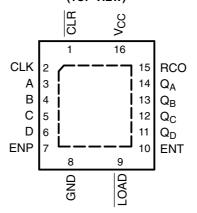
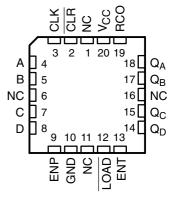

SCLS405F - APRIL 1998 - REVISED APRIL 2005


- 2-V to 5.5-V V_{CC} Operation
- Max t_{pd} of 9.5 ns at 5 V
- Typical V_{OLP} (Output Ground Bounce)
 <0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- Typical V_{OHV} (Output V_{OH} Undershoot)
 >2.3 V at V_{CC} = 3.3 V, T_A = 25°C
- Support Mixed-Mode Voltage Operation on All Ports
- Internal Look Ahead for Fast Counting
- Carry Output for n-Bit Cascading

- Synchronous Counting
- Synchronously Programmable
- I_{off} Supports Partial-Power-Down Mode Operation
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)


SN54LV163A ... J OR W PACKAGE SN74LV163A ... D, DB, DGV, NS, OR PW PACKAGE (TOP VIEW)

SN74LV163A . . . RGY PACKAGE (TOP VIEW)

SN54LV163A . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

description/ordering information

ORDERING INFORMATION

T _A	PACKA	GE [†]	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	QFN – RGY	Reel of 1000	SN74LV163ARGYR	LV163A
	COIC D	Tube of 40	SN74LV163AD	17/4004
	SOIC – D	Reel of 2500	SN74LV163ADR	LV163A
	SOP – NS	Reel of 2000	SN74LV163ANSR	74LV163A
-40°C to 85°C	SSOP – DB	Reel of 2000	SN74LV163ADBR	LV163A
		Tube of 90	SN74LV163APW	
	TSSOP - PW	Reel of 2000	SN74LV163APWR	LV163A
		Reel of 250	SN74LV163APWT	
	TVSOP – DGV	Reel of 2000	SN74LV163ADGVR	LV163A
	CDIP – J	Tube of 25	SNJ54LV163AJ	SNJ54LV163AJ
–55°C to 125°C	.55°C to 125°C		SNJ54LV163AW	SNJ54LV163AW
	LCCC – FK Tube of 55		SNJ54LV163AFK	SNJ54LV163AFK

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SCLS405F - APRIL 1998 - REVISED APRIL 2005

description/ordering information (continued)

The 'LV163A devices are 4-bit synchronous binary counters designed for 2-V to 5.5-V V_{CC} operation.

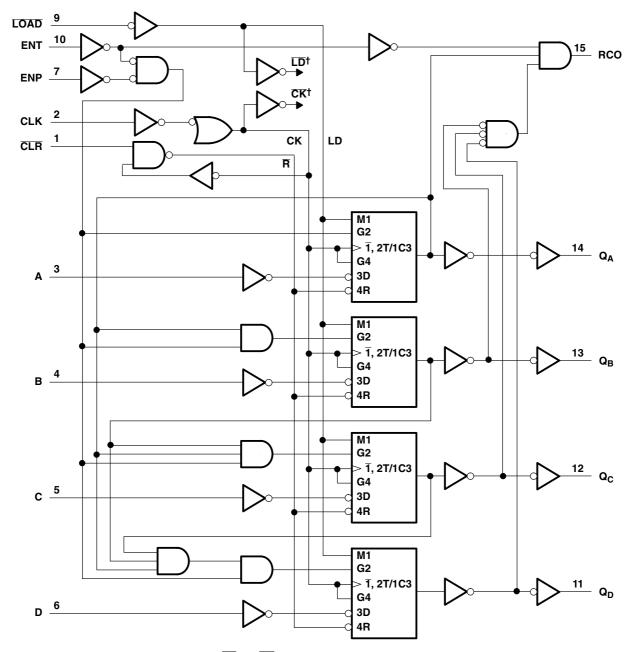
These synchronous, presettable counters feature an internal carry look ahead for application in high-speed counting designs. The 'LV163A devices are 4-bit binary counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when instructed by the count-enable (ENP, ENT) inputs and internal gating. This mode of operation eliminates the output counting spikes normally associated with synchronous (ripple-clock) counters. A buffered clock (CLK) input triggers the four flip-flops on the rising (positive-going) edge of the clock waveform.

These counters are fully programmable; that is, they can be preset to any number between 0 and 9 or 15. As presetting is synchronous, setting up a low level at the load input disables the counter and causes the outputs to agree with the setup data after the next clock pulse, regardless of the levels of the enable inputs.

The clear function for the 'LV163A devices is synchronous. A low level at the clear (CLR) input sets all four of the flip-flop outputs low after the next low-to-high transition of CLK, regardless of the levels of the enable inputs. This synchronous clear allows the count length to be modified easily by decoding the Q outputs for the maximum count desired. The active-low output of the gate used for decoding is connected to CLR to synchronously clear the counter to 0000 (LLLL).

The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. ENP, ENT, and a ripple-carry output (RCO) are instrumental in accomplishing this function. Both ENP and ENT must be high to count, and ENT is fed forward to enable RCO. Enabling RCO produces a high-level pulse while the count is maximum (9 or 15 with Q_A high). This high-level overflow ripple-carry pulse can be used to enable successive cascaded stages. Transitions at ENP or ENT are allowed, regardless of the level of CLK.

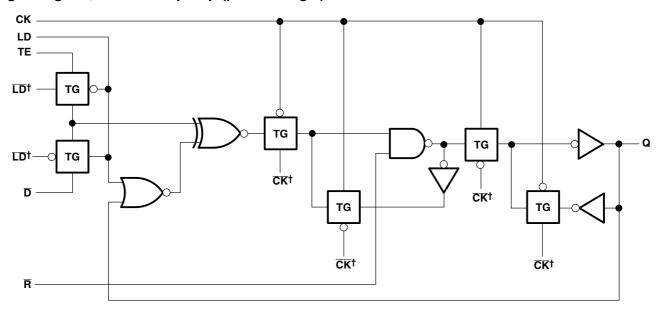
These counters feature a fully independent clock circuit. Changes at control inputs (ENP, ENT, or $\overline{\text{LOAD}}$) that modify the operating mode have no effect on the contents of the counter until clocking occurs. The function of the counter (whether enabled, disabled, loading, or counting) is dictated solely by the conditions meeting the stable setup and hold times.


These devices are fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down.

FUNCTION TABLE

	II.	NPUTS				OUTI	PUTS		
CLR	LOAD	ENP	ENT	CLK	QA	QB	QC	QD	FUNCTION
L	Х	Χ	Χ	Χ	L	L	L	L	Reset to "0"
Н	L	X	Χ		Α	В	С	D	Preset data
Н	Н	X	L			No ch	nange		No count
Н	Н	L	Χ		No change				No count
Н	Н	Н	Н		Count up				Count
Н	Х	Χ	Χ			No ch	nange		No count

logic diagram (positive logic)

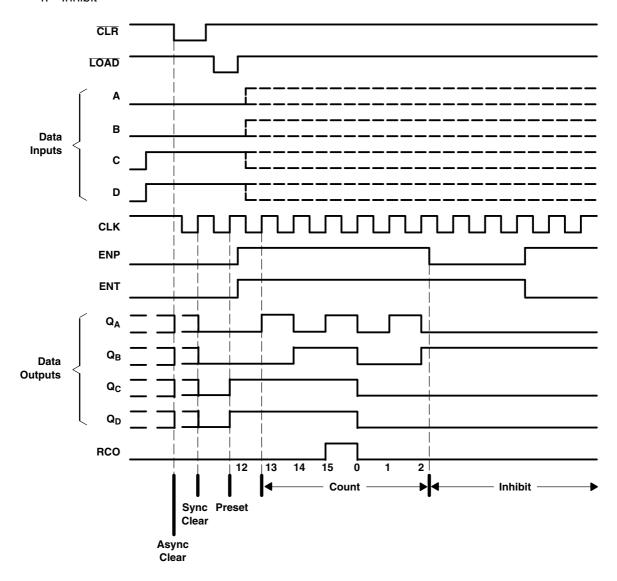


 $^{^{\}dagger}$ For simplicity, routing of complementary signals $\overline{\text{LD}}$ and $\overline{\text{CK}}$ is not shown on this overall logic diagram. The uses of these signals are shown on the logic diagram of the D/T flip-flops.

Pin numbers shown are for the D, DB, DGV, J, NS, PW, RGY, and W packages.

SCLS405F - APRIL 1998 - REVISED APRIL 2005

logic diagram, each D/T flip-flop (positive logic)



 $^{^\}dagger$ The origins of $\overline{\text{LD}}$ and $\overline{\text{CK}}$ are shown in the overall logic diagram of the device.

typical clear, preset, count, and inhibit sequence

The following sequence is illustrated below:

- 1. Clear outputs to zero (synchronous)
- 2. Preset to binary 12
- 3. Count to 13, 14, 15, 0, 1, and 2
- 4. Inhibit

SN54LV163A, SN74LV163A 4-BIT SYNCHRONOUS BINARY COUNTERS

SCLS405F - APRIL 1998 - REVISED APRIL 2005

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	0.5 V to 7 V
Input voltage range, V _I (see Note 1)	–0.5 V to 7 V
Output voltage range applied in high or low state, V _O (see Notes 1 and 2)	$-0.5 \text{ V to V}_{CC} + 0.5 \text{ V}$
Voltage range applied to any output in the power-off state, V _O (see Note 1) .	–0.5 V to 7 V
Input clamp current, I _{IK} (V _I < 0)	–20 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Continuous output current, I _O (V _O = 0 to V _{CC})	±25 mA
Continuous current through V _{CC} or GND	±50 mA
Package thermal impedance, θ_{JA} (see Note 3): D package	73°C/W
(see Note 3): DB package	82°C/W
(see Note 3): DGV package	120°C/W
(see Note 3): NS package	64°C/W
(see Note 3): PW package	108°C/W
(see Note 4): RGY package	39°C/W
Storage temperature range, T _{stg}	65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

- 2. This value is limited to 5.5 V maximum.
- 3. The package thermal impedance is calculated in accordance with JESD 51-7.
- 4. The package thermal impedance is calculated in accordance with JESD 51-5.

recommended operating conditions (see Note 5)

			SN54L	V163A	SN74L	V163A	
			MIN	MAX	MIN	MAX	UNIT
V_{CC}	Supply voltage		2	5.5	2	5.5	V
		V _{CC} = 2 V	1.5		1.5		
V	High leveling decline	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	$V_{CC} \times 0.7$		$V_{CC} \times 0.7$		v
V_{IH}	High-level input voltage	$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$	$V_{CC} \times 0.7$		$V_{CC} \times 0.7$		V
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	$V_{CC} \times 0.7$		$V_{CC} \times 0.7$		
		V _{CC} = 2 V		0.5		0.5	
V	Lauria de la contra del la contra del la contra del la contra de la contra del la contra de la contra de la contra del la co	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		$V_{CC} \times 0.3$		$V_{CC} \times 0.3$	v
V_{IL}	Low-level input voltage	$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$		$V_{CC} \times 0.3$		$V_{CC} \times 0.3$	V
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$.4	$V_{CC} \times 0.3$		$V_{CC} \times 0.3$	
VI	Input voltage		0,0	5.5	0	5.5	V
Vo	Output voltage		0	V_{CC}	0	V _{CC}	V
		V _{CC} = 2 V	O. C.	-50		-50	μΑ
	High level autout aument	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		-2		-2	
l _{OH}	High-level output current	$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$		-6		-6	mA
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		-12		-12	
		V _{CC} = 2 V		50		50	μΑ
	I am laval ambank amant	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		2		2	
I _{OL}	Low-level output current	$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$		6		6	mA
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		12		12	
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		200		200	
Δt/Δν	/ Input transition rise or fall rate	$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$		100		100	ns/V
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		20		20	
T_A	Operating free-air temperature		-55	125	-40	85	°C

NOTE 5: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

24244555	TEGT COMPLETIONS		SN5	4LV163A		SN74	1LV163A	1	
PARAMETER	TEST CONDITIONS	v _{cc}	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
	$I_{OH} = -50 \mu A$	2 V to 5.5 V	V _{CC} -0.1			V _{CC} -0.1			
V	$I_{OH} = -2 \text{ mA}$	2.3 V	2			2			V
V _{OH}	$I_{OH} = -6 \text{ mA}$	3 V	2.48			2.48			V
	$I_{OH} = -12 \text{ mA}$	4.5 V	3.8	3		3.8			
	I _{OL} = 50 μA	2 V to 5.5 V		, I	0.1			0.1	
	I _{OL} = 2 mA	2.3 V		17	0.4			0.4	V
V_{OL}	I _{OL} = 6 mA	3 V		6	0.44			0.44	V
	I _{OL} = 12 mA	4.5 V	2,.	5	0.55			0.55	
lį	V _I = 5.5 V or GND	0 to 5.5 V	000		±1			±1	μΑ
I _{CC}	$V_I = V_{CC}$ or GND, $I_O = 0$	5.5 V	Q.		20			20	μΑ
l _{off}	V_I or $V_O = 0$ to 5.5 V	0			5			5	μΑ
C _i	V _I = V _{CC} or GND	3.3 V		1.8			1.8		pF

SN54LV163A, SN74LV163A 4-BIT SYNCHRONOUS BINARY COUNTERS

SCLS405F - APRIL 1998 - REVISED APRIL 2005

timing requirements over recommended operating free-air temperature range, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 1)

			T _A = 2	25°C	SN54L	/163A	SN74LV163A		LINUT
			MIN	MAX	MIN	MAX	MIN	MAX	UNIT
t _w	Pulse duration, CLK high or low		7		7		7		ns
		CLR	6		6	4	6		
	0	Data (A, B, C, and D)	7.5		8.5	15.71	8.5		
t _{su}	Setup time before CLK↑	ENP, ENT	9.5		्रभार	71.	11		ns
		LOAD low	10		11.5		11.5		
t _h	Hold time, all synchronous inputs after CLK↑		1.5		1.5		1.5		ns

timing requirements over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

			T _A = 2	25°C	SN54L	V163A	SN74LV163A		LINUT
			MIN	MAX	MIN	MAX	MIN	MAX	UNIT
t _w	Pulse duration, CLK high or low		5		5		5		ns
		CLR	4		4	4	4		
	Outros Proce hadran OLIVA	Data (A, B, C, and D)	5.5		6.5	15.11	6.5		
t _{su}	Setup time before CLK↑	ENP, ENT	7.5		9	71.	9		ns
		LOAD low	8		9.5		9.5		
t _h	Hold time, all synchronous inputs after CLK↑		1		1		1		ns

timing requirements over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

			$T_A = 2$	25°C	SN54L	/163A	SN74LV163A		
			MIN	MAX	MIN	MAX	MIN	MAX	UNIT
t _w	Pulse duration, CLK high or low		5		5		5		ns
	CLR	3.5		3.5	4	3.5			
	Octor than before OLIC	Data (A, B, C, and D)	4.5		4.5	15.11	4.5		
t _{su}	Setup time before CLK↑	ENP, ENT	5		6	71.	6		ns
		LOAD low	5		6		6		
t _h	Hold time, all synchronous inputs after $CLK \uparrow$		1		1		1		ns

SCLS405F - APRIL 1998 - REVISED APRIL 2005

switching characteristics over recommended operating free-air temperature range, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 1)

DADAMETED	FROM	то	LOAD	Т	_A = 25°C	;	SN54L	/163A	SN74L	/163A	
PARAMETER	(INPUT)	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
			C _L = 15 pF	50*	115*		40*		40		MHz
f _{max}			C _L = 50 pF	30	90		25		25		IVI□Z
		Q			8.5*	16.2*	1*	19.5*	1	19.5	
	CLK	RCO (count mode)	0 45 = 5		9.1*	17*	1*	20.5*	1	20.5	
t _{pd}		RCO (preset mode)	C _L = 15 pF		12.1*	20.6*	1* (24.5*	1	24.5	ns
	ENT	RCO			8.7*	15.7*	10	19*	1	19	
		Q			11	19.2	91	22.5	1	22.5	
	CLK	RCO (count mode)	C = 50 pE		11.9	20	y 1	23.5	1	23.5	ns
t _{pd}		RCO (preset mode)	C _L = 50 pF		14.6	23.6	1	27.5	1	27.5	115
	ENT	RCO			11.7	18.7	1	22	1	22	

^{*} On products compliant to MIL-PRF-38535, this parameter is not production tested.

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

	FROM	то	LOAD	T,	_A = 25°C	;	SN54L\	/163A	SN74L	/163A	
PARAMETER	(INPUT)	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
· ·			C _L = 15 pF	80*	160*		70*		70		MHz
f _{max}			C _L = 50 pF	55	125		50		50		IVITZ
		Q			6.2*	12.8*	1*	15*	1	15	
	CLK	RCO (count mode)	0 45 5		6.8*	13.6*	1*	16*	1	16	
t _{pd}		RCO (preset mode)	C _L = 15 pF		8.8*	17.2*	1* <	20*	1	20	ns
	ENT	RCO			6.5*	12.3*	1 (5)	14.5*	1	14.5	
		Q			8	16.3	Q ₁	18.5	1	18.5	
• .	CLK	RCO (count mode)	C _L = 50 pF		8.8	17.1	1	19.5	1	19.5	ns
t _{pd}		RCO (preset mode)	O _L = 50 μr		10.7	20.7	1	23.5	1	23.5	115
	ENT	RCO			8.2	15.8	1	18	1	18	

^{*} On products compliant to MIL-PRF-38535, this parameter is not production tested.

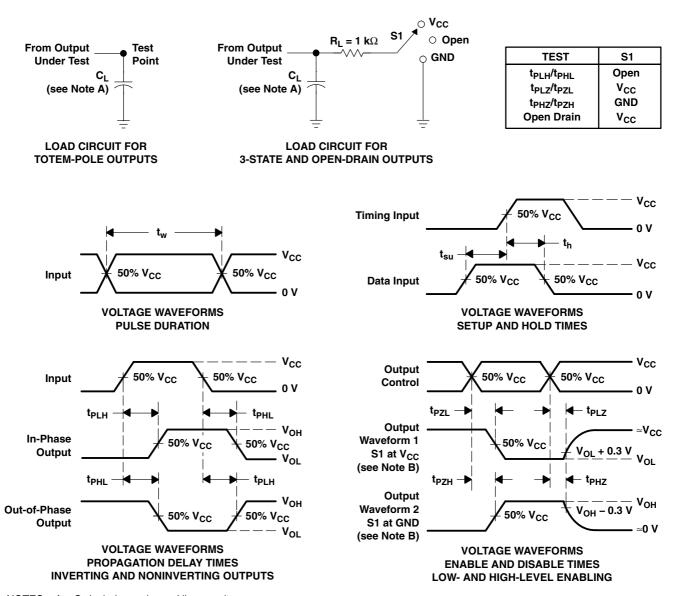
SCLS405F - APRIL 1998 - REVISED APRIL 2005

switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

DADAMETED	FROM	то	LOAD	T	_A = 25°C	;	SN54L\	/163A	SN74LV	/163A	LINUT
PARAMETER	(INPUT)	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
4			C _L = 15 pF	135*	210*		115*		115		N 41 1-
f _{max}			C _L = 50 pF	95	160		85		85		MHz
		Q			4.7*	8.1*	1*	9.5*	1	9.5	
	CLK	RCO (count mode)	0 45 = 5		5.2*	8.1*	1*	9.5*	1	9.5	
t _{pd}		RCO (preset mode)	C _L = 15 pF		6.4*	10.3*	1*	12*	1	12	ns
	ENT	RCO			4.9*	8.1*	10	9.5*	1	9.5	
		Q			6.1	10.1	01	11.5	1	11.5	
	CLK	RCO (count mode)	C = 50 5E		6.6	10.1	1	11.5	1	11.5	ns
t _{pd}		RCO (preset mode)	C _L = 50 pF		7.8	12.3	1	14	1	14	119
	ENT	RCO			6.3	10.1	1	11.5	1	11.5	

^{*} On products compliant to MIL-PRF-38535, this parameter is not production tested.

noise characteristics, V_{CC} = 3.3 V, C_L = 50 pF, T_A = 25°C (see Note 6)


	DADAMETED	SN	74LV163	BA	
	PARAMETER	MIN	TYP	MAX	UNIT
V _{OL(P)}	Quiet output, maximum dynamic V _{OL}		0.3	8.0	V
V _{OL(V)}	Quiet output, minimum dynamic V _{OL}		-0.2	-0.8	٧
V _{OH(V)}	Quiet output, minimum dynamic V _{OH}		3		٧
V _{IH(D)}	High-level dynamic input voltage	2.31			٧
$V_{IL(D)}$	Low-level dynamic input voltage			0.99	V

NOTE 6: Characteristics are for surface-mount packages only.

operating characteristics, $T_A = 25^{\circ}C$

PARAMETER			TEST CONDITIONS			UNIT
C _{pd}	Power dissipation capacitance	0 50 - 5	f = 10 MHz	3.3 V	23.8	pF
		$C_L = 50 \text{ pF},$	I = IU WINZ	5 V	26	þΓ

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_{\rm O} = 50~\Omega$, $t_{\rm f} \leq$ 3 ns. $t_{\rm f} \leq$ 3 ns.
- D. The outputs are measured one at a time, with one input transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis}.
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- t_{PHL} and t_{PLH} are the same as t_{pd}.
- H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

www.ti.com 13-Aug-2021

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SN74LV163AD	ACTIVE	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LV163A	Samples
SN74LV163ADBR	ACTIVE	SSOP	DB	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LV163A	Samples
SN74LV163ADGVR	ACTIVE	TVSOP	DGV	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LV163A	Samples
SN74LV163ADR	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LV163A	Samples
SN74LV163ANSR	ACTIVE	SO	NS	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	74LV163A	Samples
SN74LV163APW	ACTIVE	TSSOP	PW	16	90	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LV163A	Samples
SN74LV163APWR	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LV163A	Samples
SN74LV163APWRG4	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LV163A	Samples
SN74LV163APWT	ACTIVE	TSSOP	PW	16	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LV163A	Samples
SN74LV163ARGYR	ACTIVE	VQFN	RGY	16	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	LV163A	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

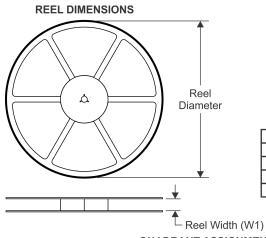
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

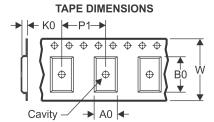
PACKAGE OPTION ADDENDUM

www.ti.com 13-Aug-2021

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

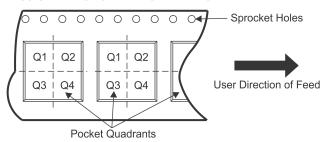
(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

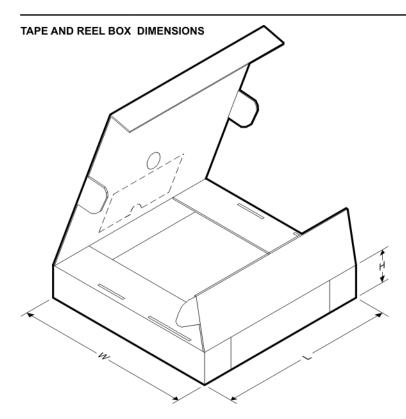
PACKAGE MATERIALS INFORMATION

www.ti.com 23-Mar-2022


TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

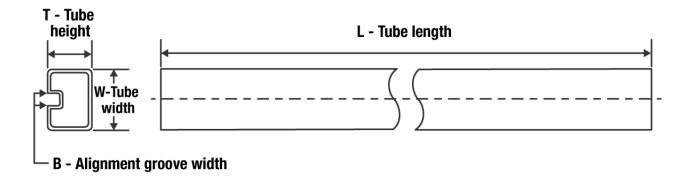
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LV163ADBR	SSOP	DB	16	2000	330.0	16.4	8.35	6.6	2.4	12.0	16.0	Q1
SN74LV163ADGVR	TVSOP	DGV	16	2000	330.0	12.4	6.8	4.0	1.6	8.0	12.0	Q1
SN74LV163ADR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74LV163ANSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
SN74LV163APWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74LV163APWT	TSSOP	PW	16	250	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74LV163ARGYR	VQFN	RGY	16	3000	330.0	12.4	3.8	4.3	1.5	8.0	12.0	Q1

www.ti.com 23-Mar-2022

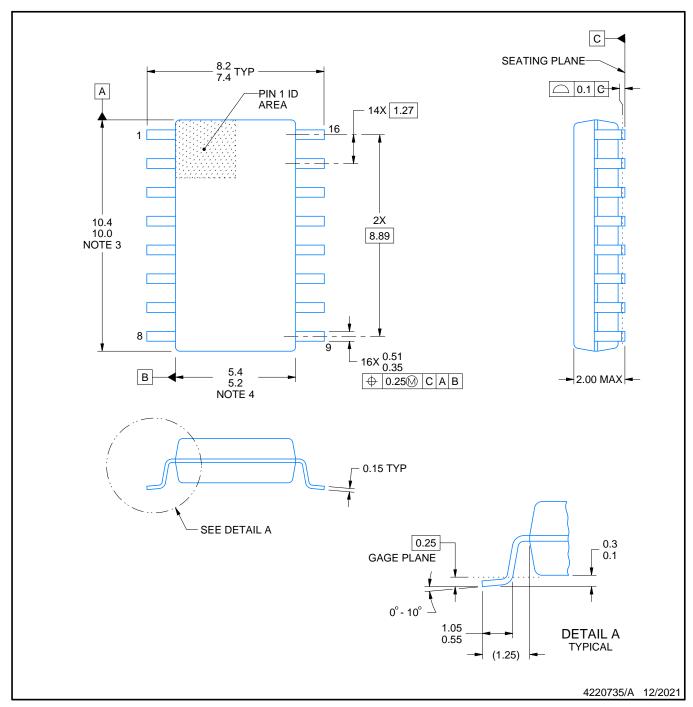

*All dimensions are nominal

	-						
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LV163ADBR	SSOP	DB	16	2000	853.0	449.0	35.0
SN74LV163ADGVR	TVSOP	DGV	16	2000	853.0	449.0	35.0
SN74LV163ADR	SOIC	D	16	2500	340.5	336.1	32.0
SN74LV163ANSR	SO	NS	16	2000	853.0	449.0	35.0
SN74LV163APWR	TSSOP	PW	16	2000	853.0	449.0	35.0
SN74LV163APWT	TSSOP	PW	16	250	853.0	449.0	35.0
SN74LV163ARGYR	VQFN	RGY	16	3000	853.0	449.0	35.0

PACKAGE MATERIALS INFORMATION

www.ti.com 23-Mar-2022

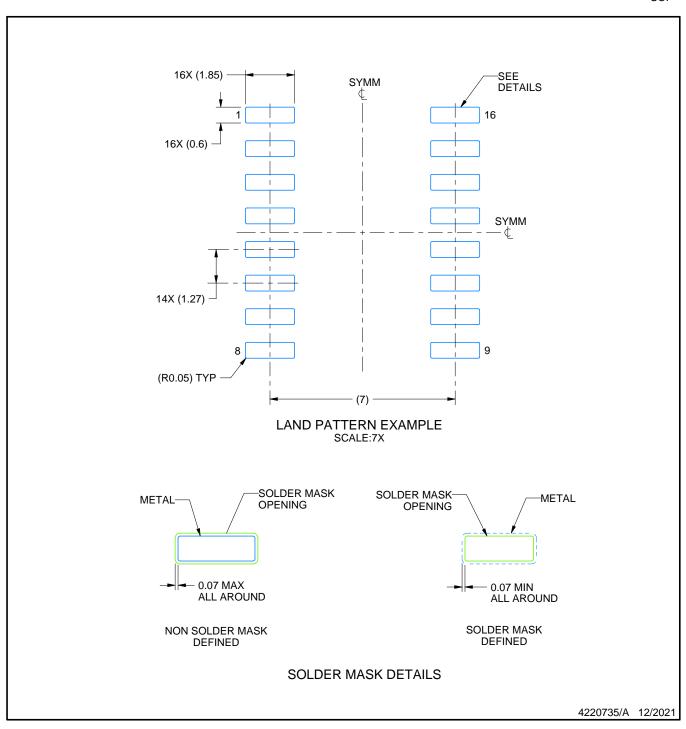
TUBE



*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
SN74LV163AD	D	SOIC	16	40	507	8	3940	4.32
SN74LV163APW	PW	TSSOP	16	90	530	10.2	3600	3.5

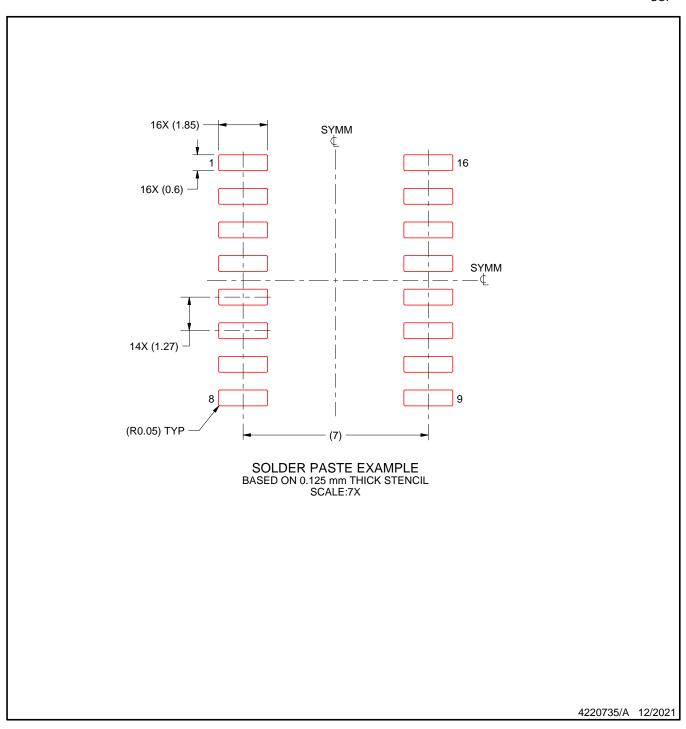
SOP


- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing
- per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.

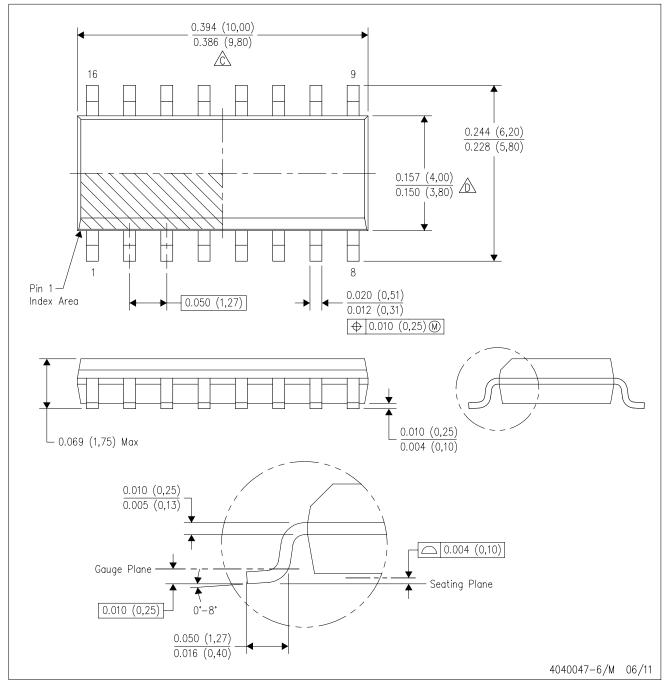
SOF



NOTES: (continued)

- 5. Publication IPC-7351 may have alternate designs.
- 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

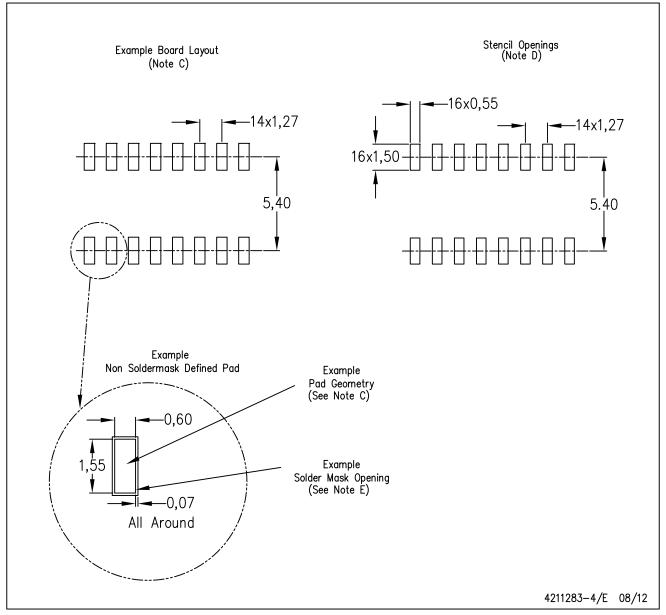
SOF


NOTES: (continued)

- 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.

D (R-PDS0-G16)

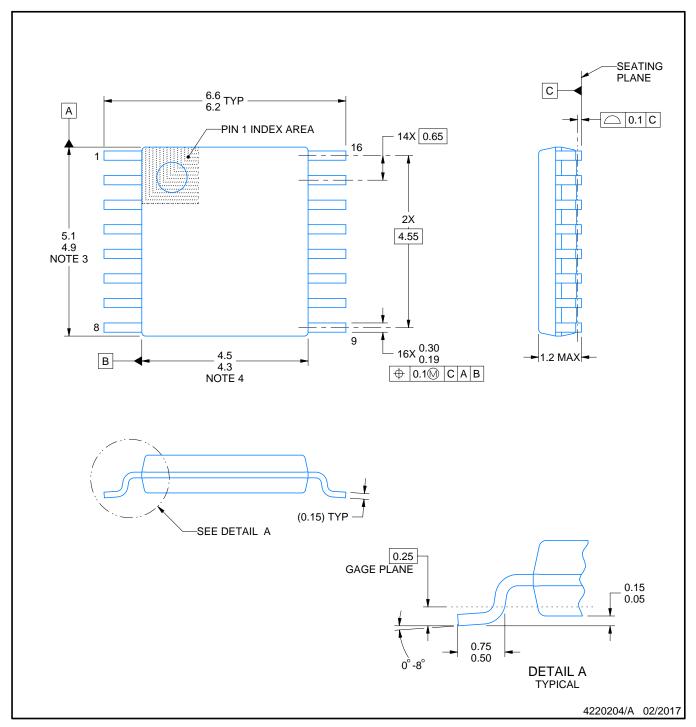
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

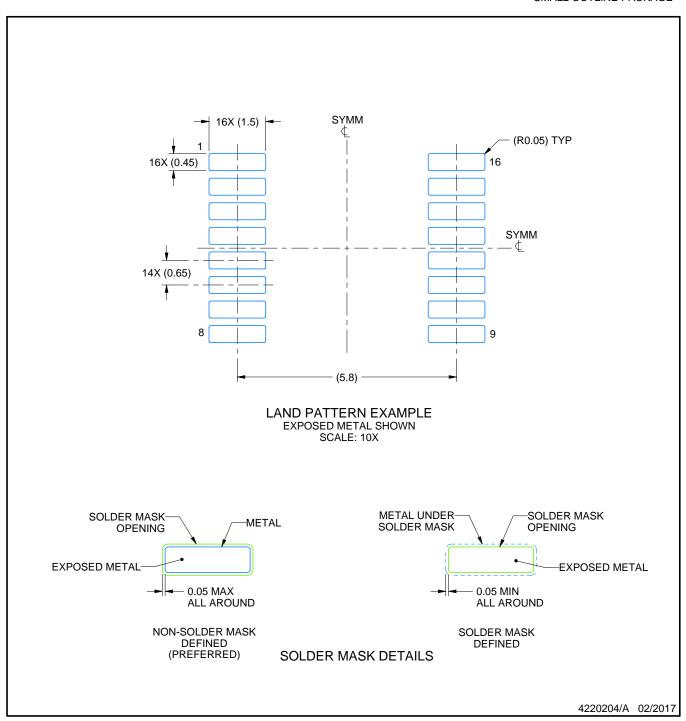
D (R-PDSO-G16)

PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

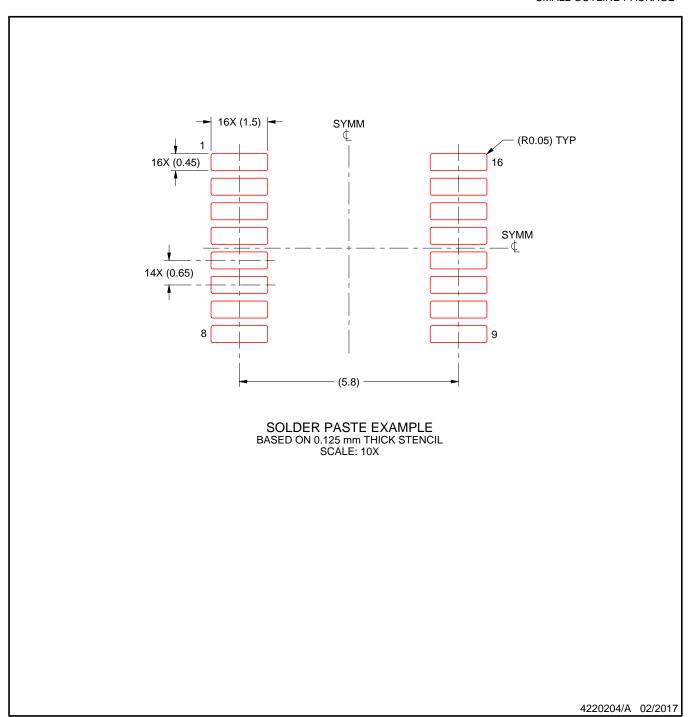
SMALL OUTLINE PACKAGE


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

SMALL OUTLINE PACKAGE


NOTES: (continued)

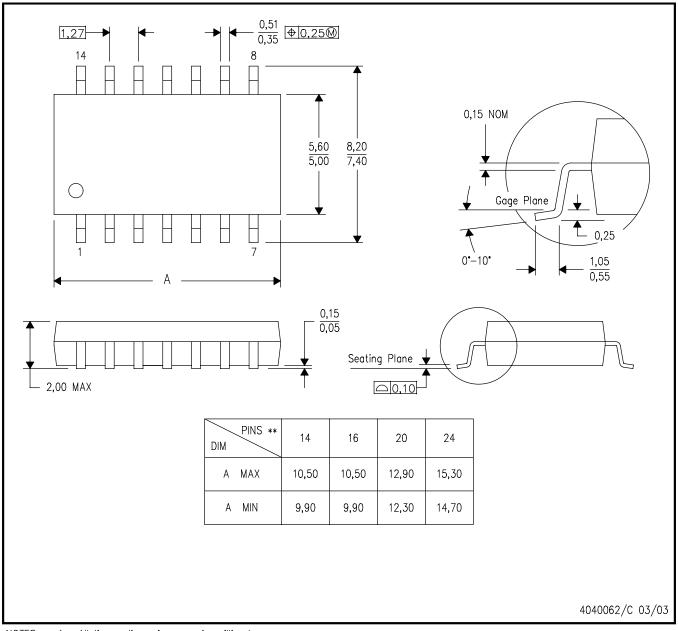
6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

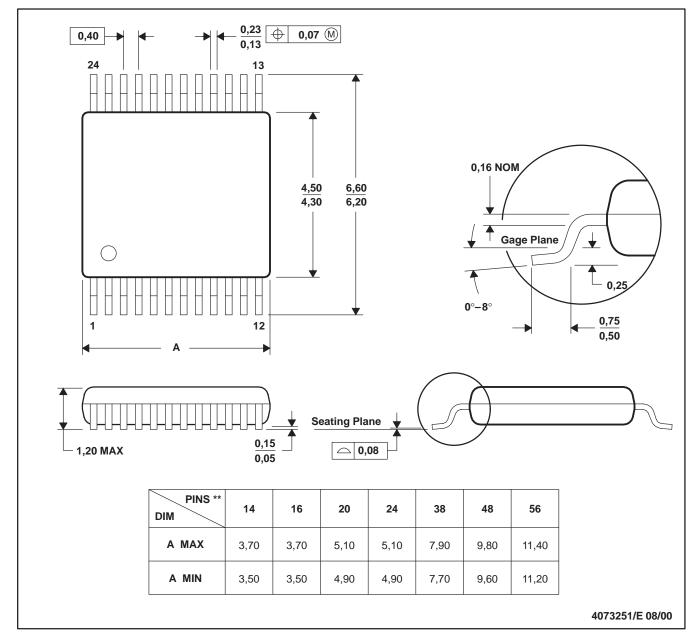


MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE


- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

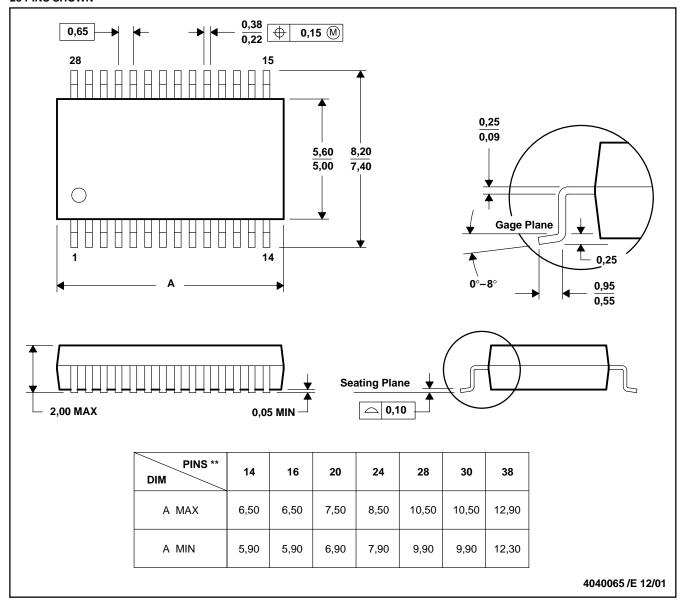
DGV (R-PDSO-G**)

24 PINS SHOWN

PLASTIC SMALL-OUTLINE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

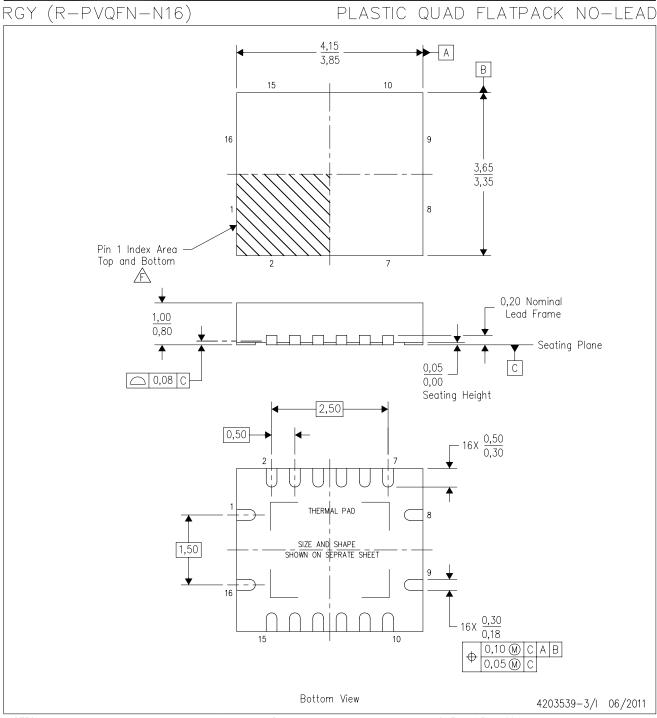

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.

D. Falls within JEDEC: 24/48 Pins – MO-153 14/16/20/56 Pins – MO-194

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN



NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

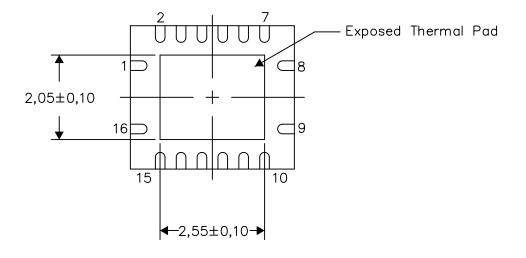
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-150

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. QFN (Quad Flatpack No-Lead) package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- Pin 1 identifiers are located on both top and bottom of the package and within the zone indicated. The Pin 1 identifiers are either a molded, marked, or metal feature.
- G. Package complies to JEDEC MO-241 variation BA.

RGY (R-PVQFN-N16)


PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

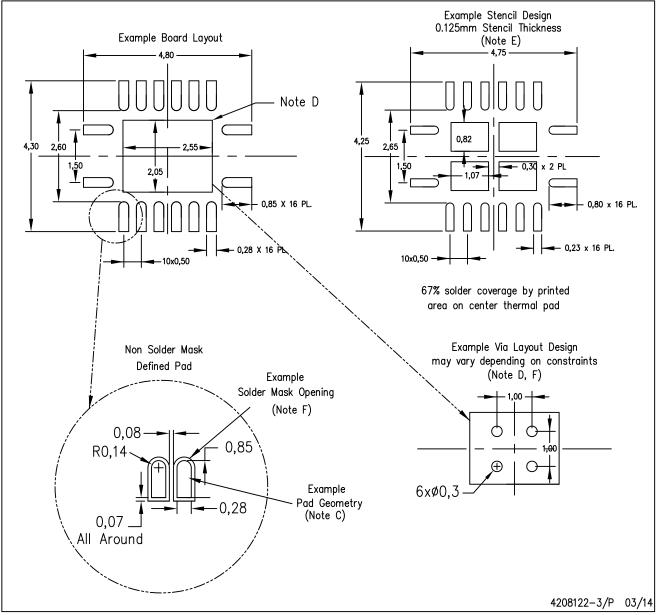
This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Bottom View

Exposed Thermal Pad Dimensions


4206353-3/P 03/14

NOTE: All linear dimensions are in millimeters

RGY (R-PVQFN-N16)

PLASTIC QUAD FLATPACK NO-LEAD

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat—Pack QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated