TFT DISPLAY SPECIFICATION

WINSTAR Display Co.,Ltd. 華凌光電股份有限公司

Winstar Display Co., LTD 華凌光電股份有限公司

WEB: http://www.winstar.com.tw E-mail: sales@winstar.com.tw

SPECIFICATION

CUSTOMER :		
MODULE NO.:	WF150ATYA	AMLNNO#
APPROVED BY:		
(FOR CUSTOMER USE ONLY)		
	PCB VERSION:	DATA:

SALES BY	APPROVED BY	CHECKED BY	PREPARED BY
			朱惠菁

ISSUED DATE: 2017/08/16

Winstar Display Co., LTD 華凌光電股份有限公司			MODLE NO:	
REC	ORDS OF REV	ISION		DOC. FIRST ISSUE
VERSION	DATE	REVISED PAGE NO.	SU	MMARY
0	2017/08/16		Fi	rst issue

Contents

- 1. Module Classification Information
- 2.Summary
- 3.General Specification
- 4. Absolute Maximum Ratings
- 5. Electrical Characteristics
- 6.Interface Timing Characteristics
- 7. Optical Characteristics
- 8.Interface
- 9.Block Diagram
- 10.Reliability
- 11.Contour Drawing

1. Module Classification Information

F 150 T Y M N N 0 W A A L 1 2 4 (5) 6 7 11) 12 3 8 9 13)

①	Brand: WINSTAR DISPLAY CORPORATION													
2	Disp	lay Type:	F-	TFT Type	e, J-	→Custom ′	ГFТ							
3	Display Size: 15.0" TFT													
4	Mod	lel serials r	10.											
(5)	Bacl	dight Type	: E	>CCFL,	Wh	ite			T	` → L	ED, White			
			S	S→LED, H	Iigh	Light Wh	ite		Z	Z→N	ichia LED	, W	hite	
6	LCD	Polarize	A	A→Transm	niss	ive, N.T, II	PS T	FT	Q	2 →T	ransmissiv	e, S	Super W.T,	12:00
	Туре	e/	(C→Transm	iissi	ive, N. T, 6	00:	;	R	1 →T	ransmissiv	e, S	Super W.T,	O-TFT
	Tem	perature	F	F→Transm	issi	ve, N.T,12	:00 ;		V	<i>7</i> →T	ransmissiv	e, S	Super W.T,	VA TFT
	rang	e/ Gray	I	→Transmi	issi	ve, W. T, 6	:00		X	X →T	ransmissiv	e, V	V.T, VA TF	T
	Scal	e Inversior	ı H	K→Transfl	ecti	ive, W.T,12	2:00		Y	′ →T	ransmissiv	e, V	W.T, IPS TI	FT
	Dire	ction	I	_→Transm	issi	ve, W.T,12	2:00		Z	Z→Tı	ransmissiv	e, V	V.T, O-TFT	
			1	√Transm	niss	ive, Super	W.T	, 6:00						
7	A:	TFT LCD							F:	TFT	C+CONTR	OL	BOARD)
	B:'	TFT+FR+	CON	NTROL BO	OAI	RD			G:	TF	Γ+FR			
	C:	TFT+FR+	A/D	BOARD]	H :	TF	Γ+D/V B	SOA	RD	
	D:	TFT+FR+	A/D	BOARD+	-CC	ONTROL E	SOA.	RD]	[:'	TFT	+FR+D/V	В	SOARD	
	E: '	ΓFT+FR+I	POV	VER BO	AR	D			J:	TFT	+POWER	BD)	
8	Reso	olution:					1						1	1
	A	128160	В	320234	C	320240	D	48023	34	Е	480272	F	640480	
	G	800480	Н	1024600	I	320480	J	24032	20	K	800600	L	240400	
	M	1024768	N	128128	P	1280800	Q	48080	00	R	640320	S	480128	
	T	800320	U	8001280	V	176220	W	12803	98	X	1024250	Y	1920720	
	Z	800200	2	1024324	3	7201280								
9	D: D	Digital L	. : I	VDS M:	MI	PI								
10	Inter	face: N:v	with	out control	l bo	ard A:8E	Bit	B:16Bi	it	H: I	HDMI I:1	[2C	Interface	
		R:I	RS2	32 S:SPI	Int	erface U	:USI	3						
11)	TS:					esistive tou	ich p	anel	C	C : c	apacitive t	ouc	h panel (G	-F-F)
		G: cap	acit	ive touch j	pan	el(G-G)								
12	Vers	ion												
13	Spec	cial Code		#:Fit in v	vith	ROHS di	recti	ve regu	lati	ons				

2.Summary

WF150A is a 15.0" TFT Liquid Crystal Display IAV module with LED Backlight units and 20 pins LVDS interface. This module supports 1024 x 768 XGA mode and can display 16.2M/262k colors.

The PSWG is to establish a set of displays with standard mechanical dimensions and select electrical interface requirements for an industry standard 15.0" XGA LCD panel and the LED driving device for Backlight is built in PCBA.

3.General Specifications

Item	Dimension	Unit
Size	15.0	inch
Dot Matrix	1024 x RGB x 768 (TFT)	dots
Module dimension	326.5 x 253.5 x9.1	mm
Active area	304.1 x 228.1	mm
Dot pitch	0.297 x 0.297	mm
LCD type	TFT, Normally Black, Transmissive	
Viewing Angle	88/88/88	
Backlight Type	LED,Normally White	
Interface	LVDS	
With /Without TP	Without TP	
Surface	Anti-Glare	

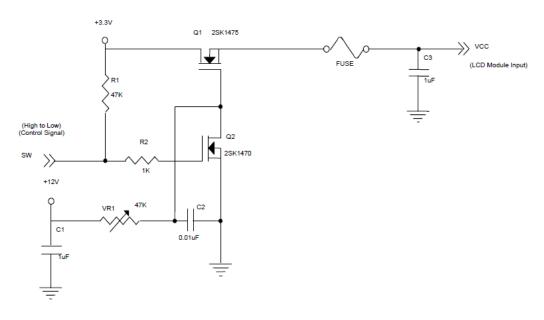
^{*}Color tone slight changed by temperature and driving voltage.

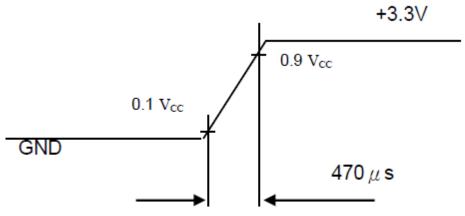
4.Absolute Maximum Ratings

Item	Symbol	Min	Тур	Max	Unit
Operating Temperature	TOP	-20	_	+70	$^{\circ}\!\mathbb{C}$
Storage Temperature	TST	-30	_	+70	$^{\circ}\!\mathbb{C}$

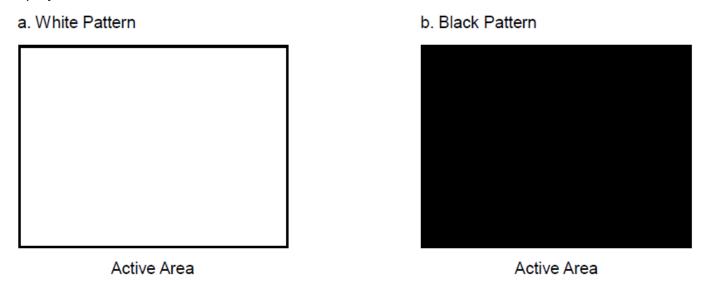
Note: Device is subject to be damaged permanently if stresses beyond those absolute maximum ratings listed above

^{1.} Temp. ${\leq}60^{\circ}\!\mathbb{C}$, 90% RH MAX. Temp. ${>}60^{\circ}\!\mathbb{C}$, Absolute humidity shall be less than 90% RH at $60^{\circ}\!\mathbb{C}$

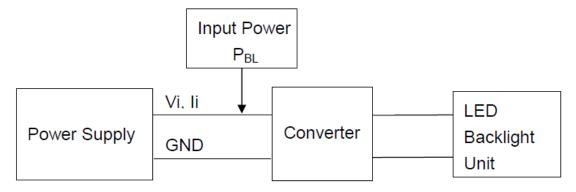

5.Electrical Characteristics


5.1. TFT LCD MODULE

Paramete	· ·			Value			
raiaillete	:1	Symbol	Min.	Тур.	Max.	Unit	Note
Power Supply Voltage	Power Supply Voltage			3.3	3.6	V	-
Ripple Voltage		VRP	-	-	100	mVp-	
Rush Current		IRUS	-	-	(2.0)	Α	(2
	White		-	(800)	(960)	mA	(3)a
Power Supply Current	Black	lcc	-	(670)	(800)	mA	(3)b
LVDS differential input v	oltage	Vid	200	•	600	mV	
LVDS common input vo	ltage	Vi	1.0	1.2	1.4	V	
Differential Input	"H" Level	VI	-	-	100	mV	-
Voltage for LVDS	"L" Level	VIL	-100	1	-	mV	-
Terminating Resistor	·	RT	-	100	-	Ohm	-

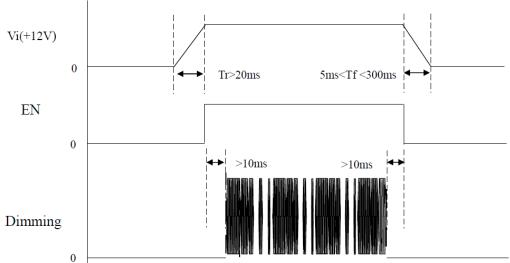

Note (1) The module should be always operated within

above ranges. Note (2) Measurement Conditions:

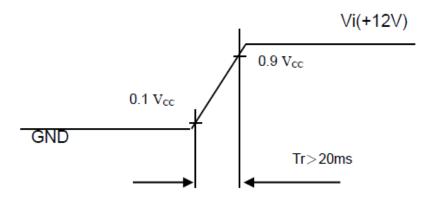

Note (3) The specified power supply current is under the conditions at VDD =3.3V, Ta $=25 \pm 2$ °C, DC Current and fv =60 Hz, whereas a power dissipation check pattern below is displayed.

5.2. BACKLIGHT UNIT

Paran	neter	Symbol		Value		_	
i aran	i didilictoi		Min.	Тур.	Max.	Unit	Note
Converter Power Supply Voltage		Vi	10.8	12.0	13.2	V	
Converter Power Supply Current		li	(0.36)	(0.46)	(0.56)	Α	@ Vi = 12V (Duty 100%)
Backlight Power Consumption		PBL	-	(5.52)	(6.72)	W	@ Vi = 12V (Duty 100%)
EN Control Level	Backlight on		2.0	3.3	5.0	V	
EN Control Level	Backlight off	<u>-</u>	0		0.8	V	
PWM Dimming	PWM High Level		2.0	3.3	5.0	V	
Control Level	PWM Low Level	_	0	-	0.15	V	
PWM Dimming Control Duty Ratio		-	1	-	100	%	@200Hz
PWM Dimming Control Frequency		fPWM	190	200	20k	Hz	(2)
LED Lif	e Time	LL	(50,000)	(70,000)	-	Hrs	(3)


Note (1) LED current is measured by utilizing a high frequency current meter as shown below:

Note (2) At 20k Hz PWM control frequency, duty ratio range is restricted from 20% to 100%.


Note (3) The lifetime of LED is estimated data and defined as the time when it continues to operate under the conditions at $Ta = 25 \pm 2$ °C and Duty 100% until the brightness becomes $\leq 50\%$ of its original value. Operating LED under high temperature environment will reduce life time and lead to color shift.

Power sequence and control signal timing are shown in the following figure

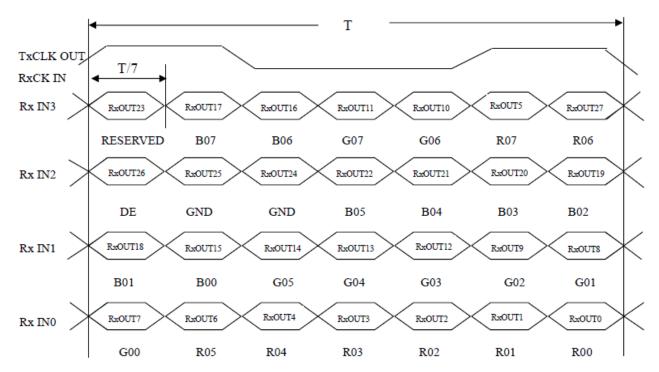
Note: While system is turned ON or OFF, the power sequences must follow as below descriptions Turn ON sequence: $Vi(+12V) \rightarrow EN \rightarrow Dimming$ Turn OFF sequence: Dimming $\rightarrow EN \rightarrow Vi(+12V)$

Note (4)

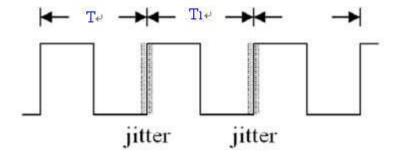
6.Interface timing

6.1. INPUT SIGNAL TIMING SPECIFICATIONS

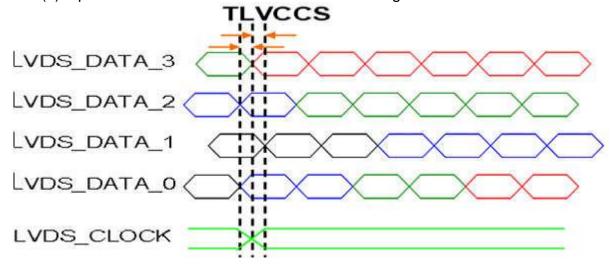
The input signal timing specifications are shown as the following table and timing diagram.

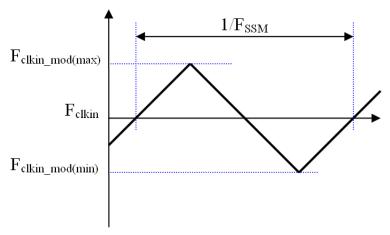

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	Fc	53.35	65	80	MHz	-
	Period	Tc	12.5	15.38	18.75	ns	
	Input cycle to cycle jitter	Trcl			200	ns	(a)
LVDS Clock	Input Clock to data skew	TLVCCS	-0.02*T c	ı	0.02*Tc	ps	(b)
	Spread spectrum modulation range	Fclkin_mod	ı	ı	1.02*Fc	MHz	
	Spread spectrum modulation frequency	Fssm	-	-	200	KHz	(c)
	Frame Rate	Fr		60		Hz	Tv=Tvd+Tvb
Vertical Display Term	Total	Tv	780	806	1200	Th	-
Vertical Display Tellii	Active Display	Tvd	768	768	768	Th	-
	Blank	Tvb	Tv-Tvd	38	Tv-Tvd	Th	-
Harizantal Diaplay	Total	Th	1140	1344	1600	Tc	Th=Thd+Thb
Horizontal Display Term	Active Display	Thd	1024	1024	1024	Tc	-
1 61111	Blank	Thb	Th-Thd	320	Th-Thd	Tc	-

Note (1) Because this module is operated by DE only mode, Hsync and Vsync input signals should be set to low logic level or ground. Otherwise, this module would operate abnormally.

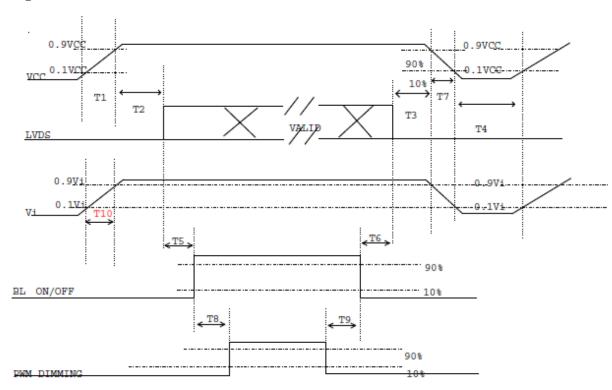

Note (2) The Tv(Tvd+Tvb) must be integer, otherwise, the module would operate abnormally.

DE TVD TVD TH DCLK DE DATA


TIMING DIAGRAM of LVDS


Note (a) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = I T1 – TI

Note (b) Input Clock to data skew is defined as below figures.



Note (c) The SSCG (Spread spectrum clock generator) is defined as below figures.

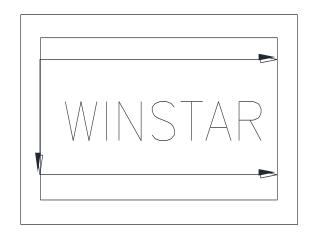
6.2. POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD assembly, the power on/off sequence should be as the diagram below.

Power ON/OFF sequence

Note (1) Please avoid floating state of interface signal at invalid period.

Note (2) When the interface signal is invalid, be sure to pull down the power supply of LCD VCC to 0 V.


Note (3) The Backlight converter power must be turned on after the power supply for the logic and the interface signal is valid. The Backlight converter power must be turned off before the power supply for the logic and the interface signal is invalid.

Doromotor		Value						
Parameter	Min	Тур	Max	Units				
T1	0.5	-	10	ms				
T2	0	-	50	ms				
Т3	0	-	50	ms				
T4	500	-	-	ms				
T5	200	-	-	ms				
T6	200	-	-	ms				
T7	5	-	300	ms				
Т8	10	-	-	ms				
Т9	10	-	_	ms				
T10	20			ms				

SCANNING DIRECTION

The following figures show the image see from the front view. The arrow indicates the direction

Fig.1 Normal Scan Fig.2 Reverse Scan

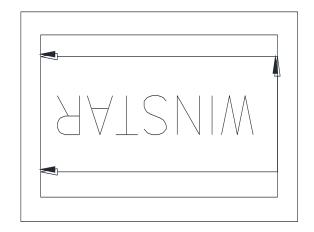


Fig. 1 Normal scan (pin 4, LR/UD = High or NC)
Fig. 2 Reverse scan (pin 4, LR/UD = Low)

7. Optical Characteristics

ltem		Symbol	Condition.	Min	Тур.	Max.	Unit	Remark	
Response ti	me	Tr	θ=0° \ Φ=0°	-	16	-	.ms	Note 3,5	
. кооролюее		Tf		-	7	-	.ms	14010 0,0	
Contrast ratio		CR	At optimized viewing angle	1300	2000	-	-	Note 4,5	
Color	White	Wx	θ=0° \ Ф=0	0.263	0.313	0.363		Note 2,6,7	
Chromaticity	VVIIICO	Wy		0.279	0.329	0.379			
	Hor.	ΘR		80	88	-			
Viewing angle	1101.	1101.	ΘL	CR≧10	80	88	-	Deg.	Note 1
viewing angle	Ver.	ΦТ	OIX≡ 10	80	88	-	Dog.	14010-1	
	VOI.	ФВ		80	88	-			
Brightnes	S	-	-	240	300	-	cd/m ²	Center of display	

Ta=25±2℃

Note 1: Definition of viewing angle range

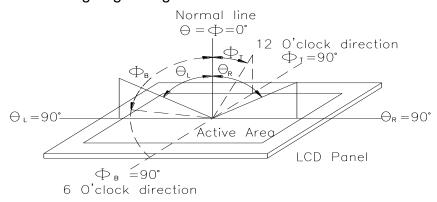


Fig.7.1. Definition of viewing angle

Note 2: Test equipment setup:

After stabilizing and leaving the panel alone at a driven temperature for 10 minutes, the measurement should be executed. Measurement should be executed in a stable, windless, and dark room. Optical specifications are measured by Topcon BM-7orBM-5 luminance meter 1.0° field of view at a distance of 50cm and normal direction.

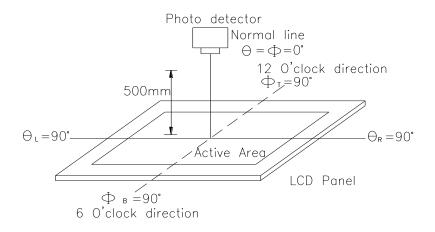
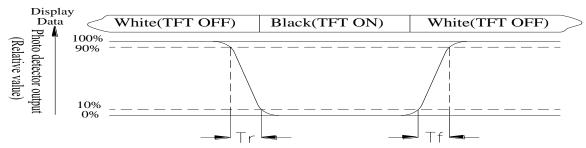



Fig. 7.2. Optical measurement system setup

Note 3: Definition of Response time:

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time, Tr, is the time between photo detector output intensity changed from 90%to 10%. And fall time, Tf, is the time between photo detector output intensity changed from 10%to 90%

Note 4: Definition of contrast ratio:

The contrast ratio is defined as the following expression.

Contrast ratio (CR) = $\frac{\text{Luminance measured when LCD on the "White" state}}{\text{Luminance measured when LCD on the "Black" state}}$

Note 5: White $Vi = Vi50 \pm 1.5V$

Black $Vi = Vi50 \pm 2.0V$

"±" means that the analog input signal swings in phase with VCOM signal.

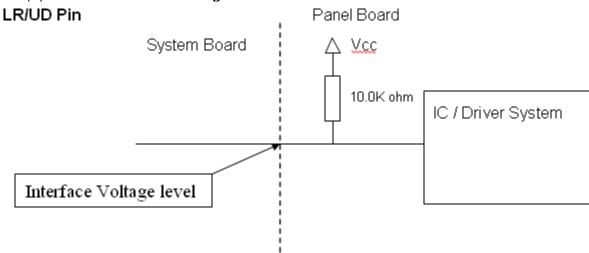
"±" means that the analog input signal swings out of phase with VCOM signal.

The 100% transmission is defined as the transmission of LCD panel when all the input terminals of module are electrically opened.

Note 6: Definition of color chromaticity (CIE 1931) Color coordinates measured at the center point of LCD

Note 7: Measured at the center area of the panel when all the input terminals of LCD panel are electrically opened.

8.Interface

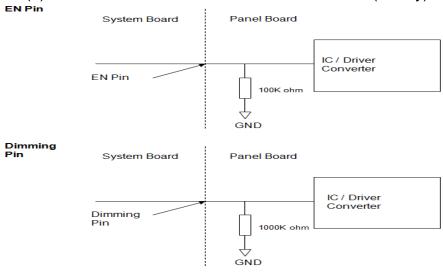

8.1. LCM PIN Definition

Pin No.	Symbol	Function	Polarity	Note
1	VCC	Power Supply +3.3V(typical)		
2	VCC	Power Supply +3.3V(typical)		
3	NC	No Conncetion (Reserve for INX test)		
4	LR/UD	Reverse Scan Control H or NC = Normal Mode. L = Horizonta/ Vertical Reverse Scan.		
5	RX0-	LVDS Differential Data Input	Negative	
6	RX0+	LVDS Differential Data Input	Positive	
7	GND	Ground		
8	RX1-	LVDS Differential Data Input	Negative	
9	RX1+	LVDS Differential Data Input	Positive	
10	NC	No Conncetion (Reserve for INX test)		
11	RX2-	LVDS Differential Data Input	Negative	
12	RX2+	LVDS Differential Data Input	Positive	
13	GND	Ground		
14	RXCLK-	LVDS Differential Data Input	Negative	
15	RXCLK+	LVDS Differential Data Input	Positive	
16	GND	Ground		
17	RX3-	LVDS Differential Data Input	Negative	
18	RX3+	LVDS Differential Data Input	Positive	
19	NC	No Conncetion (Reserve for INX test)		
20	SEL68	LVDS 6/8 bit select function control, High → 6bit Input Mode Low or NC→ 8bit Input Mode		Note (3)

Note (1) Connector Part No.: Cvilux CID520D1HR0-NH or equivalent.

Note (2) User's connector Part No.: Entery H204K-D20N-12B or equivalent.

Note (3) "Low" stands for 0V. "High" stands for 3.3V. "NC" stands for "No Connection".

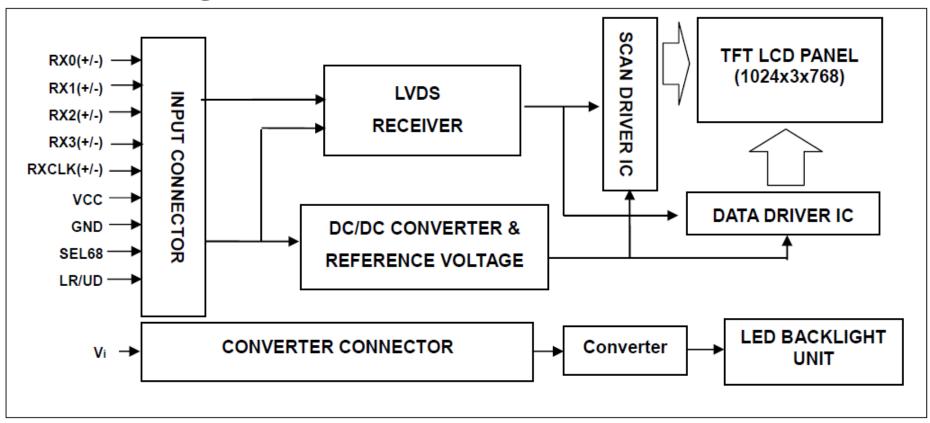

System Board Panel Board IC / Driver System Therface Voltage level GND

8.2. BACKLIGHT UNIT(Converter connector pin)

Pin	Symbol	Description	Remark
1	Vi	Converter input voltage	12V
2	VGND	Converter ground	Ground
3	EN	Enable pin	3.3V
4	Dimming	Backlight Adjust	PWM Dimming (Hi: 3.3VDC, Lo: 0VDC)
5	NC	Not Connect	

Note (1) Connector Part No.: CI4205-M2HRP-NH (Cvilux) or equivalent.

Note (2) User's connector Part No.: H208K-D05N-22B (Entery) or equivalent


8.3. COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input the brighter the color. The table below provides the assignment of color versus data input.

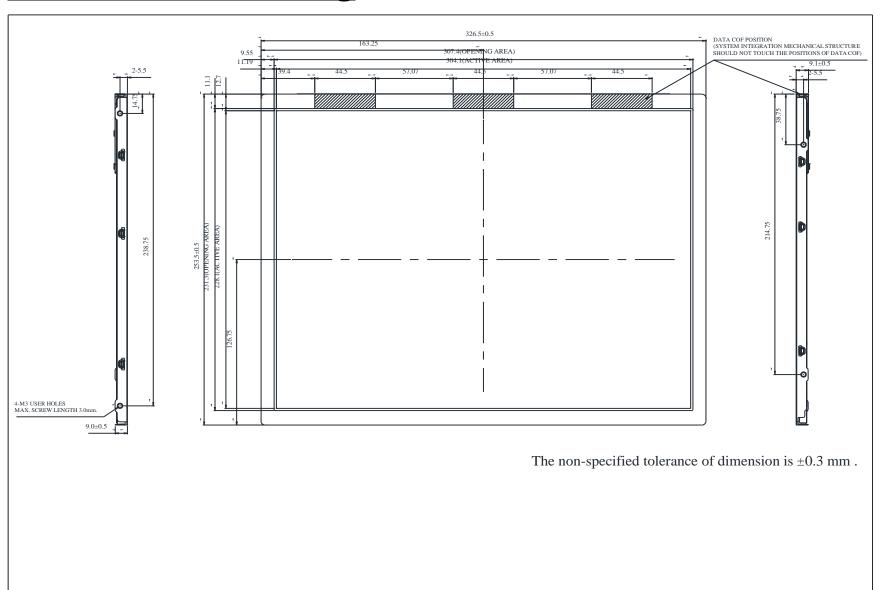
												D	ata	_	nal										
Color		Red						Green							Blue										
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	В7	B6	B5	B4	В3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grave	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray Scale	:	:	:	:	:	:	:	:	:	:	:	:	1	:	:	:	:	:	:	:	:	1	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	1	:	:	:	:	:	:	:	:	1	:	:	1
Red	Red(252)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Red	Red(252)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(252)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	1	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(252)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
Oreen	Green(252)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(252)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	1	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(252)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
Diue	Blue(252)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(252)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

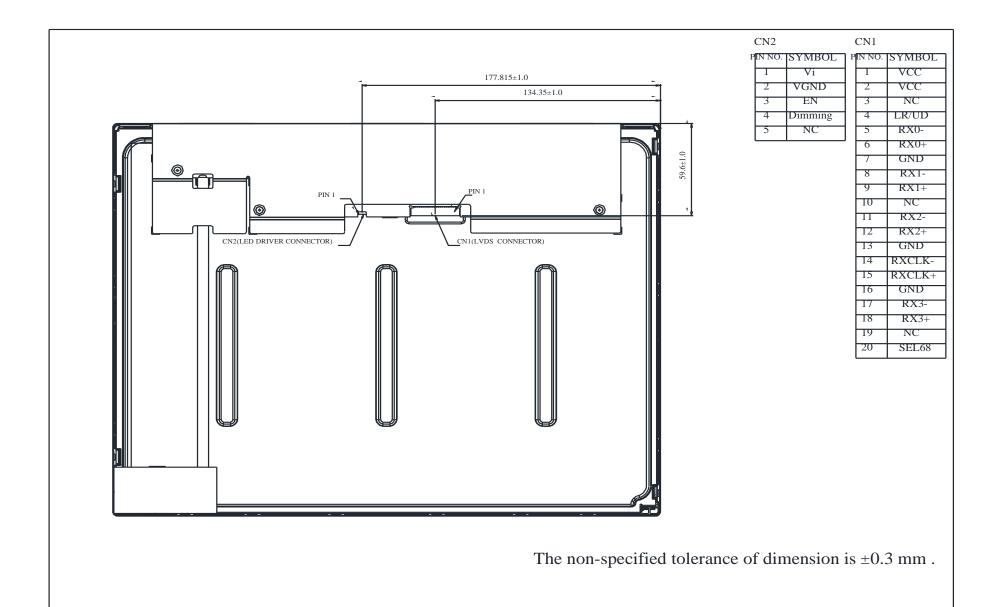
Note (1) 0: Low Level Voltage, 1: High Level Voltage

9.Block Diagram

10.Reliability

Content of Reliability Test (Wide temperature, $-20^{\circ}\text{C} \sim 70^{\circ}\text{C}$)


Environmental Test				
Test Item	Content of Test	Test Condition	Note	
High Temperature	Endurance test applying the high storage	70°C	2	
storage	temperature for a long time.	200hrs		
Low Temperature	Endurance test applying the low storage	-30°C	1,2	
storage	temperature for a long time.	200hrs		
High Temperature	Endurance test applying the electric stress	70°C		
Operation	(Voltage & Current) and the thermal stress to the element for a long time.	200hrs		
Low Temperature	Endurance test applying the electric stress under	-20°C	1	
Operation	low temperature for a long time.	200hrs		
High Temperature/	The module should be allowed to stand at 60	60°C,90%RH	1,2	
Humidity Operation	°C,90% RH max	96hrs		
Thermal shock	The sample should be allowed stand the	-20°C/70°C		
resistance	following 10 cycles of operation -20°C 25°C 70°C	10 cycles		
	30min 5min 30min 1 cycle			
Vibration test	Endurance test applying the vibration during transportation and using.	Total fixed amplitude: 1.5mm Vibration Frequency: 10~55Hz One cycle 60 seconds to 3 directions of X,Y,Z for Each 15 minutes		
Static electricity test	Endurance test applying the electric stress to the terminal.	VS=±600V(contact), ±800v(air), RS=330Ω CS=150pF 10 times		


Note1: No dew condensation to be observed.

Note2: The function test shall be conducted after 4 hours storage at the normal Temperature and humidity after remove from the test chamber.

Note3: The packing have to including into the vibration testing.

11.Contour Drawing

