

Sample &

Buv

TS3A44159

SCDS225B - MARCH 2007 - REVISED JANUARY 2015

Support &

Community

....

TS3A44159 0.45-Ω Quad SPDT Analog Switch 4-Channel 2:1 Multiplexer – Demultiplexer With Two Controls

Technical

Documents

1 Features

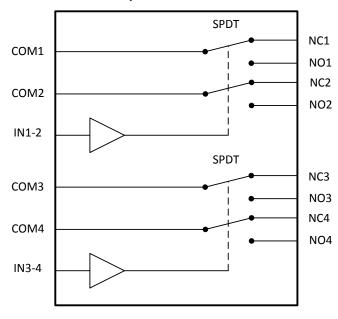
- Specified Break-Before-Make Switching
- Low ON-State Resistance (<0.5 Ω)
- Control Inputs Are 1.8-V Logic Compatible
- Low Charge Injection
- Excellent ON-State Resistance Matching
- Low Total Harmonic Distortion (THD)
- 1.65-V to 4.3-V Single-Supply Operation
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance Tested Per JESD 22
 - ±2000-V Human-Body Model (A114-B, Class II)
 - ±1000-V Charged-Device Model (C101)

2 Applications

- Cell Phones
- PDAs
- Portable Instrumentation
- Audio and Video Signal Routing
- Low-Voltage Data-Acquisition Systems
- Communication Circuits
- Modems
- Hard Drives
- Computer Peripherals
- Wireless Pins and Peripherals

3 Description

Tools &


Software

The TS3A44159 is a bidirectional 4-channel singlepole double-throw (SPDT) analog switch with two control inputs, which is designed to operate from 1.65 V to 4.3 V. This device is also known as a 2 channel double-pole double-throw (DPDT) configuration. It offers low ON-state resistance and excellent ON-state resistance matching with the break-before-make feature that prevents signal distortion during the transferring of a signal from one channel to another. The device has an excellent total harmonic distortion (THD) performance and consumes very low power. These features make this device suitable for portable audio applications

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
	TSSOP (16)	5.00 mm × 4.40 mm
TS3A44159	VQFN (16)	3.00 mm × 3.00 mm
	UQFN (16)	2.60 mm × 1.80 mm

(1) For all available packages, see the orderable addendum at the end of the datasheet.

Simplified Schematic

Table of Contents

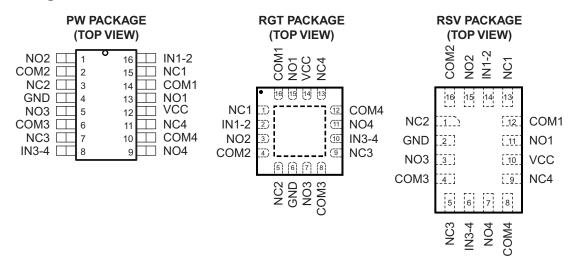
8

1	Feat	ures 1
2	Арр	lications 1
3	Des	cription 1
4	Rev	ision History 2
5	Pin	Configuration and Functions 3
6	Spe	cifications 4
	6.1	Absolute Maximum Ratings 4
	6.2	ESD Ratings 4
	6.3	Recommended Operating Conditions 4
	6.4	Thermal Information 5
	6.5	Electrical Characteristics for 1.8-V Supply 5
	6.6	Electrical Characteristics for 2.1-V Supply 6
	6.7	Electrical Characteristics for 2.5-V Supply7
	6.8	Electrical Characteristics for 3.3-V Supply 8
	6.9	Electrical Characteristics for 4.3-V Supply 9
	6.10	Typical Characteristics 11
7	Para	ameter Measurement Information 14

8	Deta	iled Description	19
	8.1	Overview	19
	8.2	Functional Block Diagram	19
	8.3	Feature Description	19
	8.4	Device Functional Modes	19
9	Appl	lication and Implementation	20
	9.1	Application Information	20
		Typical Application	
10	Pow	er Supply Recommendations	22
11	Layo	put	22
	-	Layout Guidelines	
		Layout Example	
12	Devi	ice and Documentation Support	23
	12.1	Trademarks	23
	12.2	Electrostatic Discharge Caution	23
	12.3	Glossary	23
13	Мес	hanical, Packaging, and Orderable	
		mation	23

4 Revision History

Changes from Revision B (October 2012) to Revision C


Added Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device

www.ti.com

Page

5 Pin Configuration and Functions

Pin Functions PIN I/O DESCRIPTION RSV NO. PW NO. RGT NO. NAME I/O 1 3 15 NO2 Normally Open 2 4 16 COM2 I/O Common 3 5 1 NC2 I/O Normally Closed 4 6 2 GND _ Ground 7 5 3 NO3 I/O Normally Open COM3 I/O 6 8 4 Common 7 9 5 NC3 I/O Normally Closed 8 10 6 IN3-4 I Digital Control to connect COM to NO or NC 9 11 7 NO4 I/O Normally Open COM4 10 12 8 I/O Common NC4 I/O 11 13 9 Normally Closed 12 14 10 VCC I Power Supply 13 15 11 NO1 I/O Normally Open 14 16 12 COM1 I/O Common I/O 15 1 13 NC1 Normally Closed 16 2 14 IN1-2 I/O Digital Control to connect COM to NO or NC

TEXAS INSTRUMENTS

www.ti.com

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾ (2)

			MIN	MAX	UNIT
V _{CC}	Supply voltage ⁽³⁾		-0.5	4.6	V
V _{NC} V _{NO} V _{COM}	Analog voltage ^{(3) (4) (5)}			V _{CC} + 0.5	V
Ι _Κ	Analog port diode current	$V_{NC}, V_{NO}, V_{COM} < 0$	-50		mA
I _K I _{NC}	ON-state switch current V_{NC} , V_{NO} , $V_{COM} = 0$ to V_{CC}			200	
	ON-state peak switch current ⁽⁶⁾	-400	400	mA	
V _{IN}	Digital input voltage		-0.5	4.6	V
I _{IK}	Digital input clamp current ^{(3) (4)}	V ₁ < 0	-50		mA
I _{CC}	Continuous current through V _{CC}			100	mA
I _{GND}	Continuous current through GND		-100		mA
T _{stg}	Storage temperature		-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

(3) All voltages are with respect to ground, unless otherwise specified.

(4) The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

(5) This value is limited to 4.6 V maximum.

(6) Pulse at 1-ms duration <10% duty cycle

6.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 $^{\left(2\right) }$	±1000	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V _{CC}	Supply Voltage	0	4.3	V
V _{NC} V _{NO} V _{COM}	Analog Voltage	0	4.3	V
V _{IN}	Digital Input Voltage	0	4.3	V

6.4 Thermal Information

			TS3A44159		
	THERMAL METRIC ⁽¹⁾	PW	RGT	RSV	UNIT
			16 PINS		
$R_{\theta JA}$	Junction-to-ambient thermal resistance	108.0	45.4	107.1	
R _{0JC(top)}	Junction-to-case (top) thermal resistance	43.0	58.1	41.2	
$R_{\theta JB}$	Junction-to-board thermal resistance	53.1	18.6	43.6	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	4.6	1.1	1.1	°C/W
Ψ _{JB}	Junction-to-board characterization parameter	52.5	18.6	43.6	
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	N/A	3.9	N/A	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics for 1.8-V Supply

 V_{CC} = 1.65 V to 1.95 V, T_A = -40°C to 85°C (unless otherwise noted)⁽¹⁾

PA	RAMETER	TEST CON	NDITIONS	T _A	V _{cc}	MIN	TYP	MAX	UNIT
ANALOG S	WITCH								
V _{COM} , V _{NO} , V _{NC}	Analog signal range					0		V _{CC}	V
R _{on}	ON-state	V_{NO} or $V_{NC} = 1.5 V$,	Switch ON,	25°C	1.65 V		0.5	0.7	Ω
• •on	resistance	$I_{COM} = -100 \text{ mA},$	See Figure 16	Full	1.00 V			0.8	
ΔR_{on}	ON-state resistance match between channels	$V_{NO} \text{ or } V_{NC} = 1.5 \text{ V},$ 0.6 V $I_{COM} = -100 \text{ mA},$	Switch ON, See Figure 16	25°C Full	1.65 V		0.05	0.07	Ω
		V_{NO} or $V_{NC} = 1.5 V$,		25°C			0.5	0.7	
R _{on(flat)}	ON-state resistance flatness	0.6 V 1.5 V, 2.5 V, I _{COM} = -100 mA,	Switch ON, See Figure 16	Full	1.65 V			0.8	Ω
		V_{NO} or $V_{NC} = 0.3 V$,		25°C		-10	0.5	10	
I _{NO(OFF)} , I _{NC(OFF)}	NC, NO OFF leakage current	$\label{eq:COM} \begin{array}{l} V_{COM} = 1.65 \ \text{V}, \\ \text{or} \\ V_{NO} \ \text{or} \ V_{NC} = 1.65 \ \text{V}, \\ V_{COM} = 0.3 \ \text{V}, \end{array}$	See Figure 17	Full	1.95 V	-20		20	nA
		V_{NO} or V_{NC} = 0.3 V,		25°C		-10	0.1	.1 10	
I _{NO(ON)} , I _{NC(ON)}	NC, NO ON leakage current	$\label{eq:COM} \begin{array}{l} V_{COM} = Open, \\ or \\ V_{NO} \mbox{ or } V_{NC} = 1.65 \mbox{ V}, \\ V_{COM} = Open, \end{array}$	See Figure 18	Full	1.95 V	-20		20	nA
		V_{NO} or V_{NC} = Open,		25°C		-10	0.1	10	
I _{COM(ON)}	COM ON leakage current	$\label{eq:com} \begin{array}{l} V_{COM} = 0.3 \text{V}, \\ \text{or} \\ V_{NO} \text{ or } V_{NC} = \text{Open}, \\ V_{COM} = 1.65 \text{ V}, \end{array}$	See Figure 18	Full	1.95 V	-20		20	nA
DIGITAL CO	ONTROL INPUTS (IN	1-2, IN3-4) ⁽²⁾							
V _{IH}	Input logic high			Full		1		4.3	V
V _{IL}	Input logic low			Full		0		0.4	V
I _{IH} , I _{IL}	Input leakage	V _{IN} = 3.6 V or 0		25°C	1.95 V		0.5	10	nA
ıH, ıL	current	VIN = 5.0 V 01 0		Full	1.35 V			50	ПА
DYNAMIC									
		$V_{COM} = V_{CC},$		25°C	1.8 V		40	70	
t _{ON}	Turn-on time	$v_{COM} = v_{CC},$ $R_L = 50 \Omega,$	C _L = 35 pF	Full	1.65 V to 1.95 V			75	ns

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum (2) All unused digital inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report,

Implications of Slow or Floating CMOS Inputs, SCBA004.

Electrical Characteristics for 1.8-V Supply (continued)

$V_{CC} = 1.65$ V to 1.95 V, $T_A = -40^{\circ}$ C to 85°C (unless otherwise noted) ⁽¹⁾
--

PA	ARAMETER	TEST CO	NDITIONS	T _A	V _{cc}	MIN	TYP	MAX	UNIT
				25°C	1.8 V		22	45	
t _{OFF}	Turn-off time	$V_{\rm COM} = V_{\rm CC}, \\ R_{\rm L} = 50 \ \Omega,$	C _L = 35 pF	Full	1.65 V to 1.95 V			50	ns
	Break-before-			25°C	1.8 V	5	25	70	
t _{BBM}	make time		C _L = 35 pF	Full	1.65 V to 1.95 V	4		75	ns
Q _C	Charge injection	$V_{GEN} = 0,$ $R_{GEN} = 0,$	C _L = 1 nF	25°C	1.8 V		64		рС
C _{NC(OFF)} , C _{NO(OFF)}	NC, NO OFF capacitance	V_{NC} or $V_{NO} = V_{CC}$ or GND, Switch OFF,	See Figure 19	25°C	1.8 V		52		pF
C _{NC(ON)} , C _{NO(ON)}	NC, NO ON capacitance	V_{NC} or $V_{NO} = V_{CC}$ or GND, Switch OFF,	See Figure 19	25°C	1.8 V		164		pF
C _{COM(ON)}	COM ON capacitance	$V_{COM} = V_{CC}$ or GND, Switch ON,	See Figure 19	25°C	1.8 V		164		pF
CI	Digital input capacitance	$V_{I} = V_{CC}$ or GND		25°C	1.8 V		2.5		pF
BW	Bandwidth	$R_L = 50 \Omega$,	Switch ON	25°C	1.8 V		35		MHz
O _{ISO}	OFF isolation	$R_L = 50 \Omega,$ f = 100 kHz,	Switch OFF	25°C	1.8 V		-71		dB
X _{TALK}	Crosstalk	$\begin{array}{l} R_{L} = 50 \ \Omega, \\ f = 100 \ kHz, \end{array}$	Switch ON	25°C	1.8 V		-73		dB
THD	Total harmonic distortion	$ \begin{array}{l} R_{L} = 600 \ \Omega, \\ C_{L} = 50 \ pF, \\ V_{COM} = GND \ to \ V_{CC} \end{array} $	f = 20 Hz to 20 kHz	25°C	1.8 V		0.1%		
SUPPLY									
	Positive supply	$V_1 = V_{CC}$ or GND,	Switch ON or OFF	25°C	- 1.95 V		0.001	0.05	
ICC	current	$v_{I} = v_{CC} \cup U \cup U$	Switch ON OFF	Full	1.90 V			0.15	μA

6.6 Electrical Characteristics for 2.1-V Supply

 V_{CC} = 2.00 V to 2.20 V, T_A = -40°C to 85°C (unless otherwise noted)⁽¹⁾

	PARAMETER	TEST CONDITIONS	T _A	V _{cc}	MIN	TYP MAX	UNIT
DIGIT	AL CONTROL INPUTS (IN1	I-2, IN3-4)					
VIH	Input logic high		Full		1.2	4.3	V
V_{IL}	Input logic low		Full		0	0.5	V

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

6.7 Electrical Characteristics for 2.5-V Supply

 V_{CC} = 2.3 V to 2.7 V, T_{A} = –40°C to 85°C (unless otherwise noted) $^{(1)}$

PA	RAMETER	TEST COND	ITIONS	T _A	V _{cc}	MIN	TYP	MAX	UNIT
ANALOG SI	WITCH								
V _{COM} , V _{NO} , V _{NC}	Analog signal range					0		V _{CC}	V
R _{on}	ON-state resistance	V_{NO} or V_{NC} = 1.8 V, I_{COM} = -100 mA,	Switch ON, See Figure 16	25°C Full	2.3 V		0.45	0.6 0.7	Ω
ΔR _{on}	ON-state resistance match between channels	V_{NO} or V_{NC} = 1.8 V, 0.8 V, I_{COM} = -100 mA,	Switch ON, See Figure 16	25°C Full	2.3 V		0.045	0.07	Ω
R _{on(flat)}	ON-state resistance flatness	$V_{NO} \text{ or } V_{NC} = 1.8 \text{ V}, 0.8 \text{ V}$ $I_{COM} = -100 \text{ mA},$	Switch ON, See Figure 16	25°C Full	2.3 V		0.06	0.15 0.2	Ω
		V_{NO} or $V_{NC} = 0.3 V$,		25°C		-10	0.5	10	
I _{NO(OFF)} , INC(OFF)	NC, NO OFF leakage current	$\label{eq:VCOM} \begin{array}{l} V_{COM} = 2.3 \text{ V},\\ \text{or}\\ V_{NO} \text{ or } V_{NC} = 2.3 \text{ V},\\ V_{COM} = 0.3 \text{ V}, \end{array}$	See Figure 17	Full	2.7 V	-20		20	nA
		V_{NO} or $V_{NC} = 0.3 V$,		25°C		-10	0.1	10	
I _{NO(ON)} , I _{NC(ON)}	NC, NO ON leakage current	$\label{eq:VCOM} \begin{array}{l} V_{COM} = Open, \\ or \\ V_{NO} \mbox{ or } V_{NC} = 2.3 \mbox{ V}, \\ V_{COM} = Open, \end{array}$	See Figure 18	Full	2.7 V	-20		20	nA
	0014	V_{NO} or V_{NC} = Open,		25°C		-10	0.1	10	
	COM ON leakage current	$ \begin{array}{l} V_{COM} = 0.3 \text{ V},\\ \text{or}\\ V_{NO} \text{ or } V_{NC} = \text{Open},\\ V_{COM} = 2.3 \text{ V}, \end{array} $	See Figure 18	Full	2.7 V	-20		20	nA
DIGITAL CO	ONTROL INPUTS (IN1	-2, IN3-4) ⁽²⁾							
V _{IH}	Input logic high			Full		1.2		4.3	V
V _{IL}	Input logic low			Full		0		0.6	V
I _{IH} , I _{IL}	Input leakage current	V _{IN} = 3.6 V or 0		25°C Full	2.7 V		0.5	10 50	nA
DYNAMIC		1		1					
				25°C	2.5 V		2.6	47	
t _{ON}	Turn-on time		C _L = 35 pF	Full	2.3 V to 2.7 V			50	ns
				25°C	2.5 V		16.5	34	
t _{OFF}	Turn-off time	$V_{COM} = V_{CC},$ R _L = 50 Ω,	C _L = 35 pF	Full	2.3 V to 2.7 V			35	ns
				25°C	2.5 V	4	15	35	
t _{BBM}	Break-before- make time		C _L = 35 pF	Full	2.3 V to 2.7 V	3		35	ns
Q _C	Charge injection	$V_{GEN} = 0,$ R _{GEN} = 0,	C _L = 1 nF	25°C	2.5 V		84		рС
C _{NC(OFF)} , C _{NO(OFF)}	NC, NO OFF capacitance	V_{NC} or $V_{NO} = V_{CC}$ or GND, Switch OFF,	See Figure 19	25°C	2.5 V		52		pF
C _{NC(ON)} , C _{NO(ON)}	NC, NO ON capacitance	V_{NC} or $V_{NO} = V_{CC}$ or GND, Switch OFF,	See Figure 19	25°C	2.5 V		163		pF
C _{COM(ON)}	COM ON capacitance	$V_{COM} = V_{CC}$ or GND,	See Figure 19	25°C	2.5 V		163		pF

 The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum
All unused digital inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, SCBA004.

STRUMENTS

XAS

Electrical Characteristics for 2.5-V Supply (continued)

$V_{cc} = 2.3 \text{ V to } 2$	2.7 V. $T_{A} = -40^{\circ}C$ to	85°C (unless	otherwise noted) ⁽¹⁾
	A = 10000	00 0 (0110000	

1	PARAMETER	TEST CO	ONDITIONS	TA	Vcc	MIN TYP	MAX	UNIT
CI	Digital input capacitance	$V_{I} = V_{CC}$ or GND		25°C	2.5 V	2.5		pF
BW	Bandwidth	$R_L = 50 \Omega$,	Switch ON	25°C	2.5 V	35		MHz
O _{ISO}	OFF isolation	$R_L = 50 \Omega,$ f = 100 kHz,	Switch OFF	25°C	2.5 V	-71		dB
X _{TALK}	Crosstalk	$R_L = 50 \Omega,$ f = 100 kHz,	Switch ON	25°C	2.5 V	-73		dB
THD	Total harmonic distortion	$ \begin{array}{l} R_{L} = 600 \ \Omega, \\ C_{L} = 50 \ pF, \\ V_{COM} = GND \ to \ V_{CC} \end{array} $	f = 20 Hz to 20 kHz	25°C	2.5 V	0.009%		
SUPPLY								
1	Positive supply	$V_{I} = V_{CC}$ or GND,	Switch ON or OFF	25°C	2.5 V	0.004	0.1	
I _{CC} current		$v_{\rm I} = v_{\rm CC}$ of GND, Switch ON of OFF		Full	2.3 V		0.5	μA

6.8 Electrical Characteristics for 3.3-V Supply

 V_{CC} = 3 V to 3.6 V, T_{A} = –40°C to 85°C (unless otherwise noted) $^{(1)}$

P	ARAMETER	TEST CONE	DITIONS	TA	Vcc	MIN	TYP	MAX	UNIT
ANALOG S	WITCH								
V _{COM} , V _{NO} , V _{NC}	Analog signal range					0		V _{CC}	V
R _{on}	ON-state	$V_{NO} \text{ or } V_{NC} = 2.0 \text{ V},$	Switch ON,	25°C	- 3 V		0.37	0.55	Ω
	resistance	I _{COM} = -100 mA,	See Figure 16	Full				0.6	
ΔR_{on}	ON-state resistance match	V_{NO} or $V_{NC} = 2.0$ V, 0.8 V, $I_{COM} = -100$ mA,	Switch ON, See Figure 16	25°C Full	3 V		0.06	0.07	Ω
	between channels ON-state		0	25°C			0.05	0.1	
R _{on(flat)}	resistance flatness	$\label{eq:VNO} \begin{array}{l} V_{NO} \text{ or } V_{NC} = 2.0 \text{ V}, \ 0.8 \text{ V} \\ I_{COM} = -100 \text{ mA}, \end{array}$	Switch ON, See Figure 16	Full	3 V		0.05	0.1	Ω
		V_{NO} or $V_{NC} = 0.3 V$,		25°C		-15	5	15	
I _{NO(OFF)} , I _{NC(OFF)}	NC, NO OFF leakage current		See Figure 17	Full	3.6 V	-50		50	nA
		$V_{NO} \text{ or } V_{NC} = 0.3 \text{ V},$		25°C		-15	5	15	
I _{NO(ON)} , I _{NC(ON)}	NC, NO ON leakage current	$\label{eq:VCOM} \begin{array}{l} V_{COM} = Open, \\ or \\ V_{NO} \mbox{ or } V_{NC} = 3.0 \mbox{ V}, \\ V_{COM} = Open, \end{array}$	See Figure 18	Full	3.6 V	-50		50	nA
		V_{NO} or V_{NC} = Open,		25°C		-15	5	15	
I _{COM(ON)}	COM ON leakage current	$\label{eq:V_COM} \begin{array}{l} V_{\text{COM}} = 0.3 \ V, \\ \text{or} \\ V_{\text{NO}} \ \text{or} \ V_{\text{NC}} = \text{Open}, \\ V_{\text{COM}} = 3.0 \ V, \end{array}$	See Figure 18	Full	3.6 V	-50		50	nA
DIGITAL CO	ONTROL INPUTS (IN1-	2, IN3-4) ⁽²⁾		÷				ľ	
V _{IH}	Input logic high			Full		1.25		4.3	V
V _{IL}	Input logic low			Full		0		0.8	V
I _{IH} , I _{IL}	Input leakage current	V _{IN} = 3.6 V or 0		25°C Full	3.6 V		0.5	10 50	nA

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

 (2) All unused digital inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, SCBA004.

Electrical Characteristics for 3.3-V Supply (continued)

 V_{CC} = 3 V to 3.6 V, T_A = $-40^\circ C$ to 85°C (unless otherwise noted)^{(1)}

PARAMETER		TEST CO	NDITIONS	TA	Vcc	MIN	TYP	MAX	UNIT
DYNAMIC		1			1				
				25°C	3 V		20	38	
t _{ON}	Turn-on time	$V_{COM} = V_{CC},$ R _L = 50 Ω,	C _L = 35 pF	Full	3 V to 3.6 V			40	ns
				25°C	3 V		14	34	
t _{OFF}	Turn-off time	$V_{COM} = V_{CC},$ R _L = 50 Ω,	C _L = 35 pF	Full	3 V to 3.6 V			35	ns
	Break-before-make			25°C	3 V	3	11	35	
t _{BBM}	time		C _L = 35 pF	Full	3 V to 3.6 V	2		55	ns
Q _C	Charge injection	$V_{GEN} = 0,$ $R_{GEN} = 0,$	$C_L = 1 \text{ nF}$	25°C	3 V		109		рС
C _{NC(OFF)} , C _{NO(OFF)}	NC, NO OFF capacitance	V_{NC} or $V_{NO} = V_{CC}$ or GND, Switch OFF,	See Figure 19	25°C	3 V		51		pF
C _{NC(ON)} , C _{NO(ON)}	NC, NO ON capacitance	V_{NC} or $V_{NO} = V_{CC}$ or GND, Switch OFF,	See Figure 19	25°C	3 V		162		pF
C _{COM(ON)}	COM ON capacitance	$V_{COM} = V_{CC}$ or GND, Switch ON,	See Figure 19	25°C	3 V		162		pF
CI	Digital input capacitance	$V_{I} = V_{CC}$ or GND		25°C	3 V		2.5		pF
BW	Bandwidth	$R_L = 50 \Omega$,	Switch ON	25°C	3 V		35		MHz
O _{ISO}	OFF isolation	$R_L = 50 \Omega,$ f = 100 kHz,	Switch OFF	25°C	3 V		-71		dB
X _{TALK}	Crosstalk	$R_L = 50 \Omega,$ f = 100 kHz,	Switch ON	25°C	3 V		-73		dB
THD	Total harmonic distortion		f = 20 Hz to 20 kHz	25°C	3 V	().003%		
SUPPLY									
I _{CC}	Positive supply current	$V_{I} = V_{CC}$ or GND,	Switch ON or OFF	25°C Full	3.6 V		0.015	0.2	μA

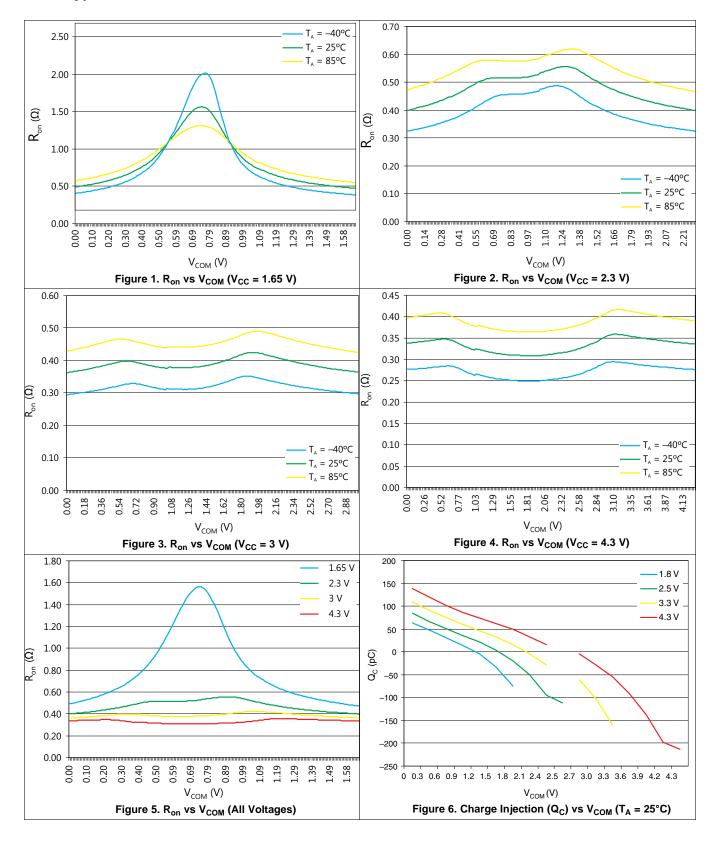
6.9 Electrical Characteristics for 4.3-V Supply

 T_{A} = –40°C to 85°C (unless otherwise noted) $^{(1)}$

P	ARAMETER	TEST CC	T _A	V _{cc}	MIN	ТҮР	MAX	UNIT	
ANALOG S	WITCH			·					
V _{COM} , V _{NO} , V _{NC}	Analog signal range					0		V _{CC}	V
Р	ON-state	V_{NO} or $V_{NC} = 2.5 V$,	Switch ON,	25°C	4.2.1/		0.3	0.45	0
R _{on}	resistance	$I_{COM} = -100 \text{ mA},$	See Figure 16	Full	4.3 V			0.5	Ω
	ON-state	V_{NO} or $V_{NC} = 2.5 V$,	Switch ON.	25°C			0.05	0.07	
ΔR _{on}	resistance match between channels	$I_{COM} = -100 \text{ mA},$	See Figure 16	Full	4.3 V			0.1	Ω
	ON-state	V_{NO} or $V_{NC} = 1 V$,	Switch ON.	25°C			0.02	0.1	
R _{on(flat)}	resistance flatness	$I.5 V, 2.5 V,$ Switch ON, $I_{COM} = -100 \text{ mA},$ See Figure 16		Full	4.3 V			0.1	Ω

(1) The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum

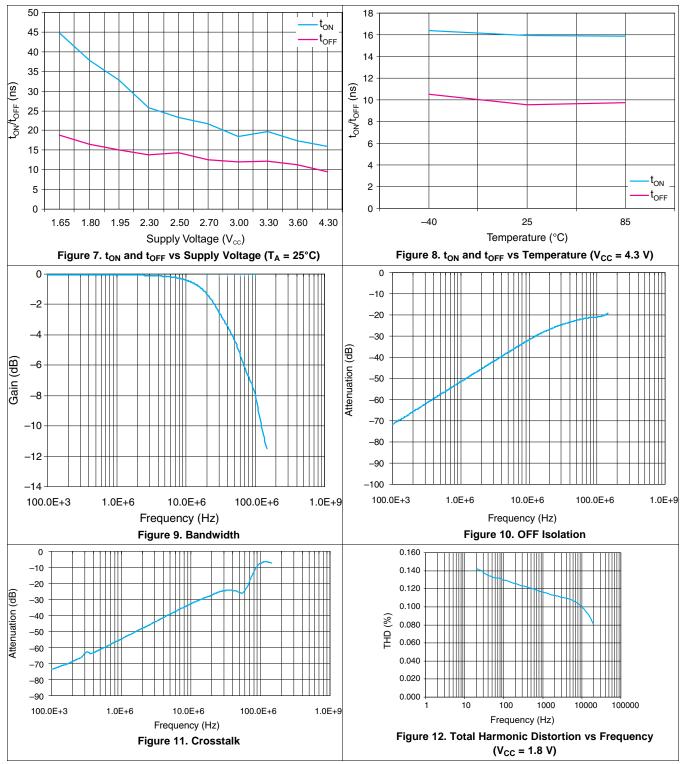
Electrical Characteristics for 4.3-V Supply (continued)


 $T_A = -40^{\circ}C$ to 85°C (unless otherwise noted)⁽¹⁾

P	ARAMETER	TEST CO	NDITIONS	TA	V _{cc}	MIN	TYP	MAX	UNIT
		V_{NO} or $V_{NC} = 0.3 V$,		25°C		-20	5	20	
I _{NO(OFF)} , I _{NC(OFF)}	NC, NO OFF leakage current		See Figure 17	Full	4.3 V	-90		90	nA
		$V_{\rm NO}$ or $V_{\rm NC}$ = 0.3 V,		25°C	_	-20	5	20	
I _{NO(ON)} , I _{NC(ON)}	NC, NO ON leakage current	$\label{eq:VCOM} \begin{array}{l} V_{COM} = Open, \\ or \\ V_{NO} \mbox{ or } V_{NC} = 3.0 \mbox{ V}, \\ V_{COM} = Open, \end{array}$	See Figure 18	Full	4.3 V	-90		90	nA
		V_{NO} or V_{NC} = Open,		25°C		-20	5	20	
I _{COM(ON)}	COM ON leakage current	$\label{eq:VCOM} \begin{array}{l} V_{COM} = 0.3 \ V, \\ \text{or} \\ V_{NO} \ \text{or} \ V_{NC} = \text{Open}, \\ V_{COM} = 3.0 \ V, \end{array}$	See Figure 18	Full	4.3 V	-90		90	nA
DIGITAL CO	NTROL INPUTS (IN1-2	2, IN3-4) ⁽²⁾							
V _{IH}	Input logic high			Full	4.3 V	1.5		4.3	V
V _{IL}	Input logic low			Full	4.3 V	0		1	V
I _{IH} , I _{IL}	Input leakage current	V _{IN} = 3.6 V or 0		25°C Full	4.3 V		0.5	10 50	nA
DYNAMIC		•		1	- <u>1</u>				
t _{ON}	Turn-on time	$V_{COM} = V_{CC},$ R _L = 50 Ω,	C _L = 35 pF	25°C Full	4.3 V		17	23 25	ns
t _{OFF}	Turn-off time	$V_{COM} = V_{CC},$ $R_{L} = 50 \Omega,$	C _L = 35 pF	25°C Full	4.3 V		12	32 35	ns
t _{BBM}	Break-before-make time	$V_{NC} = V_{NO} = V_{CC},$ R _L = 50 Ω,	C _L = 35 pF	25°C Full	4.3 V	2	9	30 35	ns
Q _C	Charge injection	V _{GEN} = 0, R _{GEN} = 0,	C _L = 1 nF	25°C	4.3 V		139		рС
$\begin{array}{c} C_{NC(OFF)},\\ C_{NO(OFF)} \end{array}$	NC, NO off capacitance	V_{NC} or $V_{NO} = V_{CC}$ or GND, Switch OFF,	See Figure 19	25°C	4.3 V		50		pF
C _{NC(ON)} , C _{NO(ON)}	NC, NO ON capacitance	V_{NC} or $V_{NO} = V_{CC}$ or GND, Switch OFF,	See Figure 19	25°C	4.3 V		160		pF
C _{COM(ON)}	COM ON capacitance	$V_{COM} = V_{CC}$ or GND, Switch ON,	See Figure 19	25°C	4.3 V		160		pF
CI	Digital input capacitance	$V_{I} = V_{CC}$ or GND		25°C	4.3 V		2.5		pF
BW	Bandwidth	$R_L = 50 \Omega$,	Switch ON	25°C	4.3 V		35		MHz
O _{ISO}	OFF isolation	R _L = 50 Ω, f = 100 kHz,	Switch OFF	25°C	4.3 V		-71		dB
X _{TALK}	Crosstalk	$R_{L} = 50 \Omega,$ f = 100 kHz,	Switch ON	25°C	4.3 V		-73		dB
THD	Total harmonic distortion	$ \begin{array}{l} R_{L} = 600 \ \Omega, \\ C_{L} = 50 \ pF, \\ V_{COM} = GND \ to \ V_{CC} \end{array} $	f = 20 Hz to 20 kHz	25°C	4.3 V	0	.003%		
SUPPLY									
I _{CC}	Positive supply current	$V_{I} = V_{CC}$ or GND,	Switch ON or OFF	25°C Full	4.3 V		0.15	0.4 1.2	μA

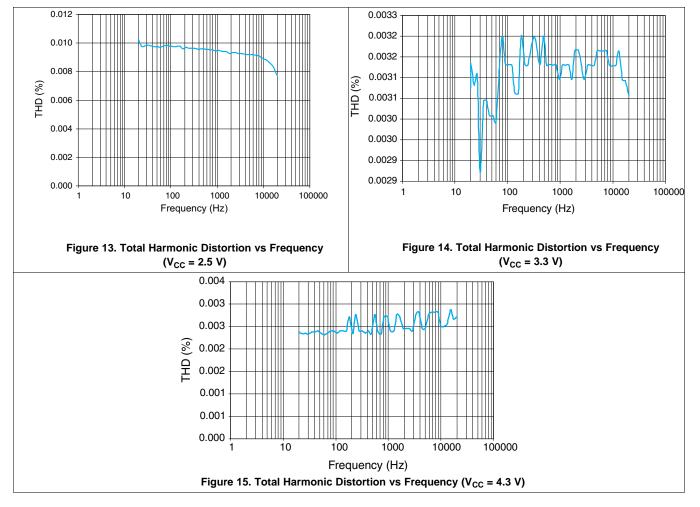
(2) All unused digital inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, SCBA004.

6.10 Typical Characteristics


TS3A44159

SCDS225B-MARCH 2007-REVISED JANUARY 2015

Texas Instruments


www.ti.com

Typical Characteristics (continued)

Typical Characteristics (continued)

7 Parameter Measurement Information

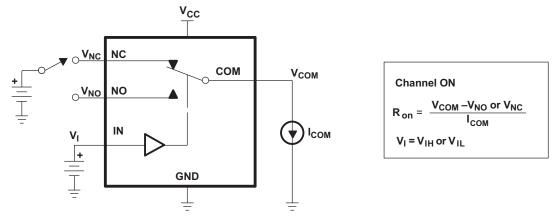
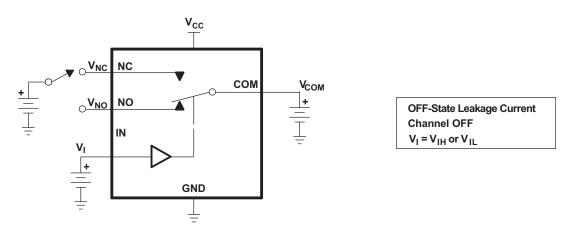
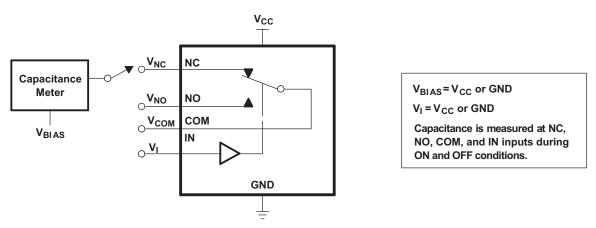
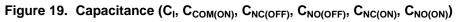
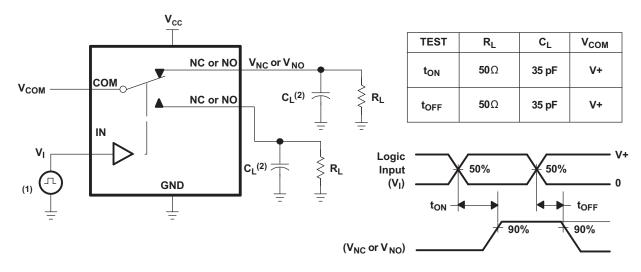


Figure 16. ON-state Resistance (R_{ON})




Figure 17. OFF-State Leakage Current (I_{NC(OFF)}, I_{NC(PWROFF)}, I_{NO(OFF)}, I_{NO(PWROFF)}, I_{COM(OFF)}, I_{COM(PWROFF)})



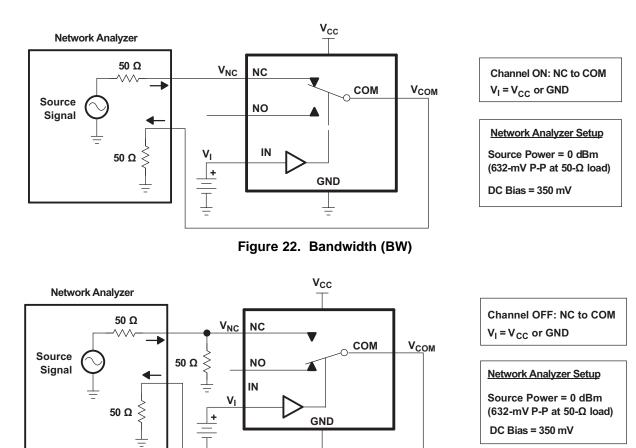

Figure 18. ON-State Leakage Current (I_{COM(ON)}, I_{NC(ON)}, I_{NO(ON)})

A. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_0 = 50 Ω , t_r < 5 ns, t_f < 5 ns.

B. C_L includes probe and jig capacitance.

Figure 20. Turn-On (t_{ON}) and Turn-Off Time (t_{OFF})

V_{cc} V_{cc} Logic V_{NC} or V_{NO} Input 50% NC or NO (V_I) 0 V_{COM} сом NC or NO 90% 90% C1 (2) 2 R_L (V_{COM}) IN VI t_{BBM} Logic V_{NC} or $V_{NO} = V_{CC}$ Л GND Input⁽¹⁾ $R_L = 50 \Omega$ $C_{L}^{-} = 35 \text{ pF}$

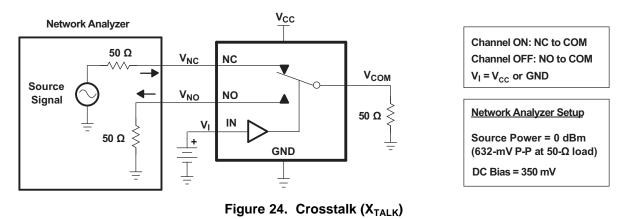

Parameter Measurement Information (continued)

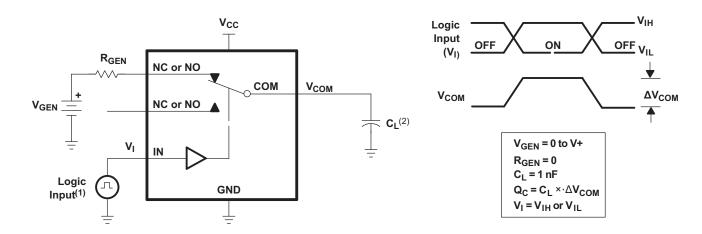
A. C_L includes probe and jig capacitance.

B. All input pulses are supplied by generators having the following characteristics:

PRR \leq 10 MHz, Z₀ = 50 Ω , t_r < 5 ns, t_f < 5 ns.

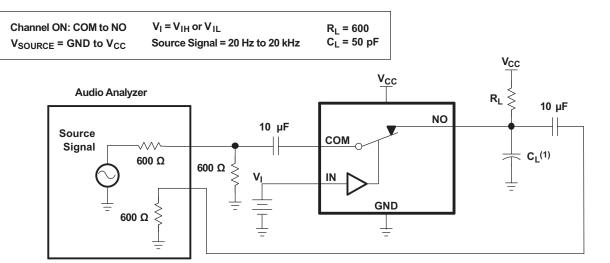
-


INSTRUMENTS


ÈXAS

www.ti.com

Parameter Measurement Information (continued)



A. All input pulses are supplied by generators having the following characteristics:

PRR ≤ 10 MHz, Z_0 = 50 Ω, t_r < 5 ns, t_f < 5 ns.

B. C_L includes probe and jig capacitance.

```
Figure 25. Charge Injection (Q<sub>C</sub>)
```


Parameter Measurement Information (continued)

A. C_L includes probe and jig capacitance.

Figure 26. Total Harmonic Distortion (THD)

www.ti.com

8 Detailed Description

8.1 Overview

The TS3A44159 is a bidirectional 4-channel single-pole double-throw (SPDT) analog switch with two control inputs, which is designed to operate from 1.65 V to 4.3 V. This device is also known as a 2-channel, double-pole, double-throw (DPDT) configuration. It offers low ON-state resistance and excellent ON-state resistance matching with the break-before-make feature that prevents signal distortion during the transferring of a signal from one channel to another. The device has an excellent total harmonic distortion (THD) performance and consumes very low power. These features make this device suitable for portable audio applications.

8.2 Functional Block Diagram

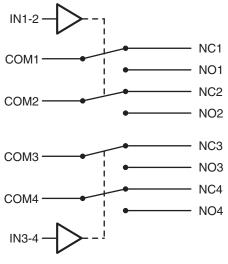


Figure 27. Logic Diagram

8.3 Feature Description

The TS3A44159 is a bidirectional device that has two sets of two single-pole double-throw switches. The four channels of the switch are contorled by two digital signals; one digital contorl for each set of two single-pole double-throw switches.

8.4 Device Functional Modes

Table 1. Function Table

IN	NC TO COM, COM TO NC	NO TO COM, COM TO NO
L	ON	OFF
Н	OFF	ON

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The switches are bidirectional, so the NO, NC, and COM pins can be used as either inputs or outputs.

9.2 Typical Application

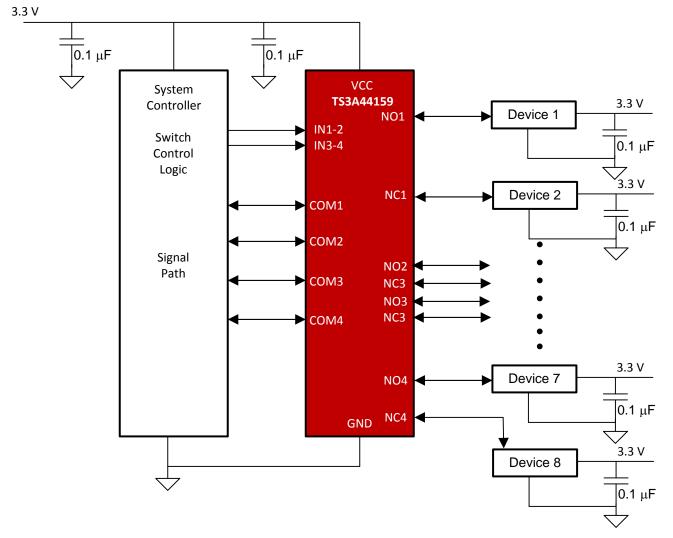


Figure 28. Typical Application Diagram

9.2.1 Design Requirements

Ensure that all of the signals passing through the switch are with in the specified ranges to ensure proper performance.

Table 2. Design Parameters

DESIGN PARAMETERS	EXAMPLE VALUES
Analog Voltage	4.3 V
Digital Input Voltage	4.3 V

9.2.2 Detailed Design Procedure

The TS3A44159 can be properly operated without any external components. However, TI recommends to connect unused pins to the ground through a $50-\Omega$ resistor to prevent signal reflections back into the device. TI also recommends that the digital control pins (INX) be pulled up to VCC or down to GND to avoid undesired switch positions that could result from the floating pin.

9.2.3 Application Curve

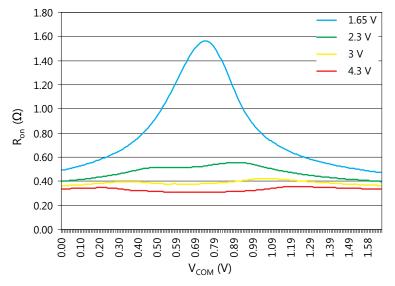
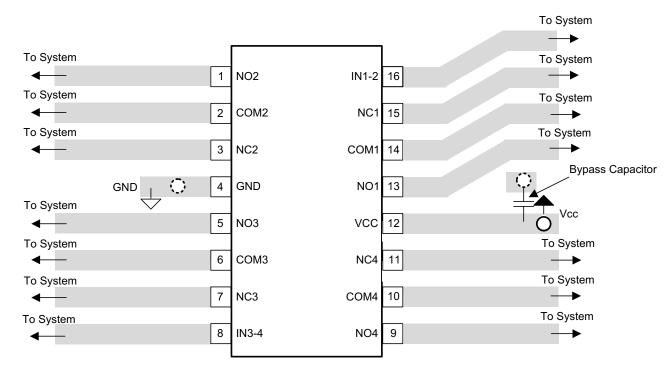


Figure 29. R_{on} vs V_{COM} (All Voltages)

10 Power Supply Recommendations

Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings, because stresses beyond the listed ratings can cause permanent damage to the device. Always sequence V_{CC} on first, followed by NO, NC, or COM. Although it is not required, power-supply bypassing improves noise margin and prevents switching noise propagation from the V_{CC} supply to other components. A 0.1-µF capacitor, connected from V_{CC} to GND, is adequate for most applications.


11 Layout

11.1 Layout Guidelines

High-speed switches require proper layout and design procedures for optimum performance. Reduce stray inductance and capacitance by keeping traces short and wide. Ensure that bypass capacitors are as close to the device as possible. Use large ground planes where possible.

11.2 Layout Example

12 Device and Documentation Support

12.1 Trademarks

All trademarks are the property of their respective owners.

12.2 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.3 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status	Package Type	•	Pins	•	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TS3A44159PWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	YC4159	Samples
TS3A44159PWRG4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	YC4159	Samples
TS3A44159RGTR	ACTIVE	VQFN	RGT	16	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	ZWH	Samples
TS3A44159RGTRG4	ACTIVE	VQFN	RGT	16	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	ZWH	Samples
TS3A44159RSVR	ACTIVE	UQFN	RSV	16	3000	Green (RoHS & no Sb/Br)	CU NIPDAU CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	ZWH	Samples
TS3A44159RSVRG4	ACTIVE	UQFN	RSV	16	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	ZWH	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

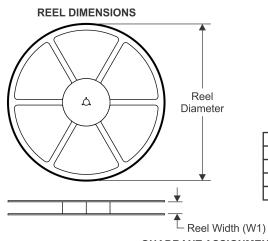
⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

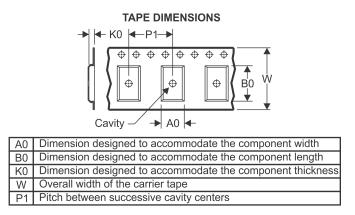
PACKAGE OPTION ADDENDUM

11-Aug-2017

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

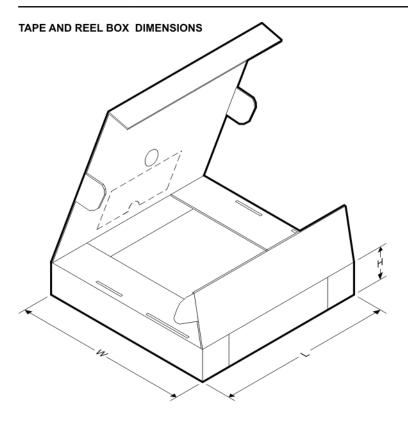

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

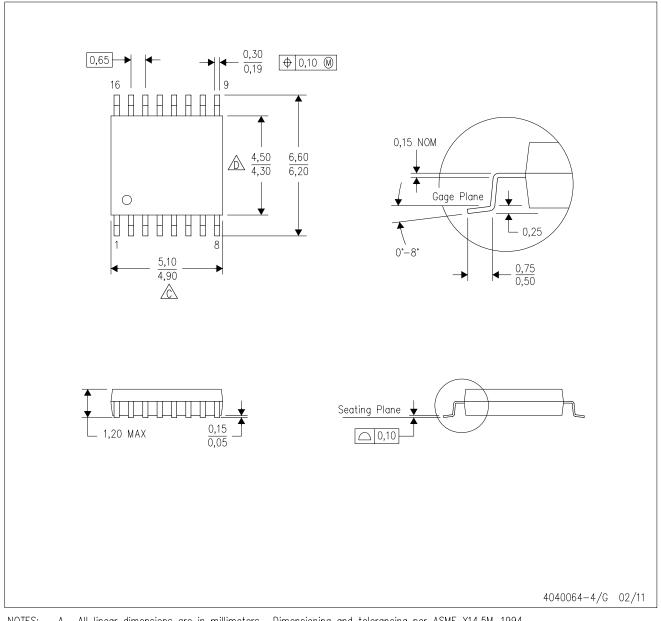

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TS3A44159PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
TS3A44159RGTR	VQFN	RGT	16	3000	330.0	12.4	3.3	3.3	1.0	8.0	12.0	Q2
TS3A44159RSVR	UQFN	RSV	16	3000	180.0	12.4	2.1	2.9	0.75	4.0	12.0	Q1
TS3A44159RSVR	UQFN	RSV	16	3000	177.8	12.4	2.0	2.8	0.7	4.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

11-Aug-2017



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TS3A44159PWR	TSSOP	PW	16	2000	367.0	367.0	35.0
TS3A44159RGTR	VQFN	RGT	16	3000	346.0	346.0	35.0
TS3A44159RSVR	UQFN	RSV	16	3000	203.0	203.0	35.0
TS3A44159RSVR	UQFN	RSV	16	3000	202.0	201.0	28.0

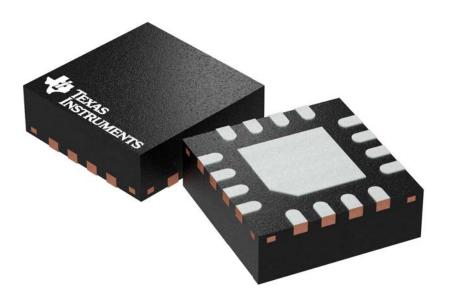
PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES:

A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. β . This drawing is subject to change without notice.

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.

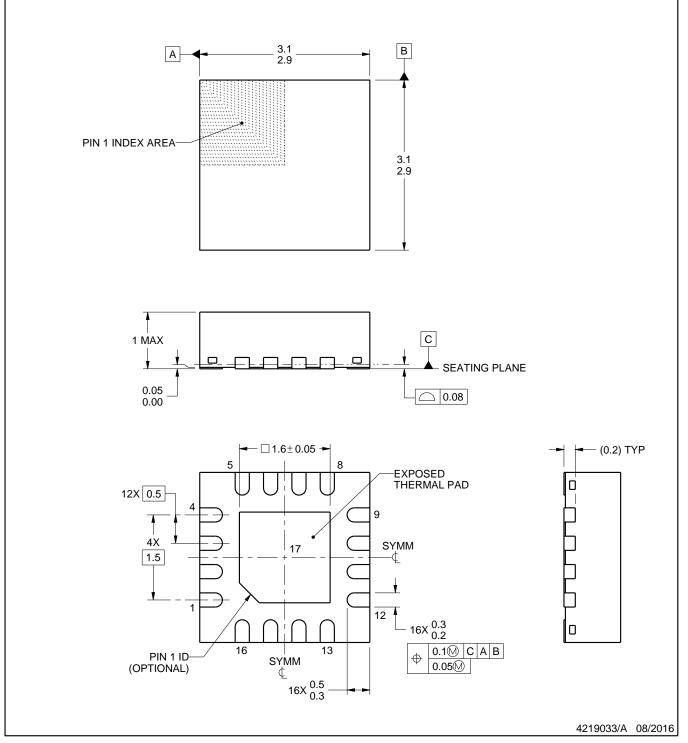

Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153

GENERIC PACKAGE VIEW

VQFN - 1 mm max height PLASTIC QUAD FLATPACK - NO LEAD

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.


RGT0016B

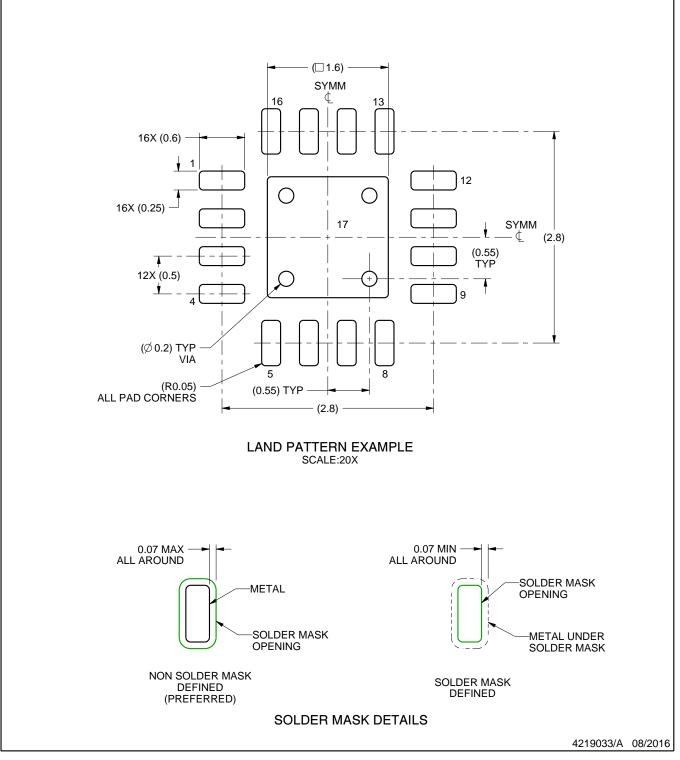
PACKAGE OUTLINE

VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.



RGT0016B

EXAMPLE BOARD LAYOUT

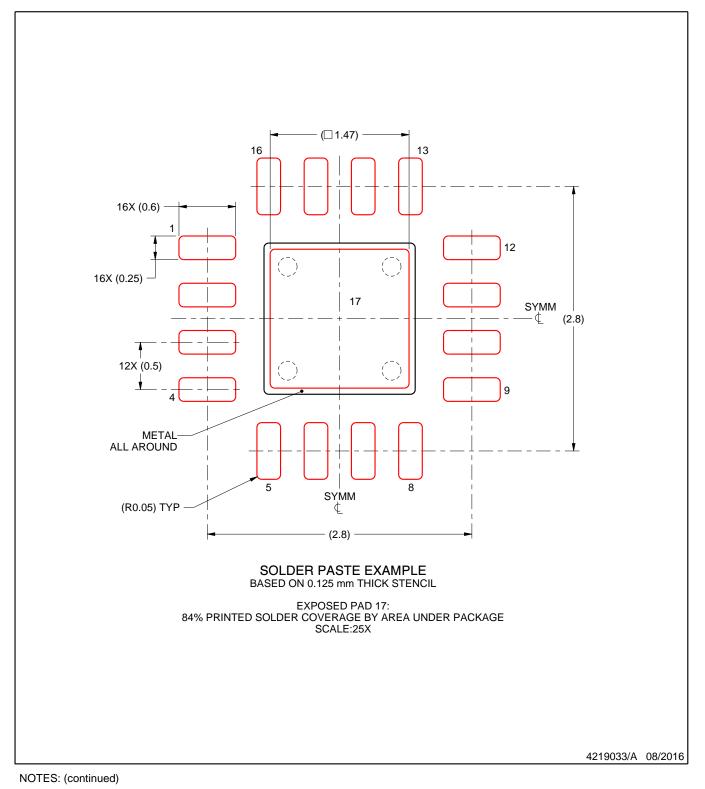
VQFN - 1 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

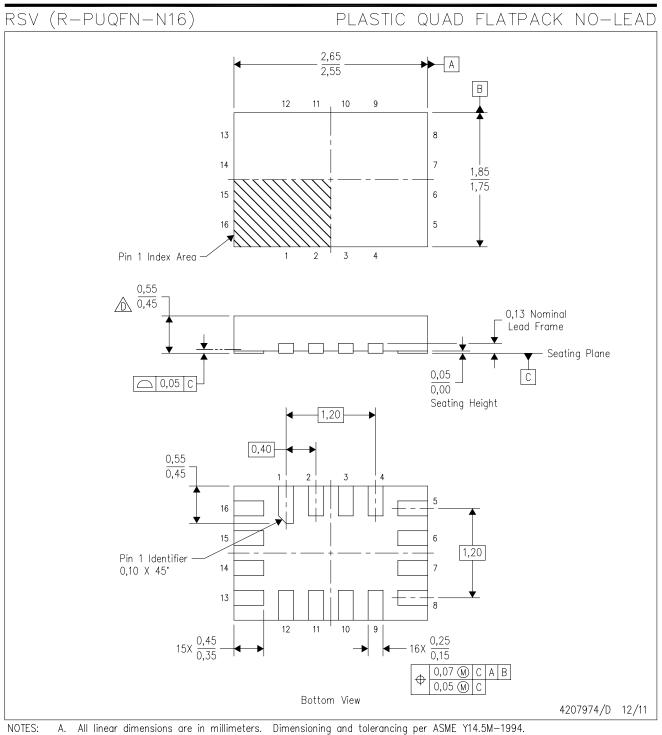
 Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.



RGT0016B

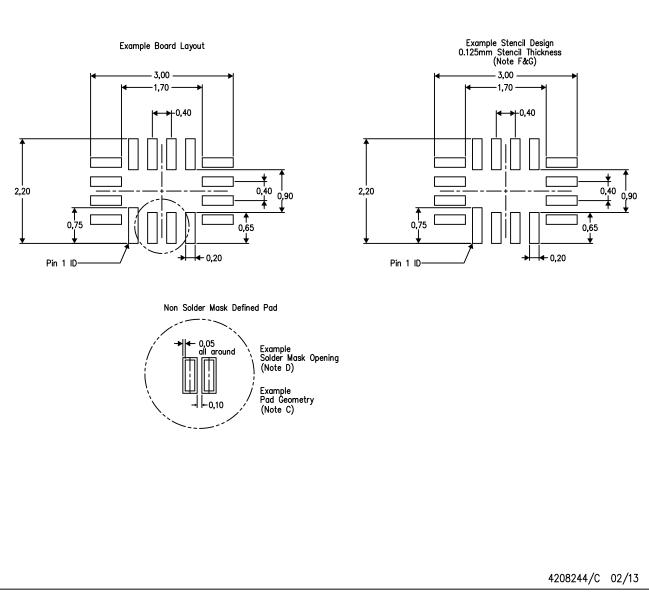
EXAMPLE STENCIL DESIGN

VQFN - 1 mm max height


PLASTIC QUAD FLATPACK - NO LEAD

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

MECHANICAL DATA


- B. This drawing is subject to change without notice.
- C. QFN (Quad Flatpack No-Lead) package configuration.

ightarrow This package complies to JEDEC MO-288 variation UFHE, except minimum package thickness.

RSV (R-PUQFN-N16)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.
- E. Maximum stencil thickness 0,127 mm (5 mils). All linear dimensions are in millimeters.
- F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- G. Side aperture dimensions over-print land for acceptable area ratio > 0.66. Customer may reduce side aperture dimensions if stencil manufacturing process allows for sufficient release at smaller opening.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated