

ADVANCED CAR SIGNAL PROCESSOR

1 FEATURES

- FULLY INTEGRATED SIGNAL PROCESSOR OPTIMIZED FOR CAR RADIO APPLICATIONS
- FULLY PROGRAMMABLE BY I²C BUS
- INCLUDES AUDIOPROCESSOR, STEREO -DECODER WITH NOISE BLANKER AND MULTIPATH DETECTOR
- PROGRAMMABLE ROLL-OFF COMPENSATION
- NO EXTERNAL COMPONENTS

2 **DESCRIPTION**

The TDA7407D is the newcomer of the CSP family introduced by TDA7460/61. It uses the same innovative concepts and design technologies allowing fully software programmability through I2C bus and overall cost optimisation for the system designer.

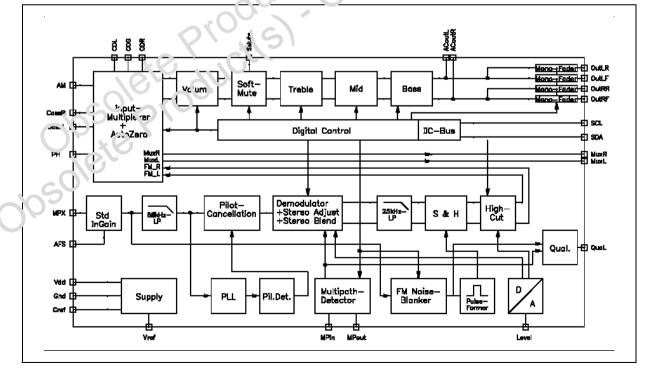

Figure 1. Package

Table 1. Order Codes

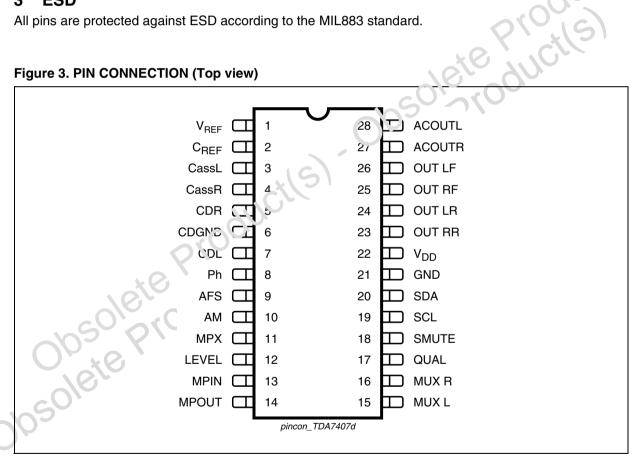
Part Number	Package
TDA7407D	۶O28
TDA7407DTR	SO28 in Tapa & Fieel

The device includes a three band audioprocessor with configurable mouts and ansence of external components for filter satings, a last generation stereoclecope, with multipath detector and a sophisticated stereoblend and noise cancellation circuiting Strength points of the CSP approach are flexibility and overall cost/room saving in the application combined with high performances.

Figure 2. BLOCK DIAGRAM

Table 2. ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Operating Supply Voltage	10.5	V
T _{amb}	Operating Ambient Temperature Range	-40 to 85	°C
T _{stg}	Operating Storage Temperature Range	-55 to 150	°C


Table 3. SUPPLY

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
VS	Supply Voltage		7.5	9	10	V
Is	Supply Current	V _S = 9V	30	35	40	mA
SVRR	Ripple Rejection @ 1KHz	Audioprocessor (all filters flat)	50	60		dB
		Stereodecoder + Audioprocessor	45	55		uВ

ESD 3

All pins are protected against ESD according to the MIL883 standard.

Figure 3. PIN CONNECTION (Top view)

Table 4. THERMAL DATA

Symbol	Parameter	Value	Unit
R _{th-j pins}	Thermal Resistance Junction to pins Max	85	°C/W

47/

Table 5. PIN DESCRIPTION

Ν.	Name	Function	Туре
1	VREF	Reference Voltage Output	I
2	CREF	Reference Capacitor Pin	S
3	TAPEL	Tape Input Left	I
4	TAPER	Tape Input Right	I
5	CDR	CD Right Channel Input	I
6	CDGND	CD Input Common Ground	I
7	CDL	CD Input Left Channel	I J
8	PH	Phone Input	IC V
9	AFS	AFS Drive	94
10	AM	AM Input	5
11	MPX	FM Stereodecoder Input	<u>C</u> L
12	LEVEL	Level Input Stereodecoder	
13	MPIN	Multipath Input	I
14	MPOUT	Multipath Output	0
15	MUXL	Multiplexer Output Left Channel	0
16	MUXR	Multiplexer Output Right Channel	0
17	QUAL	Stereode code: Guality Output	0
18	SMUTE	Soft Muie Drive	I
19	SCL	∫rÊ Clock Line	I
20	SLIA	I ² C Data Line	I/O
21	GND	Supply Ground	S
22	vs	Supply Voltage	S
23	OUTRR	Right Rear Speaker Output	0
24	OUTLR	Left Rear Speaker Output	0
25	OUTRF	Right Front Spaeaker Output	0
26	OUTLF	Left Front Speaker Output	0
27	ACOUTR	Pre-speaker AC Output Right Channel	0
28	ACOUTL	Pre-speaker AC Output Left Channel	0

Pin type legenda: I = Input O = Output I/O = Input/Output S = Supply nc = not connected

4 AUDIO PROCESSOR PART

4.0.1 Input Multiplexer

- Quasi-differential CD and cassette stereo input
- AM mono input
- Phone inverting input
- Multiplexer signal after In-Gain available at separate pins

4.0.2 Volume control

- 1dB attenuator
- Max. gain 15dB
- Max. attenuation 79dB

4.0.3 Bass Control

- 2nd order frequency response
- Q-factor programmable in 4 steps
- Center frequency programmable in 4(5) steps
- DC gain programmable
- ±15 x 1dB steps

4.0.4 Mid Control

- 2nd order frequency response
- Q-factor programmable in 2 steps
- Center frequency programmable in 4 steps
- ±15 x1dB steps

4.0.5 Treble Control

- 2nd order frequency response
- Center frequency programmable in 4 steps
- ±15 x 1dB steps

4.0.6 Speaker Control

- 4 independent speaker controls in : a3 steps
- max gain 15dB
- max. attenuation 79dB

4.0.7 Mute Functio: s

- Direct mute
- Digitally controlled softmute with 4 program hable mute time.

4.1 ELECTRICAL CHARACTERISTICS

Table 6. Electrical Characteristics

 $(V_S = 9V; T_{amb} = 25^{\circ}C; R_L = 10K\Omega; all gains = 0cS, f = 1KHz; unless otherwise specified)$

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
INPUT SE	LECTOR			•		•
Rin	Input Resistance	all inputs except Phone	70	100	130	KΩ
V _{CL}	Clipping Level	21	2.2	2.6		V _{RMS}
S _{IN}	Input Separation		80	100		dB
GIN MIN	Min. In _F u: Gain		-1	0	1	dB
G _{IN MAX}	Max. Sput Gain		13	15	17	dB
GSTER	Step Resolution		0.5	1	1.5	dB
VDC	DC Steps	Adjacent Gain Step	-5	0.5	5	mV
		GMIN to GMAX	-10	5	10	mV
DIFFERE	NTIAL CD STEREO INPUT			•		•
R _{in}	Input Resistance	Differential	70	100	130	KΩ
		Common Mode	70	100	130	KΩ
CMRR	Common Mode Rejection Ratio	V _{CM} = 1V _{RMS} @ 1KHz	45	70		dB
		V _{CM} = 1V _{RMS} @ 10KHz	45	60		dB
e _N	Output Noise @ Speaker Outputs	20Hz to 20KHz flat; all stages 0dB		6	15	mV
PHONE II	NPUT		•		•	
R _{in}	Input Resistance		40	56		KΩ

Table 6. Electrical Characteristics (continued)

 $(V_S = 9V; T_{amb} = 25^{\circ}C; R_L = 10K\Omega; all gains = 0dB; f = 1KHz; unless otherwise specified)$

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
VOLUME	CONTROL	•				
G _{MAX}	Max Gain		13	15	17	dB
A _{MAX}	Max Attenuation		70	79		dB
A _{STEP}	Step Resolution		0.5	1	1.5	dB
E _A	Attenuation Set Error	G = -20 to 20dB	-1.25	0	1.25	dB
		G = -60 to 20dB	-4	0	3	dB
ET	Tracking Error				2	dB
V _{DC}	DC Steps	Adjacent Attenuation Steps		0.1	3	m\′
		From 0dB to GMIN		0.5	5	m ′
SOFT MU	TE/AFS				X	
A _{MUTE}	Mute Attenuation		80	100		dB
T _D	Delay Time	T1		0_+8	74	ms
		T2	× 2	0.96	C	ms
		ТЗ	6	40.4		ms
		T4		324		ms
V _{TH low}	Low Threshold for SM-/AFS- Pin ¹⁾	0,02	X		1	V
V _{TH high}	High Threshold for SM-/AFS-Pin	191	2.5			V
R _{PD}	Internal Pull-up Resistor	15 0		45		KΩ
BASS CO	NTROL					
CRANGE	Control Range		±13	±15	±17	dB
A _{STEP}	Step Resolution	· ·	0.5	1	1.5	dB
f _C	Center Frequency	fct	54	60	66	Hz
		f _{C2}	63	70	77	Hz
	1010 AUG	f _{C3}	72	80	88	Hz
	soleteroduct	f _{C4}	90	100 (150) ⁽²⁾	110	Hz
C BASS	Quality Factor	Q ₁	0.9	1	1.1	
	ete	Q ₂	1.1	1.25	1.4	
~0		Q ₃	1.3	1.5	1.7	
3		Q4	1.8	2	2.2	
DCGAIN	Bass-Dc-Gain	DC = off	-1	0	1	dB
		DC = on	3.5	4.4	5.5	dB
	TROL		•			
CRANGE	Control Range		±13	±15	±17	dB
ASTEP	Step Resolution		0.5	1	1.5	dB

57

Table 6. Electrical Characteristics (continued)

 $(V_S = 9V; T_{amb} = 25^{\circ}C; R_L = 10K\Omega; all gains = 0dB; f = 1KHz; unless otherwise specified)$

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
f _C	Center Frequency	f _{C1}	450	500	550	Hz
		f _{C2}	0.9	1	1.1	kHz
		f _{C3}	1.35	1.5	1.65	kHz
		f _{C4}	1.8	2	2.2	kHz
Q _{MID}	Quality Factor	Q ₁	0.9	1	1.1	
		Q ₂	1.8	2	2.2	
TREBLE	CONTROL	•	•			
C _{RANGE}	Control Range		±13	±15	±17	dE
A _{STEP}	Step Resolution		0.5	1	1.5	CL.
fc	Center Frequency	f _{C1}	8	10	í2	KHz
		f _{C2}	10	12.5	15	KHz
		f _{C3}	12	15	18	KHz
		f _{C4}	34	17.5	21	KHz
SPEAKE	RATTENUATORS			<u> </u>	7	
Rin	Input Impedance	S	35	50	65	KΩ
Gмах	Max Gain		13	15	17	dB
Амах	Max Attenuation		-70	-79		dB
ASTEP	Step Resolution		0.5	1	1.5	dB
AMUTE	Output Mute Attenuation	13.5	80	90		dB
ΕE	Attenuation Set Error				±2	dB
VDC	DC Steps	Adjacent Attenuation Steps		0.1	5	mV
AUDIO O	UTPUTS	5	1			l
VCLIP	Clipping Level	d = 0.3%	2.2	2.6		VRMS
R∟	Output Load Resistance		2			KΩ
CL	Output Load Capacitance				10	nF
Rout	ייל, put Impedance			30	120	Ω
	DC Voltage Level		4.3	4.5	4.7	V
GENERA	0	I				
eno	Output Noise	BW = 20 Hz to 20 KHz output muted		3	15	μV
Y		BW = 20 Hz to 20 KHz all gain = 0dB		6.5	15	μV
S/N	Signal to Noise Ratio	all gain = 0dB flat; $V_0 = 2V_{RMS}$	102	110		dB
		bass treble at 12dB; a-weighted; $V_0 = 2.6V_{RMS}$	96	100		dB
d	Distortion	V _{IN} = 1V _{RMS} ; all stages 0dB		0.002	0.1	%
		V _{IN} = 1V _{RMS} ; Bass & Treble = 12dB		0.05	0.1	%

۲/

Table 6. Electrical Characteristics (continued)

 $(V_S = 9V; T_{amb} = 25^{\circ}C; R_L = 10K\Omega; all gains = 0dB; f = 1KHz; unless otherwise specified)$

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
S _C	Channel separation Left/Right		80	100		dB
ET	Total Tracking Error	$A_V = 0$ to -20dB	-1	0	1	dB
		A _V = -20 to -60dB	-2	0	2	dB
BUS INPL	JTS		I			
VIL	Input Low Voltage	d = 0.3%			0.8	V
V _{IH}	Input High Voltage		2.5			V
I _{IN}	Input Current	V _{IN} = 0.4V	-5		5	μA
Vo	Output Voltage SDA	I _O = 1.6mA			0.4	V

1) The SM pin is active low (Mute = 0)

2) See note in Programming Part

4.2 STEREODECODER PART.

Table 7. Electrical Characteristics

 $(V_S = 9V; deemphasis time constant = 50\mu s, V_{MPX} = 500mV(75KHz deviation)$ in the iKHz, Gv = 6dB, $T_{amb} = 25^{\circ}C$; unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Vin	MPX Input Level	G _v = 3.5dB	21	0.5	1.25	V _{RMS}
R _{in}	Input Resistance	() ~ .0	70	100	130	KΩ
G _{MIN}	Min. Input Gain		1.5	3.5	4.5	dB
GMAX	Max. Input Gain	161-01	8.5	11	12.5	dB
GSTEP	Step Resolution	1005	1.75	2.5	3.25	dB
SVRR	Supply Voltage Ripple Rejection	Vrinple = 100mV; f = 1KHz	35	60		dB
α	Max. channel Separation		30	50		dB
THD	Total Harmonic Distortion			0.02	0.3	%
$\frac{S+N}{N}$	Signal plus Noise to Noise Ratio	A-weighted, S = 2V _{RMS}	80	91		dB
MONO/ST	EREO-SI WYCH					
V _{PTHST1}	Pilo Treshold Voltage	for Stereo, PTH = 1	10	15	25	mV
VPTHSI	Pile. Threshold Voltage	for Stereo, PTH = 0	15	25	35	mV
VP 'HMC I	Pilot Threshold Voltage	for Mono, PTH = 1	7	12	17	mV
V _{PTHMO0}	Pilot Threshold Voltage	for Mono, PTH = 1	10	19	25	mV
PLL						
Δf/f	Capture Range		0.5			%
DEEMPH.	ASIS and HIGHCUT					
t _{HC50}	Deemphasis Time Constant	Bit 7, Subadr, 10 = 0, $V_{LEVEL} >> V_{HCH}$	25	50	75	μs
t _{HC75}	Deemphasis Time Constant	Bit 7, Subadr, 10 = 1, $V_{LEVEL} >> V_{HCH}$	50	75	100	μs
t _{HC50}	Highcut Time Constant	Bit 7, Subadr, 10 = 0, $V_{LEVEL} >> V_{HCL}$	100	150	200	μs
t _{HC75}	Highcut Time Constant	Bit 7, Subadr, 10 = 1, V _{LEVEL} >> V _{HCL}	150	225	300	μs

Table 7. Electrical Characteristics (continued)

(V_S = 9V; deemphasis time constant = 50μ s,V_{MPX} = 500mV(75KHz deviation), fm= 1KHz, Gv = 6dB, T_{amb} = 25° C; unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
STEREO	BLEND-and HIGHCUT-CONTROL					
REF5V	Internal Reference Voltage		4.7	5	5.3	V
T _{CREF5V}	Temperature Coefficient			3300		ppm
L _{Gmin}	Min. LEVEL Gain		-1	0	1	dB
L _{Gmax}	Max. LEVEL Gain		8	10	12	dB
L _{Gstep}	LEVEL Gain Step Resolution		0.3	0.67	1	dB
VSBL _{min}	Min. Voltage for Mono		25	29	33	%REF5V
VSBL _{max}	Min. Voltage for Mono		54	58	62	%PEI 5V
VSBLstep	Step Resolution		2.2	4.2	6.2	%REr3V
VHCH _{min}	Min. Voltage for NO Highcut		38	42	40	%REF5V
VHCH _{max}	Min. Voltage for NO Highcut		62	66	70	%REF5V
VHCH _{step}	Step Resolution		5	<u>ج.4</u>	12	%REF5V
VHCLmin	Min. Voltage for FULL Highcut		12	17	22	%VHCH
VHCLmax	Max. Voltage for FULL Highcut		26	33	38	%VHCH
VHCLstep	Step Resolution	-0	2.2	4.2	6.2	%VHCH
Carrier an	nd harmonic suppression at the o	utput	01			4
α19	Pilot Signal f = 19KHz	()	40	50		dB
α38	Subcarrier f = 38KHz				75	dB
α57	Subcarrier f = 57KHz				62	dB
α76	Subcarrier f = 76KHz				90	dB
Intermod	ulation (Note 1)					
α2	f _{mod} = 10KHz, f _{spur} = 1KHz				65	dB
α3	f _{mod} = 13KHz, f _{spur} = 1K' l				75	dB
Traffic Ra	ntio (Note 2)	51				
α57	Signal f = 57K'12				70	dB
SCA - Su	bsidiary Covarcunications Authoo	rization (Note 3)				
α67	Sigr al = 67KHz				75	dB
	Channel Interference (Note	4)				
c 114	Signal f = 114KHz				95	dB
α1ου	Signal f = 190KHz				84	dB

Notes to the characteristics:

1. Intermodulation Suppression:

$$\begin{split} \alpha 2 &= \frac{V_{O(signal)(at1kHz)}}{V_{O(spurious)(at1kHz)}} \text{ ; } f_{s} = (2 \text{ x } 10 \text{kHz}) \text{ - } 19 \text{kHz} \\ \alpha 3 &= \frac{V_{O(signal)(at1kHz)}}{V_{O(spurious)(at1kHz)}} \text{ ; } f_{s} = (3 \text{ x } 13 \text{kHz}) \text{ - } 38 \text{kHz} \end{split}$$

measured with: 91% pilot signal; fm = 10kHz or 13kHz.

2. Traffic Radio (V.F.) Suppression: measured with: 91% stereo signal; 9% pilot signal; fm=1kHz; 5% sub-

47/

carrier (f = 57kHz, fm = 23Hz AM, m = 60%)

$$\alpha 57(V.W > F.) = \frac{V_{O(signal)(at1kHz)}}{V_{O(spurious)(at1kHz \pm 23kHz)}}$$

3. SCA (Subsidiary Communications Authorization) measured with: 81% mono signal; 9% pilot signal; fm = 1kHz; 10%SCA - subcarrier (fs = 67kHz, unmodulated).

$$\alpha 67 = \frac{V_{O(signal)(at1kHz)}}{V_{O(spurious)(at9kHz)}}; F_s = (2 \times 38kHz) - 67kHz$$

4. ACI (Adjacent Channel Interference):

$$\alpha 114 = \frac{V_{O(signal)(at1kHz)}}{V_{O(spurious)(at4kHz)}}; F_s = 110kHz - (3 \times 38kHz)$$

$$\alpha 114 = \frac{V_{O(signal)(at1kHz)}}{V_{O(spurious)(at4kHz)}}; F_s = 186kHz - (5 \times 38kHz)$$

measured with: 90% mono signal; 9% pilot signal; fm =1kHz; 1% spurious signal(fs = 110kH² cr) 86kHz, 10 HIVE unmodulated).

NOISE BLANKER PART 5

- internal 2nd order 140kHz high pass filter
- programmable trigger threshold
- trigger threshold dependent on high frequency noise with programmable gain
- additional circuits for deviation and fieldstrength dependent trigger adjustment
- very low offset current during hold time due to opamps wiviOS inputs
- four selectable pulse suppression times
- programmable noise rectifier charge/discharge current

Table 8. ELECTRICAL CHARACTERISICS (continued)

Symbol	Paramete:	Test Condition		Min.	Тур.	Max.	Unit
V _{TR}	Trigger Threshoid 0)	meas. with V _{PEAK} = 0.9V	NBT = 111	(c)	30	(C)	mV _{OP}
			NBT = 110	(c)	35	(C)	mV _{OP}
			NBT = 101	(c)	40	(c)	mV _{OP}
	SON		NBT = 100	(c)	45	(C)	mV _{OP}
			NBT = 011	(c)	50	(C)	mV _{OP}
	A CO		NBT = 010	(c)	55	(C)	mV _{OP}
	No.		NBT = 001	(c)	60	(C)	mV _{OP}
S	Ψ.		NBT = 000	(c)	65	(C)	mV _{OP}
VTRNOISE	Noise Controlled Trigger	meas. with V _{PEAK} = 1.5V	NCT = 00	(c)	260	(C)	mV _{OP}
	Threshold ²⁾		NCT = 01	(c)	220	(C)	mV _{OP}
			NCT = 10	(c)	180	(C)	mV _{OP}
			NCT = 11	(c)	140	(C)	mV _{OP}
V _{RECT}	Rectifier Voltage	V _{MPX} = 0mV	NRD ⁶⁾ = 00	0.5	0.9	1.3	V
		V _{MPX} = 50mV; f = 150KHz		1.5	1.7	2.1	V
		V _{MPX} = 200mV; f = 150KHz		2.2	2.5	2.9	V

Symbol	Parameter	Test Condition		Min.	Тур.	Max.	Unit
VRECT DEV	deviation dependent	means. with	OVD = 11	0.5	0.9(off)	1.3	V _{OP}
	rectifier Voltage 3)	V _{MPX} = 800mV (75KHz dev.)	OVD = 10	0.9	1.2	1.5	V _{OP}
			OVD = 01	1.7	2.0	2.3	V _{OP}
			OVD = 00	2.5	2.8	3.1	V _{OP}
V _{RECT FS}	Fieldstrength Controlled	means. with	FSC = 11	0.5	0.9(off)	1.3	V
	Rectifier Voltage 4)	V _{MPX} = 0mV V _{LEVE} L << V _{SBL}	FSC = 10	0.9	1.4	1.5	V
		(fully mono)	FSC = 01	1.7	1.9	2.3	V
			FSC = 00	2.1	2.4	3.1	V
TS	Suppression Pulse	Signal HOLDNin Testmode	BLT = 00	TBD	38	TBD	μs
	Duration ⁵⁾		BLT = 10	TBD	32	TBD	j∷s
			BLT = 01	TBD	25.5	TBD	ns
			BLT = 00	TBD	22	720	μs
VRECTADJ	Noise Rectifier discharge	Signal PEAK in Testmode	NRD = 00 ⁶⁾	(c)	0.3	(C)	V/ms
	adjustment ⁶⁾		NRD = 01 ⁶⁾	(c)	0.8	(c)	V/ms
			NRD = 10 ⁶⁾	(γ)	1.3	(c)	V/ms
			NRD = 11 ⁶ ,	(c)	2.0	(c)	V/ms
SR _{PEAK}	Noise Rectifier Charge	Signal PEAK in Testmode	PCH = 0 ⁷⁾	(c)	10	(c)	mV/μs
		C	PCH = 1 ⁷⁾	(c)	20	(c)	mV/μs
V _{ADJMP}	Noise Rectifier adjustment	Signal PEAK in Testmode	MPNB = 00 ⁸⁾	(c)	0.3	(c)	V/ms
	through Multipath ⁸⁾		MPNB = 01 ⁸⁾	(c)	0.5	(c)	V/ms
		1265	MPNB = 10 ⁸⁾	(c)	0.7	(c)	V/ms
			MPNB = 11 ⁸⁾	(c)	0.9	(C)	V/ms

Table 8. ELECTRICAL CHARACTERISTICS (continued)

(c) = by design/characterization functionally jua ameed through dedicated test mode structure

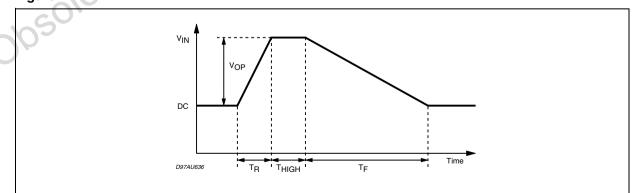
0) All Thresholds are measured using a pu'se with TR =2ms, THIGH = 2ms and TF = 10ms. The repetition rate must not increase the PEAK voltage.

1) NBT represents the Noisebland'er Byte bits D2, D0 for the noise blanker trigger threshold

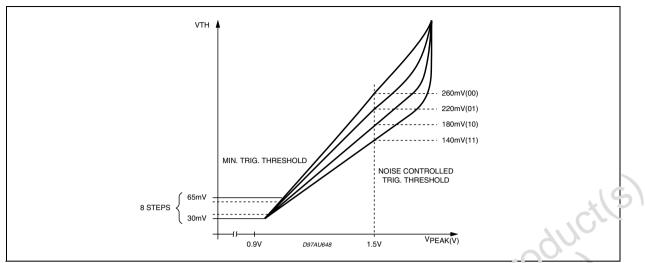
2) NAT represents the Noiscille iker Byte bit pair D4, D3 for the noise controlled triggeradjustment

3) OVD represents the NoiseLanker Byte bit pair D7, D6 for the over deviation detector

4) FSC represents the Tieldstrength Byte bit pair D1, D0 for the fieldstrength control


5) BLT represents he Speaker RR Byte bit pair D7, D6 for the blanktime adjustment

6) NRD represents the Configuration-Byte bit pair D1, D0 for the noise rectifier discharge-adjustment


7) PC: 19 res mus the Stereodecoder-Byte bit D5 for the noise rectifier charge-current adjustment

8) M PNB excession the HighCut-Byte bit D7 and the Fieldstrength-Byte D7 for the noise rectifier multipath adjustment

Figure 5. Trigger Threshold vs.V_{PEAK}

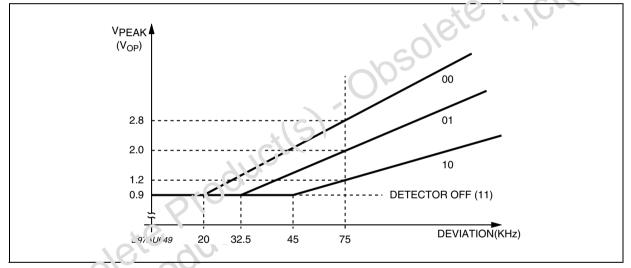
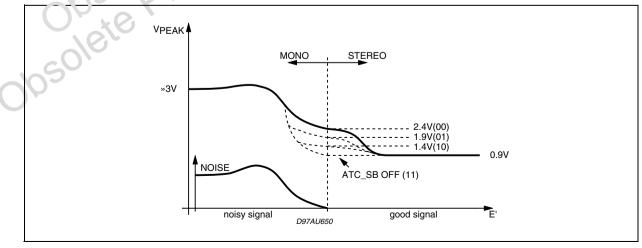



Figure 7 Ficiostrength Controlled Trigger Adjustment

57

MULTIPATH DETECTOR 6

- Internal 19kHz band pass filter
- Programmable band pass and rectifier gain
- two pin solution fully independent usable for external programming
- selectable internal influence on Stereoblend

Table 9. ELECTRICAL CHARACTERISTICS (continued)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
f _{CMP}	Center Frequency of Multipath- Bandpass	stereodecoder locked on Pilottono		19		KHz
G _{BPMP}	Bandpass Gain	bits D_2 , D_1 configuration byte = 00		6		dB
		bits D_2 , D_1 configuration byte = 10		12		ιB
		bits D_2 , D_1 configuration byte = 01		16	11	ЪB
		bits D_2 , D_1 configuration byte = 11		18	70,	dB
GRECTMP	Rectifier Gain	bits D_7 , D_6 configuration byte = 00		7.6	210	dB
		bits D_7 , D_6 configuration byte = 01		1.6	11	dB
		bits D_7 , D_6 configuration byte = 10	XC	0		dB
		bits D_7 , D_6 configuration byte = 11		off		dB
ICHMP	Rectifier Charge Current	bit D_5 configuration byte = C	3	0.5		μA
		bit D_5 configuration $\omega_y = -$		1.0		μA
IDISMP	Rectifier Discharge Current		0.5	1	1.5	mA

Table 10. Quality Detector

Symbol	Parameter	Test Condition		Min.	Тур.	Max.	Unit
A	Multipath Influence Factor	,`udr 12 / Bit 5+6	00 01 10 11		0.7 0.85 1.00 1.15		dB dB dB dB
В	Noise Influenc → Factor	Addr. 16 / Bit 1+2	00 01 10 11		15 12 9 6		dB dB dB dB

LESCRIPTION OF THE AUDIOPROCESSORPART 6.1

6.1.1 Input Multiplexer

- CD quasi differential
- Cassette stereo
- Phone inverting
- AM mono
- Stereodecoder input.

6.1.2 Input stages

Most of the input stages have remained the same as in preceeding ST audioprocessors with exception of the CD inputs (see figure 8). In the meantime there are some CD players in the market having a significant high source impedance which affects strongly the common-mode rejection of the normal differential input stage. The additional buffer of the CD input avoids this drawback and offers the full common-mode rejection even with those CD players.

The output of the Cd stage is permanently available of the Cd out-pins

6.1.3 AutoZero

In order to reduce the number of pins there is no AC coupling between the In-Gain and the following stage, so that any offset generated by or before the In-Gain stage would be transferred or even amplified to the output.

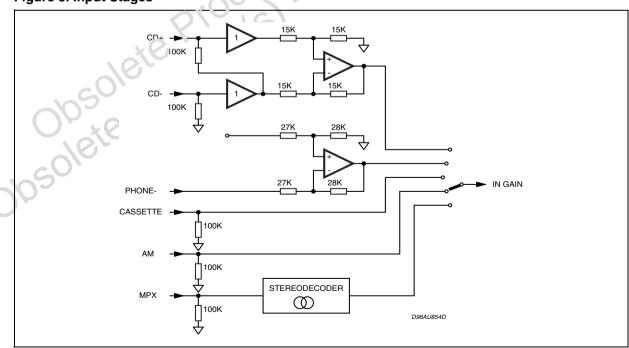
To avoid that effect a special offset cancellation stage called AutoZero is implemented.

This stage is located before the volume-block to eliminate all offsets generated by the Stereodecoder, the Input Stage and the In-Gain (Please notice that externally generated offsets, e.g. generated through the leakage current of the coupling capacitors, are not cancelled).

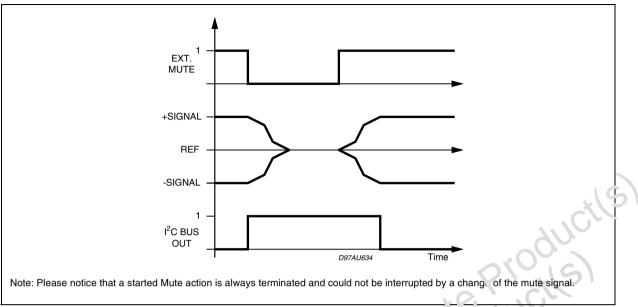
The auto-zeroing is started every time the DATA-BYTE 0 is selected and takes a time of max. 0.3ms. To avoid audible clicks the audioprocessor is muted before the volume stage during this time.

6.1.4 AutoZero Remain

In some cases, for example if the μ P is executing a refresh cycle of the l²C bus program mag, it is not useful to start a new AutoZero action because no new source is selected and an under ire a mute would appear at the outputs. For such applications the TDA7407D could be switched in the "Auto Zero Remain mode" (Bit 6 of the subaddress byte). If this bit is set to high, the DATABYTE 0 could be loaded without invoking the AutoZero and the old adjustment value remains.


6.1.5 Multiplexer Output

The output signal of the Input Multiplexer is available at separate pins (please see the Blockdiagram). This signal represents the input signal amplifier by the In Gain stage and is also going into the Mixer stage.


6.1.6 Softmute

The digitally controlled softmute stage allows mutting /demuting the signal with a I²C bus programmable slope. The mute process can either be activated by the softmute pin or by the I²C bus. The slope is realized in a special S shaped curve to mute s'ow in the critical regions (see figure 9).

Figure 8. Input Stages

Figure 9. Softmute Timing

For timing purposes the Bit 3 of the I²C bus output register is set to 1 ron, the start of muting until the end of demuting.

6.2 BASS

There are four parameters programmable in the base stage: (see figs 10, 11, 12, 13):

6.2.1 Attenuation

Figure 10 shows the attenuation as a function of frequency at a center frequency at a center frequency of 80Hz.

6.2.2 Center Frequency

Figure 11 shows the four possible center frequencies 60,70,80 and 100Hz.

6.2.3 Quality Factors

Figure 12 shows the four possible quality factors 1, 1.25, 1.5 and 2.

6.2.4 DC Mode

In this mode the DC gain is increased by 5.1dB. In addition the programmed center frequency and quality factor is decreased by 25% which can be used to reach alternative center frequencies or quality factors.

6.3 MID

There are 3 parameters programmable in the mid stage (see figs. 14, 15 & 16)

6.3.1 Attenuation

Figure 14 shows the attenuation as a function of frequency at a center frequency of 1kHz.

6.3.2 Center Frequency

Figure 15 shows the four possible center frequencies 500Hz, 1kHz, 1.5kHz and 2kHz.

6.3.3 Quality Factor

Figure 16 shows the two possible quality factors 1 and 2 at a center frequency of 1kHz.

6.4 TREBLE

There are two parameters programmable in the treble stage (see figs 17, 18):

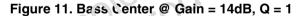
6.4.1 Attenuation

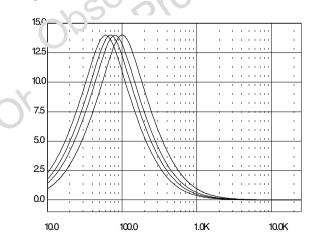
Figure 17 shows the attenuation as a function of frequency at a center frequency of 17.5KHz.

6.4.2 Center Frequency

Figure 15 shows the four possible Center Frequency (10, 12.5, 15 and 17.5kHz).

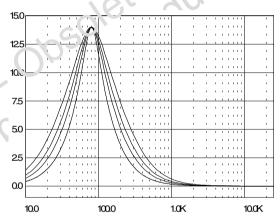
6.4.3 AC Coupling

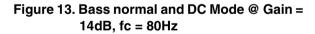

In some applications additional signal manipulations are desired, for example surround-sound or moreband-equalizing. For this purpose a AC-Coupling is placed before the Speaker-attenuators, which can be activated or internally shorted by Bit7 in the Bass/Treble-Configuration byte. In short condition the inputsignal of the speaker-attenuator is available at AC Outputs and the AC Input could be used as addition. stereo inputs. The input impedance of the AC Inputs is always 50KΩ.

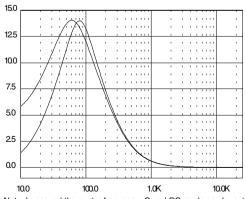

6.4.4 Speaker Attenuator

The speaker attenuators have exactely the same structure and range like the Volume stage.

15.0 10.0 50 0.0 -5.0 -10.0 1.1 -150 10.0 100.0 1.0K 10.0K


Figure 10. Bass Control @ fc = 80Hz, Q = 1





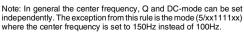
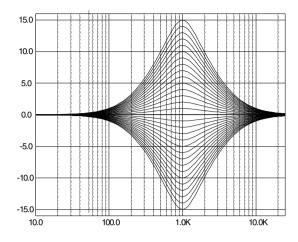
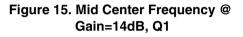

7/

Figure 12. Bass Quality fac`ors @ Gain = 14dB, fc = 80Hz





15/34

Figure 14. Mid Control @ fc=1kHz, Q=1

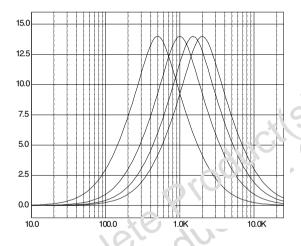


Figure 16. Mill C-iactor @ fc=1kHz, Gain=14dB

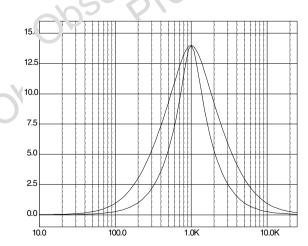


Figure 17. Treble Control @ fc = 17.5KHz

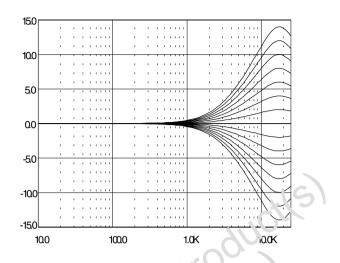
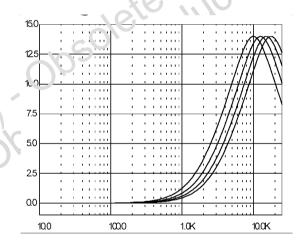



Figure 18. Treble Center Frequencies @ Gain = 14dB

6.5 FUNCTIONAL DESCRIPTION OF STEREODECODER

The stereodecoder part of the TDA7407D (see Fig. 19) contains all functions necessary to demodulate the MPX signal like pilot tone dependent MONO/STEREO switching as well as "stereoblend" and "highcut" functions.

6.5.1 Stereodecoder Mute

The TDA7407 has a fast and easy to control RDS mute function which is a combination of the audioprocessor's softmute and the high-ohmic mute of the stereodecoder. If the stereodecoder is selected and a softmute command is sent (or activated through the SM pin) the stereodecoder will be set automatically to the high-ohmic mute condition after the audio signal has been softmuted.

Hence a checking of alternate frequencies could be performed. To release the system from the mute condition simply the unmute command must be sent: the stereodecoder is unmuted immediately and the audioprocessor is softly unmuted. Fig. 20 shows the output signal VO as well as the internal stereodecoder mute signal. This influence of Softmute on the stereodecoder mute can be switched off by setting bit 3 cf the Softmute byte to "0". A stereodecoder mute command (bit 0, stereodecoder byte set to "1") will column stereodecoder in any case independently to the high-ohmic mute state.

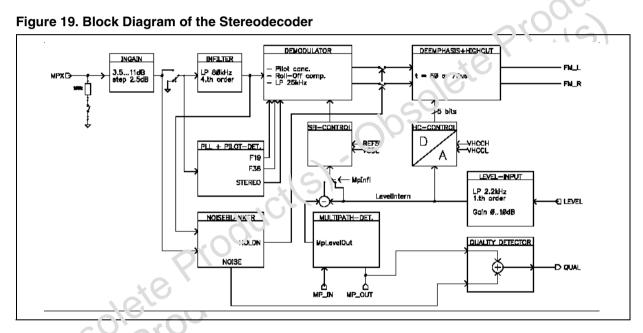
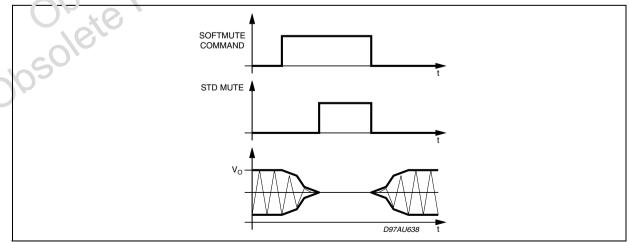
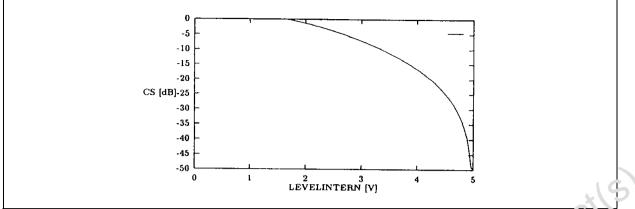




Figure ?0. Signals During Stereodecoder's Softmute

άτ/

Figure 21. Internal Stereoblend Characteristics

If any other source than the stereodecoder is selected the decoder remains muted and the MPX r in is connected to Vref to avoid any discharge of the coupling capacitor through leakage currents.

6.5.2 Ingain + Infilter

The Ingain stage allows to adjust the MPX signal to a magnitude of about 1Vrms internally which is the recommended value. The 4th order input filter has a corner frequency of 80 KHz and is used to attenuate spikes and nose and acts as an anti allasing filter for the following switch capacitor filters.

6.5.3 Demodulator

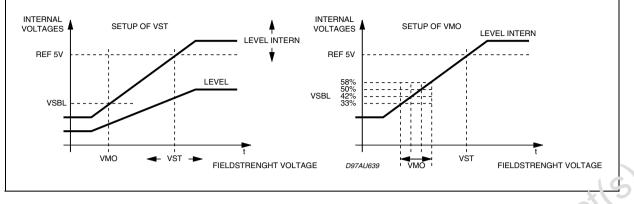
In the demodulator block the left and the right channel are scenarited from the MPX signal. In this stage also the 19 kHz pilot tone is cancelled. For reaching a high channel separation the TDA7407D offers an I^2C bus programmable roll-off adjustment which is able to compensate the lowpass behaviour of the tuner section. If the tuner attenuation at 38kHz is in a range from 7.2% to 31.0% the TDA7407D needs no external network in front of the MPX pin. Within this lange an adjustment to obtain at least 40dB channel separation is possible.

The bits for this adjustment are located together with the fieldstrength adjustment in one byte. This gives the possibility to perform an optimization step during the production of the carradio where the channel separation and the fieldstrength control are trimmed.

6.5.4 Deemphasis and Highcut.

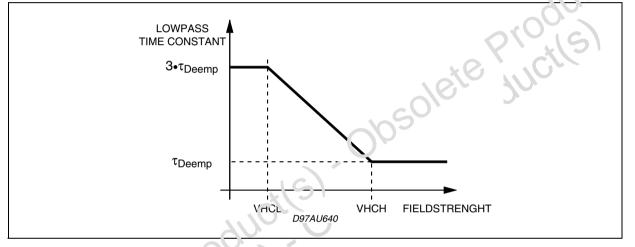
The lowpass filter for the deemphasis allows to choose between a time constant of 50µs and 75µs (bit D7, Stereodecoder byte).

The highcu control range will be in both cases $\tau_{HC} = 2 \cdot \tau_{Deemp}$. Inside the highcut control range (between VHCL) the LEVEL signal is converted into a 5 bit word which controls the lowpass time constant between τ_{Deemp} ...3 · τ_{Deemp} . There by the resolution will remain always 5 bits independently of the absolute voltage range between the VHCH and VHCL values.


The highcut function can be switched off by I²C bus (bit D7, Fieldstrength byte set to "0").

6.5.5 PLL and Pilot Tone Detector

The PLL has the task to lock on the 19kHz pilotone during a stereo transmission to allow a correct demodulation. The included detector enables the demodulation if the pilot tone reaches the selected pilot tone threshold V_{PTHST}. Two different thresholds are available. The detector output (signal STEREO, see block diagram) can be checked by reading the status byte of the TDA7407D via I²C bus.


Fieldstrength Control

The fieldstrength input is used to control the high cut and the stereoblend function. In addition the signal can be also used to control the noiseblanker thresholds and as input for the multipath detector.

Figure 22. Relation Between Internal and External LEVEL Voltage and Setup of Stereoblend

Figure 23. High cut Characteristics

6.5.6 LEVEL Input and Gain

To suppress undesired high frequency modulation on the highcut and stereoblend function the LEVEL signal is lowpass filtered firely.

The filter is a combination of a 1st order RC lowpass at 53kHz (working as anti-aliasing filter) and a 1storder switched capacitor lowpass at 2.2kHz. The second stage is a programmable gain stage to adapt the LEVEL signal internally to different IF device (see Testmode section 5 LEVELINTERN).

The gain is widely programmable in 16 steps from 0dB to 10dB (step = 0.67dB). These 4 bits are located together with the Roll-Off bits in the "Stereodecoder Adjustment" byte to simplify a possible adaptation during the production of the carradio.

6.5.7 Stereoblend Control

57/

The stereoblend control block converts the internal LEVEL voltage (LEVEL INTERN) into an demodulator compatible analog signal which is used to control the channel separation between 0dB and the maximum separation. Internally this control range has a fixed upper limit which is the internal reference voltage REF5V. The lower limit can be programmed between 29.2% and 58%, of REF5V in 4.167% steps (see figs. 22, 23). To adjust the external LEVEL voltage to the internal range two values must be defined: the LEVEL gain LG and VSBL (see fig. 15). To adjust the voltage where the full channel separation is reached (VST) the LEVEL gain LG has to be defined. The following equation can be used to estimate the gain:

L_G = REF5V Field strenght voltage [STEREO] The gain can be programmed through 4 bits in the "Stereodecoder-Adjustment" byte.

The MONO voltage VMO (0dB channel separation) can be choosen selecting VSBLAll necessary internal reference voltages like REF5V are derived from a bandgap circuit. Therefore they have a temperature coefficient near zero. This is useful if the fieldstrength signal is also temperature compensated.

But most IF devices apply a LEVEL voltage with a TC of 3300ppm. The TDA7407D offers this TC for the reference voltages, too. The TC is selectable with bit D7 of the "stereodecoder adjustment" byte.

6.5.8 Highcut Control

The highcut control setup is similar to the stereoblend control setup : the starting point VHCH can be set with 2 bits to be 42, 50, 58 or 66% of REF5V whereas the range can be set to be 17, 22, 28 or 33% of VHCH (see fig. 23).

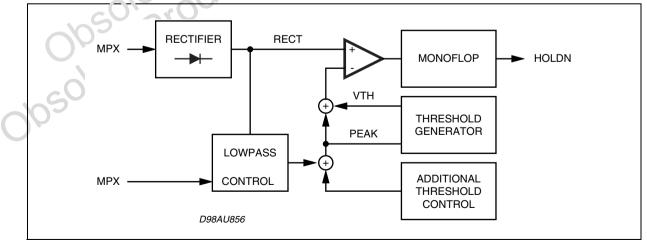
6.6 FUNCTIONAL DESCRIPTION OF THE NOISEBLANKER

In the automotive environment the MPX signal is disturbed by spikes produced by the ignition and for example the wiper motor. The aim of the noiseblanker part is to cancel the audible influence of the spikes.

Therefore the output of the stereodecoder is held at the actual voltage for a time between 22 and 38µs (programmable).

The block diagram of the noiseblanker is given in fig. 24.

In a first stage the spikes must be detected but to avoid a wrong triggering or. h an frequency (white) noise a complex trigger control is implemented. Behind the triggerstage a pulse control represented to the signal path the noiseblanker is supplied by his own biasing circuit.


6.6.1 Trigger Path

The incoming MPX signal is highpass filtered, amplified and ectified. This second order highpass-filter has a corner frequency of 140kHz.

The rectified signal, RECT, is lowpass filtered to generate a signal called PEAK. Also noise with a frequency 140kHz increases the PEAK voltage. The providing voltage can be adjusted by use of the noise rectifier discharge current.

The PEAK voltage is fed to a threshold circuit generator, which adds to the PEAK voltage a DC dependent threshold VTH. Both signals, RF() and PEAK+VTH are fed to a comparator which triggers a re-triggerable monoflop. The monoflop's cutput activates the sample-and-hold circuits in the signal path for selected duration.

Figure 24. Block Diegram of the Noiseblanker

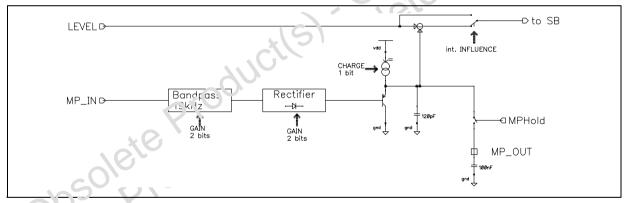
6.6.2 Automatic Noise Controlled ThresholdAdjustment (ATC)

There are mainly two independent possibilities for programming the trigger threshold:

- a the low threshold in 8 steps (bits D0 to D2 of the noiseblanker byte)
- b the noise adjusted threshold in 4 steps (bits D3 and D4 of the noiseblanker byte).

The low threshold is active in combination with a good MPX signal without any noise; the PEAK voltage is less than 1V. The sensitivity in this operation is high.

If the MPX signal is noisy the PEAK voltage increases due to the higher noise, which is also rectified. With increasing of the PEAK voltage the trigger threshold increases, too. This particular gain is programmable in 4 steps.


6.7 AUTOMATIC THRESHOLD CONTROL MECHANISM

6.7.1 Automatic Threshold Control by the Stereoblend Voltage

Besides the noise controlled threshold adjustment there is an additional possibility for influencing the higger threshold. It is depending on the stereoblend control.

The point where the MPX signal starts to become noisy is fixed by the RF part. Therefore also the starting point of the normal noise-controlled trigger adjustment is fixed (fig.). In some cases he behaviour of the noiseblanker can be improved by increasing the threshold even in a region of higher fieldstrength. Sometimes a wrong triggering occures for the MPX signal often shows distortion in this range which can be avoided even if using a low threshold. Because of the overlap of this range and the range of the stereo/ mono transition it can be controlled by stereoblend. This threshold increase is programmable in 3 steps or switched off with bits D0 and D1 of the fieldstrength control byte

Figure 25. Block Diagram of the Multipath Detector

6.7.2 C ver Deviation Detector

If the system is tuned to stations with a high deviation the noiseblanker can trigger on the higher frequencies of the modulation. To avoid this wrong behaviour, which causes noise in the output signal, the noiseblanker offers a deviation dependent threshold adjustment.

By rectifying the MPX signal a further signal representing the actual deviation is obtained. It is used to increase the PEAK voltage. Offset and gain of this circuit are programmable in 3 steps with the bits D6 and D7 of the stereodecoder byte (the first step turns off the detector, see fig. 25).

6.8 FUNCTIONAL DESCRIPTION OF THE MULTIPATH DETECTOR

Using the internal multipath detector the audible effects of a multipath condition can be minimized. A multipath condition is detected by rectifying the 19kHz spectrum in the fieldstrength signal. An external capacitor is used to define the attack and decay times. the MPOUT pin is used as detector output connected to a capacitor of about 47nF and additionally the MPIN pin is selected to be the fieldstrength input. Using the

configuration an external adaptation to the user's requirement is given in fig.25.

To keep the old value of the Multipath Detector during an AF-jump, the external capacitor can be disconnected by the MP-Hold switch. This switch can be controlled directly by the AFS-Pin.

Selecting the "internal influence" in the configuration byte, the channel separation is automatically reduced during a multipath condition according to the voltage appearing at the MP_OUT pin. A possible application is shown in fig. 25.

6.8.1 Programming

To obtain a good multipath performance an adaptation is necessary. Therefore tha gain of the 19kHz bandpass is programmable in four steps as well as the rectifier gain. The attack and decay times can be set by the external capacitor value.

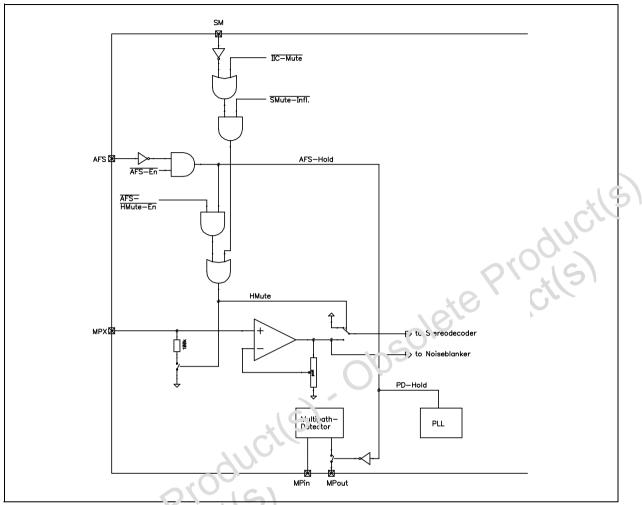
6.9 QUALITY DETECTOR

The TDA7407D offers a quality detector output which gives a voltage representing the FM reception coaditions. To calculate this voltage the MPX noise and the multipath detector output are summed according to the following formula:

The noise signal is the PEAK signal without additional influences. The factor "a" can be programmed from 0.7 to 1.15. the output is a low impedance output able to drive external circulary as well as simply fed to an A/D converter for RDS applications.

6.9.1 AF Search Control

The TDA7407D is supplied with several functionality to support AF-checks using the stereodecoder. As mentioned already before the highohmic-mute feature avoids any clicks during the jump condition. It is possible a the same time to evaluate the noise- and multipath-content of the alternate frequency by using the Quality detector output. Therefore the multipath-detector is switched automatically to a small time-constant.


One additional pin (AFS) is implemented in order to separate the audioprocessor-mute and stereodecoder AF-functions. In Figure 24 the block diagram and control-functions of the complete AFS-functionality is shown (please note that the pins AFS and SM are active low as well as all control-bits indicated by an overbar).

6.10 TEST MODE

During the test mode, which can be activated by setting bit D0 of the testing byte and bit D5 of the subaddress byte to 1", several internal signals are available at the CASSR pin.

During this mode the input resistor of 100kOhm is disconnected from the pin. The internal signals available are shown in the software specification.

Figure 26. Mute Control Logic

7 I²C BUS INTERFACE DESCRIPTION

7.1 InterfaceProtocol

The inte face protocol comprises:

- -a s'art condition (S)
- -a chip address byte (the LSB bit determines read / write transmission)
- -a subaddress byte
- -a sequence of data (N-bytes + acknowledge)
- -a stop condition (P)

Figure 27.

CHIP ADDRES	S	SUE	BADDRESS	DAT		
MSB	LSB	MSB	LSB	MSB	LSB	
S 1 0 0 0 1 1	0 R/W ACK	X AZ T	I A3 A2 A1 A0	ACK	DATA	ACK P
D97AU627						

TDA7407D

S = Start ACK = Acknowledge AZ = AutoZero-Remain T = Testing I = Autoincrement P = Stop MAX CLOCK SPEED 500kbits/s

The transmitted data is automatically updated after each ACK. Transmission can be repeated without new chip address.

7.2 Auto increment

Table 11. TRANSMITTED DATA (send mode)

		rement baddress		set to "	1", the autoinc	crement of th	e subaddres	s is enabled.
Table 11	. TRAI	NSMITT		ΓA (sen	d mode)			AUCIL
MSB								LSB
Х		Х		Х	X	ST	SM	XX
SM = Sof	t mute	activate	ed				5	8
ST = Ster	reo						101	
X = Not L	Jsed						c0'2'	«O ^O
							2.5	
Table 12	SUB	ADDRE	SS (rec	eive mo	ode)	Of	×0 `	
MSB						LSB	6	FUNCTION
13	12	11	10	A3	A2 A	A0		

Table 12. SUBADDRESS (receive mode)

MSB							LSB	FUNCTION
13	12	11	10	A3	A2	A	A0	2
	0 1			2	JC	$\mathbf{\hat{)}}$	0-	AutoZero Remain off on
		0 1	9		S			Testmode off on
		10	0					Auto Increment Mode off on
0	02	2		0 0 0	0 0 0	0 0 1	0 1 0	Input Multiplexer Volume Treble
0	0			Õ	Õ	1	1	Bass
0				0	1	0	0	Speaker attenuator LF
0	J '			0	1	0	1	Speaker attenuator RF
0				0	1	1	0	Speaker attenuator LR
0				0	1	1	1	Speaker attenuator RR
0				1	0 0	0 0	0 1	Soft Mute / Bass Prog. Stereodecoder
0				1	0	1	0	Noiseblanker
0				1	0 0	1	1	High Cut Control
Ő				1	1	0	0	Fieldstrength & Quality
0				1	1	0	1	Configuration
0				1	1	1	0	EEPROM
0				1	1	1	1	Testing
1				0	0	0	0	New Quality/Control
1				0	0	0	1	Middle Filter

47/

8 DATA BYTE SPECIFICATION

After power on reset all register are set to 11111110

MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
								Source Selector
					0	0	0	CD
					0	0	1	Cassette
					0	1	0	Phone
					0	1	1	AM
					1	0	0	Stereo Decoder
					1	0	1	Not Allowed
					1	1	0	Mute
					1	1	1	Not Allowed
								In-Gain
	0	0	0	0				15dB
	0	0	0	1				14dB
	:	:	:	:				
	1	1	1	0				1 dB
	1	1	1	1				0 dB
1								must he "."
	•			•	•	•		SOV

Table 13. Input Selector (subaddress 0H)

Table 14. Volume and Speaker Attenuation	(subaddre: s 1,1, 4H, 5H, 6H, 7H)

MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
1	0	0	1	1	1			
:	:	:	:	:			\mathbf{Q} :	not used configurations
1	0	0	1	0	Э	0	1	not used configurations
1	0	0	1	२	0	0	0	
1	0	0	5		a	1	1	+15dB
:	:	:	:	: : :		:	:	:
1	0	0	0	0	0	0	1	+1dB
0	0	<u>o</u>	0	0	0	0	0	0dB
0	0	5	0	0	0	0	0	0dB
0	0	0	0	0	0	0	1	-1dB
:	5			:	:	:	:	:
0	0	0	0	1	1	1	1	-15dB
)	0	0	1	0	0	0	0	-16dB
		0:	:	:	:	:	:	:
0		0	0	1	1	1	0	-78dB
0	М	0	0	1	1	1	1	-79dB
X	1	1	Х	Х	Х	Х	Х	Mute

TDA7407D

Table 15. Treble Filter (subaddress 2H)

MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
								Treble Steps
			0	0	0	0	0	-15dB
			0	0	0	0	1	-14dB
			:	:	:	:	:	1:
			0	1	1	1	0	-1dB
			0	1	1	1	1	0dB
			1	1	1	1	1	0dB
			1	1	1	1	0	+1dB
			:		:	:	:	:
			1	0	0	0	1	+14dB
			1	0	0	0	0	+15dB
	0 0 1 1	0 1 0 1						Treble Center Frequency 10.0KHz 12.5KHz 15.0KHz 17.5KHz
1								must be "1"
able 1	6. Bass	Filter (subaddi	ress 3H))	1		dete duot

Table 16. Bass Filter (subaddress 3H)

MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	Γ,υ	Piat
								Bass Steps
			0	0	0	0	0	-15dB
			0	0	0	0	1	-14dB
			:	:				1.10
			0 0	1			1	-1dB 0dB
			1				1	0dB
			1		1	1	0	+1dB
					C	:	:	:
			1	0	0	0	1	+14dB
			1	0	0	0	0	+15dB
		0						Bass Q-Factor
	0	3						1.0
	0		$\langle \mathbf{O} \rangle$					1.25
		0						1.50
		\mathbf{O}^{1}						2.0
		S.						Bass DC Mode
0								off
1)`							on

57

MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
				0	0 0 1 1	0 1 0 1	0 1	Mute Enable Soft Mute Disable Soft Mute Mutetime = 0.48ms Mutetime = 0.96ms Mutetime = 40.4ms Mutetime = 324ms Stereodecoder Soft Mute Influence = on Stereodecoder Soft Mute Influence = off
		0 0 1 1 1	0 1 0 1 1					Bass Center Frequency Center Frequency = 60 Hz Center Frequency = 70 Hz Center Frequency = 80 Hz Center Frequency = 100Hz Center Frequency = 150Hz ⁽¹⁾
0 0 1 1	0 1 0 1							Noise Blanker Timε 38μs 25.5μs 32μs 22μs
		actor = 2.0	der (sub	address	s 9H)			P EUNCTION

Table 17. Soft Mute and Bass Programming (subaddress 8H)

Table 18. Stereodecoder (subaddress 9H)

MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	U.	D0	
					70,		0 1	STD Unmuted STD Muted
			R		0 0 1 1	0 1 0 1		In Gain 11dB In Gain 8.5dB In Gain 6dB In Gain 3.5dB
		0		1				must be "1"
	5		0					Forced Mono Mono/Stereo switch automatically
0		01						Noiseblanker PEAK charge current low Noiseblanker PEAK charge current high
~	0 1							Pilot Threshold HIGH Pilot Threshold LOW
0								Deemphasis 50µs Deemphasis 75µs

TDA7407D

Table 19. Noiseblanker (subaddress AH)

MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
					0	0	0	Low Threshold 65mV
					0	0	1	Low Threshold 60mV
					0	1	0	Low Threshold 55mV
					0	1	1	Low Threshold 50mV
					1	0	0	Low Threshold 45mV
					1	0	1	Low Threshold 40mV
					1	1	0	Low Threshold 35mV
					1	1	1	Low Threshold 30mV
			0	0				Noise Controlled Threshold 320mV
			0	1				Noise Controlled Threshold 260mV
			1	0				Noise Controlled Threshold 200mV
			1	1				Noise Controlled Threshold 140mV
		0						Noise blanker OFF
		1						Noise blanker ON
0	0							Over deviation Adjust 2.8
0	1							Over deviation Adjus: 2 JV
1	0							Over deviation Adjust 2V
1	1							Over deviation Lote ctor OFF

Table 20. High Cut (subaddress BH)

MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	DC	
						S	0 1	High Cut OFF High Cut ON
				6		0 1 0 1	02	Max. High Cut 2dB Max. High Cut 5dB Max. High Cut 7dB Max. High Cut 10dB
		ot	0 1 1	0 1 0 1	(5)			VHCH at 42% REF 5V VHCH at 50% REF 5V VHCH at 58% REF 5V VHCH at 66% REF 5V
Ċ		0 1 0 1	100					VHCL at 16.7% VHCH VHCL at 22.2% VHCH VHCL at 27.8% VHCH VHCL at 33.3% VHCH
0)e,							Strong Multipath influence on PEAK 18K OFF ON (18K Discharge if V _{MPOUT} <2.5V)

57

Table 21. Fieldstrength Control	(subaddress CH)
---------------------------------	-----------------

MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
					0	0	0	VSBL at 29% REF 5V
					0	0	1	VSBL at 33% REF 5V
					0	1	0	VSBL at 38% REF 5V
					0	1	1	VSBL at 42% REF 5V
					1	0	0	VSBL at 46% REF 5V
					1	0	1	VSBL at 50% REF 5V
					1	1	0	VSBL at 54% REF 5V
					1	1	1	VSBL at 58% REF 5V
			0	0				Noiseblanker Field strength Adj 2.3V
			0	1				Noiseblanker Field strength Adj 1.8V
			1	0				Noiseblanker Field strength Adj 1.3V
			1	1				Noiseblanker Field strength Adj OFF
	0	0						Quality Detector Coefficient a = 0.7
	0	1						Quality Detector Coefficient a = 0.35
	1	0						Quality Detector Coefficient a = 1.0
	1	1						Quality Detector Cocínc ent a = 1.15
0								Multipath off influence on PEAK discharge -1V/ms (at MPout = 2.5V

 Table 22. Configuration (subaddress DH)

MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	DC	
					JC	0	0101	Noise Rectifier Discharge Resistor R = infinite R = $56k\Omega$ R = $33k\Omega$ R = $18k\Omega$
			22	0101	1 00			Multipath Detector Bandpass Gain 6dB 12dB 16dB 18dB
	S	0	0					Multipath Detector internal influence ON OFF
C		0 1						Multipath Detector Charge Current 0.5 μ A Multipath Detector Charge Current 1 μ A
0 0 1 1	0 1 0 1							Multipath Detector Reflection Gain Gain = 7.6dB Gain = 4.6dB Gain = 0dB disabled

MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
								Roll Off Compensation
0					0	0	0	not allowed
0					0	0	1	7.2%
0					0	1	0	9.4%
:					:	:	:	:
0					1	0	0	13.7%
:					:	:	:	:
0					1	1	1	20.2%
1					0	0	0	not allowed
1					0	0	1	19.6%
1					0	1	0	21.5%
:					:	:	:	:
1					1	0	0	25.3%
:					:	:	:	
1					1	1	1	31.0%
								Level Gain
	0	0	0	0				0dB
	0	0	0	1				0.66dB
	0	0	1	0				1.33dB
	:	:	:	:				
	1	1	1	1				10dB
able 2	4. Testi	ng (sub	address	s FH)				solo 1000

Table 23. Stereodecoder Adjustment (subaddress EH)

Table 24. Testing (subaddress FH)

MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	LU	10
								Stereodecoder test signals
							0	OFF
						51	1	Test signals enabled if bit D5 of the
					\sim		3	subaddress (test mode bit) is set to "1", too
						0	Y	External Clock
						1		Internal Clock
				.00				Testsignals at CASS_R
		0	С,	0	0			VHCCH
		0	6	0	1			Level intern
		0	0	1	0			Pilot magnitude
		0	0		1			VCOCON; VCO Control Voltage
		C .	1	0	0			Pilot threshold
		0	1	0	1			HOLDN
	- C	0	1	1	0			NB threshold
	\sim	0	1	1	1			F228
			0	0	0			VHCCL
		\mathbf{O}_1	0	0	1			VSBL
	$\langle G \rangle$	1	0	1	0			not used
(1	0	1	1			not used
_		1	1	0	0			PEAK
\mathbf{r}		1	1	0	1			not used
		1	1	1	0			REF5V
		1	1	1	1			not used
								VCO
	0							OFF
	1							ON
								Audioprocessor test mode
0								enabled if bit D5 of the subaddress(test mod
								bit) is set to "1"
1								OFF

Note : This byte is used for testing or evaluation purposes only and must not be set to other values than the default "11111110" in the application!

57

Table 25. New Quality / Control (subaddress 10H)

MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
							_	Reference Generation
							0	Internal Reference-Divider
							1	External Reference Force
								Quality Noise-Gain
					0	0		15dB
					0	1		12dB
					1	0		9dB
					1	1		6dB
								SC-Clock-Mode
				0				Fast Mode
				1				Normal Mode
								Auto-Zero
			0					Off
			1					On
		0						Smoothing Filter
		1						On
								Off
								Enable AF-Pin
	0							Enable Pin
	1							Disable Pir
								AF-Pin Si Decoder-Mute-Influence
0								Or
1								01,
	6 Mid 1	Siltor (a	uboddro	oo 11U)				
ble 2	o. mid i	-mer (s	ubaddre	55 I I H)				

Table 26. Mid Filter (subaddress 11H)

MSB						51	LSB	FUNCTION
D7	D6	D5	D4	D3	[2	D1	D0	
						D		Attenuation
			0	v	0	0	0	-15dB
			0	0	1	1	1	-14dB
						:	:	:
			0	1	1	1	0	-1dB
			0		1	1	1	0dB
		<u>\</u> C.\	1		1	1	1	0dB
	6			1	1	1	0	+1dB
	G		$\langle \mathbf{Q} \rangle$:	:	:	:	:
	\sim		1	0	0	0	1	+14dB
		0.	1	0	0	0	0	+15dB
								Middle Center-frequency
	0	0						500Hz
(0	1						1.0kHz
~5	1	0						1.5kHz
$\mathbf{Q}^{\mathbf{v}}$	1	1						2.0kHz
01								Mid Q Factor1.02.0

Figure 28. SO28 Mechanical Data & Package Dimensions

DIM.	mm	inch	OUTLINE AND
MIN.	. TYP. MAX. M	MIN. TYP. M	MECHANICAL DATA
А	2.65	0.	0.104
a1 0.1	0.3 0.0	0.004 0.0	0.012
b 0.35	0.49 0.0	0.014 0.0	0.019
b1 0.23	0.32 0.0	0.009 0.0	.013
С	0.5	0.020	
c1	45° (typ.	p.)	Sama and State
D 17.7	18.1 0.6	0.697 0.	0.713 0.419
E 10	10.65 0.3	0.394 0.4	.419
е	1.27	0.050	
e3	16.51	0.65	10 ¹⁰
F 7.4	7.6 0.2	0.291 0.2	.299
L 0.4	1.27 0.0	0.016 0.0	.050 SO-28
S	8 ° (max.	x.)	

57

9 REVISION HISTORY

Table 27. Revision History

Date	Revision	Description of Changes
April 2004	1	First Issue

Obsolete Product(s)-Obsolete Product(s) Obsolete Product(s)-Obsolete Product(s) Obsolete Product(s)-Obsolete Product(s)

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

ste producils)

obsolete Productls) 50lete Productls)

47/

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2005 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com