onsemi

N-Channel Logic Level Enhancement Mode Field Effect Transistor

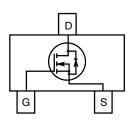
SOT-323, 3 Lead, 1.25X2 CASE 419AB

BSS138W

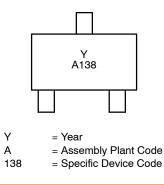
Description

These N-Channel Enhancement Mode Field Effect Transistor. These products have been Designed to minimize on-state resistance while provide rugged, reliable, and fast switching performance.

These products are particularly suited for low voltage, low current applications such as small servo motor control, power MOSFET gate drivers, and other switching applications.


Features

- $R_{DS(on)} = 3.5 \Omega$ @ $V_{GS} = 10 V$, $I_D = 0.22 A$ $R_{DS(on)} = 6.0 \Omega$ @ $V_{GS} = 4.5 V$, $I_D = 0.22 A$
- High Density Cell Design For Extremely Low RDS(on)
- Rugged and Reliable
- Compact Industry Standard SOT-323 Surface Mount Package
- These Devices are Pb–Free and Halide Free


ABSOLUTE MAXIMUM RATINGS T_A = 25°C unless otherwise noted

Symbol	Parameter	Value	Unit
V _{DSS}	DSS Drain to Source Voltage		V
V _{GSS}	Gate to Source Voltage	±20	V
ID	Drain Current – Continuous (Note 1) – Pulsed	0.21 0.84	A A
T _J , T _{STG}	Operating and Storage Junction Temperature Range		
TL	Maximum Lead Temperature for Soldering Purposes, 1/16" from Case for 10 Seconds	300	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ORDERING INFORMATION

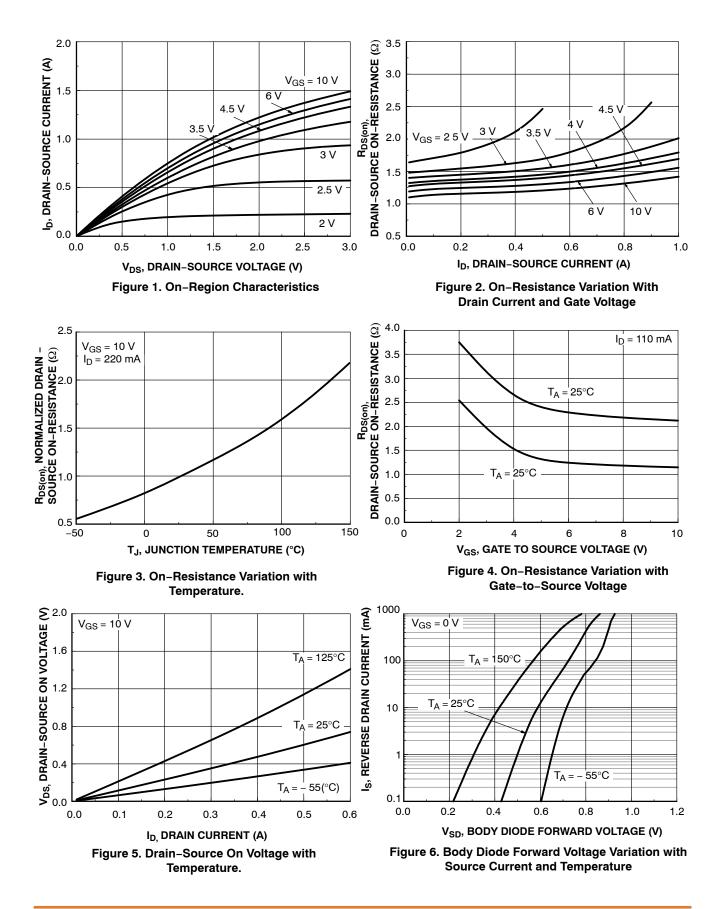
Device	Package	Shipping †
BSS138W	SOT-323 (Pb-Free)	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D</u>.

BSS138W

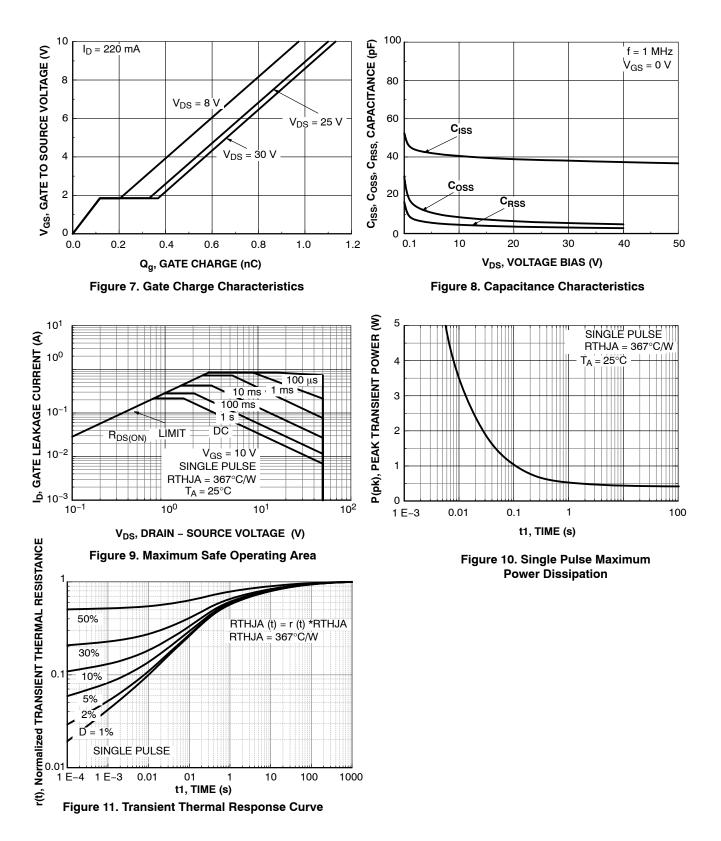
THERMAL CHARACTERISTICS

Symbol	Parameter	Value	Unit
P _D	Maximum Power Dissipation Derate Above 25°C (Note 1)	340 2.72	mW mW/°C
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Note 1)	367	°C/W

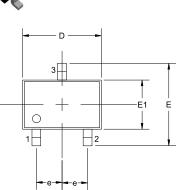

ELECTRICAL CHARACTERISTICS $T_A = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
Off Chara	cteristics			-		
BV _{DSS}	Drain to Source Breakdown Voltage	V_{GS} = 0 V, I_D = 250 μ A	50	-	-	V
$\frac{\Delta \text{BV}_{\text{DSS(th)}}}{\Delta \text{T}_{\text{J}}}$	Breakdown Voltage Temperature Coeffi- cient	I_D = 250 µA, Referenced to 25°C	-	71	_	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$ \begin{array}{l} V_{DS} = 50 \; V, \; V_{GS} = 0 \; V \\ V_{DS} = 50 \; V, \; V_{GS} = 0 \; V, \; T_J = 125^\circ C \\ V_{DS} = 30 \; V, \; V_{GS} = 0 \; V \end{array} $	-	-	0.5 5 100	μA μA nA
I _{GSS}	Gate-Body Leakage	V_{GS} = ±20 V, V_{DS} = 0 V	-	-	±100	nA
On Charac	cteristics (Note2)					
V _{GS(th)}	Gate to Threshold Voltage	$V_{DS} = V_{GS}, I_D = 1mA$	0.8	1.3	1.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Threshold Voltage Temperature Coefficient	$I_D = 1$ mA, Referenced to 25°C	-	-3.9	_	mV/°C
R _{DS(on)}	Static Drain-Source On-Resistance	$ \begin{array}{l} V_{GS} = 10 \text{ V}, \text{ I}_{D} = 0.22 \text{ A} \\ V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 0.22 \text{ A} \\ V_{GS} = 10 \text{ V}, \text{ I}_{D} = 0.22 \text{ A}, \text{ T}_{J} = 125^{\circ}\text{C} \end{array} $	-	1.17 1.36 2.16	3.5 6.0 5.8	Ω Ω Ω
I _{D(on)}	On-State Drain Current	V _{GS} = 10 V, V _{DS} = 5 V	0.2		-	А
9 FS	Forward Transconductance	V _{DS} = 10 V, I _D = 0.22 A	0.12		-	S
Dynamic 0	Characteristics					
C _{iss}	Input Capacitance	V_{DS} = 25 V, V_{GS} = 0 V, f = 1.0 MHz	-	38	-	pF
C _{oss}	Output Capacitance		-	5.9	-	pF
C _{rss}	Reverse Transfer Capacitance		-	3.5	-	pF
Rg	Gate Resistance	V _{GS} = 15 mV, f = 1.0 MHz	-	11	-	Ω
Switching	Characteristics					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 30 \text{ V}, \text{ I}_{D} = 0.29 \text{ A},$	-	2.3	5	ns
t _r	Turn–On Rise Time	$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$	-	1.9	18	ns
t _{d(off)}	Turn-Off Delay Time		-	6.7	36	ns
t _f	Turn-Off Fall Time		-	6.5	14	ns
Qg	Total Gate Change		-	1.1	-	nC
Q _{gs}	Gate-Source Change		-	0.12	-	nC
Q _{gd}	Gate-Drain Change	1	-	0.22	-	nC
Drain-Sou	Irce Diode Characteristics					
I _S	Maximum Continuous Drain-Source Diode	Forward Current	-	-	0.22	А
V_{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0 V, I _S = 0 44 A (Note 2)	-	-	1.4	V
	.					

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
1. 367°C/W When Mounted on a minimum pad.
2. Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle ≤ 2.0%


BSS138W

TYPICAL CHARACTERISTICS

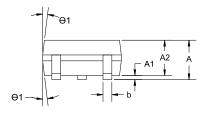

BSS138W

TYPICAL CHARACTERISTICS (continued)

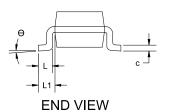
MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

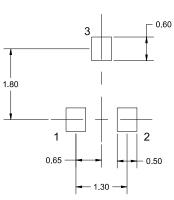
SC-70, 3 Lead, 1.25x2 CASE 419AB ISSUE A

DATE 13 FEB 2023


ONSEM

NOTES:


- 1. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES IN DEGREES.
- 2. COMPLIES WITH JEDEC MO-203


	MILLIMETERS		
DIM	MIN.	NOM.	MAX.
А	0.80		1.10
A1	0.00		0.10
A2	0.80	0.90	1.00
b	0.15		0.30
с	0.08		0.22
D	1.80	2.00	2.20
E	1.80	2.10	2.40
E1	1.15	1.25	1.35
е	0.65 BSC		
L	0.26	0.36	0.46
L1		0.42 REF	
θ	0°		8°
0 1	4°		10°

SIDE VIEW

SOLDERING FOOTPRINT

For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON34256E	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION: SC-70, 3 LEAD, 1.25X2 PAGE 1 O			PAGE 1 OF 1		
onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.					

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative