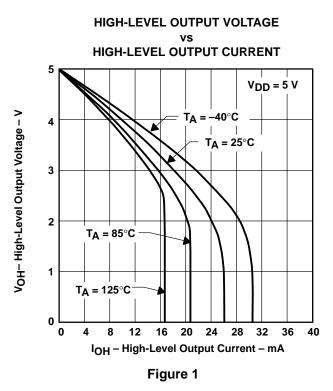
TLV2422, TLV2422A, TLV2422Y Advanced LinCMOS™ RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS SLOS199C – SEPTEMBER 1997 – REVISED APRIL 2001


- Output Swing Includes Both Supply Rails
- Extended Common-Mode Input Voltage Range . . . 0 V to 4.5 V (Min) With 5-V Single Supply
- No Phase Inversion
- Low Noise . . . 18 nV/ \sqrt{Hz} Typ at f = 1 kHz
- Low Input Offset Voltage 950 μV Max at T_A = 25°C (TLV2422A)

description

The TLV2422 and TLV2422A are dual low-voltage operational amplifiers from Texas Instruments. The common-mode input voltage range for this device has been extended over the typical CMOS amplifiers making them suitable for a wide range of applications. In addition, the devices do not phase invert when the common-mode input is driven to the supply rails. This satisfies most design requirements without paying a premium for rail-to-rail input performance. They also exhibit rail-to-rail output performance for increased dynamic range in single- or split-supply applications. This family is fully characterized at 3-V and 5-V supplies and is optimized for low-voltage operation. The TLV2422 only requires 50 µA of supply current per channel, making it ideal for battery-powered applications. The TLV2422 also has increased output drive over previous rail-to-rail operational amplifiers and can drive $600-\Omega$ loads for telecom applications.

Other members in the TLV2422 family are the high-power, TLV2442, and low-power, TLV2432, versions.

- Low Input Bias Current . . . 1 pA Typ
- Micropower Operation . . . 50 μA Per Channel
- 600-Ω Output Drive
- Available in Q-Temp Automotive HighRel Automotive Applications Configuration Control / Print Support Qualification to Automotive Standards

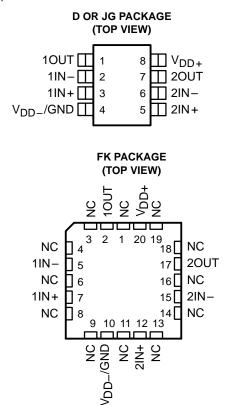
The TLV2422, exhibiting high input impedance and low noise, is excellent for small-signal conditioning for high-impedance sources, such as piezoelectric transducers. Because of the micropower dissipation levels and low-voltage operation, these devices work well in hand-held monitoring and remote-sensing applications. In addition, the rail-to-rail output feature with single- or split-supplies makes this family a great choice when interfacing with analog-to-digital converters (ADCs). For precision applications, the TLV2422A is available with a maximum input offset voltage of 950 μ V.

If the design requires single operational amplifiers, see the TI TLV2211/21/31. This is a family of rail-to-rail output operational amplifiers in the SOT-23 package. Their small size and low power consumption, make them ideal for high density, battery-powered equipment.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

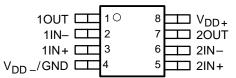
Advanced LinCMOS is a trademark of Texas Instruments.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

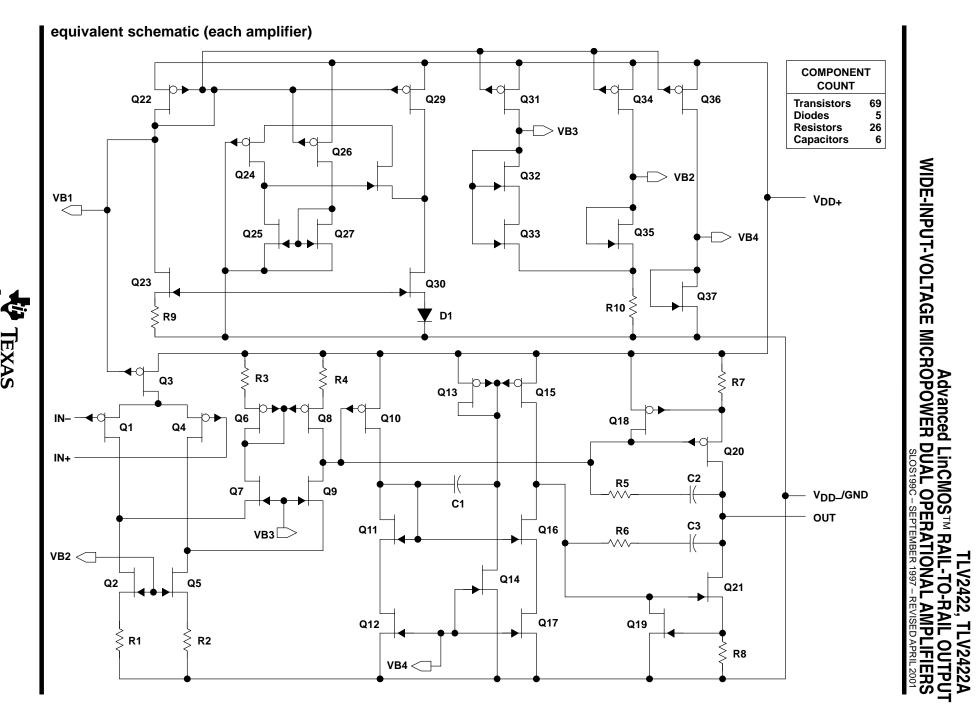


Copyright © 2001, Texas Instruments Incorporated On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters.

SLOS199C - SEPTEMBER 1997 - REVISED APRIL 2001


		-	AVAILA	BLE OPTIONS				
		PACKAGED DEVICES						
TA	V _{IO} max AT 25°C	SMALL OUTLINE (D)	CHIP CARRIER (FK)	CERAMIC DIP (JG)	TSSOP (PW)	CERAMIC FLAT PACK (U)	CHIP FORM (Y)	
0°C to 70°C	2.5 mV	TLV2422CD	_	—	TLV2422CPWLE	—		
-40°C to 85°C	950 μV 2.5 mV	TLV2422AID TLV2422ID		—	TLV2422AIPWLE —	—		
-40°C to 125°C	950 μV 2.5 mV	TLV2422AQD TLV2422QD					TLV2422Y	
-55°C to 125°C	950 μV 2 mV	_	TLV2422AMFK TLV2422MFK	TLV2422AMJG TLV2422MJG	_	TLV2422AMU TLV2422MU		

The D packages are available taped and reeled. Add R suffix to device type (e.g., TLV2422CDR). The PW package is available only left-end taped and reeled. Chips are tested at 25°C.


NC - No internal connection

PW PACKAGE (TOP VIEW)

U PACKAGE (TOP VIEW)

TEXAS INSTRUMENTS POST OFFICE BOX 655333 DALLAS, TEXAS 75265

SLOS199C - SEPTEMBER1997 - REVISED APRIL 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage, V_{DD} (see Note 1) Differential input voltage, V_{ID} (see Note 2) Input voltage, V_I (any input, see Note 1): C and I suffix Input current, I_I (each input) Output current, I_O	$\begin{array}{c} & \pm V_{DD} \\ & -0.3 \text{ V to } V_{DD} \\ & \pm 5 \text{ mA} \end{array}$
Total current into V _{DD+}	±50 mA
Total current out of V _{DD}	±50 mA
Duration of short-circuit current at (or below) 25°C (see Note 3)	unlimited
Continuous total power dissipation	
Operating free-air temperature range, T _A : C suffix	0°C to 70°C
	–40°C to 85°C
Q suffix	–40°C to 125°C
M suffix	–55°C to 125°C
Storage temperature range, T _{stg}	–65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V_{DD+} and V_{DD-}.

2. Differential voltages are at IN+ with respect to IN-. Excessive current flows if input is brought below V_{DD}--0.3 V.

3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
D	725 mW	5.8 mW/°C	464 mW	377 mW	145 mW
FK	1375 mW	11.0 mW/°C	880 mW	715 mW	275 mW
JG	1050 mW	8.4 mW/°C	672 mW	546 mW	210 mW
PW	525 mW	4.2 mW/°C	336 mW	273 mW	105 mW
U	675 mW	5.4 mW/°C	432 mW	350 mW	135 mW

recommended operating conditions

	C	SUFFIX	19	SUFFIX	Q	SUFFIX	М	SUFFIX	UNIT
	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
Supply voltage, $V_{DD\pm}$	2.7	10	2.7	10	2.7	10	2.7	10	V
Input voltage range, VI	V _{DD} -	V _{DD+} -0.8	V						
Common-mode input voltage, VIC	V _{DD} -	V _{DD+} -0.8	V						
Operating free-air temperature, TA	0	70	-40	85	-40	125	-55	125	°C

SLOS199C - SEPTEMBER1997 - REVISED APRIL 2001

electrical characteristics at specified free-air temperature, V_{DD} = 3 V (unless otherwise noted)

		TEAT OF			Т	LV24220	:	
	PARAMETER	l lesi co	NDITIONS	T _A †	MIN	TYP	MAX	UNIT
\/	Innut offect veltere			25°C		300	2000	
VIO	Input offset voltage			Full range			2500	μV
αΛΙΟ	Temperature coefficient of input offset voltage]		25°C to 70°C		2		μV/°C
	Input offset voltage long-term drift (see Note 4)	$V_{IC} = 0,$ $V_{O} = 0,$	$V_{DD} \pm = \pm 2.5 \text{ V},$ R _S = 50 Ω	25°C		0.003		μV/mc
lio	Input offset current	VU = 0,	1(2 - 30 22	25°C		0.5	60	pА
IIO				Full range			150	рл
IIB	Input bias current			25°C		1	60	pА
.ID				Full range			150	
VICR	Common-mode input voltage range	V _{IO} ≤ 5 mV,	R _S = 50 Ω	25°C	0 to 2.5	-0.25 to 2.75		V
"ICR		v 0 <u>-</u> 3 mv,	115 - 30 22	Full range	0 to 2.2			v
		I _{OH} = -100 μA		25°C		2.97		
VOH	High-level output voltage	I _{OH} = -500 μA		25°C		2.75		V
		1OH = -200 μA		Full range	2.5			
		V _{IC} = 0,	l _{OL} = 100 μA	25°C		0.05		
VOL	Low-level output voltage	VIC = 0,	I _{OL} = 250 μA	25°C		0.2		V
		.,	.0L _00 m.t	Full range			0.5	
		V _{IC} = 2.5 V,	$R_L = 10 k\Omega^{\ddagger}$	25°C	6	10		
AVD	Large-signal differential voltage amplification	$V_0 = 1 V \text{ to } 2 V$		Full range	3			V/mV
			$R_L = 1 M\Omega^{\ddagger}$	25°C		700		
^r i(d)	Differential input resistance			25°C		1012		Ω
^r i(c)	Common-mode input resistance			25°C		1012		Ω
^C i(c)	Common-mode input capacitance	f = 10 kHz		25°C		8		pF
z ₀	Closed-loop output impedance	f = 100 kHz,	A _V = 10	25°C		130		Ω
CMRR	Common-mode rejection ratio	$V_{IC} = 0$ to 2.5 V,	V _O = 1.5 V,	25°C	70	83		dB
		R _S = 50 Ω		Full range	70			
ksvr	Supply-voltage rejection ratio ($\Delta V_{DD}/\Delta V_{IO}$)	$V_{DD} = 2.7 V \text{ to } 8$		25°C	80	95		dB
0.01		$V_{IC} = V_{DD}/2$,	No load	Full range	80			
IDD	Supply current	V _O = 1.5 V,	No load	25°C		100	150	μA
				Full range			175	•

[†] Full range is 0°C to 70°C.

‡Referenced to 2.5 V

NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at T_A = 150°C extrapolated to $T_A = 25^{\circ}C$ using the Arrhenius equation and assuming an activation energy of 0.96 eV.

SLOS199C - SEPTEMBER1997 - REVISED APRIL 2001

electrical characteristics at specified free-air temperature, V_{DD} = 3 V (unless otherwise noted)

		TEAT OF		- +	Г	LV2422	I	Т	LV2422A	AI	
	PARAMETER	TEST CO	NDITIONS	тд†	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
V/	lanut effect veltere			25°C		300	2000		300	950	
VIO	Input offset voltage			Full range			2500			1500	μV
αNIO	Temperature coefficient of input offset voltage			25°C to 70°C		2			2		μV/°C
	Input offset voltage long-term drift (see Note 4)	$V_{IC} = 0,$ $V_{O} = 0,$	$V_{DD} \pm = \pm 2.5 \text{ V},$ R _S = 50 Ω	25°C		0.003			0.003		μV/mc
10	Input offset current			25°C		0.5	60		0.5	60	pА
U	input onset current			Full range			150			150	μ.
IIB	Input bias current			25°C		1	60		1	60	рA
				Full range			150			150	P''
Vien	Common-mode input	V _{IO} ≤ 5 mV,	R _S = 50 Ω	25°C	0 to 2.5	-0.25 to 2.75		0 to 2.5	-0.25 to 2.75		v
VICR	voltage range	v O ≥ 3 mv,	NG = 30 22	Full range	0 to 2.2			0 to 2.2			v
		I _{OH} = -100 μA		25°C		2.97			2.97		
Vон	High-level output voltage			25°C		2.75			2.75		V
	vollage	I _{OH} = -500 μA		Full range	2.5			2.5			1
		V _{IC} = 0,	I _{OL} = 100 μA	25°C		0.05			0.05		
VOL	Low-level output voltage	Via = 0	le 250 uA	25°C		0.2			0.2		V
	vollage	V _{IC} = 0,	I _{OL} = 250 μA	Full range			0.5			0.5	
	Large-signal		R _L = 10 kΩ [‡]	25°C	6	10		6	10		
AVD	differential voltage	$V_{IC} = 2.5 V,$ $V_{O} = 1 V \text{ to } 2 V$	RL = 10 K2+	Full range	3			3			V/mV
	amplification		$R_L = 1 M\Omega^{\ddagger}$	25°C		700			700		
^r i(d)	Differential input resistance		-	25°C		10 ¹²			1012		Ω
^r i(c)	Common-mode input resistance			25°C		10 ¹²			10 ¹²		Ω
^c i(c)	Common-mode input capacitance	f = 10 kHz		25°C		8			8		pF
z _o	Closed-loop output impedance	f = 100 kHz,	Ay = 10	25°C		130			130		Ω
CMRR	Common-mode	$V_{IC} = 0$ to 2.5 V,	V _O = 1.5 V,	25°C	70	83		70	83		dB
	rejection ratio	R _S = 50 Ω		Full range	70			70			
ksvr	Supply-voltage rejection ratio	$V_{DD} = 2.7 V \text{ to } 8$ $V_{IC} = V_{DD}/2$,	s V, No load	25°C	80	95		80	95		dB
	$(\Delta V_{DD}/\Delta V_{IO})$	• IC = • DD/2,		Full range	80			80			
DD	Supply current	V _O = 1.5 V,	No load	25°C		100	150		100	150	μA
.00				Full range			175			175	,

[†] Full range is -40° C to 85° C.

‡Referenced to 2.5 V

NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at $T_A = 150^{\circ}C$ extrapolated to $T_A = 25^{\circ}C$ using the Arrhenius equation and assuming an activation energy of 0.96 eV.

TLV2422, TLV2422A Advanced LinCMOS™ RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS SLOS199C - SEPTEMBER1997 - REVISED APRIL 2001

operating characteristics at specified free-air temperature, $V_{DD} = 3 V$

	PARAMETER	TEST COND	ITIONS	TAT	TLV242 TI	UNIT		
					MIN	TYP	MAX	
			P 4910t	25°C	0.01	0.02		
SR	Slew rate at unity gain	$V_{O} = 1.5 V \text{ to } 3.5 V,$ $C_{L} = 100 \text{ pF}^{\ddagger}$	R _L = 10 kه,	Full range	0.008			V/µs
V		f = 10 Hz		25°C		100		
Vn	Equivalent input noise voltage	f = 1 kHz		25°C		23		nV/√Hz
Maria	Dook to pook aguivalant input poice valtage	f = 0.1 Hz to 1 Hz		25°C		2.7		
VN(PP)	Peak-to-peak equivalent input noise voltage	f = 0.1 Hz to 10 Hz		25°C		4		μV
In	Equivalent input noise current			25°C		0.6		fA√Hz
THD + N	Total harmonic distortion plus noise	$V_{O} = 0.5 V$ to 2.5 V, f = 1 kHz,	A _V = 1	25°C		0.25%		
IIID I N	Total namonic distortion plus holse	$R_L = 10 k\Omega^{\ddagger}$	A _V = 10	20 0		1.8%		
	Gain-bandwidth product	f = 10 kHz, C _L = 100 pF‡	$R_L = 10 \text{ k}\Omega^{\ddagger},$	25°C		46		kHz
BOM	Maximum output-swing bandwidth	V _{O(PP)} = 1 V, R _L = 10 kΩ [‡] ,	A _V = 1, C _L = 100 pF‡	25°C		8.3		kHz
+	Settling time	A _V = -1, Step = 0.5 V to 2.5 V,	To 0.1%	25°C		8.6		116
t _s		$R_L = 10 k\Omega^{\ddagger},$ C _L = 100 pF [‡]	To 0.01%	20 0		16		μs
[¢] m	Phase margin at unity gain	$R_L = 10 k\Omega^{\ddagger}$	CL = 100 pF‡	25°C		62°		
	Gain margin	$\prod_{i=1}^{n} \prod_{i=1}^{n} \prod_{i$	$C_{L} = 100 \text{ pr+}$	25°C		11		dB

[†] Full range for the C version is 0°C to 70°C. Full range for the I version is -40°C to 85°C. [‡] Referenced to 2.5 V

SLOS199C - SEPTEMBER1997 - REVISED APRIL 2001

electrical characteristics at specified free-air temperature, V_{DD} = 3 V (unless otherwise noted)

	PARAMETER	TEST CO	NDITIONS	TA [†]		_V24220 LV24221			V2422A V2422A		UNIT
					MIN	TYP	MAX	MIN	TYP	MAX	
VIO	Input offset voltage			25°C		300	2000		300	950	μV
VIO	mput onset voltage			Full range			2500			1800	μv
αΛΙΟ	Temperature coefficient of input offset voltage			Full range		2			2		μV/°C
	Input offset voltage long-term drift (see Note 4)	$V_{IC} = 0,$ $V_{O} = 0,$	$V_{DD} \pm = \pm 1.5 \text{ V},$ R _S = 50 Ω	25°C		0.003			0.003		μV/mo
10	Input offset current			25°C		0.5	60		0.5	60	pА
νÜ	input onset surrent			Full range			150			150	ρ/ (
IIB	Input bias current			25°C		1	60		1	60	pА
.ID				Full range			300			300	P''
VICR	Common-mode input	V _{IO} ≤ 5 mV,	R _S = 50 Ω	25°C	0 to 2.5	-0.25 to 2.75		0 to 2.5	-0.25 to 2.75		v
VICR	voltage range	v O ≤ 3 mv,	NS - 50 22	Full range	0 to 2.2			0 to 2.2			v
		I _{OH} = -100 μA		25°C		2.97			2.97		
Vон	High-level output voltage	Law 500 mA		25°C		2.75			2.75		V
	vonage	I _{OH} = -500 μA		Full range	2.5			2.5			
		$V_{IC} = 0,$	I _{OL} = 100 μA	25°C		0.05			0.05		
VOL	Low-level output voltage	V _{IC} = 0,	l _{OL} = 250 μA	25°C		0.2			0.2		V
		чю – э,	-ιο _L = 200 μ/ ι	Full range			0.5			0.5	
	Large-signal	V _{IC} = 1.5 V,	R _L = 10 kه	25°C	6	10		6	10		
AVD	differential voltage	$V_{IC} = 1.5 \text{ V},$ $V_{O} = 1 \text{ V to 2 V}$		Full range	2			2			V/mV
	amplification	Ũ	$R_L = 1 M\Omega^{\ddagger}$	25°C		700			700		
^r i(d)	Differential input resistance			25°C		10 ¹²			10 ¹²		Ω
^r i(c)	Common-mode input resistance			25°C		10 ¹²			10 ¹²		Ω
^c i(c)	Common-mode input capacitance	f = 10 kHz		25°C		8			8		pF
z _o	Closed-loop output impedance	f = 100 kHz,	Ay = 10	25°C		130			130		Ω
CMRR	Common-mode	$V_{IC} = V_{ICR} \min$	V _O = 1.5 V,	25°C	70	83		70	83		dB
5	rejection ratio	R _S = 50 Ω		Full range	70			70			
k SVR	Supply-voltage rejection ratio	$V_{DD} = 2.7 V \text{ to 8}$ $V_{IC} = V_{DD}/2$,	s V, No load	25°C	80	95		80	95		dB
	$(\Delta V_{DD}/\Delta V_{IO})$			Full range	80			80			
IDD	Supply current	V _O = 1.5 V,	No load	25°C		100	150		100	150	μA
.00				Full range			175			175	<i>pu</i> ,

[†] Full range is -40° C to 125° C for Q level part, -55° C to 125° C for M level part.

‡Referenced to 1.5 V

NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at $T_A = 150^{\circ}C$ extrapolated to $T_A = 25^{\circ}C$ using the Arrhenius equation and assuming an activation energy of 0.96 eV.

SLOS199C - SEPTEMBER1997 - REVISED APRIL 2001

operating characteristics at specified free-air temperature, $V_{DD} = 3 V$

	PARAMETER	TEST COND	TEST CONDITIONS				TLV2422Q, TLV2422M, TLV2422AQ, TLV2422AM			
					MIN	TYP	MAX			
		V _O = 1.1 V to 1.9 V,	$\mathbf{P}_{\rm r} = 10 \mathrm{kot}$	25°C	0.01	0.02				
SR	Slew rate at unity gain	$C_{L} = 100 \text{ pF}^{\ddagger}$	$R_{L} = 10 \text{ ks}_{2}$ +,	Full range	0.008			V/µs		
V		f = 10 Hz		25°C		100				
v _n	Equivalent input noise voltage	f = 1 kHz		25°C		23		nV/√Hz		
M		f = 0.1 Hz to 1 Hz		25°C		2.7				
VN(PP)	Peak-to-peak equivalent input noise voltage	f = 0.1 Hz to 10 Hz		25°C		4		μV		
In	Equivalent input noise current			25°C		0.6		fA√Hz		
THD + N	Total harmonic distortion plus noise	$V_{O} = 0.5 V$ to 2.5 V, f = 1 kHz,	A _V = 1	25°C		0.25%				
		$R_L = 10 k\Omega^{\ddagger}$	A _V = 10			1.8%				
	Gain-bandwidth product	f = 10 kHz, C _L = 100 pF [‡]	R _L = 10 kΩ [‡] ,	25°C		46		kHz		
ВОМ	Maximum output-swing bandwidth	$V_{O(PP)} = 1 V,$ R _L = 10 k Ω^{\ddagger} ,	A _V = 1, C _L = 100 pF‡	25°C		8.3		kHz		
t-	Settling time	$A_V = -1$, Step = 0.5 V to 2.5 V,	To 0.1%	25°C		8.6		μs		
t _S		R _L = 10 kΩ [‡] , C _L = 100 pF [‡]	To 0.01%	200		16		μο		
[¢] m	Phase margin at unity gain	$R_{I} = 10 k\Omega^{\ddagger}$	C ₁ = 100 pF‡	25°C		62°				
	Gain margin		$O^{\Gamma} = 100 h_{L+}$	25°C		11		dB		

[†] Full range is -40° C to 125° C for Q level part, -55° C to 125° C for M level part. [‡] Referenced to 1.5 V

SLOS199C - SEPTEMBER1997 - REVISED APRIL 2001

electrical characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted)

		TEST CO	NDITIONS	- +	Т	LV24220	:	
	PARAMETER	TEST CO	INDITION5	т _А †	MIN	TYP	MAX	UNIT
Vie	Input offect voltage			25°C		300	2000	μV
VIO	Input offset voltage			Full range			2500	μv
αΛΙΟ	Temperature coefficient of input offset voltage			25°C to 70°C		2		μV/ºC
	Input offset voltage long-term drift (see Note 4)	$V_{IC} = 0,$ $V_{O} = 0,$	$V_{DD} \pm = \pm 2.5 \text{ V},$ R _S = 50 Ω	25°C		0.003		μV/mo
lio	Input offset current	VO = 0,	112 - 30 22	25°C		0.5	60	pА
IIO	input onset current			Full range			150	μA
I _{IB}	Input bias current			25°C		1	60	pА
ΊΒ				Full range			150	PA
VICR	Common-mode input voltage range	VIO ≤ 5 mV,	R _S = 50 Ω	25°C	0 to 4.5	-0.25 to 4.75		v
VICK	Common mode input voltage range	v 0 <u>-</u> 0 mv,	115 - 30 22	Full range	0 to 4.2			v
		I _{OH} = -100 μA		25°C		4.97		
VOH	High-level output voltage	I _{OH} = -1 mA		25°C	4.5	4.75		V
		OH I IIIA		Full range	4.25			
		V _{IC} = 2.5 V,	l _{OL} = 100 μA	25°C		0.04		
VOL	Low-level output voltage	V _{IC} = 2.5 V,	I _{OL} = 500 μA	25°C		0.15		V
		VIC = 2.0 V,	-OL = 000 μ/ (Full range			0.5	
		V _{IC} = 2.5 V,	$R_L = 10 k\Omega^{\ddagger}$	25°C	8	12		
AVD	Large-signal differential voltage amplification	$V_0 = 1 V \text{ to } 4 V$		Full range	5			V/mV
		-	$R_L = 1 M\Omega^{\ddagger}$	25°C		1000		
^r i(d)	Differential input resistance			25°C		1012		Ω
ri(c)	Common-mode input resistance			25°C		10 ¹²		Ω
c _{i(c)}	Common-mode input capacitance	f = 10 kHz		25°C		8		pF
z ₀	Closed-loop output impedance	f = 100 kHz,	A _V = 10	25°C		130		Ω
CMRR	Common-mode rejection ratio	$V_{IC} = 0$ to 4.5 V,	V _O = 2.5 V,	25°C	70	90		dB
C initit		R _S = 50 Ω		Full range	70			
k SVR	Supply-voltage rejection ratio ($\Delta V_{DD} / \Delta V_{IO}$)	$V_{DD} = 4.4 \text{ V to}$		25°C	80	95		dB
		$V_{IC} = V_{DD}/2$,	No load	Full range	80			
IDD	Supply current	V _O = 2.5 V,	No load	25°C		100	150	μA
		0,		Full range			175	

[†] Full range is 0°C to 70°C.

‡Referenced to 2.5 V

NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at T_A = 150°C extrapolated to $T_A = 25^{\circ}C$ using the Arrhenius equation and assuming an activation energy of 0.96 eV.

SLOS199C - SEPTEMBER1997 - REVISED APRIL 2001

electrical characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted)

		TEAT OO	NDITIONS	- +	Т	LV2422		Т	LV2422A	AI	
	PARAMETER	IESI CO	NDITIONS	тд†	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
M	lanut effect velteres			25°C		300	2000		300	950	
VIO	Input offset voltage			Full range			2500			1500	μV
αNIO	Temperature coefficient of input offset voltage			25°C to 70°C		2			2		μV/°C
	Input offset voltage long-term drift (see Note 4)	$\begin{array}{l} V_{IC}=0,\\ V_{O}=0, \end{array}$	$V_{DD} \pm = \pm 2.5 \text{ V},$ R _S = 50 Ω	25°C		0.003			0.003		μV/mc
10	Input offset current			25°C		0.5	60		0.5	60	pА
U	input onset current			Full range			150			150	рл
IIB	Input bias current			25°C		1	60		1	60	рА
.ID				Full range			150			150	P' \
\/	Common-mode input	1)/(1 < 5 m)/	$P_{\sigma} = 50.0$	25°C	0 to 4.5	-0.25 to 4.75		0 to 4.5	-0.25 to 4.75		v
VICR	voltage range	V _{IO} ≤ 5 mV,	R _S = 50 Ω	Full range	0 to 4.2			0 to 4.2			
		I _{OH} = -100 μA		25°C		4.97			4.97		
Vон	High-level output voltage	1 1		25°C	4.5	4.75		4.5	4.75		V
	voltage	I _{OH} = -1 mA		Full range	4.25			4.25			1
		V _{IC} = 2.5 V,	l _{OL} = 100 μA	25°C		0.04			0.04		
VOL	Low-level output voltage		le. – 500 u A	25°C		0.15			0.15		V
	voltage	V _{IC} = 2.5 V,	I _{OL} = 500 μA	Full range			0.5			0.5	
	Large-signal		$R_L = 10 \text{ k}\Omega^{\ddagger}$	25°C	8	12		8	12		
A _{VD}	differential voltage	$V_{IC} = 2.5 V,$ $V_{O} = 1 V \text{ to } 4 V$	RL = 10 k22 +	Full range	5			5			V/mV
	amplification	10 11 10 11	$R_L = 1 M\Omega^{\ddagger}$	25°C		1000			1000		
^r i(d)	Differential input resistance			25°C		10 ¹²			10 ¹²		Ω
ri(c)	Common-mode input resistance			25°C		10 ¹²			10 ¹²		Ω
ci(c)	Common-mode input capacitance	f = 10 kHz		25°C		8			8		pF
z ₀	Closed-loop output impedance	f = 100 kHz,	Ay = 10	25°C		130			130		Ω
CMRR	Common-mode	$V_{IC} = 0$ to 4.5 V,	V _O = 2.5 V,	25°C	70	90		70	90		dB
	rejection ratio	R _S = 50 Ω		Full range	70			70			
k _{SVR}	Supply-voltage rejection ratio	$V_{DD} = 4.4 \text{ V to }$ $V_{IC} = V_{DD}/2,$	B V, No load	25°C	80	95		80	95		dB
	$(\Delta V_{DD}/\Delta V_{IO})$			Full range	80			80			
DD	Supply current	V _O = 2.5 V,	No load	25°C		100	150		100	150	μA
		0 1,		Full range			175			175	

[†] Full range is -40° C to 85° C.

[‡]Referenced to 2.5 V

NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at T_A = 150°C extrapolated to $T_A = 25^{\circ}C$ using the Arrhenius equation and assuming an activation energy of 0.96 eV.

SLOS199C - SEPTEMBER1997 - REVISED APRIL 2001

operating characteristics at specified free-air temperature, $V_{DD} = 5 V$

	PARAMETER	TEST COND	ITIONS	T _A †	TLV2422C, TLV2422I TLV2422AI			UNIT	
				MIN	TYP	TYP MAX			
			D 4010t	25°C	0.01	0.02			
SR	Slew rate at unity gain	$V_{O} = 1.5 V \text{ to } 3.5 V,$ $C_{L} = 100 \text{ pF}^{\ddagger}$	R _L = 10 kه,	Full range	0.008			V/µs	
V	Equivalent input noise voltage	f = 10 Hz		25°C		100			
Vn	Equivalent input noise voitage	f = 1 kHz	25°C		18		nV/√Hz		
M	Peak-to-peak equivalent input noise voltage	f = 0.1 Hz to 1 Hz	25°C		1.9		μV		
V _{N(PP)}	reak-to-peak equivalent input hoise voltage	f = 0.1 Hz to 10 Hz	25°C		2.8		μv		
In	Equivalent input noise current			25°C		0.6		fA√Hz	
THD + N	Total harmonic distortion plus noise	V _O = 1.5 V to 3.5 V, f = 1 kHz,	A _V = 1	25°C		0.24%			
ΠDŦΝ		$R_L = 10 k\Omega^{\ddagger}$	A _V = 10	20 0		1.7%			
	Gain-bandwidth product	f = 10 kHz, C _L = 100 pF‡	$R_L = 10 \text{ k}\Omega^{\ddagger}$,	25°C		52		kHz	
BOM	Maximum output-swing bandwidth	$V_{O(PP)} = 2 V,$ R _L = 10 k Ω^{\ddagger} ,	A _V = 1, C _L = 100 pF [‡]	25°C		5.3		kHz	
t -	Settling time	A _V = -1, Step = 1.5 V to 3.5 V,	To 0.1%	25°C		8.5		μs	
t _S		R _L = 10 kΩ [‡] , C _L = 100 pF [‡]	To 0.01%	23.0		15.5			
[¢] m	Phase margin at unity gain	$R_L = 10 k\Omega^{\ddagger}$	C _I = 100 pF [‡]	25°C		66°			
	Gain margin		$C_{L} = 100 \text{ pr+}$	25°C		11		dB	

[†] Full range for the C version is 0° C to 70° C. Full range for the I version is -40° C to 85° C.

‡Referenced to 2.5 V

SLOS199C - SEPTEMBER1997 - REVISED APRIL 2001

electrical characteristics at specified free-air temperature, V_{DD} = 5 V (unless otherwise noted)

	PARAMETER	TEST CO	т _А †		TLV2422Q, TLV2422M			TLV2422AQ, TLV2422AM				
				MIN	TYP	MAX	MIN	TYP	MAX			
Vie	Input offset voltage			25°C		300	2000		300	950	μV	
VIO	input onset voltage			Full range			2500			1800	μv	
αNO	Temperature coefficient of input offset voltage			Full range		2			2		μV/°C	
	Input offset voltage long-term drift (see Note 4)	$\begin{array}{l} V_{IC}=0,\\ V_{O}=0, \end{array}$	$V_{DD} \pm = \pm 2.5 \text{ V},$ R _S = 50 Ω	25°C		0.003			0.003		μV/mo	
10	Input offset current			25°C		0.5	60		0.5	60	pА	
U	input onset sufferit			Full range			150			150	P/1	
IIB	Input bias current			25°C		1	60		1	60	pА	
.ID				Full range			300			300	- Р ⁻⁷	
VICR Common-mode input voltage range	V _{IO} ≤ 5 mV,	R _S = 50 Ω	25°C	0 to 4.5	-0.25 to 4.75		0 to 4.5	-0.25 to 4.75		V		
	101 - 0 110,	NG = 00 11	Full range	0 to 4.2			0 to 4.2			v		
		I _{OH} = -100 μA	25°C		4.97			4.97				
	High-level output voltage	1011- 1 mA		25°C		4.75			4.75		V	
		$I_{OH} = -1 \text{ mA}$		Full range	4.5			4.5				
	Low-level output voltage	V _{IC} = 2.5 V,	l _{OL} = 100 μA	25°C		0.04			0.04			
		V _{IC} = 2.5 V,	I _{OL} = 500 μA	25°C		0.15			0.15		V	
		VIC = 2.0 V,	-OL = 000 μ/	Full range			0.5			0.5		
	Large-signal	V _{IC} = 2.5 V,	RL = 10 kه	25°C	8	12		8	12			
AVD	differential voltage	remular voltage $V_0 = 1 V \text{ to } 4 V$		Full range	3			3			V/mV	
	amplification	0	$R_L = 1 M\Omega^{\ddagger}$	25°C		1000			1000			
^r i(d)	Differential input resistance			25°C		1012			10 ¹²		Ω	
ri(c)	Common-mode input resistance			25°C		10 ¹²			10 ¹²		Ω	
c _{i(c)}	Common-mode input capacitance	f = 10 kHz		25°C		8			8		pF	
z ₀	Closed-loop output impedance	f = 100 kHz,	Ay = 10	25°C		130			130		Ω	
CMRR	Common-mode	$V_{IC} = V_{ICR} min,$	V _O = 2.5 V,	25°C	70	90		70	90		dB	
	rejection ratio	R _S = 50 Ω		Full range	70			70				
ksvr	Supply-voltage rejection ratio	$V_{DD} = 4.4 \text{ V to }$ $V_{IC} = V_{DD}/2,$	8 V, No load	25°C	80	95		80	95		dB	
	$(\Delta V_{DD}/\Delta V_{IO})$	vic − vDD/2,		Full range	80			80			ļ	
IDD	Supply current	V _O = 2.5 V,	No load	25°C		100	150		100	150	μA	
עטי		$v_{\rm O} = 2.5 v$, ino load		Full range			175			175	μΑ	

[†] Full range is –40°C to 125°C for Q level part, –55°C to 125°C for M level part.

‡Referenced to 2.5 V

NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at T_A = 150°C extrapolated to $T_A = 25^{\circ}C$ using the Arrhenius equation and assuming an activation energy of 0.96 eV.

SLOS199C - SEPTEMBER1997 - REVISED APRIL 2001

operating characteristics at specified free-air temperature, $V_{DD} = 5 V$

	PARAMETER	TEST COND	т _А †	TLV2422Q, TLV2422M, TLV2422AQ, TLV2422AM			UNIT		
				MIN	TYP	MAX			
SR		V _O = 1.5 V to 3.5 V,	RL = 10 kه,	25°C	0.01	0.02			
	Slew rate at unity gain	$C_{L} = 100 \text{ pF}^{\ddagger}$	$K_{L} = 10 K_{227},$	Full range	0.008			V/µs	
M		f = 10 Hz	25°C		100				
Vn	Equivalent input noise voltage	f = 1 kHz	25°C		18		nV/√Hz		
N /	Peak-to-peak equivalent input noise voltage	f = 0.1 Hz to 1 Hz	25°C		1.9		μV		
VN(PP)	Peak-to-peak equivalent input hoise voitage	f = 0.1 Hz to 10 Hz	25°C	2.8			μv		
In	Equivalent input noise current			25°C		0.6		fA√Hz	
THD + N	Total harmonic distortion plus noise	V _O = 1.5 V to 3.5 V, f = 1 kHz,	A _V = 1	25°C		0.24%			
		$R_L = 10 k\Omega^{\ddagger}$	A _V = 10			1.7%			
	Gain-bandwidth product	f = 10 kHz, C _L = 100 pF‡	R _L =10 kΩ [‡] ,	25°C		52		kHz	
BOM	Maximum output-swing bandwidth	$V_{O(PP)} = 2 V,$ R _L = 10 k Ω^{\ddagger} ,	A _V = 1, C _L = 100 pF‡	25°C		5.3		kHz	
t _s	Settling time	A _V = -1, Step = 1.5 V to 3.5 V,	To 0.1%	25°C		8.5		μs	
' 5		R _L = 10 kΩ [‡] , C _L = 100 pF [‡]	To 0.01%	200		15.5		,	
[¢] m	Phase margin at unity gain	$R_{I} = 10 k\Omega^{\ddagger},$	CL = 100 pF‡	25°C		66°			
	Gain margin		$O_{L} = 100 P^{F+}$	25°C		11		dB	

[†]Full range is –40°C to 125°C for Q level part, –55°C to 125°C for M level part.

‡Referenced to 2.5 V

TLV2422, TLV2422A Advanced LinCMOS™ RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS SLOS199C – SEPTEMBER1997 – REVISED APRIL 2001

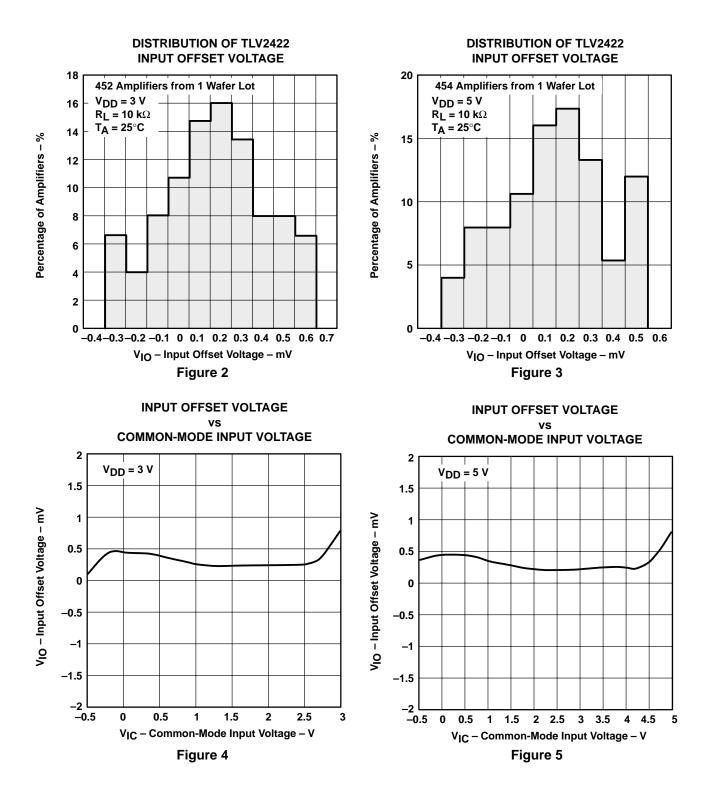
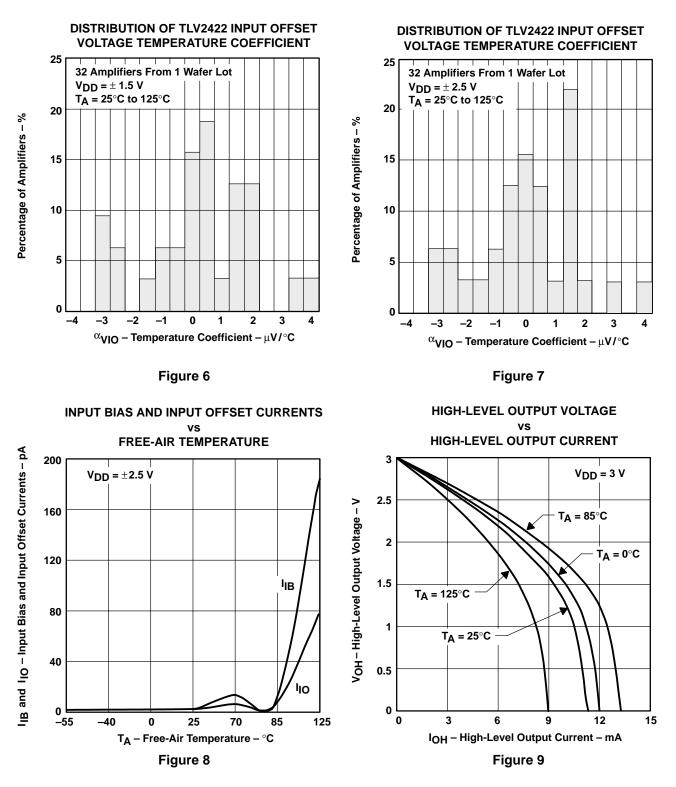
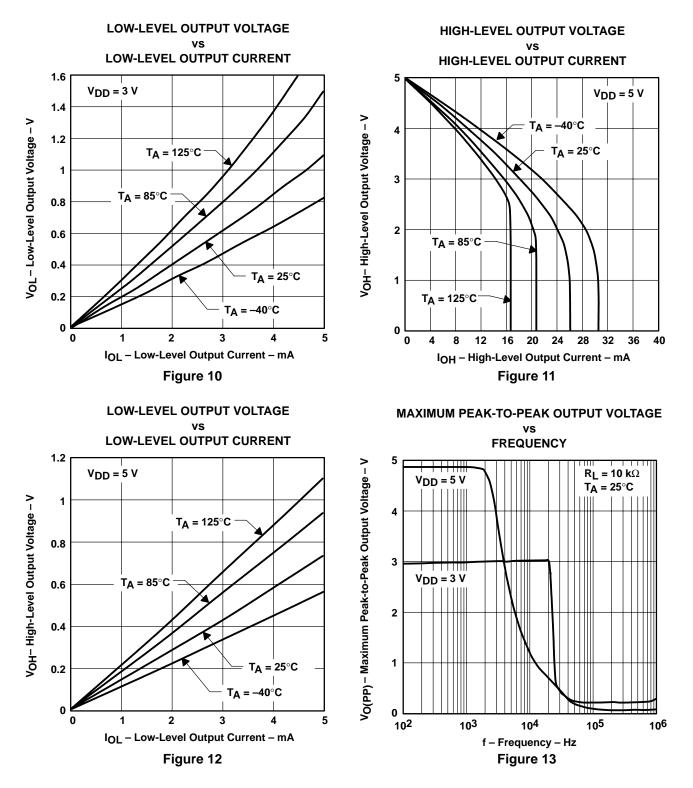

TYPICAL CHARACTERISTICS

Table of Graphs

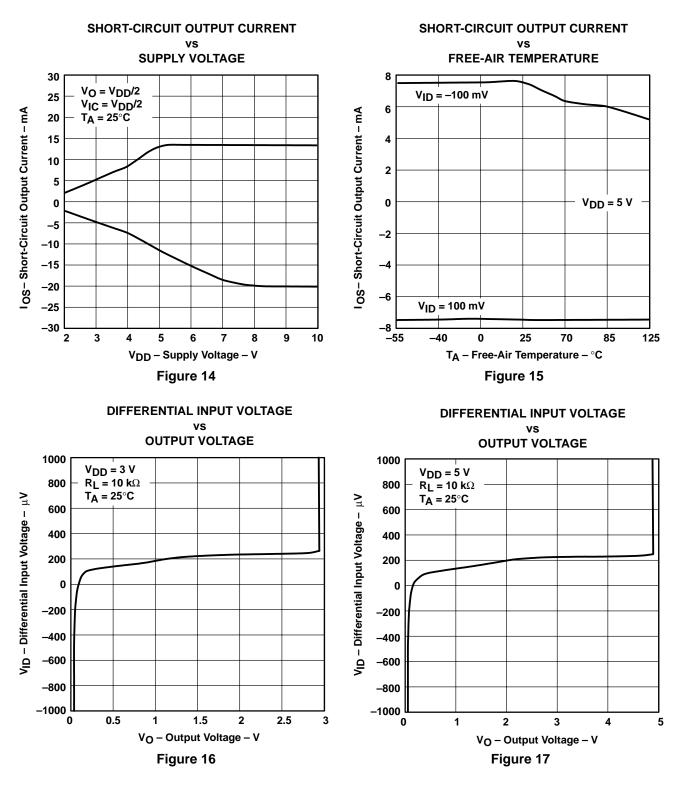
			FIGURE
V _{IO}	Input offset voltage	Distribution vs Common-mode input voltage	2,3 4,5
ανιο	Input offset voltage temperature coefficient	Distribution	6,7
I _{IB} /I _{IO}	Input bias and input offset currents	vs Free-air temperature	8
VOH	High-level output voltage	vs High-level output current	9,11
V _{OL}	Low-level output voltage	vs Low-level output current	10,12
V _{O(PP)}	Maximum peak-to-peak output voltage	vs Frequency	13
IOS	Short-circuit output current	vs Supply voltage vs Free-air temperature	14 15
V _{ID}	Differential input voltage	vs Output voltage	16,17
	Differential gain	vs Load resistance	18
A _{VD}	Large-signal differential voltage amplification Differential voltage amplification	vs Frequency vs Free-air temperature	19,20 21,22
z ₀	Output impedance	vs Frequency	23,24
CMRR	Common-mode rejection ratio	vs Frequency vs Free-air temperature	25 26
k SVR	Supply-voltage rejection ratio	vs Frequency vs Free-air temperature	27,28 29
IDD	Supply current	vs Supply voltage	30
SR	Slew rate	vs Load capacitance vs Free-air temperature	31 32
VO	Inverting large-signal pulse response		33,34
VO	Voltage-follower large-signal pulse response		35,36
VO	Inverting small-signal pulse response		37,38
VO	Voltage-follower small-signal pulse response		39,40
Vn	Equivalent input noise voltage	vs Frequency	41, 42
	Noise voltage (referred to input)	Over a 10-second period	43
THD + N	Total harmonic distortion plus noise	vs Frequency	44,45
	Gain-bandwidth product	vs Supply voltage vs Free-air temperature	46 47
[¢] m	Phase margin	vs Frequency vs Load capacitance	19,20 48
	Gain margin	vs Load capacitance	49
B ₁	Unity-gain bandwidth	vs Load capacitance	50



TLV2422, TLV2422A Advanced LinCMOSTM RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS SLOS199C - SEPTEMBER1997 - REVISED APRIL 2001



TLV2422, TLV2422A Advanced LinCMOS[™] RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS SLOS199C – SEPTEMBER1997 – REVISED APRIL 2001

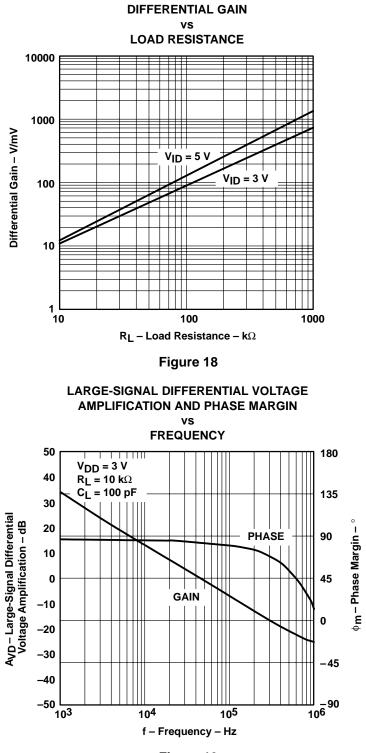
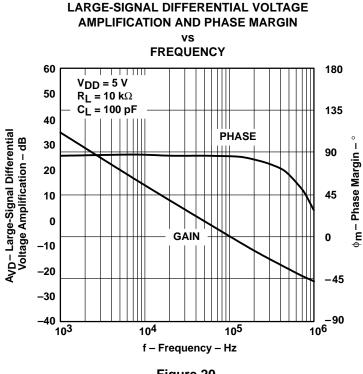


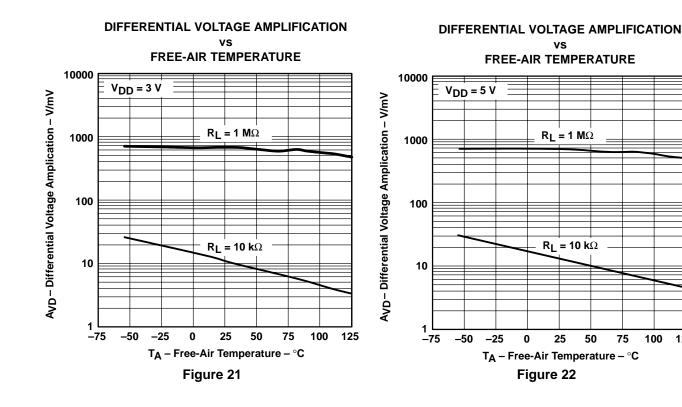
TLV2422, TLV2422A Advanced LinCMOS[™] RAIL-TO-RAIL OUTPUT **DE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS** SLOS199C - SEPTEMBER1997 - REVISED APRIL 2001

TLV2422, TLV2422A Advanced LinCMOS™ RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS SLOS199C – SEPTEMBER1997 – REVISED APRIL 2001

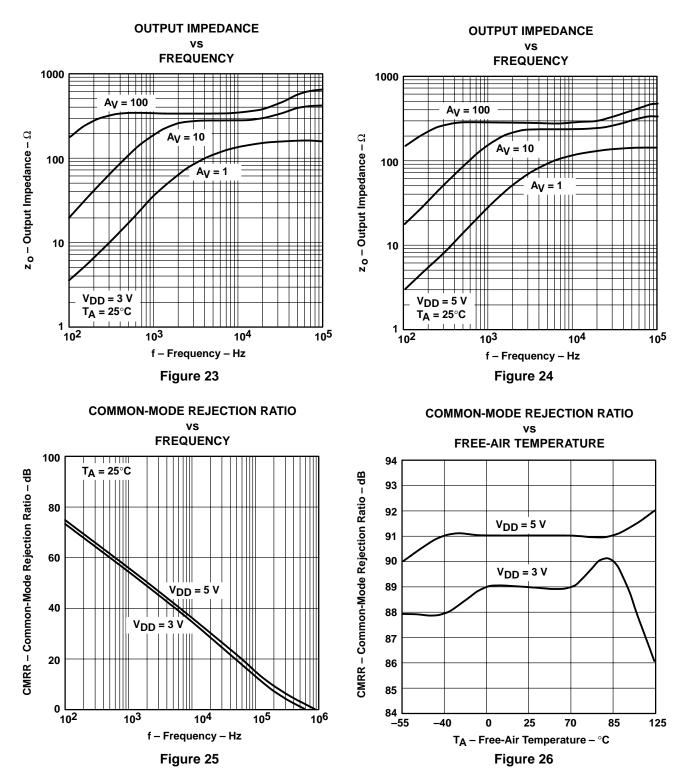
TLV2422, TLV2422A Advanced LinCMOSTM RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS SLOS199C – SEPTEMBER 1997 – REVISED APRIL 2001

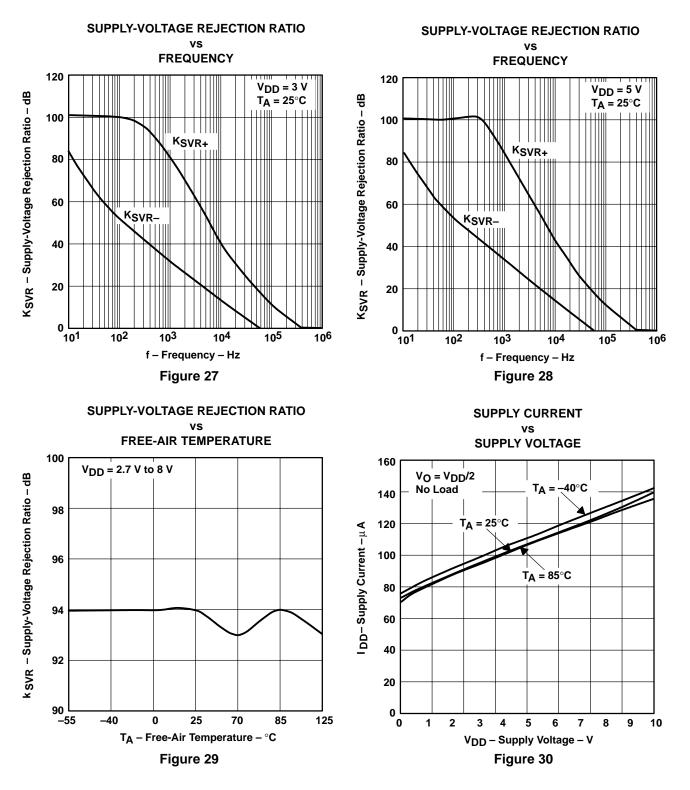
TYPICAL CHARACTERISTICS

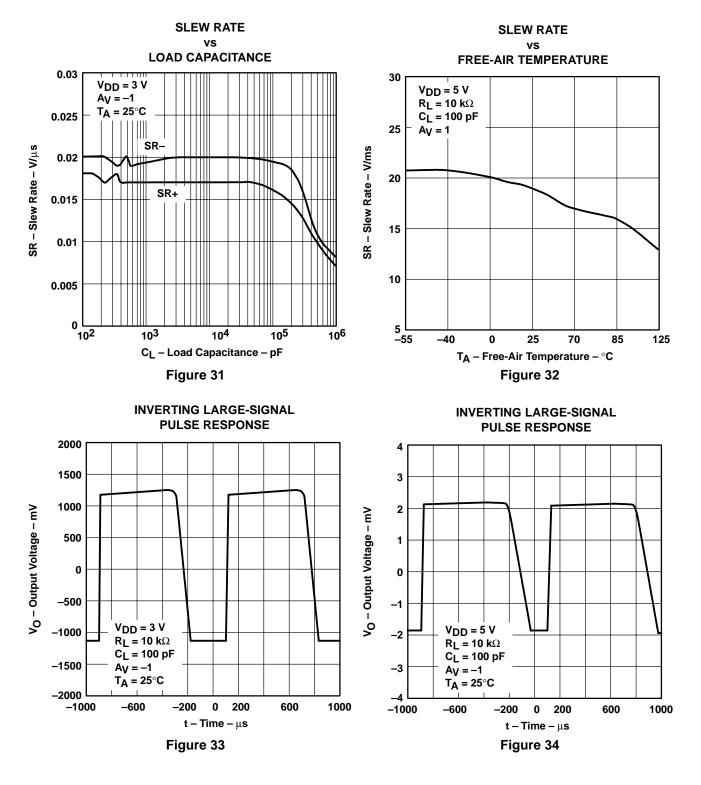

Figure 19

TYPICAL CHARACTERISTICS

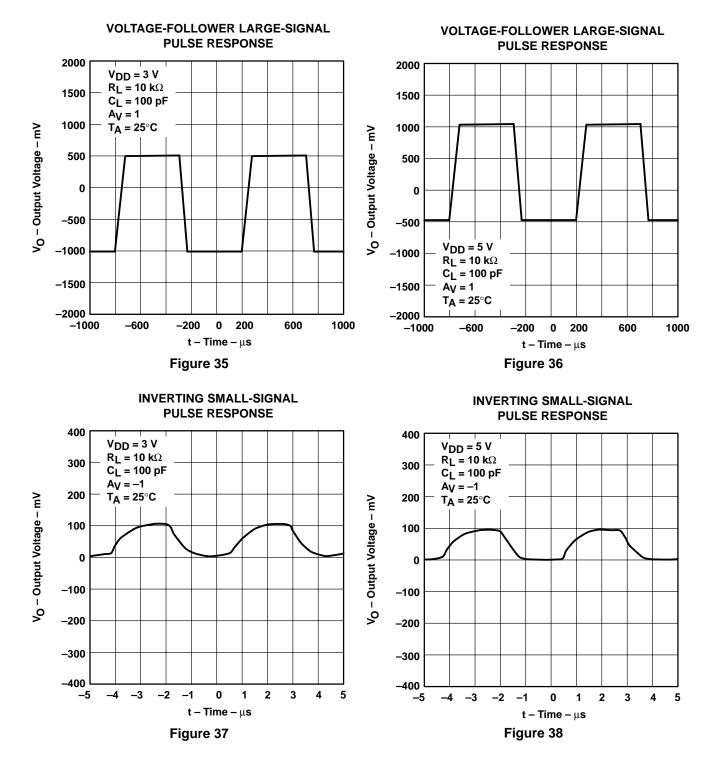



125

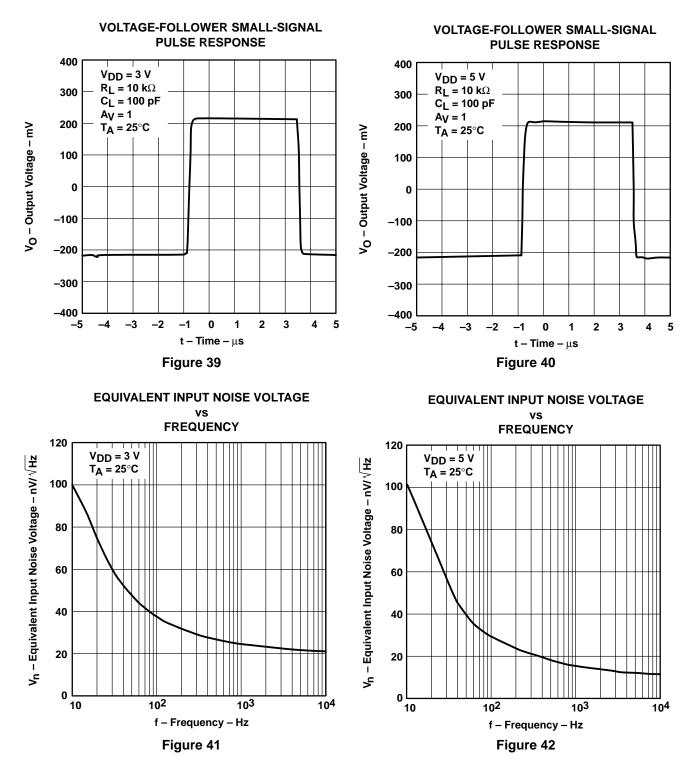
TLV2422, TLV2422A Advanced LinCMOSTM RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS SLOS199C – SEPTEMBER 1997 – REVISED APRIL 2001



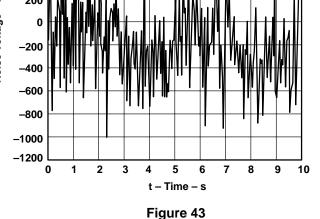
TLV2422, TLV2422A Advanced LinCMOS™ RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS SLOS199C – SEPTEMBER1997 – REVISED APRIL 2001

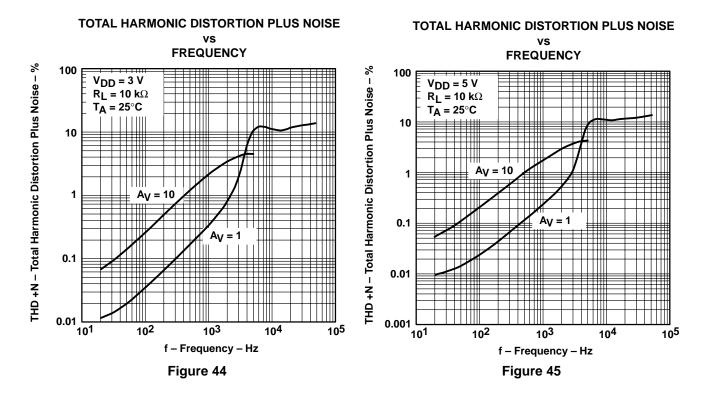


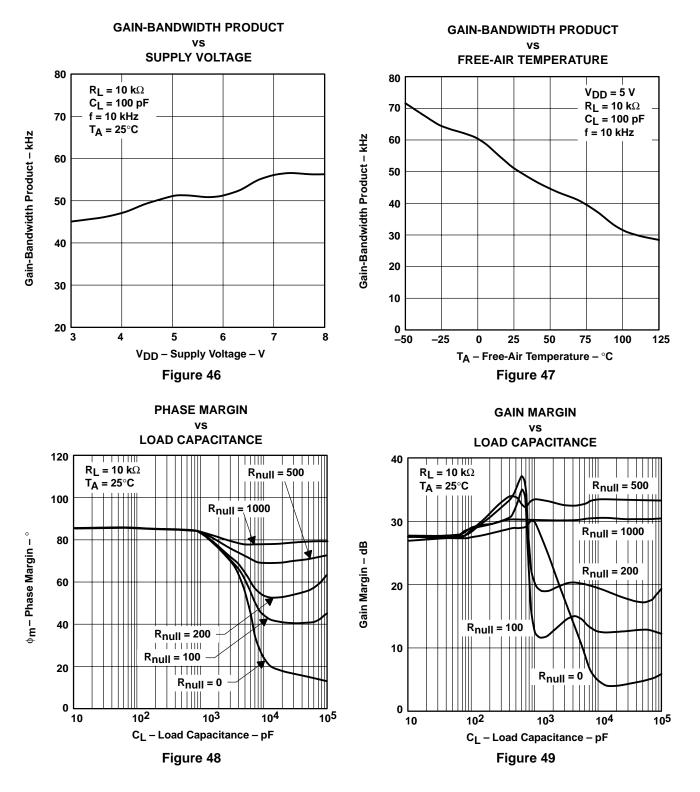
SLOS199C - SEPTEMBER1997 - REVISED APRIL 2001



TLV2422, TLV2422A Advanced LinCMOS™ RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS SLOS199C – SEPTEMBER1997 – REVISED APRIL 2001




SLOS199C - SEPTEMBER1997 - REVISED APRIL 2001


NOISE VOLTAGE OVER A 10-SECOND PERIOD 1000 Over a 10 Second Period $V_{DD} = 5 V$ 800 f = 0.1 Hz to 10 Hz T_A = 25°C 600 400 Noise Voltage – nV 200 0 -200 -400 -600 -800 -1000 -1200 0 2 3 5 6 8 9 10 1 4 7 t – Time – s

SLOS199C - SEPTEMBER1997 - REVISED APRIL 2001

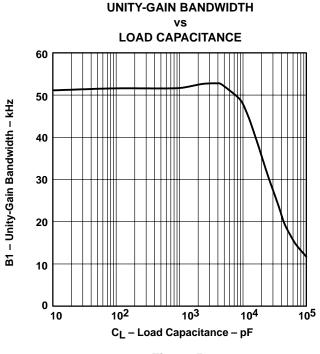


Figure 50

17-Mar-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
5962-9751401QHA	ACTIVE	CFP	U	10	1	TBD	A42	N / A for Pkg Type	-55 to 125	9751401QHA TLV2422M	Samples
TLV2422AID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	2422AI	Samples
TLV2422AIDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	2422AI	Samples
TLV2422AIPWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	2422AI	Samples
TLV2422CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	2422C	Samples
TLV2422CDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	2422C	Samples
TLV2422CPWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TV2422	Samples
TLV2422CPWRG4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	TV2422	Samples
TLV2422ID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	24221	Samples
TLV2422IDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	24221	Samples
TLV2422IDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	24221	Samples
TLV2422IDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	24221	Samples
TLV2422MUB	ACTIVE	CFP	U	10	1	TBD	A42	N / A for Pkg Type	-55 to 125	9751401QHA TLV2422M	Samples

⁽¹⁾ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

PACKAGE OPTION ADDENDUM

17-Mar-2017

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TLV2422, TLV2422M :

Catalog: TLV2422

Automotive: TLV2422-Q1, TLV2422-Q1

Military: TLV2422M

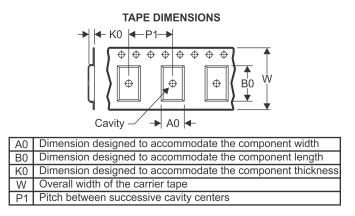
NOTE: Qualified Version Definitions:

• Catalog - TI's standard catalog product

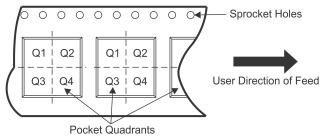
17-Mar-2017

• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

• Military - QML certified for Military and Defense Applications

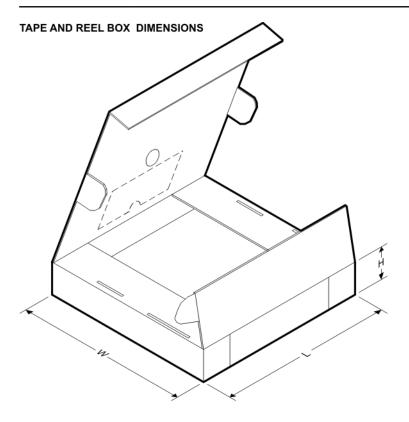

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

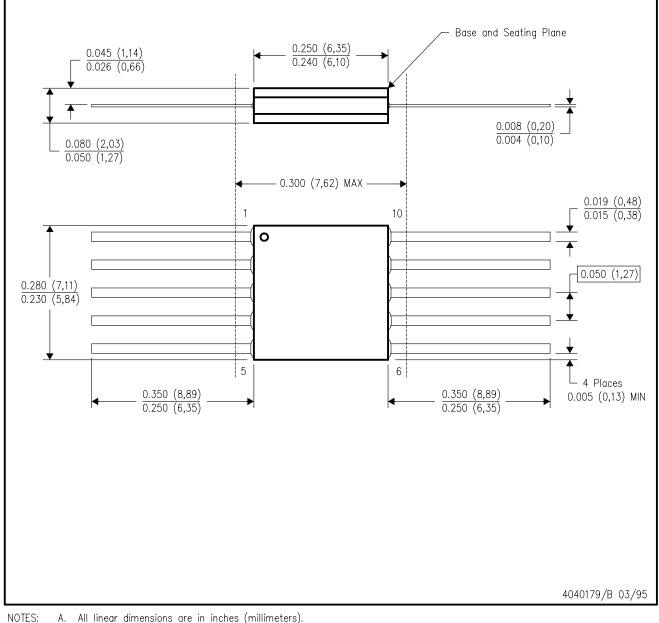

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TLV2422AIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLV2422AIPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
TLV2422CPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
TLV2422IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

10-Aug-2016

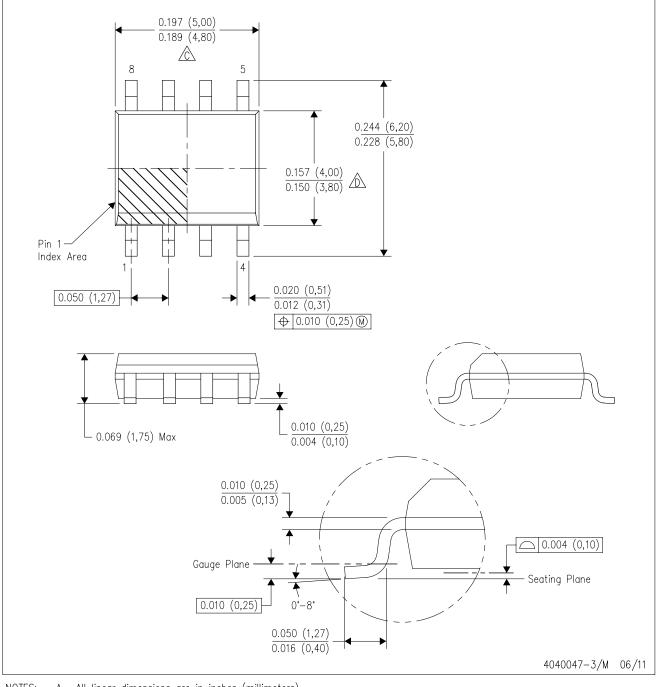


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLV2422AIDR	SOIC	D	8	2500	340.5	338.1	20.6
TLV2422AIPWR	TSSOP	PW	8	2000	367.0	367.0	35.0
TLV2422CPWR	TSSOP	PW	8	2000	367.0	367.0	35.0
TLV2422IDR	SOIC	D	8	2500	340.5	338.1	20.6

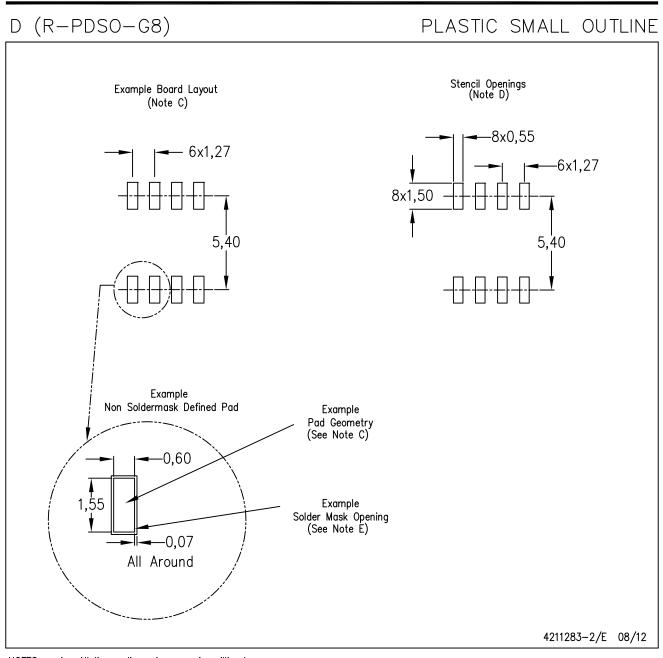
U (S-GDFP-F10)

CERAMIC DUAL FLATPACK



- Α. All linear dimensions are in inches (millimeters).
 - This drawing is subject to change without notice. Β.
 - This package can be hermetically sealed with a ceramic lid using glass frit. C.
 - D. Index point is provided on cap for terminal identification only.
 - E. Falls within MIL STD 1835 GDFP1-F10 and JEDEC MO-092AA

D (R-PDSO-G8)

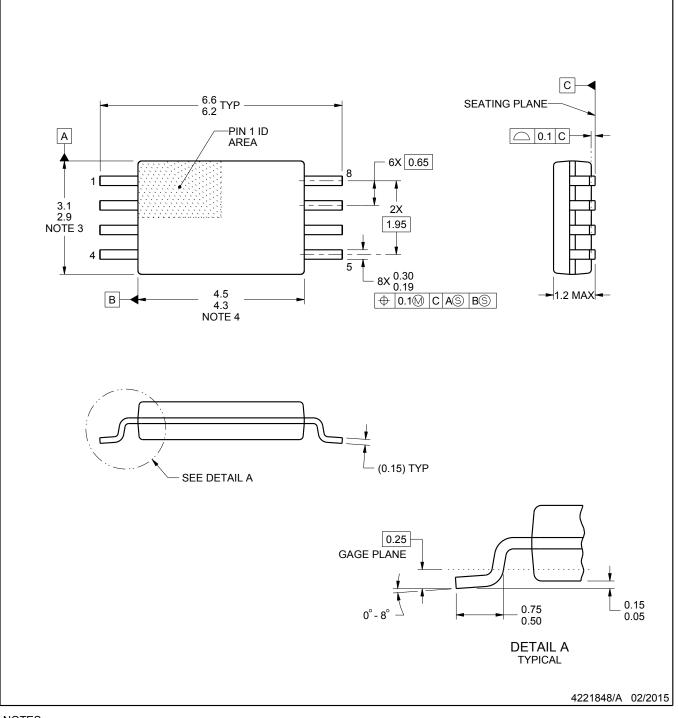

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.


PW0008A

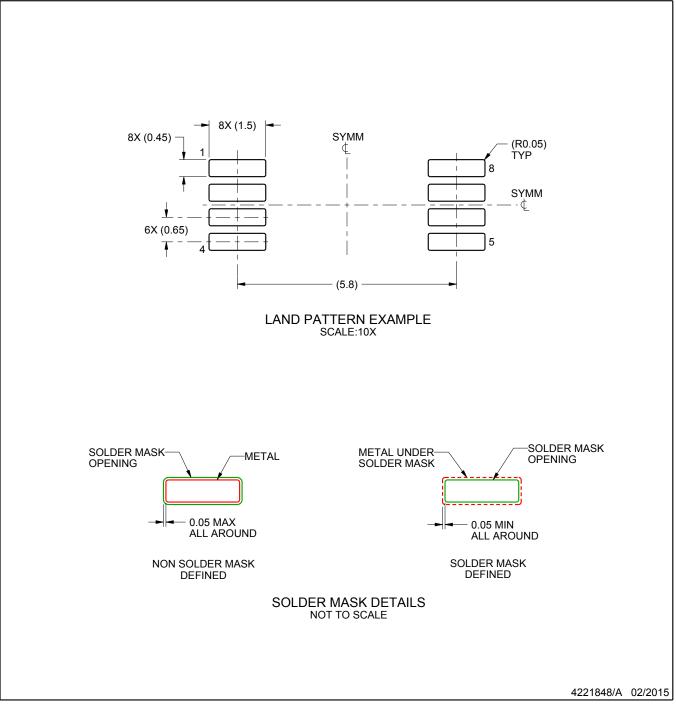
PACKAGE OUTLINE

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153, variation AA.



PW0008A

EXAMPLE BOARD LAYOUT

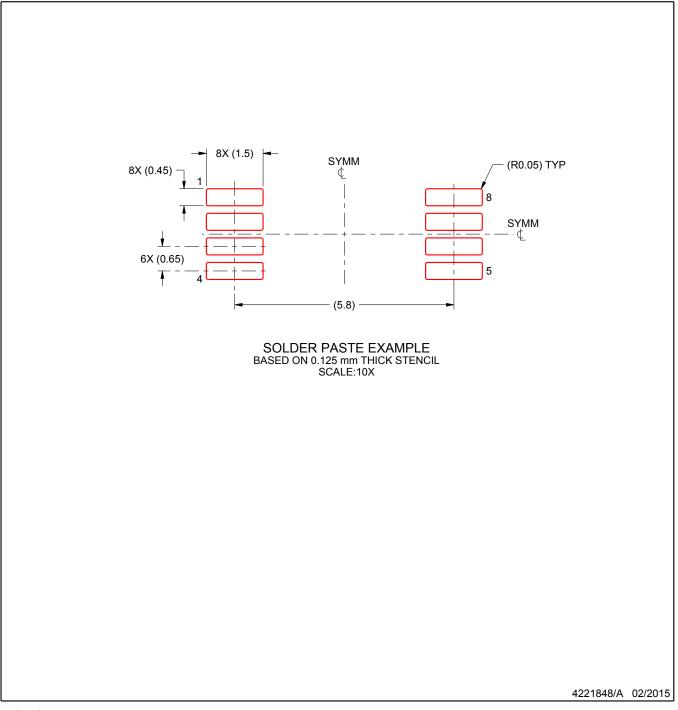
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



PW0008A

EXAMPLE STENCIL DESIGN

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

9. Board assembly site may have different recommendations for stencil design.

^{8.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated