem control register must be set as follows: MCR
bit 5 = 1 and MCR bits 6 and 7 = 00. In this mode, the Xon/Xoff bytes are transmitted to an external sending
device to control the device’s transmission. When the high-level mark (of the FIFO) is reached, the Xoff byte
is transmitted, signaling to an external sending device to halt its transfer. Conversely, when the low-level mark
is reached, the Xon byte is transmitted, signaling to an external sending device to resume its transfer. The data
transfer from the FIFO to X-/Y-buffer is performed by the DMA controller.

7.2.6 Xon/Xoff Transmit Flow Control

To enable Xon/Xoff flow control, certain bits within the modem control register must be set as follows: MCR
bit 5 = 1 and MCR bits 6 and 7 = 00. In this mode, the incoming data are compared to the XON and XOFF
registers. If a match to XOFF is detected, the DMA is paused. If a match to XON is detected, the DMA resumes.
Meanwhile, the UBM is transferring data from the host to the X-buffer. The MCU does not switch the buffers
unless the Y-buffer is empty and the X-buffer is full. When Xon is detected, the DMA resumes the transfer.

Expanded GPIO Port

51SLLS519H—January 2010 TUSB3410, TUSB3410I

8 Expanded GPIO Port

8.1 Input/Output and Control Registers

The TUSB3410 has four general-purpose I/O terminals (P3.0, P3.1, P3.3, and P3.4) that are controlled by
firmware running on the MCU. Each terminal can be controlled individually and each is implemented with a
12-mA push/pull CMOS output with 3-state control plus input. The MCU treats the outputs as open drain types
in that the output can be driven low continuously, but a high output is driven for two clock cycles and then the
output is high impedance.

An input terminal can be read using the MOV instruction. For example, MOV C,P3.3 reads the input on P3.3.
As a precaution, be certain the associated output is high impedance before reading the input.

An output can be set high (and then high impedance) using the SETB instruction. For example, SETB P3.1
sets P3.1 high. An output can be set low using the CLR instruction, as in CLR P3.4, which sets P3.4 low (driven
continuously until changed).

Each GPIO terminal has an associated internal pullup resistor. It is strongly recommended that the pullup
resistor remain connected to the terminal to prevent oscillations in the input buffer. The only exception is if an
external source always drives the input.

8.1.1 PUR_3: GPIO Pullup Register For Port 3 (Addr:FF9Eh)

7 6 5 4 3 2 1 0

RSV RSV RSV Pin4 Pin3 RSV Pin1 Pin0

R/O R/O R/O R/W R/W R/O R/W R/W

BIT NAME RESET FUNCTION

0
1
3
4

Pin0
Pin1
Pin3
Pin4

0 The MCU may write to this register. If the MCU sets any of these bits to 1, then the pullup resistor is
disconnected from the associated terminal. If the MCU clears any of these bits to 0, then the pullup resistor
is connected from the terminal. The pullup resistor is connected to the VCC power supply.

2, 5, 6,
7

RSV 0 Reserved

Expanded GPIO Port

52 SLLS519H—January 2010TUSB3410, TUSB3410I

Interrupts

53SLLS519H—January 2010 TUSB3410, TUSB3410I

9 Interrupts

9.1 8052 Interrupt and Status Registers

All 8052 standard, five interrupt sources are preserved. SIE is the standard interrupt-enable register that
controls the five interrupt sources. This is also known as IE0 located at S:A8h in the special function register
area. All the additional interrupt sources are ORed together to generate EX0.

Table 9−1. 8052 Interrupt Location Map
INTERRUPT SOURCE DESCRIPTION START ADDRESS COMMENTS

ES UART interrupt 0023h

ET1 Timer-1 interrupt 001Bh

EX1 External interrupt-1 0013h

ET0 Timer-0 interrupt 000Bh

EX0 External interrupt-0 0003h Used for all internal peripherals

Reset 0000h

9.1.1 8052 Standard Interrupt Enable (SIE) Register

7 6 5 4 3 2 1 0

EA RSV RSV ES ET1 EX1 ET0 EX0

R/W R/W R/W R/W R/W R/W R/W R/W

BIT NAME RESET FUNCTION

0 EX0 0 Enable or disable external interrupt-0
EX0 = 0
EX0 = 1

External interrupt-0 is disabled
External interrupt-0 is enabled

1 ET0 0 Enable or disable timer-0 interrupt
ET0 = 0
ET0 = 1

Timer-0 interrupt is disabled
Timer-0 interrupt is enabled

2 EX1 0 Enable or disable external interrupt-1
EX1 = 0
EX1 = 1

External interrupt-1 is disabled
External interrupt-1 is enabled

3 ET1 0 Enable or disable timer-1 interrupt
ET1 = 0
EX1 = 1

Timer-1 interrupt is disabled
Timer-1 interrupt is enabled

4 ES 0 Enable or disable serial port interrupts
ES = 0
ES = 1

Serial-port interrupt is disabled
Serial-port interrupt is enabled

5, 6 RSV 0 Reserved

7 EA 0 Enable or disable all interrupts (global disable)

EA = 0
EA = 1

Disable all interrupts
Each interrupt source is individually controlled

9.1.2 Additional Interrupt Sources

All nonstandard 8052 interrupts (DMA, I2C, etc.) are ORed to generate an internal INT0. Furthermore, the
INT0 must be programmed as an active low-level interrupt (not edge-triggered). After reset, if INT0 is not
changed, then it is an edge-triggered interrupt. A vector interrupt register is provided to identify all interrupt
sources (see Section 9.1.3, VECINT: Vector Interrupt Register). Up to 64 interrupt vectors are provided. It is
the responsibility of the MCU to read the vector and dispatch to the proper interrupt routine.

Interrupts

54 SLLS519H—January 2010TUSB3410, TUSB3410I

9.1.3 VECINT: Vector Interrupt Register (Addr:FF92h)

This register contains a vector value, which identifies the internal interrupt source that is trapped to location
0003h. Writing (any value) to this register removes the vector and updates the next vector value (if another
interrupt is pending). Note: the vector value is offset; therefore, its value is in increments of two (bit 0 is set
to 0). When no interrupt is pending, the vector is set to 00h (see Table 9−2). As shown, the interrupt vector
is divided to two fields: I[2:0] and G[3:0]. The I field defines the interrupt source within a group (on a
first-come-first-served basis). In the G field, which defines the group number, group G0 is the lowest and G15
is the highest priority.

7 6 5 4 3 2 1 0

G3 G2 G1 G0 I2 I1 I0 0

R/O R/O R/O R/O R/O R/O R/O R/O

BIT NAME RESET FUNCTION

3−1 I[2:0] 0H This field defines the interrupt source in a given group. See Table 9−2. Bit 0 = 0 always; therefore, vector values
are offset by two.

7−4 G[3:0] 0H This field defines the interrupt group. I[2:0] and G[3:0] combine to produce the actual interrupt vector.

Table 9−2. Vector Interrupt Values
G[3:0]
(Hex)

I[2:0]
(Hex)

VECTOR
(Hex) INTERRUPT SOURCE

0 0 00 No interrupt

1
1
1
1
1

0
1
2
3

4−7

10
12
14
16

18−1E

Not used
Output endpoint-1
Output endpoint-2
Output endpoint-3
Reserved

2
2
2
2
2

0
1
2
3

4−7

20
22
24
26

28−2E

Reserved
Input endpoint-1
Input endpoint-2
Input endpoint-3
Reserved

3
3
3
3
3
3
3
3

0
1
2
3
4
5
6
7

30
32
34
36
38
3A
3C
3E

STPOW packet received
SETUP packet received
Reserved
Reserved
RESR interrupt
SUSR interrupt
RSTR interrupt
Wakeup

4
4
4
4
4

0
1
2
3

4−7

40
42
44
46

48 → 4E

I2C TXE interrupt
I2C RXF interrupt
Input endpoint-0
Output endpoint-0
Reserved

5
5
5

0
1

2−7

50
52

54 → 5E

UART status interrupt
UART modem interrupt
Reserved

6
6
6

0
1

2−7

60
62

64 → 6E

UART RXF interrupt
UART TXE interrupt
Reserved

7 0−7 70 → 7E Reserved

8
8
8

0
2

3−7

80
84

86−8E

DMA1 interrupt
DMA3 interrupt
Reserved

9−15 X 90 → FE Not used

Interrupts

55SLLS519H—January 2010 TUSB3410, TUSB3410I

9.1.4 Logical Interrupt Connection Diagram (Internal/External)

Figure 9−1 shows the logical connection of the interrupt sources and its relationship to INT0. The priority
encoder generates an 8-bit vector, corresponding to 64 interrupt sources (not all are used). The interrupt
priorities are hardwired. Vector 0x88 is the highest and 0x12 is the lowest.

Priority
Encoder

Interrupts

IEO (INT0)

IEO

Vector

Figure 9−1. Internal Vector Interrupt

Interrupts

56 SLLS519H—January 2010TUSB3410, TUSB3410I

I2C Port

57SLLS519H—January 2010 TUSB3410, TUSB3410I

10 I2C Port

10.1 I2C Registers

10.1.1 I2CSTA: I2C Status and Control Register (Addr:FFF0h)

This register controls the stop condition for read and write operations. In addition, it provides transmitter and
receiver handshake signals with their respective interrupt enable bits.

7 6 5 4 3 2 1 0

RXF RIE ERR 1/4 TXE TIE SRD SWR

R/O R/W R/C R/W R/O R/W R/W R/W

BIT NAME RESET FUNCTION

0 SWR 0 Stop write condition. This bit determines if the I2C controller generates a stop condition when data from the
I2CDAO register is transmitted to an external device.

SWR = 0 Stop condition is not generated when data from the I2CDAO register is shifted out to an external
device.

SWR = 1 Stop condition is generated when data from the I2CDAO register is shifted out to an external device.

1 SRD 0 Stop read condition. This bit determines if the I2C controller generates a stop condition when data is received and
loaded into the I2CDAI register.

SRD = 0 Stop condition is not generated when data from the SDA line is shifted into the I2CDAI register.

SRD = 1 Stop condition is generated when data from the SDA line are shifted into the I2CDAI register.

2 TIE 0 I2C transmitter empty interrupt enable

TIE = 0
TIE = 1

Interrupt disable
Interrupt enable

3 TXE 1 I2C transmitter empty. This bit indicates that data can be written to the transmitter. It can be used for polling or it
can generate an interrupt.

TXE = 0 Transmitter is full. This bit is cleared when the MCU writes a byte to the I2CDAO register.

TXE = 1 Transmitter is empty. The I2C controller sets this bit when the contents of the I2CDAO register are
copied to the SDA shift register.

4 1/4 0 Bus speed selection (see Note 13)

1/4 = 0
1/4 = 1

100-kHz bus speed
400-kHz bus speed

5 ERR 0 Bus error condition. This bit is set by the hardware when the device does not respond. It is cleared by the MCU.

ERR = 0 No bus error

ERR = 1 Bus error condition has been detected. Clears when the MCU writes a 1. Writing a 0 has no effect.

6 RIE 0 I2C receiver ready interrupt enable

RIE = 0
RIE = 1

Interrupt disable
Interrupt enable

7 RXF 0 I2C receiver full. This bit indicates that the receiver contains new data. It can be used for polling or it can generate
an interrupt.

RXF = 0 Receiver is empty. This bit is cleared when the MCU reads the I2CDAI register.

RXF = 1 Receiver contains new data. This bit is set by the I2C controller when the received serial data has
been loaded into the I2CDAI register.

NOTE 13: The bootcode automatically sets the I2C bus speed to 400 kHz. Only 400-kHz I2C EEPROMs can be used.

I2C Port

58 SLLS519H—January 2010TUSB3410, TUSB3410I

10.1.2 I2CADR: I2C Address Register (Addr:FFF3h)

This register holds the device address and the read/write command bit.

7 6 5 4 3 2 1 0

A6 A5 A4 A3 A2 A1 A0 R/W

R/W R/W R/W R/W R/W R/W R/W R/W

BIT NAME RESET FUNCTION

0 R/W 0 Read/write command bit

R/W = 0
R/W = 1

Write operation
Read operation

7−1 A[6:0] 0h Seven address bits for device addressing

10.1.3 I2CDAI: I2C Data-Input Register (Addr:FFF2h)

This register holds the received data from an external device.

7 6 5 4 3 2 1 0

D7 D6 D5 D4 D3 D2 D1 D0

R/O R/O R/O R/O R/O R/O R/O R/O

BIT NAME RESET FUNCTION

7−0 D[7:0] 0 8-bit input data from an I2C device

10.1.4 I2CDAO: I2C Data-Output Register (Addr:FFF1h)

This register holds the data to be transmitted to an external device. Writing to this register starts the transfer
on the SDA line.

7 6 5 4 3 2 1 0

D7 D6 D5 D4 D3 D2 D1 D0

W/O W/O W/O W/O W/O W/O W/O W/O

BIT NAME RESET FUNCTION

7−0 D[7:0] 0 8-bit output data to an I2C device

10.2 Random-Read Operation

A random read requires a dummy byte-write sequence to load in the data word address. Once the
device-address word and the data-word address are clocked out and acknowledged by the device, the MCU
starts a current-address sequence. The following describes the sequence of events to accomplish this
transaction.

Device Address + EPROM [High Byte]

• The MCU clears bit 1 (SRD) within the I2CSTA register. This forces the I2C controller not to generate a
stop condition after the contents of the I2CDAI register are received.

• The MCU clears bit 0 (SWR) within the I2CSTA register. This forces the I2C controller not to generate a
stop condition after the contents of the I2CDAO register are transmitted.

• The MCU writes the device address (bit 0 (R/W) = 0) to the I2CADR register (write operation)

• The MCU writes the high byte of the EEPROM address into the I2CDAO register (this starts the transfer
on the SDA line).

• Bit 3 (TXE) in the I2CSTA register is automatically cleared (indicates busy) by writing data to the I2CDAO
register.

• The contents of the I2CADR register are transmitted to EEPROM (preceded by start condition on SDA).

I2C Port

59SLLS519H—January 2010 TUSB3410, TUSB3410I

• The contents of the I2CDAO register are transmitted to EEPROM (EPROM address).

• Bit 3 (TXE) in the I2CSTA register is set and interrupts the MCU, indicating that the I2CDAO register has
been transmitted.

• A stop condition is not generated.

EPROM [Low Byte]

• The MCU writes the low byte of the EEPROM address into the I2CDAO register.

• Bit 3 (TXE) in the I2CSTA register is automatically cleared (indicates busy) by writing to the I2CDAO
register.

• The contents of the I2CDAO register are transmitted to the device (EEPROM address).

• Bit 3 (TXE) in the I2CSTA register is set and interrupts the MCU, indicating that the I2CDAO register has
been transmitted.

• This completes the dummy write operation. At this point, the EEPROM address is set and the MCU can
do either a single- or a sequential-read operation.

10.3 Current-Address Read Operation

Once the EEPROM address is set, the MCU can read a single byte by executing the following steps:

• The MCU sets bit 1 (SRD) in the I2CSTA register to 1. This forces the I2C controller to generate a stop
condition after the I2CDAI-register contents are received.

• The MCU writes the device address (bit 0 (R/W) = 1) to the I2CADR register (read operation).

• The MCU writes a dummy byte to the I2CDAO register (this starts the transfer on SDA line).

• Bit 7 (RXF) in the I2CSTA register is cleared (RX is empty).

• The contents of the I2CADR register are transmitted to the device (preceded by start condition on SDA).

• The data from EEPROM are latched into the I2CDAI register (stop condition is transmitted).

• Bit 7 (RXF) in the I2CSTA register is set and interrupts the MCU, indicating that the data are available.

• The MCU reads the I2CDAI register. This clears bit 7 (RXF) in the I2CSTA register.

10.4 Sequential-Read Operation

Once the EEPROM address is set, the MCU can execute a sequential read operation by executing the
following (this example illustrates a 32-byte sequential read):

Device Address

• The MCU clears bit 1 (SRD) in the I2CSTA register. This forces the I2C controller to not generate a stop
condition after the I2CDAI register contents are received.

• The MCU writes the device address (bit 0 (R/W) = 1) to the I2CADR register (read operation).

• The MCU writes a dummy byte to the I2CDAO register (this starts the transfer on the SDA line).

• Bit 7 (RXF) in the I2CSTA register is cleared (RX is empty).

• The contents of the I2CADR register are transmitted to the device (preceded by start condition on
SDA).

I2C Port

60 SLLS519H—January 2010TUSB3410, TUSB3410I

N-Byte Read (31 Bytes)

• The data from the device is latched into the I2CDAI register (stop condition is not transmitted).

• Bit 7 (RXF) in the I2CSTA register is set and interrupts the MCU, indicating that data is available.

• The MCU reads the I2CDAI register. This clears bit 7 (RXF) in the I2CSTA register.

• This operation repeats 31 times.

Last-Byte Read (Byte 32)

• MCU sets bit 1 (SRD) in the I2STA register to 1. This forces the I2C controller to generate a stop
condition after the I2CDAI register contents are received.

• The data from the device is latched into the I2CDAI register (stop condition is transmitted).

• Bit 7 (RXF) in the I2CSTA register is set and interrupts the MCU, indicating that data is available.

• The MCU reads the I2CDAI register. This clears bit 7 (RXF) in the I2CSTA register.

10.5 Byte-Write Operation

The byte-write operation involves three phases: device address + EPROM [high byte] phase, EPROM [low
byte] phase, and EPROM [DATA] phase. The following describes the sequence of events to accomplish the
byte-write transaction.

Device Address + EPROM [High Byte]

• The MCU sets clears the SWR bit in the I2CSTA register. This forces the I2C controller to not generate
a stop condition after the contents of the I2CDAO register are transmitted.

• The MCU writes the device address (bit 0 (R/W) = 0) to the I2CADR register (write operation).

• The MCU writes the high byte of the EEPROM address into the I2CDAO register (this starts the
transfer on the SDA line).

• Bit 3 (TXE) in the I2CSTA register is cleared (indicates busy).

• The contents of the I2CADR register are transmitted to the device (preceded by start condition on
SDA).

• The contents of the I2CDAO register are transmitted to the device (EEPROM high address).

• Bit 3 (TXE) in the I2CSTA register is set and interrupts the MCU, indicating that the I2CDAO register
contents have been transmitted.

EPROM [Low Byte]

• The MCU writes the low byte of the EEPROM address into the I2CDAO register.

• Bit 3 (TXE) in the I2CSTA register is cleared (indicating busy).

• The contents of the I2CDAO register are transmitted to the device (EEPROM address).

• Bit 3 (TXE) in the I2CSTA register is set and interrupts the MCU, indicating that the I2CDAO register
contents have been transmitted.

EPROM [DATA]

• The MCU sets bit 0 (SWR) in the I2CSTA register. This forces the I2C controller to generate a stop
condition after the contents of the I2CDAO register are transmitted.

• The data to be written to the EPROM is written by the MCU into the I2CDAO register.

• Bit 3 (TXE) in the I2CSTA register is cleared (indicates busy).

• The contents of the I2CDAO register are transmitted to the device (EEPROM data).

• Bit 3 (TXE) in the I2CSTA register is set and interrupts the MCU, indicating that the I2CDAO register
contents have been transmitted.

• The I2C controller generates a stop condition after the contents of the I2CDAO register are
transmitted.

I2C Port

61SLLS519H—January 2010 TUSB3410, TUSB3410I

10.6 Page-Write Operation

The page-write operation is initiated in the same way as byte write, with the exception that a stop condition
is not generated after the first EPROM [DATA] is transmitted. The following describes the sequence of writing
32 bytes in page mode.

Device Address + EPROM [High Byte]

• The MCU clears bit 0 (SWR) in the I2CSTA register. This forces the I2C controller to not generate a
stop condition after the contents of the I2CDAO register are transmitted.

• The MCU writes the device address (bit 0 (R/W) = 0) to the I2CADR register (write operation).

• The MCU writes the high byte of the EEPROM address into the I2CDAO register

• Bit 3 (TXE) in the I2CSTA register is cleared (indicating busy).

• The contents of the I2CADR register are transmitted to the device (preceded by start condition on
SDA).

• The contents of the I2CDAO register are transmitted to the device (EEPROM address).

• Bit 3 (TXE) in the I2CSTA register is set and interrupts the MCU, indicating that the I2CDAO register
contents have been transmitted.

EPROM [Low Byte]

• The MCU writes the low byte of the EEPROM address into the I2CDAO register.

• Bit 3 (TXE) in the I2CSTA register is cleared (indicates busy).

• The contents of the I2CDAO register are transmitted to the device (EEPROM address).

• Bit 3 (TXE) in the I2CSTA register is set and interrupts the MCU, indicating that the I2CDAO register
contents have been transmitted.

EPROM [DATA]—31 Bytes

• The data to be written to the EEPROM are written by the MCU into the I2CDAO register.

• Bit 3 (TXE) in the I2CSTA register is cleared (indicates busy).

• The contents of the I2CDAO register are transmitted to the device (EEPROM data).

• Bit 3 (TXE) in the I2CSTA register is set and interrupts the MCU, indicating that the I2CDAO register
contents have been transmitted.

• This operation repeats 31 times.

EPROM [DATA]—Last Byte

• The MCU sets bit 0 (SWR) in the I2CSTA register. This forces the I2C controller to generate a stop
condition after the contents of the I2CDAO register are transmitted.

• The MCU writes the last date byte to be written to the EEPROM, into the I2CDAO register.

• Bit 3 (TXE) in the I2CSTA register is cleared (indicates busy).

• The contents of the I2CDAO register are transmitted to EEPROM (EEPROM data).

• Bit 3 (TXE) in the I2CSTA register is set and interrupts the MCU, indicating that the I2CDAO register
contents have been transmitted.

• The I2C controller generates a stop condition after the contents of the I2CDAO register are
transmitted.

I2C Port

62 SLLS519H—January 2010TUSB3410, TUSB3410I

TUSB3410 Bootcode Flow

63SLLS519H—January 2010 TUSB3410, TUSB3410I

11 TUSB3410 Bootcode Flow

11.1 Introduction

TUSB3410 bootcode is a program embedded in the 10k-byte boot ROM within the TUSB3410. This program
is designed to load application firmware from either an external I2C memory device or USB host bootloader
device driver. After the TUSB3410 finishes downloading, the bootcode releases its control to the application
firmware.

This section describes how the bootcode initializes the TUSB3410 device in detail. In addition, the default USB
descriptor, I2C device header format, USB host driver firmware downloading format, and supported built-in
USB vendor specific requests are listed for reference. Users should carefully follow the appropriate format to
interface with the bootcode. Unsupported formats may cause unexpected results.

The bootcode source code is also provided for programming reference.

11.2 Bootcode Programming Flow

After power-on reset, the bootcode initializes the I2C and USB registers along with internal variables. The
bootcode then checks to see if an I2C device is present and contains a valid signature. If an I2C device is
present and contains a valid signature, the bootcode continues searching for descriptor blocks and then
processes them if the checksum is correct. If application firmware was found, then the bootcode downloads
it and releases the control to the application firmware. Otherwise, the bootcode connects to the USB and waits
for host driver to download application firmware. Once firmware downloading is complete, the bootcode
releases the control to the firmware.

The following is the bootcode step-by-step operation.

• Check if bootcode is in the application mode. This is the mode that is entered after application code is
downloaded via either an I2C device or the USB. If the bootcode is in the application mode, then the
bootcode releases the control to the application firmware. Otherwise, the bootcode continues.

• Initialize all the default settings.

− Call CopyDefaultSettings() routine.

Set I2C to 400-kHz speed.

− Call UsbDataInitialization() routine.

Set bFUNADR = 0
Disconnect from USB (bUSBCTL = 0x00)
Bootcode handles USB reset
Copy predefined device, configuration, and string descriptors to RAM
Disable all endpoints and enable USB interrupts (SETUP, RSTR, SUSR, and RESR)

• Search for product signature

− Check if valid signature is in I2C. If not, skip the I2C process.

Read 2 bytes from address 0x0000 with type III and device address 0. Stop searching if valid signature
is found.

Read 2 bytes from address 0x0000 with type II and device address 4. Stop searching if valid signature
is found.

• If a valid I2C signature is found, then load the customized device, configuration and string descriptors from
I2C EEPROM.

− Process each descriptor block from I2C until end of header is found

If the descriptor block contains device, configuration, or string descriptors, then the bootcode
overwrites the default descriptors.

TUSB3410 Bootcode Flow

64 SLLS519H—January 2010TUSB3410, TUSB3410I

If the descriptor block contains binary firmware, then the bootcode sets the header pointer to the
beginning of the binary firmware in the I2C EEPROM.

If the descriptor block is end of header, then the bootcode stops searching.

• Enable global and USB interrupts and set the connection bit to 1.

− Enable global interrupts by setting bit 7 (EA) within the SIE register (see Section 9.1.1) to 1.

− Enable all internal peripheral interrupts by setting the EX0 bit within the SIE register to 1.

− Connect to the USB by setting bit 7 (CONT) within the USBCNTL register (see Section 5.4) to 1.

• Wait for any interrupt events until Get DEVICE DESCIPTOR setup packet arrives.

− Suspend interrupt

The idle bit in the MCU PCON register is set and suspend mode is entered. USB reset wakes up the
microcontroller.

− Resume interrupt

Bootcode wakes up and waits for new USB requests.

− Reset interrupt

Call UsbReset() routine.

− Setup interrupt

Bootcode processes the request.

− USB reboot request

Disconnect from the USB by clearing bit 7 (CONT) in the USBCTL register and restart at address
0x0000.

• Download firmware from I2C EEPROM

− Disable global interrupts by clearing bit 7 (EA) within the SIE register

− Load firmware to XDATA space if available.

• Download firmware from the USB.

− If no firmware is found in an I2C EEPROM, the USB host downloads firmware via output endpoint 1.

− In the first data packet to output endpoint 1, the USB host driver adds 3 bytes before the application
firmware in binary format. These three bytes are the LSB and MSB indicating the firmware size and
followed by the arithmetic checksum of the binary firmware.

• Release control to the application firmware.

− Update the USB configuration and interface number.

− Release control to application firmware.

• Application firmware

− Either disconnect from the USB or continue responding to USB requests.

11.3 Default Bootcode Settings

The bootcode has its own predefined device, configuration, and string descriptors. These default descriptors
should be used in evaluation only. They must not be used in the end-user product.

11.3.1 Device Descriptor

The device descriptor provides the USB version that the device supports, device class, protocol, vendor and
product identifications, strings, and number of possible configurations. The operation system (Windows,
MAC, or Linux) reads this descriptor to decide which device driver should be used to communicate with this
device.

TUSB3410 Bootcode Flow

65SLLS519H—January 2010 TUSB3410, TUSB3410I

The bootcode uses 0x0451 (Texas Instruments) as the vendor ID and 0x3410 (TUSB3410) as the product ID.
It also supports three different strings and one configuration. Table 11−1 lists the device descriptor.

Table 11−1. Device Descriptor
OFFSET
(decimal) FIELD SIZE VALUE DESCRIPTION

0 bLength 1 0x12 Size of this descriptor in bytes

1 bDescriptorType 1 1 Device descriptor type

2 bcdUSB 2 0x0110 USB spec 1.1

4 bDeviceClass 1 0xFF Device class is vendor−specific

5 bDeviceSubClass 1 0 We have no subclasses.

6 bDeviceProtocol 1 0 We use no protocols.

7 bMaxPacketSize0 1 8 Max. packet size for endpoint zero

8 idVendor 2 0x0451 USB−assigned vendor ID = TI

10 idProduct 2 0x3410 TI part number = TUSB3410

12 bcdDevice 2 0x100 Device release number = 1.0

14 iManufacturer 1 1 Index of string descriptor describing manufacturer

15 iProducct 1 2 Index of string descriptor describing product

16 iSerialNumber 1 3 Index of string descriptor describing device’s serial number

17 bNumConfigurations 1 1 Number of possible configurations:

11.3.2 Configuration Descriptor

The configuration descriptor provides the number of interfaces supported by this configuration, power
configuration, and current consumption.

The bootcode declares only one interface running in bus-powered mode. It consumes up to 100 mA at boot
time. Table 11−2 lists the configuration descriptor.

Table 11−2. Configuration Descriptor
OFFSET
(decimal) FIELD SIZE VALUE DESCRIPTION

0 bLength 1 9 Size of this descriptor in bytes.

1 bDescriptor Type 1 2 Configuration descriptor type

2 wTotalLength 2 25 = 9 + 9 + 7
Total length of data returned for this configuration. Includes the combined length
of all descriptors (configuration, interface, endpoint, and class- or
vendor-specific) returned for this configuration.

4 bNumInterfaces 1 1 Number of interfaces supported by this configuration

5 bConfigurationValue 1 1
Value to use as an argument to the SetConfiguration() request to select this
configuration.

6 iConfiguration 1 0 Index of string descriptor describing this configuration.

7 bmAttributes 1 0x80

Configuration characteristics
D7: Reserved (set to one)
D6: Self-powered
D5: Remote wakeup is supported
D4−0: Reserved (reset to zero)

8 bMaxPower 1 0x32 This device consumes 100 mA.

TUSB3410 Bootcode Flow

66 SLLS519H—January 2010TUSB3410, TUSB3410I

11.3.3 Interface Descriptor

The interface descriptor provides the number of endpoints supported by this interface as well as interface
class, subclass, and protocol.

The bootcode supports only one endpoint and use its own class. Table 11−3 lists the interface descriptor.

Table 11−3. Interface Descriptor
OFFSET
(decimal)

FIELD SIZE VALUE DESCRIPTION

0 bLength 1 9 Size of this descriptor in bytes

1 bDescriptorType 1 4 Interface descriptor type

2 bInterfaceNumber 1 0 Number of interface. Zero-based value identifying the index in the array of concurrent
interfaces supported by this configuration.

3 bAlternateSetting 1 0 Value used to select alternate setting for the interface identified in the prior field

4 bNumEndpoints 1 1 Number of endpoints used by this interface (excluding endpoint zero). If this value is
zero, this interface only uses the default control pipe.

5 bInterfaceClass 1 0xFF The interface class is vendor specific.

6 bInterfaceSubClass 1 0

7 bInterfaceProtocol 1 0

8 iInterface 1 0 Index of string descriptor describing this interface

11.3.4 Endpoint Descriptor

The endpoint descriptor provides the type and size of communication pipe supported by this endpoint.

The bootcode supports only one output endpoint with the size of 64 bytes in addition to control endpoint 0
(required by all USB devices). Table 11−4 lists the endpoint descriptor.

Table 11−4. Output Endpoint1 Descriptor
OFFSET
(decimal)

FIELD SIZE VALUE DESCRIPTION

0 bLength 1 7 Size of this descriptor in bytes

1 bDescriptorType 1 5 Endpoint descriptor type

2 bEndpointAddress 1 0x01 Bit 3…0: The endpoint number
Bit 7: Direction

0 = OUT endpoint
1 = IN endpoint

3 bmAttributes 1 2 Bit 1…0: Transfer type
10 = Bulk
11 = Interrupt

4 wMaxPacketSize 2 64 Maximum packet size this endpoint is capable of sending or receiving when this
configuration is selected.

6 bInterval 1 0 Interval for polling endpoint for data transfers. Expressed in milliseconds.

11.3.5 String Descriptor

The string descriptor contains data in the unicode format. It is used to show the manufacturers name, product
model, and serial number in human readable format.

The bootcode supports three strings. The first string is the manufacturers name. The second string is the
product name. The third string is the serial number. Table 11−5 lists the string descriptor.

TUSB3410 Bootcode Flow

67SLLS519H—January 2010 TUSB3410, TUSB3410I

Table 11−5. String Descriptor
OFFSET
(decimal)

FIELD SIZE VALUE DESCRIPTION

0 bLength 1 4 Size of string 0 descriptor in bytes

1 bDescriptorType 1 0x03 String descriptor type

2 wLANGID[0] 2 0x0409 English

4 bLength 1 36 (decimal) Size of string 1 descriptor in bytes

5 bDescriptorType 1 0x03 String descriptor type

6 bString 2 ‘T’,0x00 Unicode, T is the first byte

8 2 ‘e’,0x00 Texas Instruments

10 2 ‘x’,0x00

12 2 ‘a’,0x00

14 2 ‘s’,0x00

16 2 ‘ ’,0x00

18 2 ‘I’,0x00

20 2 ‘n’,0x00

22 2 ‘s’,0x00

24 2 ‘t’,0x00

26 2 ‘r’,0x00

28 2 ‘u’,0x00

30 2 ‘m’,0x00

32 2 ‘e’,0x00

34 2 ‘n’,0x00

36 2 ‘t’,0x00

38 2 ‘s’,0x00

40 bLength 1 42 (decimal) Size of string 2 descriptor in bytes

41 bDescriptorType 1 0x03 STRING descriptor type

42 bString 2 ‘T’,0x00 UNICODE, T is first byte

44 2 ‘U’,0x00 TUSB3410 boot device

46 2 ‘S’,0x00

48 2 ‘B’,0x00

50 2 ‘3’,0x00

52 2 ‘4’,0x00

54 2 ‘1’,0x00

56 2 ‘0’,0x00

58 2 ‘ ‘,0x00

60 2 ‘B‘,0x00

62 2 ‘o’,0x00

64 2 ‘o’,0x00

66 2 ‘t’,0x00

TUSB3410 Bootcode Flow

68 SLLS519H—January 2010TUSB3410, TUSB3410I

Table 11−5. String Descriptor (Continued)

OFFSET FIELD SIZE VALUE DESCRIPTION

68 2 ‘ ’,0x00

70 2 ‘D’,0x00

72 2 ‘e‘,0x00

74 2 ‘v’,0x00

76 2 ‘I,0x00

78 2 ‘c’,0x00

80 2 ‘e’,0x00

82 bLength 1 34 (decimal) Size of string 3 descriptor in bytes

84 bDescriptorType 1 0x03 STRING descriptor type

86 bString 2 r0,0x00 UNICODE

88 2 r1,0x00 R0 to rF are BCD of SERNUM0 to

90 2 r2,0x00 SERNUM7 registers. 16 digit hex

92 2 r3,0x00 16 digit hex numbers are created from

94 2 r4,0x00 SERNUM0 to SERNUM7 registers

96 2 r5,0x00

98 2 r6,0x00

100 2 r7,0x00

102 2 r8,0x00

104 2 r9,0x00

106 2 rA,0x00

108 2 rB,0x00

110 2 rC,0x00

112 2 rD,0x00

114 2 rE,0x00

116 2 rF,0x00

11.4 External I2C Device Header Format

A valid header should contain a product signature and one or more descriptor blocks. The descriptor block
contains the descriptor prefix and content. In the descriptor prefix, the data type, size, and checksum are
specified to describe the content. The descriptor content contains the necessary information for the bootcode
to process.

The header processing routine always counts from the first descriptor block until the desired block number
is reached. The header reads in the descriptor prefix with a size of 4 bytes. This prefix contains the type of
block, size, and checksum. For example, if the bootcode would like to find the position of the third descriptor
block, then it reads in the first descriptor prefix, calculates the position on the second descriptor prefix based
on the size specified in the prefix. bootcode, then repeats the same calculation to find out the position of the
third descriptor block.

11.4.1 Product Signature

The product signature must be stored at the first 2 bytes within the I2C storage device. These 2 bytes must
match the product number. The order of these 2 bytes must be the LSB first followed by the MSB. For example,
the TUSB3410 is 0x3410. Therefore, the first byte must be 0x10 and the second byte must be 0x34.

The TUSB3410 bootcode searches the first 2 bytes of the I2C device. If the first 2 bytes are not 0x10 and 0x34,
then the bootcode skips the header processing.

TUSB3410 Bootcode Flow

69SLLS519H—January 2010 TUSB3410, TUSB3410I

11.4.2 Descriptor Block

Each descriptor block contains a prefix and content. The size of the prefix is always 4 bytes. It contains the
data type, size, and checksum for data integrity. The descriptor content contains the corresponding
information specified in the prefix. It could be as small as 1 byte or as large as 65535 bytes. The next descriptor
immediately follows the previous descriptor. If there are no more descriptors, then an extra byte with a value
of zero should be added to indicate the end of header.

11.4.2.1 Descriptor Prefix

The first byte of the descriptor prefix is the data type. This tells the bootcode how to process the data in the
descriptor content. The second and third bytes are the size of descriptor content. The second byte is the low
byte of the size and the third byte is the high byte. The last byte is the 8-bit arithmetic checksum of descriptor
content.

11.4.2.2 Descriptor Content

Information stored in the descriptor content can be the USB information, firmware, or other type of data. The
size of the content should be from 1 byte to 65535 bytes.

11.5 Checksum in Descriptor Block

Each descriptor prefix contains one checksum of the descriptor content. If the checksum is wrong, the
bootcode simply ignores the descriptor block.

11.6 Header Examples

The header can be specified in different ways. The following descriptors show examples of the header format
and the supported descriptor block.

11.6.1 TUSB3410 Bootcode Supported Descriptor Block

The TUSB3410 bootcode supports the following descriptor blocks.

• USB Device Descriptor
• USB Configuration Descriptor
• USB String Descriptor
• Binary Firmware1

• Autoexec Binary Firmware2

11.6.2 USB Descriptor Header

Table 11−6 contains the USB device, configuration, and string descriptors for the bootcode. The last byte is
zero to indicate the end of header.

1 Binary firmware is loaded when the bootcode receives the first get device descriptor request from host. Downloading the firmware should

 either continue that request in the data stage or disconnect from the USB and then reconnect to the USB as a new device.

2 The bootcode loads this autoexec binary firmware before it connects to the USB. The firmware should connect to the USB once it is

 loaded.

TUSB3410 Bootcode Flow

70 SLLS519H—January 2010TUSB3410, TUSB3410I

Table 11−6. USB Descriptors Header
OFFSET TYPE SIZE VALUE DESCRIPTION

0 Signature0 1 0x10 FUNCTION_PID_L

1 Signature1 1 0x34 FUNCTION_PID_H

2 Data Type 1 0x03 USB device descriptor

3 Data Size (low byte) 1 0x12 The device descriptor is 18 (decimal) bytes.

4 Data Size (high byte) 1 0x00

5 Check Sum 1 0xCC Checksum of data below

6 bLength 1 0x12 Size of device descriptor in bytes

7 bDescriptorType 1 0x01 Device descriptor type

8 bcdUSB 2 0x0110 USB spec 1.1

10 bDeviceClass 1 0xFF Device class is vendor-specific

11 bDeviceSubClass 1 0x00 We have no subclasses.

12 bDeviceProtocol 1 0x00 We use no protocols

13 bMaxPacketSize0 1 0x08 Maximum packet size for endpoint zero

14 idVendor 2 0x0451 USB−assigned vendor ID = TI

16 idProduct 2 0x3410 TI part number = TUSB3410

18 bcdDevice 2 0x0100 Device release number = 1.0

20 iManufacturer 1 0x01 Index of string descriptor describing manufacturer

21 iProducct 1 0x02 Index of string descriptor describing product

22 iSerialNumber 1 0x03 Index of string descriptor describing device’s serial number

23 bNumConfigurations 1 0x01 Number of possible configurations:

24 Data Type 1 0x04 USB configuration descriptor

25 Data Size (low byte) 1 0x19 25 bytes

26 Data Size (high byte) 1 0x00

27 Check Sum 1 0xC6 Checksum of data below

28 bLength 1 0x09 Size of this descriptor in bytes

29 bDescriptorType 1 0x02 CONFIGURATION descriptor type

30 wTotalLength 2 25(0x19) =
9 + 9 + 7

Total length of data returned for this configuration. Includes the combined length of
all descriptors (configuration, interface, endpoint, and class- or vendor-specific)
returned for this configuration.

32 bNumInterfaces 1 0x01 Number of interfaces supported by this configuration

33 bConfigurationValue 1 0x01 Value to use as an argument to the SetConfiguration() request to select this
configuration

34 iConfiguration 1 0x00 Index of string descriptor describing this configuration.

35 bmAttributes 1 0xE0 Configuration characteristics
D7: Reserved (set to one)
D6: Self-powered
D5: Remote wakeup is supported
D4−0: Reserved (reset to zero)

36 bMaxPower 1 0x64 This device consumes 100 mA.

37 bLength 1 0x09 Size of this descriptor in bytes

38 bDescriptorType 1 0x04 INTERFACE descriptor type

39 bInterfaceNumber 1 0x00 Number of interface. Zero-based value identifying the index in the array of
concurrent interfaces supported by this configuration.

TUSB3410 Bootcode Flow

71SLLS519H—January 2010 TUSB3410, TUSB3410I

Table 11−6. USB Descriptors Header (Continued)

OFFSET TYPE SIZE VALUE DESCRIPTION

40 bAlternateSetting 1 0x00 Value used to select alternate setting for the interface identified in the prior field

41 bNumEndpoints 1 0x01 Number of endpoints used by this interface (excluding endpoint zero). If this value
is zero, this interface only uses the default control pipe.

42 bInterfaceClass 1 0xFF The interface class is vendor specific.

43 bInterfaceSubClass 1 0x00

44 bInterfaceProtocol 1 0x00

45 iInterface 1 0x00 Index of string descriptor describing this interface

46 bLength 1 0x07 Size of this descriptor in bytes

47 bDescriptorType 1 0x05 ENDPOINT descriptor type

48 bEndpointAddress 1 0x01 Bit 3…0: The endpoint number
Bit 7: Direction

0 = OUT endpoint
1 = IN endpoint

49 bmAttributes 1 0x02 Bit 1…0: Transfer Type
10 = Bulk
11 = Interrupt

50 wMaxPacketSize 2 0x0040 Maximum packet size this endpoint is capable of sending or receiving when this
configuration is selected.

52 bInterval 1 0x00 Interval for polling endpoint for data transfers. Expressed in milliseconds.

53 Data Type 1 0x05 USB String descriptor

54 Data Size (low byte) 1 0x1A 26(0x1A) = 4 + 6 + 6 + 10

55 Data Size (high byte) 1 0x00

56 Check Sum 1 0x50 Checksum of data below

57 bLength 1 0x04 Size of string 0 descriptor in bytes

58 bDescriptorType 1 0x03 STRING descriptor type

59 wLANGID[0] 2 0x0409 English

61 bLength 1 0x06 Size of string 1 descriptor in bytes

62 bDescriptorType 1 0x03 STRING descriptor type

63 bString 2 ‘T’,0x00 UNICODE, ‘T’ is the first byte.

65 2 ‘I’,0x00 TI = 0x54, 0x49

67 bLength 1 0x06 Size of string 2 descriptor in bytes

68 bDescriptorType 1 0x03 STRING descriptor type

69 bString 2 ‘u’,0x00 UNICODE, ‘u’ is the first byte.

71 2 ‘C’,0x00 ‘uC’ = 0x75, 0x43

73 bLength 1 0x0A Size of string 3 descriptor in bytes

74 bDescriptorType 1 0x03 STRING descriptor type

75 bString 2 ‘3’,0x00 UNICODE, ‘T’ is the first byte.

77 2 ‘4’,0x00 ‘3410’ = 0x33, 0x34, 0x31, 0x30

79 2 ‘1’,0x00

81 2 ‘0’,0x00

83 Data Type 1 0x00 End of header

11.6.3 Autoexec Binary Firmware
If the application requires firmware loaded prior to establishing a USB connection, then the following header
can be used. The bootcode loads the firmware and releases control to the firmware directly without connecting
to the USB. However, per the USB specification requirement, any USB device should connect to the bus and
respond to the host within the first 100 ms. Therefore, if downloading time is more than 100 ms, the USB and
header speed descriptor blocks should be added before the autoexec binary firmware. Table 11−7 shows an
example of autoexec binary firmware header.

TUSB3410 Bootcode Flow

72 SLLS519H—January 2010TUSB3410, TUSB3410I

Table 11−7. Autoexec Binary Firmware
OFFSET TYPE SIZE VALUE DESCRIPTION

0x0000 Signature0 1 0x10 FUNCTION_PID_L

0x0001 Signature1 1 0x34 FUNCTION_PID_H

0x0002 Data Type 1 0x07 Autoexec binary firmware

0x0003 Data Size (low byte) 1 0x67 0x4567 bytes of application code

0x0004 Data Size (high byte) 1 0x45

0x0005 Check Sum 1 0xNN Checksum of the following firmware

0x0006 Program 0x4567 Binary application code

0x456d Data Type 1 0x00 End of header

11.7 USB Host Driver Downloading Header Format

If firmware downloading from the USB host driver is desired, then the USB host driver must follow the format
in Table 11−8. The Texas Instruments bootloader driver generates the proper format. Therefore, users only
need to provide the binary image of the application firmware for the Bootloader. If the checksum is wrong, then
the bootcode disconnects from the USB and waits before it reconnects to the USB.

Table 11−8. Host Driver Downloading Format
OFFSET TYPE SIZE VALUE DESCRIPTION

0x0000 Firmware size (low byte) 1 0xXX Application firmware size

0x0001 Firmware size (low byte) 1 0xYY

0x0002 Checksum 1 0xZZ Checksum of binary application code

0x0003 Program 0xYYXX Binary application code

11.8 Built-In Vendor Specific USB Requests

The bootcode supports several vendor specific USB requests. These requests are primarily for internal testing
only. These functions should not be used in normal operation.

11.8.1 Reboot

The reboot command forces the bootcode to execute.
bmRequestType USB_REQ_TYPE_DEVICE |

USB_REQ_TYPE_VENDOR |
USB_REQ_TYPE_OUT

01000000b

bRequest BTC_REBOOT 0x85

wValue None 0x0000

wIndex None 0x0000

wLength None 0x0000

Data None

11.8.2 Force Execute Firmware

The force execute firmware command requests the bootcode to execute the downloaded firmware
unconditionally.
bmRequestType USB_REQ_TYPE_DEVICE |

USB_REQ_TYPE_VENDOR |
USB_REQ_TYPE_OUT

01000000b

bRequest BTC_FORCE_EXECUTE_FIRMWARE 0x8F

wValue None 0x0000

wIndex None 0x0000

wLength None 0x0000

Data None

TUSB3410 Bootcode Flow

73SLLS519H—January 2010 TUSB3410, TUSB3410I

11.8.3 External Memory Read

The bootcode returns the content of the specified address.
bmRequestType USB_REQ_TYPE_DEVICE |

USB_REQ_TYPE_VENDOR |
USB_REQ_TYPE_IN

11000000b

bRequest BTC_EXETERNAL_MEMORY_READ 0x90

wValue None 0x0000

wIndex Data address 0xNNNN (From 0x0000 to 0xFFFF)

wLength 1 byte 0x0001

Data Byte in the specified address 0xNN

11.8.4 External Memory Write

The external memory write command tells the bootcode to write data to the specified address.
bmRequestType USB_REQ_TYPE_DEVICE |

USB_REQ_TYPE_VENDOR |
USB_REQ_TYPE_OUT

01000000b

bRequest BTC_EXETERNAL_MEMORY_WRITE 0x91

wValue HI: 0x00
LO: Data

0x00NN

wIndex Data address 0xNNNN (From 0x0000 to 0xFFFF)

wLength None 0x0000

Data None

11.8.5 I2C Memory Read

The bootcode returns the content of the specified address in I2C EEPROM.

In the wValue field, the I2C device number is from 0x00 to 0x07 in the high byte. The memory type is from 0x01
to 0x03 for CAT I to CAT III devices. If bit 7 of bValueL is set, then the bus speed is 400 kHz. This request is
also used to set the device number and speed before the I2C write request.

bmRequestType USB_REQ_TYPE_DEVICE |
USB_REQ_TYPE_VENDOR |
USB_REQ_TYPE_IN

11000000b

bRequest BTC_I2C_MEMORY_READ 0x92

wValue HI: I2C device number
LO: Memory type bit[1:0]

Speed bit[7]

0xXXYY

wIndex Data address 0xNNNN (From 0x0000 to 0xFFFF)

wLength 1 byte 0x0001

Data Byte in the specified address 0xNN

11.8.6 I2C Memory Write

The I2C memory write command tells the bootcode to write data to the specified address.

bmRequestType USB_REQ_TYPE_DEVICE |
USB_REQ_TYPE_VENDOR |
USB_REQ_TYPE_OUT

01000000b

bRequest BTC_I2C_MEMORY_WRITE 0x93

wValue HI: should be zero
LO: Data

0x00NN

wIndex Data address 0xNNNN (From 0x0000 to 0xFFFF)

wLength None 0x0000

Data None

TUSB3410 Bootcode Flow

74 SLLS519H—January 2010TUSB3410, TUSB3410I

11.8.7 Internal ROM Memory Read

The bootcode returns the byte of the specified address within the boot ROM. That is, the binary code of the
bootcode.

bmRequestType USB_REQ_TYPE_DEVICE |
USB_REQ_TYPE_VENDOR |
USB_REQ_TYPE_OUT

01000000b

bRequest BTC_INTERNAL_ROM_MEMORY_READ 0x94

wValue None 0x0000

wIndex Data address 0xNNNN (From 0x0000 to 0xFFFF)

wLength 1 byte 0x0001

Data Byte in the specified address 0xNN

11.9 Bootcode Programming Consideration

11.9.1 USB Requests

For each USB request, the bootcode follows the steps below to ensure proper operation of the hardware.

1. Determine the direction of the request by checking the MSB of the bmRequestType field and set the DIR
bit within the USBCTL register accordingly.

2. Decode the command

3. If another setup is pending, then return. Otherwise, serve the request.

4. Check again, if another setup is pending then go to step 2.

5. Clear the interrupt source and then the VECINT register.

6. Exit the interrupt routine.

11.9.1.1 USB Request Transfers

The USB request consist of three types of transfers. They are control-read-with-data-stage, control-write-
without-data-stage, and control-write-with-data-stage transfer. In each transfer, arrows indicate interrupts
generated after receiving the setup packet, in or out token.

Figure 11−1 and Figure 11−2 show the USB data flow and how the hardware and firmware respond to the USB
requests. Table 11−9 and Table 11−10 lists the bootcode reposes to the standard USB requests.

TUSB3410 Bootcode Flow

75SLLS519H—January 2010 TUSB3410, TUSB3410I

Setup (0) IN(1) IN(0) IN(0/1) OUT(1)

INT INT INT INT

More
 Packets

Setup Stage Data Stage StatusStage

1.Hardware generates interrupt
 to MCU.
2.Hardware sets NAK on both
 the IN and the OUT endpoints.
3.Set DIR bit in USBCTL to
 indicate the data direction.
4.Decode the setup packet.
5.If another setup packet
 arrives, abandon this one.
6.Execute appropriate routine per

 a) Clear NAK bit in OUT
 endpoint.
 b) Copy data to IN endpoint
 buffer and set byte count.

1.Hardware generates interrupt to
 MCU.
2.Copy data to IN buffer.
3.Clear the NAK bit.
4.If all data has been sent, stall input
 endpoint.

1.Hardware does NOT generate
 interrupt to MCU.

Table 11-9.

Figure 11−1. Control Read Transfer

Table 11−9. Bootcode Response to Control Read Transfer
CONTROL READ ACTION IN BOOTCODE

Get status of device Return power and remote wakeup settings

Get status of interface Return 2 bytes of zeros

Get status of endpoint Return endpoint status

Get descriptor of device Return device descriptor

Get descriptor of configuration Return configuration descriptor

Get descriptor of string Return string descriptor

Get descriptor of interface Stall

Get descriptor of endpoint Stall

Get configuration Return bConfiguredNumber value

Get interface Return bInterfaceNumber value

TUSB3410 Bootcode Flow

76 SLLS519H—January 2010TUSB3410, TUSB3410I

Setup (0) IN(1)

INT

Setup Stage Status Stage

1.Hardware generates interrupt
 to MCU.
2.Hardware sets NAK on both the IN
 and the OUT endpoints.
3.Set DIR bit in USBCTL to
 indicate the data direction.
4.Decode the setup packet.
5.If another setup packet
 arrives, abandon this one.
6.Execute appropriate routine per

1.Hardware does NOT generates
 interrupt to MCU.

Table 11−10.

Figure 11−2. Control Write Transfer Without Data Stage

Table 11−10. Bootcode Response to Control Write Without Data Stage
CONTROL WRITE WITHOUT DATA STAGE ACTION IN BOOTCODE

Clear feature of device Stall

Clear feature of interface Stall

Clear feature of endpoint Clear endpoint stall

Set feature of device Stall

Set feature of interface Stall

Set feature of endpoint Stall endpoint

Set address Set device address

Set descriptor Stall

Set configuration Set bConfiguredNumber

Set interface SetbInterfaceNumber

Sync. frame Stall

11.9.1.2 Interrupt Handling Routine

The higher-vector number has a higher priority than the lower-vector number. Table 11−11 lists all the
interrupts and source of interrupts.

TUSB3410 Bootcode Flow

77SLLS519H—January 2010 TUSB3410, TUSB3410I

Table 11−11. Vector Interrupt Values and Sources
G[3:0]
(Hex)

I[2:0]
(Hex)

VECTOR
(Hex) INTERRUPT SOURCE

INTERRUPT SOURCE SHOULD BE
CLEARED

0 0 00 No Interrupt No Source

1 1 12 Output−endpoint−1 VECINT register

1 2 14 Output−endpoint−2 VECINT register

1 3 16 Output−endpoint−3 VECINT register

1 4−7 18→1E Reserved

2 1 22 Input−endpoint−1 VECINT register

2 2 24 Input−endpoint−2 VECINT register

2 3 26 Input−endpoint−3 VECINT register

2 4−7 28→2E Reserved

3 0 30 STPOW packet received USBSTA/ VECINT registers

3 1 32 SETUP packet received USBSTA/ VECINT registers

3 2 34 Reserved

3 3 36 Reserved

3 4 38 RESR interrupt USBSTA/ VECINT registers

3 5 3A SUSR interrupt USBSTA/ VECINT registers

3 6 3C RSTR interrupt USBSTA/ VECINT registers

3 7 3E Wakeup interrupt USBSTA/ VECINT registers

4 0 40 I2C TXE interrupt VECINT register

4 1 42 I2C TXE interrupt VECINT register

4 2 44 Input−endpoint−0 VECINT register

4 3 46 Output−endpoint−0 VECINT register

4 4−7 48→4E Reserved

5 0 50 UART1 status interrupt LSR/VECNT register

5 1 52 UART1 modern interrupt LSR/VECINT register

5 2−7 54→5E Reserved

6 0 60 UART1 RXF interrupt LSR/VECNT register

6 1 62 UART1 TXE interrupt LSR/VECINT register

6 2−7 64→6E Reserved

7 0−7 70→7E Reserved

8 0 80 DMA1 interrupt DMACSR/VECINT register

8 1 82 Reserved

8 2 84 DMA3 interrupt DMACSR/VECINT register

8 3−7 86→7E Reserved

9−15 0−7 90→FE Reserved

11.9.2 Hardware Reset Introduced by the Firmware

This feature can be used during a firmware upgrade. Once the upgrade is complete, the application firmware
disconnects from the USB for at least 200 ms to ensure the operating system has unloaded the device driver.
The firmware then enables the watchdog timer (enabled by default after power-on reset) and enters an
endless loop without resetting the watchdog timer. Once the watchdog timer times out, it resets the TUSB3410
similar to a power on reset. The bootcode takes control and executes the power-on boot sequence.

TUSB3410 Bootcode Flow

78 SLLS519H—January 2010TUSB3410, TUSB3410I

11.10 File Listings

The TUSB3410 Bootcode Source Listing (SLLC139.zip) is available under the TUSB3410 product page on
the TI website. Look under the Related Software link. The files listed below are included in the zip file.

• Types.h

• USB.h

• TUSB3410.h

• Bootcode.h

• Watchdog.h

• Bootcode.c

• Bootlsr.c

• BootUSB.c

• Header.h

• Header.c

• I2c.h

• I2c.c

Electrical Specifications

79SLLS519H—January 2010 TUSB3410, TUSB3410I

12 Electrical Specifications

12.1 Absolute Maximum Ratings†

Supply voltage, VCC −0.5 V to 3.6 V.
Input voltage, VI −0.5 V to VCC + 0.5 V.
Output voltage, VO −0.5 V to VCC + 0.5 V.
Input clamp current, IIK ±20 mA.
Output clamp current, IOK ±20 mA.

† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

12.2 Commercial Operating Condition (3.3 V)
PARAMETER MIN TYP MAX UNIT

VCC Supply voltage 3 3.3 3.6 V

VI Input voltage 0 VCC V

V High level input voltage
TTL 2 VCC

VVIH High-level input voltage
CMOS 0.7 × VCC VCC

V

V Low level input voltage
TTL 0 0.8

VVIL Low-level input voltage
CMOS 0 0.2 × VCC

V

T Operating temperature
Commercial range 0 70 °C

TA Operating temperature
Industrial range −40 85 °C

12.3 Electrical Characteristics

TA = 25°C, VCC = 3.3 V ±5%, VSS = 0 V

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

V High level output voltage
TTL

I 4 mA
VCC – 0.5

VVOH High-level output voltage
CMOS

IOH = −4 mA
VCC – 0.5

V

V Low level output voltage
TTL

I 4 mA
0.5

VVOL Low-level output voltage
CMOS

IOL = 4 mA
0.5

V

V Positive threshold voltage
TTL

V V
1.8

VVIT+ Positive threshold voltage
CMOS

VI = VIH 0.7 × VCC
V

V Negative threshold voltage
TTL

V V
0.8 1.8

VVIT− Negative threshold voltage
CMOS

VI = VIH 0.2 × VCC
V

V Hysteresis (V V)
TTL

V V
0.3 0.7

VVhys Hysteresis (VIT+ − VIT−)
CMOS

VI = VIH 0.17 × VCC 0.3 × VCC
V

I High level input current
TTL

V V
±20

AIIH High-level input current
CMOS

VI = VIH ±1
μA

I Low level input current
TTL

V V
±20

AIIL Low-level input current
CMOS

VI = VIL ±1
μA

IOZ Output leakage current (Hi-Z) VI = VCC or VSS ±20 μA

IOL Output low drive current 0.1 mA

IOH Output high drive current 0.1 mA

I
Supply current (operating) Serial data at 921.6 k 15 mA

ICC Supply current (suspended) 200 μA

Electrical Specifications

80 SLLS519H—January 2010TUSB3410, TUSB3410I

Electrical Characteristics (continued)

TA = 25°C, VCC = 3.3 V ±5%, VSS = 0 V

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

Clock duty cycle‡ 50%

Jitter specification‡ ±100 ppm

CI Input capacitance 18 pF

CO Output capacitance 10 pF

‡ Applies to all clock outputs

Application Notes

81SLLS519H—January 2010 TUSB3410, TUSB3410I

13 Application Notes

13.1 Crystal Selection
The TUSB3410 requires a 12-MHz clock source to work properly. This clock source can be a crystal placed across
the X1 and X2 terminals. A parallel resonant crystal is recommended. Most parallel resonant crystals are specified
at a frequency with a load capacitance of 18 pF. This load can be realized by placing 33-pF capacitors from each end
of the crystal to ground. Together with the input capacitance of the TUSB3410 and stray board capacitance, this
provides close to two 36-pF capacitors in series to emulate the 18-pF load requirement. Note, that when using a
crystal, it takes about 2 ms after power up for a stable clock to be produced.

When using a clock oscillator, the signal applied to the X1/CLKI terminal must not exceed 1.8 V. In this configuration,
the X2 terminal is unconnected.

TUSB3410

X1/CLKI

33 pF 12 MHz

X2

33 pF

Figure 13−1. Crystal Selection

13.2 External Circuit Required for Reliable Bus Powered Suspend Operation
TI has found a potential problem with the action of the SUSPEND output terminal immediately after power on. In some
cases the SUSPEND terminal can power up asserted high. When used in a bus powered application this can cause
a problem because the VREGEN input is usually connected to the SUSPEND output. This in turn causes the internal
1.8-V voltage regulator to shut down, which means an external crystal may not have time to begin oscillating, thus
the device will not initialize itself correctly.

TI has determined that using components R2 and D1 (rated to 25 mA) in the circuit shown below can be used as a
workaround. Note that R1 and C1 are required components for proper reset operation, unless the reset signal is
provided by another means.

Note that use of an external oscillator (1.8-V output) versus a crystal would avoid this situation. Self-powered
applications would probably not see this problem because the VREGEN input would likely be tied low, enabling the
internal 1.8-V regulator at all times.

TUSB3410

SUSPEND

D1

VREGEN

RESET

R2
32 kΩ

C1
1 μF

3.3 V

R1
15 kΩ

Figure 13−2. External Circuit

Application Notes

82 SLLS519H—January 2010TUSB3410, TUSB3410I

13.3 Wakeup Timing (WAKEUP or RI/CP Transitions)

The TUSB3410 can be brought out of the suspended state, or woken up, by a command from the host. The TUSB3410
also supports remote wakeup and can be awakened by either of two input signals. A low pulse on the WAKEUP
terminal or a low-to-high transition on the RI/CP terminal wakes the device up. Note that for reliable operation, either
condition must persist for approximately 3 ms minimum. This allows time for the crystal to power up since in the
suspend mode the crystal interface is powered down. The state of the WAKEUP or RI/CP terminal is then sampled
by the clock to verify there was a valid wakeup event.

13.4 Reset Timing

There are three requirements for the reset signal timing. First, the minimum reset pulse duration is 100 μs. At power
up, this time is measured from the time the power ramps up to 90% of the nominal VCC until the reset signal exceeds
1.2 V. The second requirement is that the clock must be valid during the last 60 μs of the reset window. The third
requirement is that, according to the USB specification, the device must be ready to respond to the host within 100 ms.
This means that within the 100-ms window, the device must come out of reset, load any pertinent data from the I2C
EEPROM device, and transfer execution to the application firmware if any is present. Because the latter two events
can require significant time, the amount of which can change from system to system, TI recommends having the
device come out of reset within 30 ms, leaving 70 ms for the other events to complete. This means the reset signal
must rise to 1.8 V within 30 ms.

These requirements are depicted in Figure 13−3. Notice that when using a 12-MHz crystal, the clock signal may take
several milliseconds to ramp up and become valid after power up. Therefore, the reset window may need to be
elongated up to 10 ms or more to ensure that there is a 60-μs overlap with a valid clock.

CLK

RESET

t

VCC

90%

3.3 V

1.2 V

0 V

>60 μs

100 μs < RESET TIME

1.8 V

RESET TIME < 30 ms

Figure 13−3. Reset Timing

PACKAGING INFORMATION

Orderable Device Status (1) Package
Type

Package
Drawing

Pins Package
Qty

Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)

TUSB3410IRHB ACTIVE QFN RHB 32 73 Green (RoHS &
no Sb/Br)

CU NIPDAU Level-2-260C-1 YEAR

TUSB3410IRHBG4 ACTIVE QFN RHB 32 73 Green (RoHS &
no Sb/Br)

CU NIPDAU Level-2-260C-1 YEAR

TUSB3410IRHBR ACTIVE QFN RHB 32 3000 Green (RoHS &
no Sb/Br)

CU NIPDAU Level-2-260C-1 YEAR

TUSB3410IRHBRG4 ACTIVE QFN RHB 32 3000 Green (RoHS &
no Sb/Br)

CU NIPDAU Level-2-260C-1 YEAR

TUSB3410IRHBT ACTIVE QFN RHB 32 250 Green (RoHS &
no Sb/Br)

CU NIPDAU Level-2-260C-1 YEAR

TUSB3410IVF ACTIVE LQFP VF 32 250 Green (RoHS &
no Sb/Br)

CU NIPDAU Level-3-260C-168 HR

TUSB3410IVFG4 ACTIVE LQFP VF 32 250 Green (RoHS &
no Sb/Br)

CU NIPDAU Level-3-260C-168 HR

TUSB3410RHB ACTIVE QFN RHB 32 73 Green (RoHS &
no Sb/Br)

CU NIPDAU Level-2-260C-1 YEAR

TUSB3410RHBG4 ACTIVE QFN RHB 32 73 Green (RoHS &
no Sb/Br)

CU NIPDAU Level-2-260C-1 YEAR

TUSB3410RHBR ACTIVE QFN RHB 32 3000 Green (RoHS &
no Sb/Br)

CU NIPDAU Level-2-260C-1 YEAR

TUSB3410RHBRG4 ACTIVE QFN RHB 32 3000 Green (RoHS &
no Sb/Br)

CU NIPDAU Level-2-260C-1 YEAR

TUSB3410RHBT ACTIVE QFN RHB 32 250 Green (RoHS &
no Sb/Br)

CU NIPDAU Level-2-260C-1 YEAR

TUSB3410VF ACTIVE LQFP VF 32 250 Green (RoHS &
no Sb/Br)

CU NIPDAU Level-3-260C-168 HR

TUSB3410VFG4 ACTIVE LQFP VF 32 250 Green (RoHS &
no Sb/Br)

CU NIPDAU Level-3-260C-168 HR

(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is

PACKAGE OPTION ADDENDUM

www.ti.com 12-Apr-2010

Addendum-Page 1

http://www.ti.com/productcontent

provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TUSB3410 :

• Automotive: TUSB3410-Q1

NOTE: Qualified Version Definitions:

• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

PACKAGE OPTION ADDENDUM

www.ti.com 12-Apr-2010

Addendum-Page 2

http://focus.ti.com/docs/prod/folders/print/tusb3410-q1.html

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device Package
Type

Package
Drawing

Pins SPQ Reel
Diameter

(mm)

Reel
Width

W1 (mm)

A0
(mm)

B0
(mm)

K0
(mm)

P1
(mm)

W
(mm)

Pin1
Quadrant

TUSB3410IRHBR QFN RHB 32 3000 330.0 12.4 5.3 5.3 1.5 8.0 12.0 Q2

TUSB3410IRHBT QFN RHB 32 250 330.0 12.4 5.3 5.3 1.5 8.0 12.0 Q2

TUSB3410RHBR QFN RHB 32 3000 330.0 12.4 5.3 5.3 1.5 8.0 12.0 Q2

TUSB3410RHBT QFN RHB 32 250 330.0 12.4 5.3 5.3 1.5 8.0 12.0 Q2

PACKAGE MATERIALS INFORMATION

www.ti.com 30-May-2012

Pack Materials-Page 1

*All dimensions are nominal

Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)

TUSB3410IRHBR QFN RHB 32 3000 338.1 338.1 20.6

TUSB3410IRHBT QFN RHB 32 250 338.1 338.1 20.6

TUSB3410RHBR QFN RHB 32 3000 338.1 338.1 20.6

TUSB3410RHBT QFN RHB 32 250 338.1 338.1 20.6

PACKAGE MATERIALS INFORMATION

www.ti.com 30-May-2012

Pack Materials-Page 2

http://www.ti.com/lit/slua271

http://www.ti.com/lit/slua271

 MECHANICAL DATA

 MTQF002B – JANUARY 1995 – REVISED MAY 2000

1POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

VF (S-PQFP-G32) PLASTIC QUAD FLATPACK

4040172/D 04/00

Gage Plane

Seating Plane

1,60 MAX

1,45
1,35

8,80
9,20

SQ

0,05 MIN

0,45
0,75

0,25

0,13 NOM

5,60 TYP

1

32

7,20
6,80

24

25

SQ

8

9

17

16

0,25
0,45

0,10

0°–7°

M0,200,80

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such
components to meet such requirements.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive

Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications

Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers

DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP dsp.ti.com Energy and Lighting www.ti.com/energy

Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial

Interface interface.ti.com Medical www.ti.com/medical

Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

