MSP430x5xx Family

User's Guide

Literature Number: SLAU208 June 2008

2

Contents

Prefa	Ce	15
1	System Resets, Interrupts, and Operating Modes, System Control Module (SYS)	17
1.1	System Control Module Introduction	. 18
1.2	Principle of Operation	. 18
	1.2.1 Device Descriptor Table	. 18
	1.2.2 Boot Code	. 18
	1.2.3 Boot Strap Loader (BSL)	18
	1.2.4 JTAG Mailbox System (JMB)	. 19
1.3	Memory Map-Uses and Abilities	. 20
	1.3.1 Vacant Memory Space	. 20
	1.3.2 JTAG Lock Mechanism	. 20
	1.3.3 SYS Interrupt Vector Generators	. 21
1.4	Interrupts	. 22
	1.4.1 (Non)-Maskable Interrupts (NMI)	. 22
	1.4.2 SNMI Timing	. 23
	1.4.3 Maskable Interrupts	
	Interrupt Processing	
1.5	Operating Modes	
	1.5.1 Entering and Exiting Low-Power Modes	
1.6	Principles for Low-Power Applications	
1.7	Connection of Unused Pins	
1.8	Reset and Subtypes	
1.9	Interrupt Vectors	
1.10	Special Function Registers	
1.11	SYS Registers	. 37
2	Watchdog Timer (WDT_A)	
2.1	Watchdog Timer Introduction	
2.2	Watchdog Timer Block Diagram	
	2.2.1 Watchdog Timer Counter	
	2.2.2 Watchdog Mode	
	2.2.3 Interval Timer Mode	
	2.2.4 Watchdog Timer Interrupts	
	2.2.5 Clock Fail-Safe Feature	
	2.2.6 Operation in Low-Power Modes	
	2.2.7 Software Examples	
2.3	Watchdog Timer Registers	. 50
3	Unified Clock System (UCS)	
3.1	Unified Clock System Introduction	
3.2	Unified Clock System Module Operation	
	3.2.1 Unified Clock System Module Features for Low-Power Applications	. 56

	3.2.2 Internal Very-Low-Power Low-Frequency Oscillator (VLO)	56
	3.2.3 Internal Trimmed Low-Frequency Reference Oscillator(REFO)	57
	3.2.4 XT1 Oscillator	57
	3.2.5 XT2 Oscillator	
	3.2.6 Digitally-Controlled Oscillator (DCO)	
	3.2.7 Frequency Locked Loop (FLL)	
	3.2.8 DCO Modulator	
	3.2.9 Disabling the FLL Hardware and Modulator	
	3.2.10 FLL Operation from Low-Power Modes	
	3.2.11 Operation from Low-Power Modes, Requested by Peripheral Modules	
	3.2.12 Unified Clock System Module Fail-Safe Operation	
	3.2.13 Synchronization of Clock Signals	
3.3	MODOSC Module Oscillator	
	3.3.1 MODOSC Operation	
3.4	Unified Clock System Module Registers	66
4	Power Management Module and Supply Voltage Supervisor	77
4.1	PMM Introduction	7 8
4.2	PMM Operation	80
	4.2.1 Supply Voltage Supervisor and Monitor – High Side	82
	4.2.2 Supply Voltage Supervisor and Monitor – Low Side	83
	4.2.3 Supply Voltage Monitor Output (SVMOUT, Optional)	84
	4.2.4 Performance Optimization	
	4.2.5 Voltage Reference	85
	4.2.6 Brown-Out Reset (BOR)	85
	4.2.7 Manual Control of the Power Management Module	
	4.2.8 I/O-Port Control	
	4.2.9 PMM Interrupts	
4.3	PMM Registers	87
5	CPUX	95
5.1	CPU Introduction	96
5.2	Interrupts	98
5.3	CPU Registers	99
	5.3.1 Program Counter (PC)	99
	5.3.2 Stack Pointer (SP)	00
	5.3.3 Status Register (SR)	01
	5.3.4 Constant Generator Registers (CG1 and CG2)	02
	5.3.5 General Purpose Registers R4 to R15	03
5.4	Addressing Modes	05
	5.4.1 Register Mode	06
	5.4.2 Indexed Mode	07
	5.4.3 Symbolic Mode	11
	5.4.4 Absolute Mode	16
	5.4.5 Indirect Register Mode	18
	5.4.6 Indirect, Autoincrement Mode	
	5.4.7 Immediate Mode	
5.5	MSP430 and MSP430X Instructions	23
	5.5.1 MSP430 Instructions	23
	5.5.2 MSP430X Extended Instructions	27

www.ti.com

5.6	Instruction Set Description	139
	5.6.1 Extended Instruction Binary Descriptions	140
	5.6.2 MPS430 Instructions	142
	5.6.3 Extended Instructions	194
	5.6.4 Address Instructions	235
6	Flash Memory Controller	251
6.1	Flash Memory Introduction	252
5.2	Flash Memory Segmentation	253
	6.2.1 Segment A	254
6.3	Flash Memory Operation	255
	6.3.1 Erasing Flash Memory	255
	6.3.2 Writing Flash Memory	259
	6.3.3 Flash Memory Access During Write or Erase	
	6.3.4 Stopping Write or Erase Cycle	
	6.3.5 Checking Flash memory	
	6.3.6 Configuring and Accessing the Flash Memory Controller	
	6.3.7 Flash Memory Controller Interrupts	
	6.3.8 Programming Flash Memory Devices	
6.4	Flash Memory Registers	
7	Digital I/O	273
7.1	Digital I/O Introduction	
7.2	Digital I/O Operation	
	7.2.1 Input Register PxIN	
	7.2.2 Output Registers PxOUT	
	7.2.3 Direction Registers PxDIR	
	7.2.4 Pullup/Pulldown Resistor Enable Registers PxREN	
	7.2.5 Output Drive Strength Registers PxDS	
	7.2.6 Function Select Registers PxSEL	
	7.2.7 P1 and P2 Interrupts	
	7.2.8 Configuring Unused Port Pins	
7.3	Digital I/O Registers	
3	RAM Controller	
3.1	RAMCTL Introduction	
3.2	RAMCTL Operation	
8.3	RAMCTL Module Registers	287
9	DMA Controller	289
9.1	DMA Introduction	
9.2	DMA Operation	
	9.2.1 DMA Addressing Modes	292
	9.2.2 DMA Transfer Modes	
	9.2.3 Initiating DMA Transfers	
	9.2.4 Stopping DMA Transfers	299
	9.2.5 DMA Channel Priorities	299
	9.2.6 DMA Transfer Cycle Time	
	9.2.7 Using DMA With System Interrupts	300
	9.2.8 DMA Controller Interrupts	300
	9.2.9 Using the USCI_B I ² C Module with the DMA Controller	301

	9.2.10 Using ADC12 with the DMA Controller	302
	9.2.11 Using DAC12 With the DMA Controller	302
9.3	DMA Registers	303
10	32-Bit Hardware Multiplier (MPY32)	311
10.1	32-Bit Hardware Multiplier Introduction	
10.2	32-Bit Hardware Multiplier Operation	
	10.2.1 Operand Registers	
	10.2.2 Result Registers	
	10.2.3 Software Examples	
	10.2.4 Fractional Numbers	
	10.2.5 Putting It All Together	
	10.2.6 Indirect Addressing of Result Registers	
	10.2.7 Using Interrupts	
	10.2.8 Using DMA	
10.3	32-Bit Hardware Multiplier Registers	
11	CRC Module	
11.1	CRC Module Introduction	
11.2	CRC Checksum Generation	
	11.2.1 CRC Implementation	
	11.2.2 Assembler Examples	
11.3	CRC Module Registers	
12	Timer_A	
12.1	Timer_A Introduction	
12.2	Timer_A Operation	
	12.2.1 16-Bit Timer Counter	
	12.2.2 Starting the Timer	
	12.2.3 Timer Mode Control	
	12.2.4 Capture/Compare Blocks	
	12.2.5 Output Unit	
	12.2.6 Timer_A Interrupts	
12.3	Timer_A Registers	349
13	Timer_B	355
13.1	Timer_B Introduction	356
	13.1.1 Similarities and Differences From Timer_A	356
13.2	Timer_B Operation	358
	13.2.1 16-Bit Timer Counter	358
	13.2.2 Starting the Timer	358
	13.2.3 Timer Mode Control	358
	13.2.4 Capture/Compare Blocks	362
	13.2.5 Output Unit	364
	13.2.6 Timer_B Interrupts	367
13.3	Timer_B Registers	370
14	Real-Time Clock (RTC_A)	375
14.1	Real-Time Clock Introduction	
14.2	Real-Time Clock Operation	378
	14.2.1 Counter Mode	
	14.2.2 Calendar Mode	378

	14.2.3 Real-Time Clock Interrupts	380
	14.2.4 Real-Time Clock Calibration	382
14.3	Real-Time Clock Registers	383
15	Universal Serial Communication Interface, UART Mode	395
15.1	USCI Overview	
15.2	USCI Introduction: UART Mode	
15.3	USCI Operation: UART Mode.	
10.0	15.3.1 USCI Initialization and Reset	
	15.3.2 Character Format	
	15.3.3 Asynchronous Communication Formats	
	15.3.4 Automatic Baud Rate Detection	
	15.3.5 IrDA Encoding and Decoding	
	15.3.6 Automatic Error Detection	
	15.3.7 USCI Receive Enable	
	15.3.8 USCI Transmit Enable	
	15.3.9 UART Baud Rate Generation	
	15.3.10 Setting a Baud Rate	
	15.3.10 Setting a Badd Rate	
	· ·	
	15.3.12 Receive Bit Timing	
	15.3.13 Typical Baud Rates and Errors.	
	15.3.14 Using the USCI Module in UART Mode with Low Power Modes	
45.4	15.3.15 USCI Interrupts	
15.4	USCI Registers: UART Mode	
16	Universal Serial Communication Interface, SPI Mode	425
16.1	USCI Overview	426
16.2	USCI Introduction: SPI Mode	427
16.3	USCI Operation: SPI Mode	429
	16.3.1 USCI Initialization and Reset	429
	16.3.2 Character Format	429
	16.3.3 Master Mode	430
	16.3.4 Slave Mode	431
	16.3.5 SPI Enable	431
	16.3.6 Serial Clock Control	432
	16.3.7 Using the SPI Mode with Low Power Modes	432
	16.3.8 SPI Interrupts	433
16.4	USCI Registers: SPI Mode	434
17	Universal Serial Communication Interface, I ² C Mode	439
17.1	USCI Overview	
17.2	USCI Introduction: I ² C Mode	
17.3	USCI Operation: I ² C Mode	
	17.3.1 USCI Initialization and Reset	
	17.3.2 I ² C Serial Data	
	_	
	17.3.4 I ² C Module Operating Modes	
	17.3.5 I ² C Clock Generation and Synchronization	
	17.3.6 Using the USCI Module in I ² C Mode with Low Power Modes	
	17.3.7 USCI Interrupts in I ² C Mode	
17.4	USCI Registers: I ² C Mode	
		.50

18	ADC12_A	465
18.1	ADC12_A Introduction	466
18.2	ADC12_A Operation	468
	18.2.1 12-Bit ADC Core	468
	18.2.2 ADC12_A Inputs and Multiplexer	468
	18.2.3 Voltage Reference Generator	469
	18.2.4 Auto Power-Down	469
	18.2.5 Sample and Conversion Timing	470
	18.2.6 Conversion Memory	471
	18.2.7 ADC12_A Conversion Modes	472
	18.2.8 Using the Integrated Temperature Sensor	477
	18.2.9 ADC12_A Grounding and Noise Considerations	478
	18.2.10 ADC12_A Interrupts	479
18.3	ADC12_A Registers	481
19	Embedded Emulation Module (EEM)	489
19.1	EEM Introduction	
19.2	EEM Building Blocks	492
	19.2.1 Triggers	492
	19.2.2 Trigger Sequencer	492
	19.2.3 State Storage (Internal Trace Buffer)	492
	19.2.4 Cycle Counter	
	19.2.5 Clock Control	
19.3	EEM Configurations	494

List of Figures

1-1	Interrupt Priority	. 22
1-2	NMI Interrupts With Reentrance Protection	. 23
1-3	Interrupt Processing	. 24
1-4	Return From Interrupt	. 25
1-5	Operation Modes	. 27
1-6	BOR/POR/PUC Reset Circuit	. 31
2-1	Watchdog Timer Block Diagram	. 47
3-1	Unified Clock System Block Diagram	
3-2	Modulator Patterns	
3-3	Module Request Clock System	
3-4	Oscillator Fault Logic	
3-5	Switch MCLK from DCOCLK to ACLK	
4-1	System Frequency and Supply/Core Voltages	. 78
4-2	PMM Block Diagram	
4-3	Powering Up the System	
4-4	High-Side and Low-Side Voltage Failure	
4-5	High-Side Supply Voltage Supervisor and Monitor	
4-6	Low Side Supply Voltage Supervisor and Monitor	
4-7	Changing V _{CORE} and the SVM _L and SVS _L Levels	
5-1	MSP430X CPU Block Diagram	
5-2	Program Counter Storage on the Stack for Interrupts	
5-3	Program Counter	
5-4	Program Counter Storage on the Stack for CALLA	
5-5	Stack Pointer Counter Storage on the Stack for CALLA	
5-6	Stack Usage	
5-7	PUSHX.A Format on the Stack	
5-8	PUSH SP, POP SP Sequence	
5-9	Status Register Bits	
5-10	Register-Byte/Byte-Register Operation	
5-10	Register-Word Operation	
5-11	Word-Register Operation	
5-12	Register – Address-Word Operation	
5-13 5-14	Address-Word – Register Operation	
	The state of the s	
5-15	Indexed Mode in Lower 64 KB	
5-16	Indexed Mode in Upper Memory	
5-17	Overflow and Underflow for the Indexed Mode	
5-18	Example for the Indexed Mode	
5-19	Symbolic Mode Running in Lower 64 KB	
5-20	Symbolic Mode Running in Upper Memory	
5-21	Overflow and Underflow for the Symbolic Mode	
5-22	MSP430 Double Operand Instruction Format	
5-23	MSP430 Single Operand Instructions	
5-24	Format of the Conditional Jump Instructions	
5-25	Extension Word for Register Modes	
5-26	Extension Word for Non-Register Modes	
5-27	Example for an Extended Register/Register Instruction	
5-28	Example for an Extended Immediate/Indexed Instruction	
5-29	Extended Format-I Instruction Formats	
5-30	20-Bit Addresses in Memory	131
5-31	Extended Format-II Instruction Format	132
5-32	PUSHM/POPM Instruction Format	133
5-33	RRCM, RRAM, RRUM and RLAM Instruction Format	133

5-34	BRA Instruction Format	
5-35	CALLA Instruction Format	
5-36	Decrement Overlap	159
5-37	Stack After a RET Instruction	178
5-38	Destination Operand—Arithmetic Shift Left	180
5-39	Destination Operand—Carry Left Shift	181
5-40	Rotate Right Arithmetically RRA.B and RRA.W	182
5-41	Rotate Right Through Carry RRC.B and RRC.W	183
5-42	Swap Bytes in Memory	190
5-43	Swap Bytes in a Register	190
5-44	Rotate Left Arithmetically—RLAM[.W] and RLAM.A	217
5-45	Destination Operand-Arithmetic Shift Left	218
5-46	Destination Operand-Carry Left Shift	219
5-47	Rotate Right Arithmetically RRAM[.W] and RRAM.A	
5-48	Rotate Right Arithmetically RRAX(.B,.A) – Register Mode	
5-49	Rotate Right Arithmetically RRAX(.B,.A) – Non-Register Mode	
5-50	Rotate Right Through Carry RRCM[.W] and RRCM.A	
5-51	Rotate Right Through Carry RRCX(.B,.A) – Register Mode	
5-52	Rotate Right Through Carry RRCX(.B,.A) – Non-Register Mode	
5-53	Rotate Right Unsigned RRUM[.W] and RRUM.A	
5-54	Rotate Right Unsigned RRUX(.B,.A) – Register Mode	
5-55	Swap Bytes SWPBX.A Register Mode	
5-56	Swap Bytes SWPBX.A In Memory	
5-57	Swap Bytes SWPBX[.W] Register Mode	
5-58	Swap Bytes SWPBX[.W] In Memory	
5-59	Sign Extend SXTX.A	
5-60	Sign Extend SXTX[.W]	
6-1	Flash Memory Module Block Diagram	
6-2	Flash Memory Segments, 256-KB Example	
6-3	Erase Cycle Timing	
6-4	Erase Cycle From Flash	
6-5	Erase Cycle From RAM	
6-6	Byte/Word/Long-Word Write Timing	
6-7	Initiating a Byte/Word Write From Flash	
6-8	Initiating a Byte/Word Write From RAM	
6-9	Initiating Long-Word Write From Flash	
6-10		263
6-11	Block-Write Cycle Timing	
6-12	Block Write Flow	
6-13	User-Developed Programming Solution	
9-1	DMA Controller Block Diagram	
9-1	DMA Addressing Modes	
9-3	DMA Single Transfer State Diagram	
9-4	DMA Block Transfer State Diagram	295
9- 4 9-5	DMA Burst-Block Transfer State Diagram	297
	•	_
10-1 10-2	32-Bit Hardware Multiplier Block Diagram	
-	Q14 Format Representation	318
10-3	·	318
10-4	Saturation Flow Chart	
10-5	Multiplication Flow Chart	
11-1	LFSR Implementation of the CRC-CCITT Standard, Bit 0 is the MSB of the result	
11-2	Implementation of the CRC-CCITT	
12-1	Timer_A Block Diagram	337

www.ti.com

12-2	Up Mode	339
12-3	Up Mode Flag Setting	339
12-4	Continuous Mode	339
12-5	Continuous Mode Flag Setting	339
12-6	Continuous Mode Time Intervals	
12-7	Up/Down Mode	
12-8	Up/Down Mode Flag Setting	
12-9	Output Unit in Up/Down Mode	
12-10	· · · · · · · · · · · · · · · · · · ·	
12-11		
	Output Example—Timer in Up Mode	
	Output Example—Timer in Continuous Mode	
	Output Example—Timer in Up/Down Mode	
	Capture/Compare TACCR0 Interrupt Flag	
13-13	Timer_B Block Diagram	
13-1	Up Mode	
13-2	Up Mode Flag Setting	
	Continuous Mode	
13-4		
13-5	Continuous Mode Flag Setting	
13-6	Continuous Mode Time Intervals	
13-7	Up/Down Mode	
13-8	Up/Down Mode Flag Setting	
13-9	Output Unit in Up/Down Mode	
13-10		
13-11	12	
	Output Example—Timer in Up Mode	
	Output Example—Timer in Continuous Mode	
13-14	Output Example—Timer in Up/Down Mode	367
13-15	Capture/Compare TBCCR0 Interrupt Flag	368
14-1	Real-Time Clock	377
15-1	USCI_Ax Block Diagram: UART Mode (UCSYNC = 0)	398
15-2	Character Format	399
15-3	Idle-Line Format	400
15-4	Address-Bit Multiprocessor Format	401
15-5	Auto Baud Rate Detection – Break/Synch Sequence	
15-6	Auto Baud Rate Detection – Synch Field	
15-7	UART vs IrDA Data Format	
15-8	Glitch Suppression, USCI Receive Not Started	
15-9	Glitch Suppression, USCI Activated	
15-10	BITCLK Baud Rate Timing with UCOS16 = 0	
15-11	Receive Error	
16-1	USCI Block Diagram: SPI Mode	
16-2	USCI Master and External Slave	
16-3	USCI Slave and External Master	
16-4	USCI SPI Timing with UCMSB = 1	
17-1	USCI Block Diagram: I ² C Mode	
17-1 17-2	I ² C Bus Connection Diagram	
17-3	I ² C Module Data Transfer.	
17-4	Bit Transfer on the I ² C Bus	
17-5	I ² C Module 7-Bit Addressing Format	
17-6	I ² C Module 10-Bit Addressing Format	
17-7	I ² C Module Addressing Format with Repeated START Condition	
17-8	I ² C Time Line Legend	446

17-9	I ² C Slave Transmitter Mode	447
17-10	I ² C Slave Receiver Mode	448
17-11	I ² C Slave 10-bit Addressing Mode	449
17-12	I ² C Master Transmitter Mode	451
17-13	I ² C Master Receiver Mode	453
17-14	I ² C Master 10-bit Addressing Mode	454
17-15	Arbitration Procedure Between Two Master Transmitters	454
17-16	Synchronization of Two I ² C Clock Generators During Arbitration	455
18-1	ADC12_A Block Diagram	467
18-2	Analog Multiplexer	468
18-3	Extended Sample Mode	470
18-4	Pulse Sample Mode	471
18-5	Analog Input Equivalent Circuit	471
18-6	Single-Channel, Single-Conversion Mode	473
18-7	Sequence-of-Channels Mode	474
18-8	Repeat-Single-Channel Mode	475
18-9	Repeat-Sequence-of-Channels Mode	476
18-10	Typical Temperature Sensor Transfer Function	
18-11	ADC12_A Grounding and Noise Considerations	
19-1	Large Implementation of the Embedded Emulation Module (FEM)	491

List of Tables

1-1	Connection of Unused Pins	. 30
1-2	Interrupt Sources, Flags, and Vectors	. 32
1-3	SFR Base Address	. 33
1-4	Special Function Registers	. 33
1-8	SYS Base Address	. 37
1-9	SYS Configuration Registers	. 37
2-1	Watchdog Timer Base Register	. 50
2-2	Watchdog Timer Registers	. 50
3-1	Unified Clock System Registers	. 66
4-1	High-Side Supply Voltage Supervisor and Monitor Levels (see the device-specific datasheet)	. 81
4-2	Low-Side Supply Voltage Supervisor and Monitor Levels (see the device specific datasheet)	. 82
4-3	Power Mode Overwrite (see also device specific datasheet)	. 85
4-4	SVS _{H,L} and SVM _{H,L} Performance When SVSHACE = SVSLACE = 0	. 86
4-5	SVS _{H,L} and SVM _{H,L} Performance When SVSHACE = SVSLACE = 1	. 86
4-6	PMM Registers	. 87
5-1	Description of Status Register Bits	101
5-2	Values of Constant Generators CG1, CG2	102
5-3	Source/Destination Addressing	105
5-4	MSP430 Double Operand Instructions	123
5-5	MSP430 Single Operand Instructions	124
5-6	Conditional Jump Instructions	125
5-7	Emulated Instructions	125
5-8	Interrupt, Return, and Reset Cycles and Length	126
5-9	MSP430 Format-II Instruction Cycles and Length	126
5-10	MSP430 Format-I Instructions Cycles and Length	
5-11	Description of the Extension Word Bits for Register Mode	128
5-12	Description of the Extension Word Bits for Non-Register Modes	
5-13	Extended Double Operand Instructions	
5-14	Extended Single-Operand Instructions	
5-15	Extended Emulated Instructions	
5-16	Address Instructions, Operate on 20-Bit Register Data	
5-17	MSP430X Format II Instruction Cycles and Length	
5-18	MSP430X Format-I Instruction Cycles and Length	
5-19	Address Instruction Cycles and Length	138
5-20	Instruction Map of MSP430X	
6-1	Erase Modes	
6-2	Write Modes	
6-3	Flash Access While the Flash is busy (BUSY = 1)	
6-4	Flash Controller Registers	
7-1	I/O Configuration	
7-2	Digital I/O Registers	
8-1	RAMCTL Module Register	
9-1	DMA Transfer Modes	
9-2	DMA Trigger Operation	
9-3	Maximum Single-Transfer DMA Cycle Time	
9-4	DMA Registers	
10-1	Result Availability (MPYFRAC = 0, MPYSAT = 0)	
10-2	OP1 Registers	
10-3	OP2 Registers	315

1	10-4	SUMEXT Contents and MPYC Contents	316
1	10-5	Result Availability in Fractional Mode (MPYFRAC = 1, MPYSAT = 0)	319
1	10-6	Result Availability in Saturation Mode (MPYSAT = 1)	319
1	10-7	32-Bit Hardware Multiplier Registers	326
1	10-8	Alternative Registers	327
1	11-1	CRC Module Registers	333
1	12-1	Timer Modes	338
1	12-2	Output Modes	344
1	12-3	Timer_A7 Registers	349
1	13-1	Timer Modes	359
1	13-2	TBCLx Load Events	364
1	13-3	Compare Latch Operating Modes	364
1	13-4	Output Modes	365
1	13-5	Timer_B Registers	370
1	14-1	Real-Time Clock Registers	383
1	14-2	Word Access to Registers in Counter Mode	384
1	15-1	Receive Error Conditions	405
1	15-2	BITCLK Modulation Pattern	407
1	15-3	BITCLK16 Modulation Pattern	408
1	15-4	Commonly Used Baud Rates, Settings, and Errors, UCOS16 = 0	412
1	15-5	Commonly Used Baud Rates, Settings, and Errors, UCOS16 = 1	413
1	15-6	USCI_Ax Registers	416
1	15-7	Word Access to USCI_Ax Registers	416
1	16-1	UCxSTE Operation	429
1	16-2	USCI_xx Registers	434
1	16-3	Word Access to USCI_xx Registers	434
1	17-1	I ² C State Change Interrupt Flags	456
1	17-2	USCI_Bx Registers	458
1	17-3	Word Access to USCI_Bx Registers	458
1	18-1	Conversion Mode Summary	472
1	18-2	ADC12_A Registers	481
1	19-1	5xx FFM Configurations	494

Read This First

About This Manual

This manual describes the modules and peripherals of the MSP430x5xx family of devices. Each description presents the module or peripheral in a general sense. Not all features and functions of all modules or peripherals may be present on all devices. In addition, modules or peripherals may differ in their exact implementation between device families, or may not be fully implemented on an individual device or device family.

Pin functions, internal signal connections and operational parameters differ from device to device. The user should consult the device-specific data sheet for these details.

Related Documentation From Texas Instruments

For related documentation see the web site http://www.ti.com/msp430.

FCC Warning

This equipment is intended for use in a laboratory test environment only. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to subpart J of part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment in other environments may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.

Notational Conventions

Program examples, are shown in a special typeface.

Glossary

ACLK	Auxiliary Clock
ADC	Analog-to-Digital Converter
BOR	Brown-Out Reset; see System Resets, Interrupts, and Operating Modes
BSL	Bootstrap Loader; see www.ti.com/msp430 for application reports
CPU	Central Processing Unit See RISC 16-Bit CPU
DAC	Digital-to-Analog Converter
DCO	Digitally Controlled Oscillator; see FLL+ Module
dst	Destination; see RISC 16-Bit CPU
FLL	Frequency Locked Loop; see FLL+ Module
GIE Modes	General Interrupt Enable; see System Resets Interrupts and Operating
INT(N/2)	Integer portion of N/2
I/O	Input/Output; see Digital I/O
ISR	Interrupt Service Routine
LSB	Least-Significant Bit

SLAU208 – June 2008 Read This First 15

LSD	Least-Significant Digit
LPM	Low-Power Mode; see System Resets Interrupts and Operating Modes; also named PM for Power Mode
MAB	Memory Address Bus
MCLK	Master Clock
MDB	Memory Data Bus
MSB	Most-Significant Bit
MSD	Most-Significant Digit
NMI	(Non)-Maskable Interrupt; see System Resets Interrupts and Operating Modes; also split to UNMI and SNMI
PC	Program Counter; see RISC 16-Bit CPU
PM	Power Mode See; system Resets Interrupts and Operating Modes
POR	Power-On Reset; see System Resets Interrupts and Operating Modes
PUC	Power-Up Clear; see System Resets Interrupts and Operating Modes
RAM	Random Access Memory
SCG	System Clock Generator; see System Resets Interrupts and Operating Modes
SFR	Special Function Register; see System Resets, Interrupts, and Operating Modes
SMCLK	Sub-System Master Clock
SNMI	System NMI; see System Resets, Interrupts, and Operating Modes
SP	Stack Pointer; see RISC 16-Bit CPU
SR	Status Register; see RISC 16-Bit CPU
src	Source; see RISC 16-Bit CPU
TOS	Top of stack; see RISC 16-Bit CPU
UNMI	User NMI; see System Resets, Interrupts, and Operating Modes
WDT	Watchdog Timer; see Watchdog Timer

Register Bit Conventions

Each register is shown with a key indicating the accessibility of the each individual bit, and the initial condition:

Register Bit Accessibility and Initial Condition

Key	Bit Accessibility
rw	Read/write
r	Read only
r0	Read as 0
r1	Read as 1
W	Write only
w0	Write as 0
w1	Write as 1
(w)	No register bit implemented; writing a 1 results in a pulse. The register bit is always read as 0.
h0	Cleared by hardware
h1	Set by hardware
-0,-1	Condition after PUC
-(0),-(1)	Condition after POR
-[0],-[1]	Condition after BOR
-{0},-{1}	Condition after Brownout

System Resets, Interrupts, and Operating Modes, System Control Module (SYS)

The System Control Module (SYS) is integrated into various devices with different feature sets. It provides public services like Device-ID and TI-private services.

The following list shows the basic feature set of SYS.

- Power on reset (BOR/POR) handling
- · Power up clear (PUC) handling
- NMI (SNMI/UNMI) event source selection and management
- Address decoding
- Providing an user data exchange mechanism via the JTAG Mailbox (JMB)
- · Boot strap loader (BSL) entry mechanism
- Configuration management (device descriptors)
- Providing interrupt vector generators for Reset and NMIs
- Watch dog timer (WDT_A)

Topic		Page
1.1	System Control Module Introduction	18
1.2	Principle of Operation	18
1.3	Memory Map-Uses and Abilities	20
1.4	Interrupts	22
1.5	Operating Modes	26
1.6	Principles for Low-Power Applications	30
1.7	Connection of Unused Pins	30
1.8	Reset and Subtypes	30
1.9	Interrupt Vectors	31
1.10	Special Function Registers	33
1.11	SYS Registers	37

1.1 System Control Module Introduction

The SYS module is responsible for interaction between various modules throughout the system. The functions SYS provides for are not inherent to the modules themselves. Address decoding, bus arbitration, interrupt event collection/prioritization, and reset generation are some of the many functions that SYS provides.

1.2 Principle of Operation

The SYS module provides a series of services that can be used by the application program. Some of these services however can be locked to fulfill code protection requirements. Some bit fields used for common functions are defined as reserved when not implemented on a particular device; this allows a maximum of compatibility among the devices within the MSP430 microcontroller family with SYS modules.

1.2.1 Device Descriptor Table

Each MSP430 provides a data structure in memory that allows an unambiguous identification of the device. Device adaptive SW-tools and libraries need a more detailed description of the available modules on a given device. The SYS module provides this information and can be used by device adaptive SW tools and libraries to clearly identify a particular device and all modules/capabilities contained within it. The validity of the device descriptor can be verified by CRC (cyclic redundancy check).

1.2.1.1 Identifying the Device type

The value read at address location 00FF0h identifies the family branch of the device. All values starting with 80h indicate a hierarchical structure consisting of the info block and a TLV (tag-length-value) structure containing the various descriptors. The info block contains the device ID, die revisions, SW revisions of boot code, and other manufacturer and tool related information. The descriptors contains information about the available peripherals, their subtypes and addresses. This allows to build adaptive HW drivers for operating systems.

Any other value than 80h read at address location 00FF0h indicates the device is of an older family and contains a flat descriptor beginning at location 0FF0h.

1.2.1.2 MSP430 Calibration Descriptors

The MSP430 features a common data structure for calibration data. This structure starts with a predefined header of constant length that simplifies extracting some basic information like Chip_ID, hardware revisions, etc., and is followed by a flexible TLV list containing various calibration information required by the device.

1.2.2 Boot Code

The boot code will always be executed after a BOR. The boot performs calibration of the oscillator and reference voltages. In addition, it checks for existing signatures (predefined data pattern) that indicate the presence of a customer definable boot strap loader (BSL).

1.2.3 Boot Strap Loader (BSL)

The MSP430 bootstrap loader (BSL) is software that is executed after startup when a certain bootstrap loader entry condition is applied. A BSL enables the user to communicate with embedded memory in the MSP430 microcontroller during the prototyping phase, final production, and in service. All memory mapped resources, the programmable memory (flash memory), the data memory (RAM) and the peripherals, can be modified by the BSL as required. The user can define its own BSL-Code for flash based devices and protect it against erasure and unintentional or unauthorized access.

A basic BSL program is provided by TI. This supports the commonly used UART protocol with RS232

www.ti.com Principle of Operation

interfacing, allowing flexible use of both hardware and software. To use the bootstrap loader, a specific BSL entry sequence has to be applied to specific device pins. An added sequence of commands initiates the desired function. A boot loading session can be exited by continuing operation at a defined user program address, or by the reset condition. Access to the MSP430 memory via the bootstrap loader is protected against misuse by a user-defined password.

1.2.4 JTAG Mailbox System (JMB)

The SYS module provides the capability to exchange user data via the regular JTAG test/debug interface. The idea behind the JTAG mailbox system is to have a direct interface to the CPU during debugging, programming and test that is identical for all '430 devices of this family and uses only few or no user application resources. The JTAG interface was chosen because it is available on all '430 devices and is a dedicated resource for debugging, programming and test.

Applications of the JTAG Mailbox System are:

- · Fast flash programming
- Providing entry password for software security fuse
- Run-time data exchange (RTDX)

1.3 Memory Map-Uses and Abilities

This memory map represents the MSP430F5438 device. Though the address ranges differs from device to device, overall behavior remains the same.

Can G	enerates NMI on read	/write/fetch							
Genera	ates PUC on fetch acc	ess							
Protect	table for read/write acc	cesses							
Always	s able to access PMM	registers from ⁽¹⁾ ; Mass erase by user able from	1						
Mass e	erase by user able fror	n							
Block 6	erase by user able fror	m							
Segme	ent erase by user able	from							
Address Name/Purpose						Properties			
00000	h-00FFFh	Peripherals with gaps							
C	00000h-000FFh	Reserved for system-extension							
C	00100h-00FEFh	Peripherals						х	
C	00FF0h-00FF3h	Descriptor type						х	
C	00FF4h-00FF7h	start address of descriptor structure						х	
01000h-011FFh BSL_Seg_0			х				х		
01200h	h-013FFh	BSL_Seg_1	х				х		
01400h-015FFh		BSL_Seg_2	х				х		
01600h-017FFh BS		BSL_Seg_3	х			х	х		
C	017FCh-017FFh	BSL Signature Location							
01800	h-0187Fh	User_Info_D	х						
01880	h-018FFh	User_Info_C	х						
01900	h-0197Fh	User_Info_B	х						
01980	h-019FFh	User_Info_A	х						
01A00	h-01A7Fh	Calibration					х	х	
C	01A80h-01AFFh	Info-Bock, Device ID, Descriptor							
01C00	h-05BFFh	RAM 16k							
C	05B80-05BFFh	Alternate Interrupt Vectors							
05C00	h-0FFFFh	Program_lo (64-x ⁵)k	Х	x ⁽¹⁾	Х				
C	FF7Ch-0FF7Fh	Application Signature Location							
C	FF80h-0FFFFh	Interrupt Vectors							
10000H	h-45BFFh	Program_hi (192+x ⁵)k	Х	х	х				
45C00	h-FFFFFh	Vacant							x ⁽²⁾

⁽¹⁾ Access rights are separately programmable for SYS and PMM.

1.3.1 Vacant Memory Space

Accesses to vacant memory space will generate a NMI interrupt. Reads from vacant memory results in the value 3FFFh. In the case of a fetch, this is taken as JMP \$. Fetch accesses from vacant peripheral space will result in a PUC. After the Boot code is executed, it behaves like vacant memory space and causes a NMI on access.

1.3.2 JTAG Lock Mechanism

After a BOR the memory location 01BFEh will be taken as the reset-vector to start the boot code. The Boot code evaluates the signatures of an optional boot strap loader (BSL) and the application is able to lock or unlock JTAG for debugging, all that depending on the signatures.

On vacant memory space, the value 03FFFh will be driven on the data bus.

1.3.3 SYS Interrupt Vector Generators

The SYS module collects all user NMI (UNMI) sources, system NMI (SNMI) sources, and BOR/POR/PUC sources of all the other modules. They are combined into three interrupt vectors. The interrupt vector registers SYSRSTIV, SYSSNIV, SYSUNIV are used to determine which flags requested an interrupt or a BOR/POR/PUC reset. The interrupt with the highest priority of a group, when enabled, generates a number in the corresponding SYSRSTIV, SYSSNIV, SYSUNIV register. This number can be directly added to the program counter, causing a branch to the appropriate portion of the interrupt service routine. Disabled interrupts do not affect the SYSRSTIV, SYSSNIV, SYSUNIV values. A read access, read to the SYSRSTIV, SYSSNIV, SYSUNIV register automatically resets the highest pending interrupt flag of that register. If another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt. A write access to the SYSRSTIV, SYSSNIV, SYSUNIV register automatically resets all pending interrupt flags of the group.

1.3.3.1 SYSSNIV Software Example

The following software example shows the recommended use of SYSSNIV. The SYSSNIV value is added to the PC to automatically jump to the appropriate routine. For SYSRSTIV and SYSUNIV a similar SW approach can be chosen. The following is an example for a generic MSP430x5xx device. Vectors can change in priority for a given device. The device specific data sheet should be referenced for the vector locations. All vectors should be coded symbolically to allow for easy portability of code.

```
&SYSSNIV,PC; Add offset to jump table
         RETI
                         ; Vector 0: No interrupt
                 SVML_ISR
                             ; Vector 2: SVMLIFG
         JMP
                 SVMH_ISR
                               ; Vector 4: SVMHIFG
         JMP
                 DLYL_ISR
                               ; Vector 6: DLYLIFG
         JMP
                               ; Vector 8: DLYHIFG
         JMP
                 DLYH_ISR
                 VMA_ISR
                                ; Vector 10: VMAIFG
         JMP
                 JMBI_ISR
         JMP
                                ; Vector 12: JMBINIFG
JMBO_ISR:
                                    ; Vector 14: JMBOUTIFG
                                    ; Task_E starts here
       RETI
                                    ; Return
SVML_ISR:
                                    ; Vector 2
                                    ; Task_2 starts here
       RETI
                                    ; Return
SVMH_ISR:
                                    ; Vector 4
                              ; Task_4 starts here
       RETI
                                    ; Return
DELL_ISR:
                                    ; Vector 6
                                    ; Task_6 starts here
        . . .
       RETI
                                    ; Return
DELH_ISR:
                                    ; Vector 8
                                    ; Task_8 starts here
       RETI
                                    ; Return
VMA_ISR:
                                       ; Vector A
                                    ; Task_A starts here
         RETT
                                    ; Return
JMBI_ISR:
                                    ; Vector C
                                    ; Task_C starts here
       RETI
                                    ; Return
```


Interrupts www.ti.com

1.4 Interrupts

Interrupt priorities are fixed and defined by the arrangement of the modules in the connection chain as shown in Figure 1-1. Interrupt priorities determine what interrupt is taken when more than one interrupt is pending simultaneously.

There are three types of interrupts:

- System reset
- (Non)-maskable NMI
- Maskable

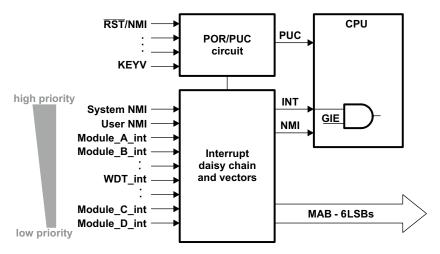


Figure 1-1. Interrupt Priority

1.4.1 (Non)-Maskable Interrupts (NMI)

The MSP430x5xx family supports two levels of NMI interrupts, system NMI (SNMI) and user NMI (UNMI). In general, (Non)-maskable NMI interrupts are not masked by the general interrupt enable bit (GIE). The user NMI sources are enabled by individual interrupt enable bits (NMIIE, ACCVIE, OFIE). When a user NMI interrupt is accepted, other NMIs of that level are automatically disabled to prevent nesting of consecutive NMIs of the same level. Program execution begins at the address stored in the (non)-maskable interrupt vector as shown in Table 1-2. To allow software backward compatibility to users of earlier MSP430 families, the software may, but does not need to re-enable user NMI sources. The block diagram for NMI sources is shown in Figure 1-2.

A (non)-maskable user NMI interrupt can be generated by following sources:

- An edge on the RST/NMI pin when configured in NMI mode
- · An oscillator fault occurs
- An access violation to the flash memory

A (non)-maskable system NMI interrupt can be generated by following sources:

- Power Management Module (PMM) SVML/SVMH supply voltage fault
- PMM time out
- Vacant memory access
- JTAG mailbox event

www.ti.com Interrupts

1.4.2 SNMI Timing

Consecutive system NMIs that are fired in a higher rate than they can be handled (interrupt storm) allow the main program to execute one instruction after the system NMI handler is finished with an RETI instruction, before the system NMI handler is executed again. Consecutive system NMIs are not interrupted by user NMIs in this case. This avoids a blocking behavior on high SNMI rates.

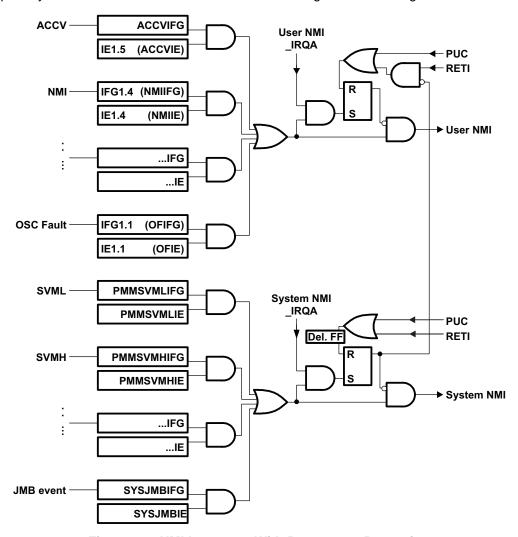


Figure 1-2. NMI Interrupts With Reentrance Protection

Interrupts www.ti.com

1.4.3 Maskable Interrupts

Maskable interrupts are caused by peripherals with interrupt capability. Each maskable interrupt source can be disabled individually by an interrupt enable bit, or all maskable interrupts can be disabled by the general interrupt enable (GIE) bit in the status register (SR).

Each individual peripheral interrupt is discussed in its respective module chapter of this manual.

Interrupt Processing

When an interrupt is requested from a peripheral and the peripheral interrupt enable bit and GIE bit are set, the interrupt service routine is requested. Only the individual enable bit must be set for (non)-maskable interrupts to be requested.

1.4.4.1 Interrupt Acceptance

The interrupt latency is 6 cycles, starting with the acceptance of an interrupt request, and lasting until the start of execution of the first instruction of the interrupt-service routine, as shown in Figure 1-3. The interrupt logic executes the following:

- 1. Any currently executing instruction is completed.
- 2. The PC, which points to the next instruction, is pushed onto the stack.
- 3. The SR is pushed onto the stack.
- 4. The interrupt with the highest priority is selected if multiple interrupts occurred during the last instruction and are pending for service.
- 5. The interrupt request flag resets automatically on single-source flags. Multiple source flags remain set for servicing by software.
- The SR is cleared. This terminates any low-power mode. Because the GIE bit is cleared, further interrupts are disabled.
- 7. The content of the interrupt vector is loaded into the PC: the program continues with the interrupt service routine at that address.

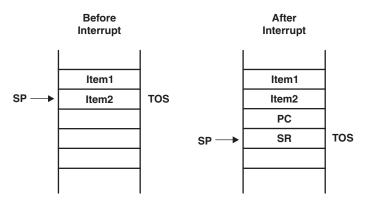


Figure 1-3. Interrupt Processing

www.ti.com Interrupts

1.4.4.2 Return From Interrupt

The interrupt handling routine terminates with the instruction:

RETI (return from an interrupt service routine)

The return from the interrupt takes 5 cycles to execute the following actions and is illustrated in Figure 1-4.

- 1. The SR with all previous settings pops from the stack. All previous settings of GIE, CPUOFF, etc. are now in effect, regardless of the settings used during the interrupt service routine.
- 2. The PC pops from the stack and begins execution at the point where it was interrupted.

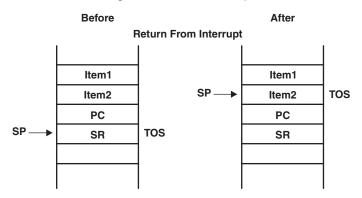


Figure 1-4. Return From Interrupt

1.4.4.3 Interrupt Nesting

Interrupt nesting is enabled if the GIE bit is set inside an interrupt service routine. When interrupt nesting is enabled, any interrupt occurring during an interrupt service routine will interrupt the routine, regardless of the interrupt priorities.

Operating Modes www.ti.com

1.5 Operating Modes

The MSP430 family is designed for ultralow-power applications and uses different operating modes shown in Figure 1-5.

The operating modes take into account three different needs:

- Ultralow-power
- Speed and data throughput
- Minimization of individual peripheral current consumption

The low-power modes LPM0 through LPM4 are configured with the CPUOFF, OSCOFF, SCG0, and SCG1 bits in the status register. The advantage of including the CPUOFF, OSCOFF, SCG0, and SCG1 mode-control bits in the status register is that the present operating mode is saved onto the stack during an interrupt service routine. Program flow returns to the previous operating mode if the saved SR value is not altered during the interrupt service routine. Program flow can be returned to a different operating mode by manipulating the saved SR value on the stack inside of the interrupt service routine. The mode-control bits and the stack can be accessed with any instruction. When setting any of the mode-control bits, the selected operating mode takes effect immediately. Peripherals operating with any disabled clock are disabled until the clock becomes active. The peripherals may also be disabled with their individual control register settings. All I/O port pins and RAM/registers are unchanged. Wake-up is possible through all enabled interrupts.

When LPM5 is entered, the voltage regulator of the Power Management Module (PMM) is disabled. All RAM and register contents are lost, as well as, I/O configuration. Wake-up is possible via a power sequence or an RST/NMI event. On some devices, wake-up from I/O is also possible. Please refer to the device specific datasheet.

www.ti.com Operating Modes

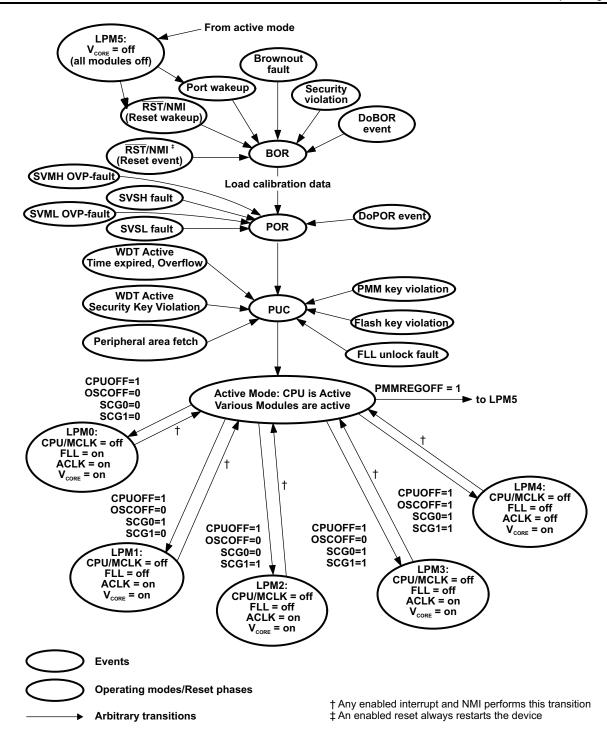


Figure 1-5. Operation Modes

Operating Modes www.ti.com

SCG1	SCG0	OSCOFF	CPUOFF	Mode	CPU and Clocks Status
0	0	0	0	Active	CPU, MCLK are active.
					ACLK is active. SMCLK optionally active (SMCLKOFF = 0).
0	0	0	1	LPM0	CPU, MCLK are disabled.
					ACLK is active. SMCLK optionally active (SMCLKOFF = 0).
					DCO enabled if sources ACLK, MCLK, or SMCLK (SMCLKOFF = 0).
					FLL enabled if DCO enabled.
0	1	0	1	LPM1	CPU, MCLK are disabled.
					ACLK is active. SMCLK optionally active (SMCLKOFF = 0).
					DCO enabled if sources ACLK or SMCLK (SMCLKOFF = 0).
					FLL disabled.
1	0	0	1	LPM2	CPU, MCLK are disabled.
					ACLK is active. SMCLK is disabled.
					DCO enabled if sources ACLK.
					FLL disabled.
1	1	0	1	LPM3	CPU, MCLK are disabled.
					ACLK is active. SMCLK is disabled.
					DCO enabled if sources ACLK.
					FLL disabled.
1	1	1	1	LPM4	CPU and all clocks disabled
1	1	1	1	LPM5	When PMMREGOFF = 1, regulator disabled. No memory retention.

1.5.1 Entering and Exiting Low-Power Modes

An enabled interrupt event wakes the MSP430 from low-power operating modes LPM0 through LPM4. LPM5 exit is only possible via a power cycle or a RST/NMI event or wakeup from I/O on when available on some devices. The program flow entering and exiting LPM0 through LPM4 is:

- Enter interrupt service routine:
 - The PC and SR are stored on the stack
 - The CPUOFF, SCG1, and OSCOFF bits are automatically reset
- Options for returning from the interrupt service routine:
 - The original SR is popped from the stack, restoring the previous operating mode.
 - The SR bits stored on the stack can be modified within the interrupt service routine returning to a different operating mode when the RETI instruction is executed.

```
; Enter LPMO Example
  BIS #GIE+CPUOFF,SR
                                            ; Enter LPM0
                                            ; Program stops here
; Exit LPMO Interrupt Service Routine
  BIC #CPUOFF, 0(SP)
                                            ; Exit LPMO on RETI
  RETI
; Enter LPM3 Example
  BIS
       #GIE+CPUOFF+SCG1+SCG0,SR
                                            ; Enter LPM3
                                            ; Program stops here
; Exit LPM3 Interrupt Service Routine
  BIC #CPUOFF+SCG1+SCG0,0(SP)
                                            ; Exit LPM3 on RETI
  RETI
```


www.ti.com Operating Modes

```
; Enter LPM4 Example
  BIS #GIE+CPUOFF+OSCOFF+SCG1+SCG0,SR ; Enter LPM4
; ... ; Program stops here
;
; Exit LPM4 Interrupt Service Routine
  BIC #CPUOFF+OSCOFF+SCG1+SCG0,0(SP) ; Exit LPM4 on RETI
  RETI
```

The following code example shows how to enter LPM5 mode. Exit from LPM5 is only possible with a RST/NMI event, a power on cycle, or if available on some devices via specific I/O. Upon exit from the device, a complete reset sequence is performed. Please refer to the Power Management Module Chapter for further details.

```
; Enter LPM5 Example
BIS #PMMREGOFF, &PMMCTL0 ;
BIS #GIE+CPUOFF+OSCOFF+SCG1+SCG0,SR ;Enter LPM5 when PMMREGOFF is set.
```

1.5.1.1 Extended Time in Low-Power Modes

The temperature coefficient of the DCO should be considered when the DCO is disabled for extended low-power mode periods. If the temperature changes significantly, the DCO frequency at wake-up may be significantly different from when the low-power mode was entered and may be out of the specified operating range. To avoid this, the DCO can be set to it lowest value before entering the low-power mode for extended periods of time where temperature can change.

```
; Enter LPM4 Example with lowest DCO Setting
        #SCG0, SR
  RTC
                                             ; Disable FLL
  VOM
        #0100h, &UCSCTL0
                                             ; Set DCO tap to first tap, clear
modulation.
  BIC
        #DCORSEL2+DCORSEL1+DCORSEL0,&UCSCTL1 ; Lowest DCORSEL
        #GIE+CPUOFF+OSCOFF+SCG1+SCG0,SR ; Enter LPM4
  BTS
                                             ; Program stops
   . . .
; Interrupt Service Routine
        #CPUOFF+OSCOFF+SCG1+SCG0,0(SR)
                                           ; Exit LPM4 on RETI
  RETI
```


1.6 Principles for Low-Power Applications

Often, the most important factor for reducing power consumption is using the MSP430's clock system to maximize the time in LPM3 or LPM4 modes whenever possible.

- Use interrupts to wake the processor and control program flow.
- Peripherals should be switched on only when needed.
- Use low-power integrated peripheral modules in place of software driven functions. For example Timer_A and Timer_B can automatically generate PWM and capture external timing, with no CPU resources.
- Calculated branching and fast table look-ups should be used in place of flag polling and long software calculations.
- Avoid frequent subroutine and function calls due to overhead.
- For longer software routines, single-cycle CPU registers should be used.

1.7 Connection of Unused Pins

The correct termination of all unused pins is listed in Table 1-1.

Pin **Potential** Comment AV_{CC} DV_{CC} AV_{SS} DV_{SS} Px.0 to Px.7 Open Switched to port function, output direction 47-k Ω pullup or internal pullup selected with 10-nF RST/NMI DV_{CC} or V_{CC} pulldown TDO/TDI/TMS/TCK Open **TEST** Open

Table 1-1. Connection of Unused Pins

1.8 Reset and Subtypes

BOR, POR, and PUC can be seen as a special type of a non-maskable interrupt with restart behavior of the complete system. BOR (brownout reset), POR (power on reset) and PUC (power up clear) are subtypes of it. Figure 1-6 shows their dependencies; A BOR reset represents the highest impacts to HW and causes a reload of device dependent HW while a PUC only resets the CPU and starts over with program execution.

www.ti.com Interrupt Vectors

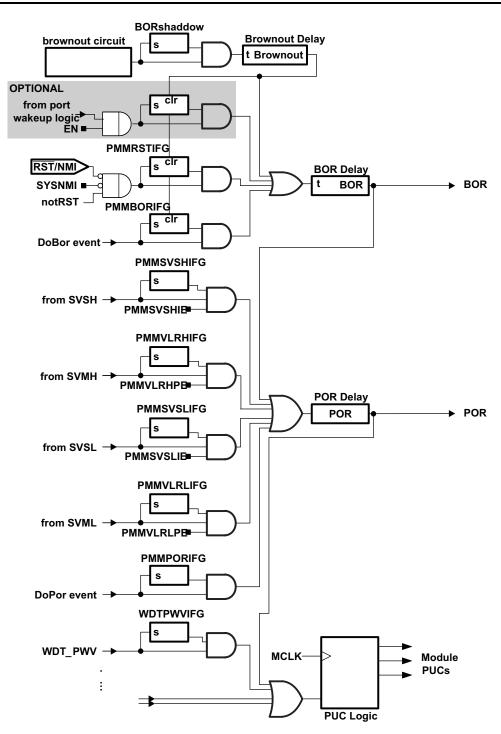


Figure 1-6. BOR/POR/PUC Reset Circuit

1.9 Interrupt Vectors

The interrupt vectors and the power-up starting address are located in the address range 0FFFFh to 0FF80h, for a maximum of 64 interrupt sources. A vector is programmed by the user this vector points to the start of the corresponding interrupt service routine. See the device-specific data sheet for the complete interrupt vector list.

Interrupt Vectors www.ti.com

Table 1-2. Interrupt Sources, Flags, and Vectors

Interrupt Source	Interrupt Flag	System Interrupt	Word Address	Priority
Reset: Power up, external reset, watchdog, flash password	 WDTIFG KEYV	 Reset	 0FFFEh	 highest
System NMI: PSS		(non)-maskable	0FFFCh	
User NMI: NMI, oscillator fault, flash memory access violation	 NMIIFG OFIFG ACCIFG	 (non)-maskable (non)-maskable (non)-maskable	 0FFFAh	
device specific			0FFF8h	
Watchdog timer	WDTIFG	maskable		
device specific				
reserved		(maskable)		lowest

Some interrupt enable bits, and interrupt flags and control bits for the \overline{RST}/NMI pin are located in the Special Function Registers (SFRs). The SFRs are located in the peripheral address range and are byte and word accessible. See the device-specific data sheet for the SFR configuration.

1.10 Special Function Registers

The special function registers, SFR, are listed in Table 1-4. The base address for the SFR registers is listed in Table 1-3.

Table 1-3. SFR Base Address

Module	Base address
SFR	00100h

Table 1-4. Special Function Registers

Register	Short Form	Register Type	Register Access	Address Offset	Initial State
Interrupt enable register	SFRIE1	read/write	word	00h	0000h
	SFRIE1_L (IE1)	read/write	byte	00h	00h
	SFRIE1_H (IE2)	read/write	byte	01h	00h
Interrupt flag register	SFRIFG1	read/write	word	02h	0082h
	SFRIFG1_L (IFG1)	read/write	byte	02h	82h
	SFRIFG1_H (IFG2)	read/write	byte	03h	00h
Reset pin control register	SFRRPCR	read/write	word	04h	0000h
	SFRRPCR_L	read/write	byte	04h	00h
	SFRRPCR_H	read/write	byte	05h	00h

Special Function	n Registers						www.ti.com
SFRIFG1, SFRI	IFG1_L, SFRIF	G1_H, Interrup	t Flag Register				
15 7	14 6	13 5	12 4	11 3	10 2	9 1	8 0
Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
rO	r0	r0	r0	r0	r0	rO	r0
7	6	5	4	3	2	1	0
JMBOUTIFG	JMBINIFG	Reserved	NMIIFG	VMAIFG	Reserved	OFIFG	WDTIFG
rw-(1)	rw-(0)	rw-0	rw-0	rw-0	r0	rw-(1)	rw-0
Reserved	Bit 15-8	Reserved. Rea	ds back 0				
JMBOUTIFG	Bit 7	JTAG mailbox	output interrupt fla	g			
		JMBO0 h automatic	as been written by	the CPU. When IBO0 and JMBO1	MBMODE = 0), th in 32-bit mode (JM have been writter NIV has been read	MBMODE = 1), this in by the CPU. This	s bit is cleared
		JMBO0 h			for new messages t mode (JMBMOD		
JMBINIFG	Bit 6	JTAG mailbox	input interrupt flag				
		JMBI0 is when bot	read by the CPU.	When in 32-bit mo	MBMODE = 0), th ode (JMBMODE = I by the CPU. This	1), this bit is clea	red automatically
		when JMI		en by JTAG. In 32	e JMBIN registers. 2 bit mode (JMBM		
Reserved	Bit 5	Reserved. Rea	ds back 0				
NMIIFG	Bit 4	NMI pin interru	pt flag				
		0 no interru	pt pending				
		1 interrupt p	pending				
VMAIFG	Bit 3	Vacant memory	y access interrupt	flag			
		0 no interru	pt pending				
		1 interrupt p	pending				
Reserved	Bit 2	Reserved. Rea	ds back 0				
OFIFG	Bit 1	Oscillator fault	interrupt flag				
		0 no interru	pt pending				
		1 interrupt p	pending				
WDTIFG	Bit 0	interval mode, Because other	WDTIFG is reset a bits in ~IFG1 may	automatically by so be used for other	WDTIFG remains a ervicing the interru modules, it is rec d.B or CLR.B instru	ipt, or can be rese ommended to cle	et by software.
		0 no interru	pt pending				

34

interrupt pending

15 7	14 6	13 5	12 4	11 3	10 2	9 1	8 0
Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
r0	rO	r0	r0	r0	r0	r0	r0
7	6	5	4	3	2	1	0
JMBOUTIE	JMBINIE	ACCVIE	NMIIE	VMAIE	Reserved	OFIE	WDTIE
rw-0	rw-0	rw-0	rw-0	rw-0	r0	rw-0	rw-0
Reserved	Bit 15-8	Reserved. Read	s back 0.				
JMBOUTIE	Bit 7	JTAG mailbox o	utput interrupt ena	ıble flag			
		0 interrupts of	lisabled				
		1 interrupts 6	enabled				
JMBINIE	Bit 6	JTAG mailbox in	put interrupt enab	le flag			
		0 interrupts of	lisabled				
		1 interrupts	enabled				
ACCVIE	Bit 5	Flash controller	access violation in	iterrupt enable flag	g		
		0 interrupts of	lisabled	·			
		1 interrupts	enabled				
NMIIE	Bit 4	NMI pin interrupt	enable flag				
		0 interrupts of	lisabled				
		1 interrupts	enabled				
VMAIE	Bit 3	Vacant memory	access interrupt e	nable flag			
		0 interrupts of	•	· ·			
		1 interrupts e	enabled				
Reserved	Bit 2	Reserved. Read	s back 0.				
OFIE	Bit 1	Oscillator fault in	terrupt enable flag	g			
		0 interrupts of	lisabled	-			
		1 interrupts e					
WDTIE	Bit 0	Watchdog timer necessary to set	interrupt enable. ⁻ this bit for watch	dog mode. Becaus	e WDTIFG interru se other bits in ~IE 3 or BIC.B instruct	1 may be used fo	r other module
		0 interrupts of	licabled				

interrupts enabled

opodiai i dinotic	ni i togiotoro						***************************************
SFRRPCR, SF	RRPCR_H, SF	RRPCR_L, Rese	et Pin Control F	Register			
15	14	13	12	11	10	9	8
7	6	5	4	3	2	1	0
Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
r0	rO	rO	r0	r0	r0	r0	r0
7	6	5	4	3	2	1	0
Reserved	Reserved	Reserved	Reserved	SYSRSTRE	SYSRSTUP	SYSNMIIES	SYSNMI
r0	rO	r0	r0	rw-0	rw-0	rw-0	rw-0
Reserved	Bit 15-5	Reserved. Rea	ds back 0.				
SYSRSTRE	Bit 3	Reset pin resist	tor Enable.				
		0 Pullup/p	ulldown resistor a	t the RST/NMI pin	is disabled.		
		1 Pullup/p	ulldown resistor a	t the RST/NMI pin	is enabled.		
SYSRSTUP	Bit 2	Reset resistor p	oin pullup/pulldow	n.			
		0 Pulldowi	n is selected.				
		1 Pullup is	selected.				
SYSNMIIES	Bit 1			the interrupt edge y this bit when SY			
		0 NMI on	rising edge				
		1 NMI on t	falling edge				
SYSNMI	Bit 0	NMI select. Thi	s bit selects the fu	unction for the RS	Γ/NMI pin.		
		0 Reset fu	nction				
		1 NMI fund	ction				

www.ti.com SYS Registers

1.11 SYS Registers

The SYS registers are listed in Table 1-8 and Table 6. A detailed description of each register and its bits is also provided. Each register starts at a word boundary. Both, word or byte data can be written to the SYS registers.

Table 1-8. SYS Base Address

Module	Base address
SYS	00180h

Table 1-9. SYS Configuration Registers

Register	Short Form	Register Type	Register Access	Address Offset	Initial State
System Control Register	SYSCTL	read/write	word	00h	0000h
	SYSCTL_L	read/write	byte	00h	00h
	SYSCTL_H	read/write	byte	01h	00h
Boot strap loader	SYSBSLC	read/write	word	02h	0003h
configuration register	SYSBSLC_L	read/write	byte	02h	03h
	SYSBSLC_H	read/write	byte	03h	00h
Arbitration configuration	SYSARB	read/write	word	04h	0000h
Register	SYSARB_L	read/write	byte	04h	00h
-	SYSARB_H	read/write	byte	05h	00h
JTAG Mailbox Control	SYSJMBC	read/write	word	06h	0000h
Register	SYSJMBC_L	read/write	byte	06h	0Ch
•	SYSJMB_H	read/write	byte	07h	00h
JTAG Mailbox Input	SYSJMBI0	read/write	word	08h	0000h
Register #0	SYSJMBI0_L	read/write	byte	08h	00h
· ·	SYSJMBI0_H	read/write	byte	09h	00h
JTAG Mailbox Input	SYSJMBI1	read/write	word	0Ah	0000h
Register #1	SYSJMBI1_L	read/write	byte	0Ah	00h
•	SYSJMBI1_H	read/write	byte	0Bh	00h
JTAG Mailbox Output	SYSJMBO0	read/write	word	0Ch	0000h
Register #0	SYSJMBO0_L	read/write	byte	0Ch	00h
-	SYSJMBO0_H	read/write	byte	0Dh	00h
JTAG Mailbox Output	SYSJMBO1	read/write	word	0Eh	0000h
Register #1	SYSJMBO1_L	read/write	byte	0Eh	00h
•	SYSJMBO1_H	read/write	byte	0Fh	00h
reserved for future use				10h	
				17h	
Bus error vector generator	SYSBERRIV	read only	word	18h	0000h
User NMI vector generator	SYSUNIV	read only	word	1Ah	0000h
System NMI vector gen.	SYSSNIV	read only	word	1Ch	0000h
Reset vector generator	SYSRSTIV	read only	word	1Eh	0002h

Access to some SYS registers is allowed only if the SYSLOCK bit is reset.

www.ti.com SYS Registers

S 1 S Registers							www.ti.co
SYSCTL, SYSC	CTL_L, SYSCTI	H, SYS Cont	rol Register				
15	14	13	12	11	10	9	8
7	6	5	4	3	2	1	0
Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
r0	r0	r0	r0	r0	r0	r0	rO
7	6	5	4	3	2	1	0
Reserved	Reserved	SYSJTAGPIN	SYSBSLIND	Reserved	SYSPMMPE	Reserved	SYSRIVECT
r0	r0	rw-(0)	r-0	r0	rw-(0)	r0	rw-(0)
Reserved	Bits 15-8	Reserved. Re	eads back 0.				
SYSJTAGPIN	Bit 5		enables the JTAG		ables the shared fur can only be set on		
		0 shared	JTAG pins (JTAG	mode selectable	via SBW sequence	e)	
		1 Dedicat	ed JTAG pins (exp	olicit 4 wire JTAG	mode selection)		
SYSBSLIND	Bit 4	TCK/RST entry BSL indication detected to allow writing a backward compatible BSL to early '430 families. See BSL entry in Spy-Bi –Wire					
		0 No BSL	indication				
		1 BSL en	try detected				
Reserved	Bit 3	Reserved. Re	eads back 0.				
SYSPMMPE	Bit 2		protect. The controls set to one it only		PMM module can b again by a BOR)	e accessed by a	program running
		0 anyw	here in memory				
		1 only	from boot code are	ea (01B00h-01BF	Fh) and the protec	ted BSL segmen	ts.
Reserved	Bit 1	Reserved. Re	eads back 0.	•	•	-	
SYSRIVECT	Bit 0	RAM based I	nterrupt Vectors				
				ed with end addre	ss: TOP of lower 6	4k Flash FFFFh	
		ap					

www.ti.com SYS Registers

SYSBSLC, SYS	SBSLC_L, SYS	BSLC_H, BSL (Configuration F	Register			
15 7	14 6	13 5	12 4	11 3	10 2	9 1	8 0
SYSBSLPE	SYSBSLOFF	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved
rw-(0)	rw-(0)	r0	rO	rO	rO	r0	r0
7	6	5	4	3	2	1	0
Reserved	Reserved	Reserved	Reserved	Reserved	SYSBSLR	SYSBS	SLSIZE
rO	r0	r0	rO	rO	rw-(0)	rw-(1)	rw-(1)
SYSBSLPE	Bit 15-7 Bit 14-6	Boot strap loader (BSL) memory protection enable for the size covered in SYSBSLSIZE 0 area not protected read, program and erase of memory is possible 1 area protected Boot strap loader (BSL) memory disable for the size covered in SYSBSLSIZE 0 BSL memory is addressed when this area is read 1 BSL memory behaves like vacant memory					
Reserved	Bit 13-3	Reserved. Reads	s back 0.				
SYSBSLR	Bit 2	RAM assigned to	BSL				
		0 no RAM a	assigned to BSL a	rea			
		1 lowest 16	bytes of RAM ass	signed to BSL			
SYSBSLSIZE	Bit 1-0	BOOT Strap Loa This defines the		Flash that is rese	erved for the Boot	Strap Loader.	
		00 Size: 512	B BSL_SEG_3				
		01 Size: 102	4B BSL_SEG_2,3	3			

Size: 1536B BSL_SEG_1,2,3
 Size: 2048B BSL_SEG_0,1,2,3 (value after BOR!)

SYS Registers www.ti.com

r0 7 JMBCLR10FF JMB	6 eserved r0 6 CLROOFF rw-(0) Bit 15-8 Bit 7 Bit 6	0 JMBIN 1 JMBIN Incoming JTA 0 JMBIN	G Mailbox 1 flag I1FG cleared on r I1FG cleared by S G Mailbox 0 flag	Reserved r0 3 JMBOUT1FG r-(1) auto-clear disable read of JMB1IN reg		1 Reserved r0 1 JMBIN1FG rw-(0)	0 Reserved r0 0 JMBIN0FG rw-(0)	
r0 7 JMBCLR10FF JMB rw-(0) Reserved JMBCLR10FF JMBCLR00FF Reserved JMBMODE	r0 6 6CLR0OFF rw-(0) Bit 15-8 Bit 7	r0 5 Reserved r0 Reserved. Re Incoming JTA 0 JMBIN 1 JMBIN Incoming JTA 0 JMBIN	r0r 4 JMBM0DE rw-0 eads back 0. G Mailbox 1 flag I1FG cleared on r I1FG cleared by S G Mailbox 0 flag	r0 3 JMBOUT1FG r-(1) auto-clear disable. read of JMB1IN reg	r0 2 JMBOUT0FG r-(1)	r0 1 JMBIN1FG	r0 0 JMBIN0FG	
7 JMBCLR10FF JMB rw-(0) Reserved JMBCLR10FF JMBCLR00FF Reserved JMBMODE	6 CLROOFF rw-(0) Bit 15-8 Bit 7	Feserved ro Reserved. Re Incoming JTA O JMBIN 1 JMBIN Incoming JTA O JMBIN	4 JMBM0DE rw-0 eads back 0. G Mailbox 1 flag ITFG cleared on r ITFG cleared by S G Mailbox 0 flag	3 JMBOUT1FG r-(1) auto-clear disable. read of JMB1IN reg	2 JMBOUT0FG r-(1)	1 JMBIN1FG	0 JMBIN0FG	
JMBCLR10FF JMB rw-(0) Reserved JMBCLR10FF JMBCLR00FF Reserved JMBMODE	rw-(0) Bit 15-8 Bit 7	Reserved r0 Reserved. Re Incoming JTA 0 JMBIN 1 JMBIN Incoming JTA 0 JMBIN	rw-0 eads back 0. G Mailbox 1 flag ITFG cleared on r ITFG cleared by S G Mailbox 0 flag	JMBOUT1FG r-(1) auto-clear disable. read of JMB1IN reg	JMBOUT0FG r-(1)	JMBIN1FG	JMBIN0FG	
rw-(0) Reserved JMBCLR10FF JMBCLR00FF Reserved JMBMODE	rw-(0) Bit 15-8 Bit 7 Bit 6	r0 Reserved. Re Incoming JTA 0 JMBIN 1 JMBIN Incoming JTA 0 JMBIN	rw-0 eads back 0. G Mailbox 1 flag I1FG cleared on r I1FG cleared by S G Mailbox 0 flag	r-(1) auto-clear disable read of JMB1IN reç	r-(1)		1	
Reserved JMBCLR1OFF JMBCLR0OFF Reserved JMBMODE	Bit 15-8 Bit 7	Reserved. Re Incoming JTA 0 JMBIN 1 JMBIN Incoming JTA 0 JMBIN	eads back 0. G Mailbox 1 flag I1FG cleared on r I1FG cleared by S G Mailbox 0 flag	auto-clear disable read of JMB1IN req		rw-(0)	rw-(0)	
JMBCLR10FF JMBCLR00FF Reserved JMBMODE	Bit 7	Incoming JTA O JMBIN 1 JMBIN Incoming JTA O JMBIN	G Mailbox 1 flag I1FG cleared on r I1FG cleared by S G Mailbox 0 flag	read of JMB1IN req				
JMBCLR0OFF Reserved JMBMODE	Bit 6	0 JMBIN 1 JMBIN Incoming JTA 0 JMBIN	11FG cleared on r 11FG cleared by S .G Mailbox 0 flag	read of JMB1IN req				
Reserved JMBMODE		1 JMBIN Incoming JTA 0 JMBIN	I1FG cleared by S .G Mailbox 0 flag	SW .	gister			
Reserved JMBMODE		Incoming JTA 0 JMBIN	G Mailbox 0 flag					
Reserved JMBMODE		0 JMBIN	· ·	auto-clear disable				
JMBMODE	Bit 5		I0FG cleared on r					
JMBMODE	Bit 5	1 JMBIN		ead of JMB0IN req	gister			
JMBMODE	Bit 5		I0FG cleared by S	SW				
		Reserved. Re	eads back 0.					
JMBOUT1FG	Bit 4		•	node of JMB for JN nt to avoid data dro		0/1. Before switch	ing this bit pad	
JMBOUT1FG		0 16 bit t	transfers using JN	MBO0 and JMBI0	only			
JMBOUT1FG		1 32 bit t	transfers using JN	MBO0/1 and JMBI0	0/1			
	Bit 3		JMBO1 or as wor	This bit is cleared rd access (by the				
		0 JMBO	1 is not ready to r	eceive new data				
		1 JMBO	1 is ready to rece	ive new data				
JMBOUT0FG	Bit 2	Outgoing JTAG Mailbox 0 flag. This bit is cleared automatically when a message is written to the upper byte of JMBO0 or as word access (by the CPU, DMA,) and is set after the message was read via JTAG.						
		0 JMBO	0 is not ready to r	eceive new data				
		1 JMBO	0 is ready to rece	ive new data				
JMBIN1FG	Bit 1	in JMBI1. This	s flag is cleared a	This bit is set whe automatically on rea MBIN1FG needs to	ad of JMBI1 when	JMBCLR1OFF=0		
		0 JMBI1	has no new data					
		1 JMBI1	has new data ava	ailable				
JMBIN0FG	Bit 0	in JMBIO. This	s flag is cleared a	This bit is set when automatically on rea MBIN0FG needs to	ad of JMBI0 when	JMBCLR0OFF=0		

1

JMBI1 has new data available

SYS Registers www.ti.com

15	14	13	12	11	10	9	8
7	6	5	4	3	2	1	0
			MS	GHI			
r-0	r-0	r-0	r-0	r-0	r-0	r-0	r-0
7	6	5	4	3	2	1	0
			MS	GL0			
r-0	r-0	r-0	r-0	r-0	r-0	r-0	r-0
MSGHI	Bit 15-8	JTAG mailbox inco	oming message high	byte			
MSGLO	Bit 7-0		oming message low l	-			
15 7	14 6	13 5	12 4 MS	11 3 GHI	10 2	9 1	8 0
rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0
7	6	5	4	3	2	1	0
			MS	GL0			
rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0
MSGHI	Bit 15-8	JTAG Mailbox ou	tgoing message high	n byte			
MSGLO	Bit 7-0	JTAG Mailbox ou	tgoing message low	byte			
SYSUNIV, S	YSUNIV_H, S	YSUNIV_L, User	NMI Interrupt Ved	tor Register			
15	14	13	12	11	10	9	8
7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0
r0	r0	r0	r0	r0	r0	r0	r0
	6	5	4	3	2	1	0
7	0			evell	INVEC		0
7 0	0	0		3130			r0
		0 r0	r-0	r-0	r-0	r-0	10
o ro	0	r0 User NMI i	r-0 nterrupt vector. It ge tine handling. Writing	r-0 nerates an value t	that can be used a	ıs address offset f	or fast interr
o ro	0 r0	r0 User NMI i	nterrupt vector. It ge	r-0 nerates an value t	that can be used a	ıs address offset f	or fast interr
o ro	0 r0	r0 User NMI i service rou	nterrupt vector. It ge tine handling. Writing	r-0 nerates an value of g to this register of	that can be used a	ıs address offset f	or fast interr
o ro	0 r0	r0 User NMI i service rou Value	nterrupt vector. It ge titine handling. Writing Interrupt Type No interrupt pend	r-0 nerates an value of g to this register of	that can be used a clears all pending u	ıs address offset f	or fast interr
0	0 r0	r0 User NMI i service rou Value 0000h	nterrupt vector. It ge titine handling. Writing Interrupt Type No interrupt pend	r-0 nerates an value to this register of this register of this pending (highest	that can be used a clears all pending u	ıs address offset f	or fast interr
O rO	0 r0	r0 User NMI i service rou Value 0000h 0002h	nterrupt vector. It ge Itine handling. Writing Interrupt Type No interrupt pend NMIIFG interrupt	r-0 nerates an value of g to this register of ding pending (highest pending	that can be used a clears all pending u	ıs address offset f	or fast interr

Note: Additional events for more complex devices will be appended to this table; Sources that are removed will reduce the length of this table. The vectors are expected to be accessed symbolic only with the corresponding include file of the used device.

SYS Registers www.ti.com

SYSSNIV, SYSSNIV_H, SYSSNIV_L, SYS NMI Interrupt Vector Register									
15	14	13	12	11	10	9	8		
	6	5	4	3	2	1	0		
0	0	0	0	0	0	0	0		
r0	r0	r0	r0	r0	r0	rO	r0		
7	6	5	4	3	2	1	0		
0	0	0		SYSS	NVEC		0		
r0	r0	r0	r-0	r-0	r-0	r-0	rO		

SYSSNIV Bit 15-0

System NMI interrupt vector. It generates an value that can be used as address offset for fast interrupt service routine handling. Writing to this register clears all pending system NMI interrupt

Value	Interrupt Type
0000h	No interrupt pending
0002h	SVMLIFG interrupt pending (highest priority)
0004h	SVMHIFG interrupt pending
0006h	DLYLIFG interrupt pending
0008h	DLYHIFG interrupt pending
000Ah	VMAIFG interrupt pending
000Ch	JMBINIFG interrupt pending
000Eh	JMBOUTIFG interrupt pending
0010h	VLRLIFG interrupt pending
0012h	VLRHIFG interrupt pending
0014h	Reserved for future extensions

Note: Additional events for more complex devices will be appended to this table; Sources that are removed will reduce the length of this table. The vectors are expected to be accessed symbolic only with the corresponding include file of the used device.

SYS Registers www.ti.com

SYSRSTIV, SYSRSTIV_H, SYSRSTIV_L, SYS Reset Interrupt Vector Register							
15 7	14 6	13 5	12 4	11 3	10 2	9 1	8 0
0	0	0	0	0	0	0	0
rO	rO	rO	rO	r0	r0	rO	rO
7	6	5	4	3	2	1	0
0	0	0		SYSR	STVEC		0
r0	r0	r0	r-0	r-0	r-0	r-0	r0

SYSRSTIV

Bit 15-0

Reset interrupt vector. It generates an value that can be used as address offset for fast interrupt service routine handling to identify the last cause of an Reset (BOR, POR, PUC) . Writing to this register clears all pending reset source flags.

Value	Interrupt Type
0000h	No interrupt pending
0002h	Brownout (BOR) (highest priority)
0004h	RST/NMI (POR) (also RST wakes up)
0006h	DoBOR (BOR)
0008h	Port wakeup (BOR)
000Ah	Security violation (BOR)
000Ch	SVSL (POR)
000Eh	SVSH (POR)
0010h	SVML_OVP (POR)
0012h	SVMH_OVP (POR)
0014h	DoPOR (POR)
0016h	WDT time out (PUC)
0018h	WDT keyviol (PUC)
001Ah	KEYV flash keyviol (PUC)
001Ch	PLL unlock (PUC)
001Eh	PERF peripheral/configuration area fetch (PUC)
0020h	PMM key violation (PUC)
0022h	Reserved for future extensions

Note: Additional events for more complex devices will be appended to this table; Sources that are removed will reduce the length of this table. The vectors are expected to be accessed symbolic only with the corresponding include file of the used device

Watchdog Timer (WDT_A)

The watchdog timer is a 32-bit timer that can be used as a watchdog or as an interval timer. This chapter describes the watchdog timer. The enhanced watchdog timer, WDT_A, is implemented in all MSP430x5xx devices.

To	pic		Page
	2.1	Watchdog Timer Introduction	46
	2.2	Watchdog Timer Block Diagram	48
	2.3	Watchdog Timer Registers	50

2.1 Watchdog Timer Introduction

The primary function of the watchdog timer (WDT_A) module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals.

Features of the watchdog timer module include:

- Eight software-selectable time intervals
- Watchdog mode
- Interval mode
- Access to WDT control register is password protected
- Selectable clock source
- Can be stopped to conserve power
- · Clock fail-safe feature

The WDT block diagram is shown in Figure 2-1.

Note: Watchdog Timer Powers Up Active

After a PUC, the WDT_A module is automatically configured in the watchdog mode with an initial ~32-ms reset interval using the SMCLK. The user must setup or halt the WDT_A prior to the expiration of the initial reset interval.

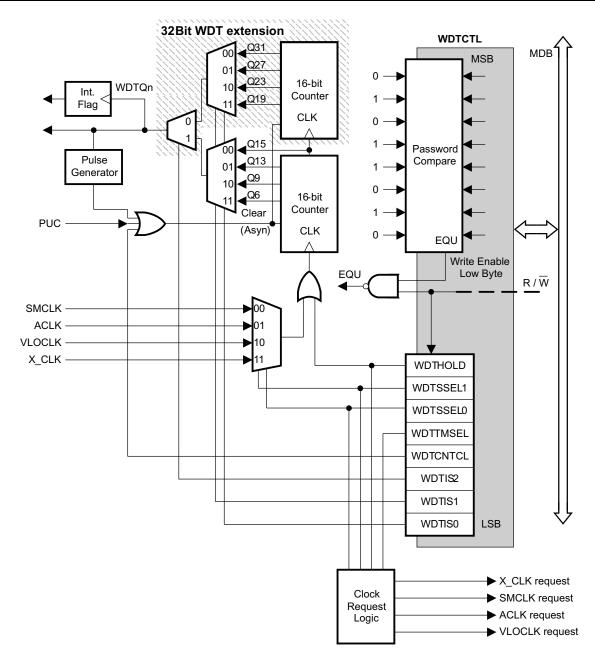


Figure 2-1. Watchdog Timer Block Diagram

2.2 Watchdog Timer Block Diagram

The WDT module can be configured as either a watchdog or interval timer with the WDTCTL register. WDTCTL is a 16-bit, password-protected, read/write register. Any read or write access must use word instructions and write accesses must include the write password 05Ah in the upper byte. Any write to WDTCTL with any value other than 05Ah in the upper byte is a security key violation and triggers a PUC system reset regardless of timer mode. Any read of WDTCTL reads 069h in the upper byte. Byte reads on WDTCTL high or low part will result the value of the low byte. Writing byte wide to upper or lower part of WDTCTL results into a PUC.

2.2.1 Watchdog Timer Counter

The watchdog timer counter (WDTCNT) is a 32-bit up-counter that is not directly accessible by software. The WDTCNT is controlled and its time intervals selected through the watchdog timer control register WDTCTL. The WDTCNT can be sourced from SMCLK, ACLK, VLOCLK and X_CLK on some devices. The clock source is selected with the WDTSSEL bits.

2.2.2 Watchdog Mode

After a PUC condition, the WDT module is configured in the watchdog mode with an initial ~32-ms reset interval using the SMCLK. The user must setup, halt, or clear the WDT prior to the expiration of the initial reset interval or another PUC will be generated. When the WDT is configured to operate in watchdog mode, either writing to WDTCTL with an incorrect password, or expiration of the selected time interval triggers a PUC. A PUC resets the WDT to its default condition.

2.2.3 Interval Timer Mode

Setting the WDTTMSEL bit to 1 selects the interval timer mode. This mode can be used to provide periodic interrupts. In interval timer mode, the WDTIFG flag is set at the expiration of the selected time interval. A PUC is not generated in interval timer mode at expiration of the selected timer interval and the WDTIFG enable bit WDTIE remains unchanged

When the WDTIE bit and the GIE bit are set, the WDTIFG flag requests an interrupt. The WDTIFG interrupt flag is automatically reset when its interrupt request is serviced, or may be reset by software. The interrupt vector address in interval timer mode is different from that in watchdog mode.

Note: Modifying the Watchdog Timer

The WDT interval should be changed together with WDTCNTCL = 1 in a single instruction to avoid an unexpected immediate PUC or interrupt. The WDT should be halted before changing the clock source to avoid a possible incorrect interval.

2.2.4 Watchdog Timer Interrupts

The WDT uses two bits in the SFRs for interrupt control

- The WDT interrupt flag, WDTIFG, located in SFRIFG1.0
- The WDT interrupt enable, WDTIE, located in SFRIE1.0

When using the WDT in the watchdog mode, the WDTIFG flag sources a reset vector interrupt. The WDTIFG can be used by the reset interrupt service routine to determine if the watchdog caused the device to reset. If the flag is set, then the watchdog timer initiated the reset condition either by timing out or by a security key violation. If WDTIFG is cleared, the reset was caused by a different source.

When using the WDT in interval timer mode, the WDTIFG flag is set after the selected time interval and requests a WDT interval timer interrupt if the WDTIE and the GIE bits are set. The interval timer interrupt vector is different from the reset vector used in watchdog mode. In interval timer mode, the WDTIFG flag is reset automatically when the interrupt is serviced, or can be reset with software.

2.2.5 Clock Fail-Safe Feature

The WDT_A provides a fail-safe clocking feature assuring the clock to the WDT_A cannot be disabled while in watchdog mode. This means the low-power modes may be affected by the choice for the WDT_A clock.

If SMCLK or ACLK fails as WDT_A clock source then VLOCLK is automatically selected as WDT_A clock source.

When the WDT_A module is used in interval timer mode, there is no fail-safe feature within WDT_A for the clock source.

2.2.6 Operation in Low-Power Modes

The MSP430 devices have several low-power modes. Different clock signals are available in different low-power modes. The requirements of the user's application and the type of clocking used determine how the WDT_A should be configured. For example, the WDT_A should not be configured in watchdog mode with a clock source that is originally sourced from DCO, XT1 in high frequency mode, or XT2 via SMCLK or ACLK if the user wants to use low power mode 3. In this case, SMCLK or ACLK would remain enabled increasing the current consumption of LPM3. When the watchdog timer is not required, the WDTHOLD bit can be used to hold the WDTCNT, reducing power consumption.

2.2.7 Software Examples

Any write operation to WDTCTL must be a word operation with 05Ah (WDTPW) in the upper byte:

```
; Periodically clear an active watchdog
MOV #WDTPW+WDTCNTCL,&WDTCTL
;
; Change watchdog timer interval
MOV #WDTPW+WDTCNTCL+SSEL,&WDTCTL
;
; Stop the watchdog
MOV #WDTPW+WDTHOLD,&WDTCTL
;
; Change WDT to interval timer mode, clock/8192 interval
MOV #WDTPW+WDTCNTCL+WDTTMSEL+WDTIS2+WDTIS0,&WDTCTL
```


2.3 Watchdog Timer Registers

The watchdog timer module registers are listed in Table 2-2. The base register or the watchdog timer module registers and special function registers (SFR) can be found in the device specific data sheet. The address offset is given in Table 2-1.

Table 2-1. Watchdog Timer Base Register

Module	Base address
WDT_A	00150h

Table 2-2. Watchdog Timer Registers

Register	Short Form	Register Type	REG Access	Address	Initial State
Watchdog timer control register	WDTCTL	read/write	word	0Ch	6904h

WDTCTL, Watchdog Timer Register								
15	14	13	12	11	10	9	8	
7	6	5	4	3	2	1	0	
			Read a WDTPW, must be		n			

6		5	4	3	2	1	0	
V	WDTSSE	Lx	WDTTMSEL	WDTCNTCL		WDTISx		
rw-0		rw-0	rw-0	r0(w)	rw-1	rw-0	rw-0	
Bits 15-8	Watch	Watchdog timer password. Always read as 069h. Must be written as 05Ah, or a PUC will be generated.						
Bit 7		Watchdog timer hold. This bit stops the watchdog timer. Setting WDTHOLD = 1 when the WDT is not in u conserves power						
	0	Watchdog t	imer is not stopped	t				
	1	Watchdog t	imer is stopped					
Bit 6-5	Watch	dog timer clo	ck source select					
	00	SMCLK						
	01	ACLK						
	10	VLOCLK						
	11	X_CLK , sa	me as VLOCLK if	not defined differer	ntly in data sheet			
Bit 4	Watch	dog timer mo	de select					
	0	Watchdog r	node					
	1	Interval time	er mode					
Bit 3			nter clear. Setting	WDTCNTCL = 1 c	lears the count va	alue to 0000h. WD	TCNTCL is	
	0	No action						
	1	WDTCNT =	: 0000h					
Bit 2-0			rval select. These	bits select the water	chdog timer interv	al to set the WDT	TFG flag and/or	
	000	Watchdog o	clock source /2G (1	8:12:16 at 32 kHz)			
	001	Watchdog o	clock source /128M	l (01:08:16 at 32 kl	Hz			
	010	Watchdog o	clock source /8192	k (00:04:16 at 32 k	:Hz)			
	011	Watchdog o	clock source /512k	(00:00:16 at 32 kH	łz)			
	100	Watchdog o	clock source /32k (1 s at 32 kHz)				
	101	Watchdog o	clock source /8192	(250 ms at 32 kHz	<u>z</u>)			
	110	Watchdog o	clock source /512 (15,6 ms at 32 kHz)			
	111	Watchdog o	clock source /64 (1	.95 ms at 32 kHz)				
	rw-0 Bits 15-8 Bit 7 Bit 6-5 Bit 4 Bit 3	rw-0 Bits 15-8 Watch conser 0 1 Bit 6-5 Watch 00 01 11 Bit 4 Watch 0 11 Bit 3 Watch autom 0 1 Bit 2-0 Watch genera 000 001 010 011 100 111	rw-0 rw-0 Bits 15-8 Watchdog timer pass Bit 7 Watchdog timer hold conserves power 0 Watchdog timer close 1 Watchdog timer mode 1 Watchdog timer mode 1 Watchdog timer mode 1 Interval time 1 Watchdog timer could automatically reset. 0 No action 1 WDTCNT = 1 Watchdog timer integenerate a PUC. 1 Watchdog timer integenerate a PUC. 1 Watchdog timer close 1 Watchdog timer integenerate a PUC. 2 Watchdog timer integene	rw-0 rw-0 rw-0 Bits 15-8 Watchdog timer password. Always real Sit 7 Watchdog timer hold. This bit stops the conserves power 0 Watchdog timer is not stopped 1 Watchdog timer is stopped 1 Watchdog timer clock source select 00 SMCLK 01 ACLK 10 VLOCLK 11 X_CLK , same as VLOCLK if 10 VLOCLK 11 X_CLK , same as VLOCLK if 10 Watchdog timer mode select 1 Interval timer mode Bit 3 Watchdog timer counter clear. Setting automatically reset. 0 No action 1 WDTCNT = 0000h Bit 2-0 Watchdog timer interval select. These generate a PUC. 000 Watchdog clock source /2G (1 001 Watchdog clock source /81921 011 Watchdog clock source /512k 100 Watchdog clock source /8192 110 Watchdog clock source /512 (1 001 Watchdog clock source /8192 110 Watchdog clock source /512 (1 001 Watchdog clock source /8192 110 Watchdog clock source /512 (1 001 Watchdog clock source /8192 110 Watchdog clock source /512 (1 001 Watchdog clock source /8192 110 Watchdog clock source /512 (1 001 Watchdog clock source /8192 110 Watchdog clock source /512 (1 001 Watchd	rw-0 rw-0 rw-0 rw-0 ro(w) Bits 15-8 Watchdog timer password. Always read as 069h. Must be Watchdog timer hold. This bit stops the watchdog timer. Sconserves power 0 Watchdog timer is not stopped 1 Watchdog timer clock source select 00 SMCLK 01 ACLK 10 VLOCLK 11 X_CLK, same as VLOCLK if not defined difference of Watchdog timer mode select 0 Watchdog mode 1 Interval timer mode Bit 3 Watchdog timer counter clear. Setting WDTCNTCL = 1 countered automatically reset. 0 No action 1 WDTCNT = 0000h Bit 2-0 Watchdog timer interval select. These bits select the watched generate a PUC. 000 Watchdog clock source /2G (18:12:16 at 32 kHz) 010 Watchdog clock source /8192k (00:04:16 at 32 kHz) 100 Watchdog clock source /8192k (00:00:16 at 32 kHz) 101 Watchdog clock source /8192 (250 ms at 32 kHz) 100 Watchdog clock source /8192 (250 ms at 32 kHz) 110 Watchdog clock source /512 (15,6 ms at 32 kHz)	WDTSSELX WDTTMSEL WDTCNTCL rw-0 rw-0 r0(w) rw-1 Bits 15-8 Watchdog timer password. Always read as 069h. Must be written as 05Ah Bit 7 Watchdog timer hold. This bit stops the watchdog timer. Setting WDTHOL conserves power 0 Watchdog timer is not stopped 1 Watchdog timer clock source select 00 SMCLK 01 ACLK 10 VLOCLK 11 X_CLK , same as VLOCLK if not defined differently in data sheet Bit 4 Watchdog timer mode select 0 Watchdog timer counter clear. Setting WDTCNTCL = 1 clears the count valutomatically reset. 0 No action 1 WDTCNT = 0000h Bit 2-0 Watchdog timer interval select. These bits select the watchdog timer interval select. These bits select the watchdog timer interval select. 000 Watchdog clock source /2G (18:12:16 at 32 kHz) 001 Watchdog clock source /128M (01:08:16 at 32 kHz) 010 Watchdog clock source /8192k (00:04:16 at 32 kHz) 011 Watchdog clock source /512k (00:00:16 at 32 kHz) 100 Watchdog clock source /8192 (250 ms at 32 kHz)	rw-0 rw-0 rw-0 ro(w) rw-1 rw-0 Bits 15-8 Watchdog timer password. Always read as 069h. Must be written as 05Ah, or a PUC will be conserves power Watchdog timer hold. This bit stops the watchdog timer. Setting WDTHOLD = 1 when the Word conserves power Watchdog timer is not stopped Watchdog timer clock source select Watchdog timer clock source select Watchdog timer mode select Watchdog timer mode select Watchdog timer mode select Watchdog timer counter clear. Setting WDTCNTCL = 1 clears the count value to 0000h. WD automatically reset. No No action Watchdog timer interval select. These bits select the watchdog timer interval to set the WDT generate a PUC. Watchdog clock source /2G (18:12:16 at 32 kHz) Watchdog clock source /8192k (00:04:16 at 32 kHz) Watchdog clock source /32k (1 s at 32 kHz) Watchdog clock source /8192k (00:00:16 at 32 kHz)	

Unified Clock System (UCS)

The Unified Clock System module provides the clocks for MSP430x5xx devices. This chapter describes the operation of the Unified Clock System module. The Unified Clock System module is implemented in all MSP430x5xx devices.

Topic		Page
3.1	Unified Clock System Introduction	54
3.2	Unified Clock System Module Operation	56
3.3	MODOSC Module Oscillator	65
3.4	Unified Clock System Module Registers	66

3.1 Unified Clock System Introduction

The Unified Clock System (UCS) module supports low system cost and ultra-low power consumption. Using three internal clock signals, the user can select the best balance of performance and low power consumption. The Unified Clock System module can be configured to operate without any external components, with one or two external crystals, or with resonators, under full software control.

The Unified Clock System module includes up to five clock sources:

- XT1CLK: Low-frequency/high-frequency oscillator that can be used either with low-frequency 32768-Hz watch crystals, standard crystals, resonators, or external clock sources in the 4-MHz to 32-MHz range.
- VLOCLK: Internal very low power, low frequency oscillator with 12 kHz typical frequency.
- REFOCLK: Internal, trimmed, low frequency oscillator with 32768 Hz typical frequency, with the ability to be used as a clock reference into the FLL.
- DCOCLK: Internal digitally controlled oscillator (DCO) that can be stabilized by the FLL.
- XT2CLK: Optional high-frequency oscillator that can be used with standard crystals, resonators, or external clock sources in the 4-MHz to 40-MHz range.

Three clock signals are available from the Unified Clock System module:

- ACLK: Auxiliary clock. The ACLK is software selectable as XT1CLK, REFOCLK, VLOCLK, DCOCLK, DCOCLKDIV, and when available, XT2CLK. DCOCLKDIV is the DCOCLK frequency divided by 1, 2, 4, 8, 16, or 32 within the FLL block. ACLK is software selectable for individual peripheral modules. ACLK is divided by 1, 2, 4, 8, 16 or 32. ACLK/n is ACLK divided by 1, 2, 4, 8, 16, or 32 and is available externally at a pin.
- MCLK: Master clock. MCLK is software selectable as XT1CLK, REFOCLK, VLOCLK, DCOCLK, DCOCLKDIV, and when available, XT2CLK. DCOCLKDIV is the DCOCLK frequency divided by 1, 2, 4, 8, 16, or 32 within the FLL block. MCLK is divided by 1, 2, 4, 8. 16, or 32 MCLK is used by the CPU and system.
- SMCLK: Sub-system master clock. SMCLK is software selectable as XT1CLK, REFOCLK, VLOCLK, DCOCLK, DCOCLKDIV, and when available, XT2CLK. DCOCLKDIV is the DCOCLK frequency divided by 1, 2, 4, 8, 16, or 32 within the FLL block. SMCLK is divided by 1, 2, 4, 8, 16, or 32. SMCLK is software selectable for individual peripheral modules.

A peripheral module may request its clock sources automatically if required for its proper operation. The block diagram of the Unified Clock System module is shown in Figure 3-1.

54

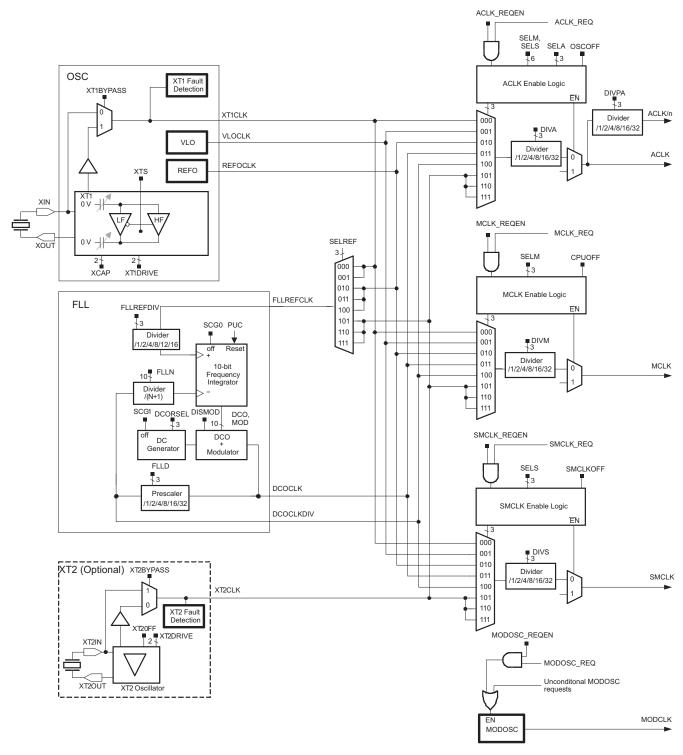


Figure 3-1. Unified Clock System Block Diagram

3.2 Unified Clock System Module Operation

After a PUC, the Unified Clock System module's default configuration is as follows:

- XT1 in LF mode is selected as the oscillator source for XT1CLK. XT1CLK selected for ACLK.
- DCOCLKDIV selected for MCLK.
- DCOCLKDIV selected for SMCLK.
- FLL operation is enabled. XT1CLK is selected as FLL reference clock, FLLREFCLK.
- XIN and XOUT pins set to general purpose I/O, XT1 remains disabled until I/O ports are configured for XT1 operation.
- When available, XT2IN and XT2OUT pins set to general purpose I/O, XT2 disabled.

As shown above, FLL operation with XT1 is enabled by default. On MSP430x5xx devices, the crystal pins (XIN, XOUT) are shared with general-purpose I/O. To enable XT1, the PSEL bits associated with the crystal pins must be set. When a 32,768 Hz crystal is used for XT1CLK, the fault control logic will immediately cause ACLK to be sourced by the REFOCLK since XT1 will not be stable immediately. See Section 3.2.12 for further details. Once the crystal startup is obtained and settled, the FLL stabilizes MCLK and SMCLK to 1.048576 MHz and $f_{DCO} = 2.097152$ MHz.

Status register control bits SCG0, SCG1, OSCOFF, and CPUOFF configure the MSP430 operating modes and enable or disable portions of the Unified Clock System module. See Chapter System Resets, Interrupts and Operating Modes. The UCSCTL0, UCSCTL1, UCSCTL2, UCSCTL3, UCSCTL4, UCSCTL5, UCSCTL6, UCSCTL7, and UCSCTL8 registers configure the Unified Clock System module.

The Unified Clock System module can be configured or reconfigured by software at any time during program execution.

3.2.1 Unified Clock System Module Features for Low-Power Applications

Conflicting requirements typically exist in battery-powered MSP430x5xx applications:

- Low clock frequency for energy conservation and time keeping
- High clock frequency for fast response times and fast burst processing capabilities
- Clock stability over operating temperature and supply voltage
- Low cost applications with less constrained clock accuracy requirements

The Unified Clock System module addresses the above conflicting requirements by allowing the user to select from the three available clock signals: ACLK, MCLK, and SMCLK.

All three available clock signals can be sourced via any of the available clock sources, (XT1CLK, VLOCLK, REFOCLK, or XT2CLK) giving complete flexibility in the system clock configuration.

For optimal low-power performance, ACLK can be sourced from a low-power 32,786-Hz watch crystal, providing a stable time base for the system and low power stand-by operation, or from the internal low-frequency oscillator when crystal accurate time keeping is not required. A flexible clock distribution and divider system is provided to fine tune the individual clock requirements. ACLK can be sourced via any of the available clock sources (XT1CLK, VLOCLK, REFOCLK, DCO, or XT2CLK).

MCLK can be configured to operate from the on-chip DCO, optionally stabilized by the FLL, that can be activated when requested by interrupt-driven events. A flexible clock distribution and divider system is provided to fine tune the individual clock requirements. MCLK can be sourced via any of the available clock sources (XT1CLK, VLOCLK, REFOCLK, DCO, or XT2CLK).

SMCLK can be configured to operate from a crystal or the DCO, depending on peripheral requirements. A flexible clock distribution and divider system is provided to fine tune the individual clock requirements. SMCLK can be sourced via any of the available clock sources (XT1CLK, VLOCLK, REFOCLK, DCO, or XT2CLK).

3.2.2 Internal Very-Low-Power Low-Frequency Oscillator (VLO)

The internal VLO provides a typical frequency of 12 kHz (see device-specific data sheet for parameters) without requiring a crystal. The VLO provides for a low-cost ultra-low power clock source for applications that do not require an accurate time base.

The VLO is selected when it is used to source ACLK, MCLK, or SMCLK (SELA = 1 or SELM = 1 or SELS = 1).

3.2.3 Internal Trimmed Low-Frequency Reference Oscillator(REFO)

The internal trimmed reference oscillator (REFO) can be used for cost sensitive applications where a crystal is not required or desired. The reference oscillator is internally trimmed to 32.768 kHz typical and provides for a stable reference frequency that can be used as FLLREFCLK. The REFOCL, combined with the FLL, provides for a flexible range of system clock settings without the need for a crystal. The REFO consumes no power when not being used.

The REFO is selected when it is used to source ACLK, MCLK, or SMCLK (SELA = 2 or SELM = 2 or SELS = 2) or sources the FLL (SELREF = 2). The REFO oscillator can be disabled with software by setting OSCOFF, if the REFO oscillator is not used to source MCLK, SMCLK. or FLLREFCLK. The OSCOFF bit disables REFO for LPM4.

3.2.4 XT1 Oscillator

The XT1 oscillator supports ultra low-current consumption using a 32,768-Hz watch crystal in LF mode (XTS = 0). A watch crystal connects to XIN and XOUT without any other external components. The software-selectable XCAP bits configure the internally provided load capacitance for the XT1 crystal in LF mode. This capacitance can be selected as 2 pF, 6 pF, 9 pF, or 12 pF (typical). Additional external capacitors can be added if necessary.

The XT1 oscillator also supports high-speed crystals or resonators when in HF mode (XTS = 1). The high-speed crystal or resonator connects to XIN and XOUT and requires external capacitors on both terminals. These capacitors should be sized according to the crystal or resonator specifications.

The drive settings of XT1 in LF mode can be increased with the XT1DRIVE bits. At power up, the XT1 starts with the highest drive settings for fast, reliable startup. If needed, user software can reduce the drive strength to further reduce power. In HF mode, different crystal or resonator ranges are supported by choosing the proper XT1DRIVE settings.

XT1 may be used with an external clock signal on the XIN pin in either LF or HF mode by setting XT1BYPASS. When used with an external signal, the external frequency must meet the datasheet parameters for the chosen mode. XT1 is powered down when used in bypass mode.

The XT1 pins are shared with general-purpose I/O ports. At power up, the default operation is XT1, LF mode of operation. However, XT1 will remain disabled until the ports shared with XT1 are configured for XT1 operation. The configuration of the shared I/O is determined by the PSEL bit associated with XIN and the XT1BYPASS bit. Setting the PSEL bit will cause the XIN and XOUT ports to be configured for XT1 operation. If XT1BYPASS is also set, XT1 is configured for bypass mode of operation. In bypass mode of operation, XIN can accept an external clock input signal and XOUT is configured as general-purpose I/O. The PSEL bit associated with XOUT is a do not care.

If the PSEL bit associated with XIN is cleared, both XIN and XOUT ports are configured as general-purpose I/O and XT1 will be disabled.

XT1 is enabled when it is used to source ACLK, MCLK, or SMCLK (SELA = 0 or SELM = 0 or SELS = 0) or FLLREFCLK (SELREF = 0) and (XT1OFF = 1) in all power modes AM through LPM3, otherwise it is disabled. Setting OSCOFF (LPM4) while (XT1OFF = 1), will disable XT1. If an application wishes to have XT1 enabled regardless of the OSCOFF setting, clearing XT1OFF will enable XT1 continuously. This will cause XT1 to be enabled in power modes AM through LPM4.

3.2.5 XT2 Oscillator

Some devices have a second crystal oscillator, XT2. XT2 sources XT2CLK and its characteristics are identical to XT1 in HF mode. The XT2DRIVE bits select the frequency range of operation of XT2.

XT2 may be used with external clock signals on the XT2IN pin by setting XT2BYPASS. When used with an external signal, the external frequency must meet the datasheet parameters for XT2. XT2 is powered down when used in bypass mode.

The XT2 pins are shared with general-purpose I/O ports. At power up, the default operation is XT2. However, XT2 will remain disabled until the ports shared with XT2 are configured for XT2 operation. The configuration of the shared I/O is determined by the PSEL bit associated with XT2IN and the XT2BYPASS bit. Setting the PSEL bit will cause the XT2IN and XT2OUT ports to be configured for XT2 operation. If XT2BYPASS is also set, XT2 is configured for bypass mode of operation. In bypass mode of operation, XT2IN can accept an external clock input signal and XT2OUT is configured as general-purpose I/O. The PSEL bit associated with XT2OUT is a do not care.

If the PSEL bit associated with XT2IN is cleared, both XT2IN and XT2OUT ports are configured as general-purpose I/O and XT2 will be disabled.

XT2 is enabled when it is used to source ACLK, MCLK, or SMCLK (SELA = 5 or SELM = 5 or SELS = 5) or FLLREFCLK (SELREF = 5) and (XT2OFF = 1) in all power modes AM through LPM3, otherwise it is disabled. Setting OSCOFF (LPM4) while (XT2OFF = 1), will disable XT2. If an application wishes to have XT2 enabled regardless of the OSCOFF setting, clearing XT2OFF will enable XT2 continuously. This will cause XT2 to be enabled in power modes AM through LPM4.

3.2.6 Digitally-Controlled Oscillator (DCO)

The DCO is an integrated digitally controlled oscillator. The DCO frequency can be adjusted by software using the DCORSEL, DCO, and MOD bits. The DCO frequency can be optionally stabilized by the FLL to a multiple frequency of FLLREFCLK / n. The FLL can accept different reference sources selectable via the SELREF bits. Reference sources include XT1CLK, REFOCLK, or XT2CLK (if available) The value of n is defined by the FLLREFDIVx (n = 1, 2, 4, 8, 12, or 16). The default is n = 1.

The FLLD bits configure the FLL prescaler divider value D to 1, 2, 4, 8, 16, or 32. By default, D = 2, MCLK and SMCLK are sourced from DCOCLKDIV, providing a clock frequency DCOCLK/2.

The divider (N + 1) and the divider value D define the DCOCLK and DCOCLKDIV frequencies, where N > 0. Writing N = 0 causes the divider to be set to 2.

$$f_{DCOCLK} = D \times (N + 1) \times (f_{FLLREFCLK} \div n)$$
$$f_{DCOCLKDIV} = (N + 1) \times (f_{FLLREFCLK} \div n)$$

Adjusting the DCO Frequency

By default, FLL operation is enabled. FLL operation can be disabled by setting SCG0. Once disabled, the DCO will continue to operate at the current settings defined in UCSCTL0 and UCSCTL1. The DCO frequency can be adjusted manually if desired. Otherwise, the DCO frequency will be stabilized by the FLL operation.

After a PUC, DCORSELx = 2 and DCOx = 0. MCLK and SMCLK are sourced from DCOCLKDIV. Because the CPU executes code from MCLK, which is sourced from the fast-starting DCO, code execution begins from PUC in less than $5 \,\mu s$.

The frequency of DCOCLK is set by the following functions:

- The three DCORSELx bits select one of eight nominal frequency ranges for the DCO. These ranges
 are defined for an individual device in the device-specific data sheet.
- The five DCOx bits divide the DCO range selected by the DCORSELx bits into 32 frequency steps, separated by approximately 8%.
- The five MODx bits, switch between the frequency selected by the DCOx bits and the next higher frequency set by DCOx + 1. When DCOx = 31, the MODx bits have no effect, because the DCO is already at the highest setting for the selected DCORSELx range.

3.2.7 Frequency Locked Loop (FLL)

The FLL continuously counts up or down a frequency integrator. The output of the frequency integrator that drives the DCO can be read in UCSCTL0, UCSCTL1 (bits MODx and DCOx). The count is adjusted +1 with the frequency $f_{\text{PCOCLK}}/(D \times (N+1))$.

Note: Reading MODx and DCOx

The integrator is updated via the DCOCLK which may differ in frequency of operation of MCLK. It is possible that immediate reads of a previously written value are not visible to the user since the update to the integrator has not occurred. This is normal. Once the integrator is updated at the next successive DCOCLK, the correct value can be read.

In addition, since the MCLK can be asynchronous to the integrator updates, reading the values may be cause a corrupted value to be read under this condition. In this case, a majority vote method should be performed.

Five of the integrator bits, UCSCTL0 bits 12 to 8, set the DCO frequency tap. Thirty-two taps are implemented for the DCO, and each is approximately 8% higher than the previous. The modulator mixes two adjacent DCO frequencies to produce fractional taps.

For a given DCO bias range setting, time must be allowed for the DCO to settle on the proper tap for normal operation. (n \times 32) f_{FLLREFCLK} cycles are required between taps requiring a worst case of (n \times 32 \times 32) f_{FLLREFCLK} cycles for the DCO to settle. The value n is defined by the FLLREFDIVx bits (n = 1, 2, 4, 8, 12, or 16).

3.2.8 DCO Modulator

The modulator mixes two DCO frequencies, f_{DCO} and $f_{DCO}+1$ to produce an intermediate effective frequency between f_{DCO} and $f_{DCO}+1$ and spread the clock energy, reducing electromagnetic interference (EMI). The modulator mixes f_{DCO} and $f_{DCO}+1$ for 32 DCOCLK clock cycles and is configured with the MODx bits. When MODx = 0 the modulator is off.

The modulator mixing formula is:

$$t = (32 - MODx) \times t_{DCO} + MODx \times t_{DCO+1}$$

Figure 3-2 illustrates the modulator operation.

When FLL operation is enabled, the modulator settings and DCO are controlled by the FLL hardware. If FLL operation is not desired, the modulator settings and DCO control can be configured with software.

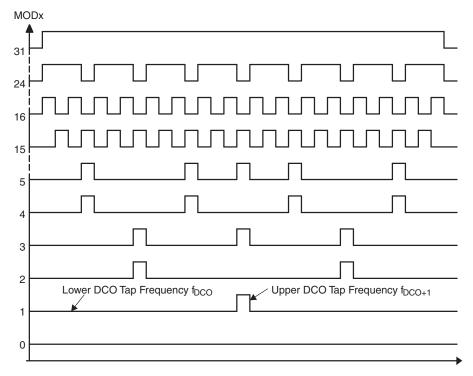


Figure 3-2. Modulator Patterns

3.2.9 Disabling the FLL Hardware and Modulator

The FLL is disabled when the status register bits SCG0 or SCG1 are set. When the FLL is disabled, the DCO runs at the previously selected tap and DCOCLK is not automatically stabilized.

The DCO modulator is disabled when DISMOD is set. When the DCO modulator is disabled, the DCOCLK is adjusted to the DCO tap selected by the DCOx bits.

Note: DCO Operation without FLL

When FLL operation is disabled, the DCO will continue to operate at the current settings. Since it is not stabilized by the FLL, temperature and voltage variations will influence the frequency of operation. Please refer to the device specific data sheet for voltage and temperature coefficients to ensure reliable operation.

3.2.10 FLL Operation from Low-Power Modes

An interrupt service request clears SCG1, CPUOFF and OSCOFF if set but does not clear SCG0. This means that FLL operation from within an interrupt service routine entered from LPM1, 2, 3 or 4, the FLL remains disabled and the DCO operates at the previous setting as defined in UCSCTL0 and UCSCTL1. SCG0 can be cleared by user software if FLL operation is required.

3.2.11 Operation from Low-Power Modes, Requested by Peripheral Modules

Peripheral modules can request a clock from the Unified Clock System module if their state of operation still requires an operational clock as shown in Figure 3-3.

A peripheral module asserts one of three possible clock request signals, ACLK_REQ, MCLK_REQ, or SMCLK_REQ. If the requested source is not active, the software NMI handler must take care of the required actions.

The watchdog, due to its security requirement, actively selects the VLOCLK source if the originally selected clock source is not available.

Any clock request from a peripheral module will cause its respective clock off signal to be overridden, but does not change the setting of clock off control bit. For example, a peripheral module may require the MCLK source which is currently disabled by the CPUOFF bit. The module can request the MCLK source by setting the MCLK_REQ bit. This causes the CPUOFF bit to have no effect, thereby allowing the MCLK to be sourced to the requesting peripheral module.

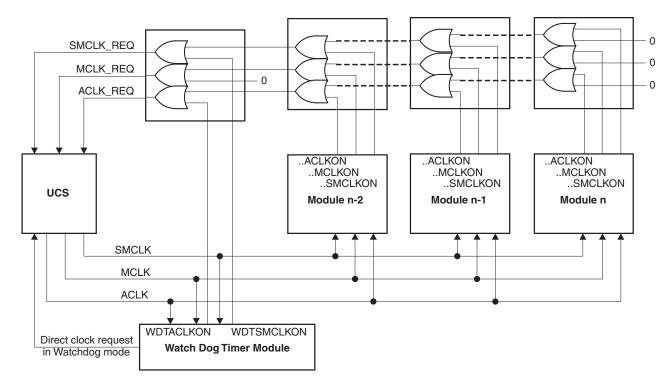


Figure 3-3. Module Request Clock System

3.2.12 Unified Clock System Module Fail-Safe Operation

The Unified Clock System module incorporates an oscillator-fault fail-safe feature. This feature detects an oscillator fault for XT1, DCO and XT2 as shown in Figure 3-4. The available fault conditions are:

- Low-frequency oscillator fault (XT1LFOFFG) for XT1 in LF mode
- High-frequency oscillator fault (XT1HF0FFG) for XT1 in HF mode
- High-frequency oscillator fault (XT2OFFG) for XT2
- DCO fault flag (DCOFFG) for the DCO

The crystal oscillator fault bits XT1LFOFFG, XT1HFOFFG and XT2OFFG are set if the corresponding crystal oscillator is turned on and not operating properly. Once set, the fault bits remain set regardless if the fault condition no longer exists. If the user clears the fault bits, and the fault condition still exists, the fault bits will automatically be set, otherwise they remain cleared.

When using XT1 operation in LF mode as the reference source into the FLL (SELREFx = 0), a crystal fault will automatically cause the FLL reference source, FLLREFCLK, to be sourced by REFO. XT1LFOFFG will be set. When using XT1 operation in HF mode as the reference source into the FLL, a crystal fault causes no FLLREFCLK signal to be generated and the FLL continues to count down to zero in an attempt to lock FLLREFCLK and DCOCLK/(D×[N+1]). The DCO tap moves to the lowest position (DCOx are cleared) and the DCOFFG is set. DCOFFG is also set if the N-multiplier value is set too high for the selected DCO frequency range resulting the DCO tap to move to the highest position (UCSCTL0.12 to UCSCTL0.8 are set). The DCOFFG will remain set until cleared by the user. If the user clears the DCOFFG and the fault condition remains, it will automatically be set, otherwise it remains cleared. XT1HFOFFG will be set.

When using XT2 as the reference source into the FLL, a crystal fault causes no FLLREFCLK signal to be generated and the FLL continues to count down to zero in an attempt to lock FLLREFCLK and DCOCLK/(D×[N+1]). The DCO tap moves to the lowest position (DCOx are cleared) and the DCOFFG is set. DCOFFG is also set if the N-multiplier value is set too high for the selected DCO frequency range resulting the DCO tap to move to the highest position (UCSCTL0.12 to UCSCTL0.8 are set). The DCOFFG will remain set until cleared by the user. If the user clears the DCOFFG and the fault condition remains, it will automatically be set, otherwise it will remain cleared. XT2OFFG will be set.

The OFIFG oscillator-fault interrupt flag is set and latched at POR or when any oscillator fault (XT1LFOFFG, XT1HFOFFG, XT2OFFG, or DCOFFG) is detected. When OFIFG is set, and OFIE is set, the OFIFG requests an NMI interrupt. When the interrupt is granted, the OFIE is not reset automatically as in previous MSP430 families. It is no longer required to reset the OFIE. NMI entry/exit circuitry removes this requirement. The OFIFG flag must be cleared by software. The source of the fault can be identified by checking the individual fault bits.

If a fault is detected for the oscillator sourcing MCLK, MCLK is automatically switched to the DCO for its clock source (DCOCLKDIV) for all clock sources except XT1 LF mode. If MCLK is sourced from XT1 in LF mode, an oscillator fault will cause MCLK to be automatically switched to the REFO for its clock source (REFOCLK). This does not change the SELMx bit settings. This condition must be handled by user software.

If a fault is detected for the oscillator sourcing SMCLK, SMCLK is automatically switched to the DCO for its clock source (DCOCLKDIV) for all clock sources except XT1 LF mode. If SMCLK is sourced from XT1 in LF mode, an oscillator fault will cause SMCLK to be automatically switched to the REFO for its clock source (REFOCLK). This does not change the SELSx bit settings. This condition must be handled by user software.

If a fault is detected for the oscillator sourcing ACLK, ACLK is automatically switched to the DCO for its clock source (DCOCLKDIV) for all clock sources except XT1 LF mode. If ACLK is sourced from XT1 in LF mode, an oscillator fault will cause ACLK to be automatically switched to the REFO for its clock source (REFOCLK). This does not change the SELAx bit settings. This condition must be handled by user software.

Note: DCO Active During Oscillator Fault

DCOCLKDIV is active even at the lowest DCO tap. The clock signal is available for the CPU to execute code and service an NMI during an oscillator fault.

Figure 3-4. Oscillator Fault Logic

Note: Fault Conditions

DCO_Fault: DCOFFG is set if DCOx bits in UCSCTL0 register value equals 0 or 31.

XT1_LF_OscFault: This signal is set after the XT1 (LF mode) oscillator has stopped operation and cleared after operation resumes. The fault condition will cause XT1LFOFFG to be set and will remain set. If the user clears XT1LFOFFG and the fault condition still exists, XT1LFOFFG will remain set.

XT1_HF_OscFault: This signal is set after the XT1 (HF mode) oscillator has stopped operation and cleared after operation resumes. The fault condition will cause XT1HFOFFG to be set and will remain set. If the user clears XT1HFOFFG and the fault condition still exists, XT1HFOFFG will remain set.

XT2_OscFault: This signal is set after the XT2 oscillator has stopped operation and cleared after operation resumes. The fault condition will cause XT2OFFG to be set and will remain set. If the user clears XT2OFFG and the fault condition still exists, XT2OFFG will remain set.

Note: Fault Logic

Please note that as long as a fault condition still exists, the OFIFG will remain set. The application must take special care when clearing the OFIFG signal. If no fault condition remains when the OFIFG signal is cleared, the clock logic will switch back to the original user settings prior to the fault condition.

3.2.13 Synchronization of Clock Signals

When switching MCLK or SMCLK from one clock source to the another, the switch is synchronized to avoid critical race conditions as shown in Figure 3-5:

- The current clock cycle continues until the next rising edge.
- The clock remains high until the next rising edge of the new clock.
- The new clock source is selected and continues with a full high period.

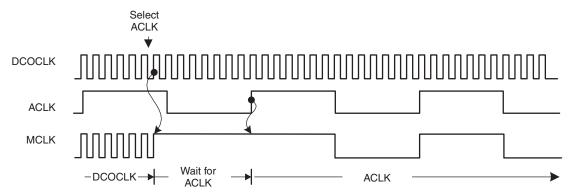


Figure 3-5. Switch MCLK from DCOCLK to ACLK

3.3 MODOSC Module Oscillator

The Unified Clock System module also supports an internal oscillator, MODOSC that is used by the Flash Memory Controller module, and optionally, by other modules in the system. The MODOSC sources MODCLK.

3.3.1 MODOSC Operation

To conserve power, MODOSC is powered down when not needed and enabled only when required. When the MODOSC source is required, the respective module requests it. The MODOSC is enabled based on unconditional and conditional requests. Setting MODOSCREQEN will enable conditional requests. Unconditional requests are always enabled. It is not necessary to set the MODOSCREQEN for modules that utilize unconditional requests e.g. Flash controller, ADC12_A.

The Flash Memory Controller only requires MODCLK when performing write or erase operations. When performing such operations, the Flash Memory Controller issues an unconditional request for the MODOSC source. Upon doing so, the MODOSC source will be enabled, if not already enabled from other modules' previous requests.

The ADC12_A may optionally use the MODOSC as a clock source for its conversion clock. The user chooses the ADC12OSC as the conversion clock source. During a conversion, the ADC12_A module issues an unconditional request for the ADC12OSC clock source. Upon doing so, the MODOSC source will be enabled, if not already enabled form other modules' previous requests.

3.4 Unified Clock System Module Registers

The Unified Clock System module registers are listed in Table 3-1. The base address can be found in the device specific datasheet. The address offset is listed in Table 3-1.

Table 3-1. Unified Clock System Registers

Register	Short Form	Register Type	Register Access	Address Offset	Initial State
UCS Control register 0	UCSCTL0	Read/write	Word	00h	0000h
	UCSCTL0_L	Read/write	Byte	00h	00h
	UCSCTL0_H	Read/write	Byte	01h	00h
UCS Control register 1	UCSCTL1	Read/write	Word	02h	0020h
	UCSCTL1_L	Read/write	Byte	02h	20h
	UCSCTL1_H	Read/write	Byte	03h	00h
UCS Control register 2	UCSCTL2	Read/write	Word	04h	101Fh
	UCSCTL2_L	Read/write	Byte	04h	1Fh
	UCSCTL2_H	Read/write	Byte	05h	10h
UCS Control register 3	UCSCTL3	Read/write	Word	06h	0000h
	UCSCTL3_L	Read/write	Byte	06h	00h
	UCSCTL3_H	Read/write	Byte	07h	00h
UCS Control register 4	UCSCTL4	Read/write	Word	08h	0044h
	UCSCTL4_L	Read/write	Byte	08h	44h
	UCSCTL4_H	Read/write	Byte	09h	00h
UCS Control register 5	UCSCTL5	Read/write	Word	0Ah	0000h
	UCSCTL5_L	Read/write	Byte	0Ah	00h
	UCSCTL5_H	Read/write	Byte	0Bh	00h
UCS Control register 6	UCSCTL6	Read/write	Word	0Ch	C1CDh
	UCSCTL6_L	Read/write	Byte	0Ch	CDh
	UCSCTL6_H	Read/write	Byte	0Dh	C1h
UCS Control register 7	UCSCTL7	Read/write	Word	OEh	0703h
-	UCSCTL7_L	Read/write	Byte	0Eh	03h
	UCSCTL7_H	Read/write	Byte	0Fh	07h
UCS Control register 8	UCSCTL8	Read/write	Word	 10h	0307h
-	UCSCTL8_L	Read/write	Byte	10h	07h
	UCSCTL8_H	Read/write	Byte	11h	03h

000T: 0 :::	OOT! 2 !! !	IOOOTI O I III III	1.011-0	. 0 (1 - 2 1	Unified	•	
•	-	ICSCTL0_L, Unified	_	1			
15	14	13	12	11	10	9	8
7	6	5	4	3	2	1	0
	Reserved	d			DCO		
r0	r0	r0	rw-0	rw-0	rw-0	rw-0	rw-0
7	6	5	4	3	2	1	0
		MOD				Reserved	
rw-0	rw-0	rw-0	rw-0	rw-0	r0	rO	rO
Reserved JCSCTL0 JCSCTL0_H	Bits 15-13 Bits 7-5	Reserved. Reads ba	ack as 0.				
OCO JCSCTL0 JCSCTL0_H	Bits 12-8 Bits 4-0	DCO tap selection.	These bits select	the DCO tap and	are modified auto	omatically during FL	L operation.
MOD JCSCTL0 JCSCTL0_L	Bits 7-3 Bits 7-3	Modulation bit count during FLL operation from 31 to 0. If the real value is also decren	n. The DCO regist nodulation bit cou	ter value is incren	nented when the	modulation bit cour	nter rolls over
Reserved JCSCTL0 JCSCTL0_L	Bits 2-0 Bits 2-0	Reserved. Reads ba	ack as 0.				
7	6	5	4	3	2	1	0
•			·	erved	_	· · · · · · · · · · · · · · · · · · ·	
r0	r0	rO	r0	r0	r0	rO	rO
_	•	_		l •	•		
7	6	5	4	3	. 2	1	0
Reserved	0	DCORSEL	O		erved	Reserved	DISMOD
r0	rw-0	rw-1	rw-0	r0	r0	rw-0	rw-0
Reserved							
JCSCTL1 JCSCTL1_H	Bits 15-8 Bits 7-0	Reserved. Reads ba	ack as 0.				
		Reserved. Reads ba					
JCSCTL1_H Reserved JCSCTL1 JCSCTL1_L DCORSEL JCSCTL1	Bits 7-0 Bit 7		ack as 0.	oits select the DC	O frequency rang	ge of operation.	
JCSCTL1_H Reserved JCSCTL1	Bits 7-0 Bit 7 Bit 7 Bits 6-4	Reserved. Reads ba	ack as 0. ge select. These b	oits select the DC	O frequency rang	ge of operation.	
Reserved JCSCTL1_L JCSCTL1_L JCSCTL1_L JCSCTL1_L JCSCTL1_L JCSCTL1_L Reserved JCSCTL1_L Reserved JCSCTL1_L Reserved	Bits 7-0 Bit 7 Bit 7 Bits 6-4 Bits 6-4	Reserved. Reads ba	ack as 0. ge select. These b ack as 0.	oits select the DCo	O frequency rang	ge of operation.	
CCSCTL1_H Reserved CCSCTL1 CCSCTL1_L CCORSEL CCSCTL1 CCSCTL1_L CSCTL1_L Reserved CCSCTL1	Bits 7-0 Bit 7 Bits 6-4 Bits 6-4 Bits 3-2 Bits 3-2	Reserved. Reads ba	ack as 0. ge select. These back as 0. ack as 0. enables/disables		O frequency rang	ge of operation.	

UCSCTL2, UCS	SCTL2_H, UCS	CTL2_L, Unifie	d Clock Systen	n Control Regis	ster 2		
15	14	13	12	11	10	9	8
7	6	5	4	3	2	1	0
Reserved		FLLD		Rese	erved	FLLN	
r0	rw-0	rw-0	rw-1	r0	r0	rw-0	rw-0
7	6	5	4	3	2	1	0
			FL	LN			
rw-0	rw-0	rw-0	rw-1	rw-1	rw-1	rw-1	rw-1

Reserved Bit 15 UCSCTL2 UCSCTL2_H Bit 7 **FLLD** UCSCTL2 Bits 14-12

Bits 6-4

UCSCTL2_H

Reserved. Reads back as 0.

FLL loop divider. These bits select the DCO frequency range of operation.

000 f_{DCOCLK}/1 001 f_{DCOCLK}/2 010 f_{DCOCLK}/4 011 $f_{DCOCLK}/8$ 100 $f_{DCOCLK}/16$ 101 f_{DCOCLK}/32

110 Reserved for future use. Defaults to $f_{\mbox{\scriptsize DCOCLK}}/32$.

Reserved for future use. Defaults to $f_{\mbox{\scriptsize DCOCLK}}/32$. 111 Reserved. Reads back as 0.

Reserved Bits 11-10 UCSCTL2

UCSCTL2_H Bits 3-2

FLLN UCSCTL2 Bits 9-0 UCSCTL2_H Bits 1-0 UCSCTL2_L Bits 7-0 Multiplier bits. These bits set the multiplier value N of the DCO. N must be greater than zero. Writing zero

to FLLN causes N to be set to one.

www.ti.com						CIOCK System IVI	odule Register
UCSCTL3, UC	SCTL3_H, U	JCSCTL3_L, Unifie	d Clock Syste	em Control Regis	ster 3		
15	14	13	12	11	10	9	8
7	6	5	4	3	2	1	0
			Re	served			
r0	r0	rO	r0	r0	r0	rO	r0
7	6	5	4	3	2	1	0
Reserved		SELREF		Reserved		FLLREFDIV	
r0	rw-0	rw-0	rw-0	r0	rw-0	rw-0	rw-0
Reserved UCSCTL3 UCSCTL3_H	Bits 15-8 Bits 7-0	Reserved. Reads ba	ack as 0.				
Reserved UCSCTL3 UCSCTL3_L	Bit 7 Bit 7	Reserved. Reads ba	ack as 0.				
SELREF UCSCTL3 UCSCTL3_L	Bits 6-4 Bits 6-4	010 REFOCLK 011 Reserved for 100 Reserved for 101 XT2CLK whe 110 Reserved for 111 Reserved for	future use. Defa future use. Defa future use. Defa en available, other future use. XT2 future use. XT2	ect the FLL reference aults to XT1CLK. aults to REFOCLK. aults to REFOCLK. erwise REFOCLK. CLK when available	e, otherwise REF		
Reserved UCSCTL3 UCSCTL3_L	Bit 3 Bit 3	Reserved. Reads ba	ack as 0.				
FLLREFDIV UCSCTL3 UCSCTL3_L	Bits 2-0 Bits 2-0	FLL reference divide the FLL reference from the FLL reference from the FLLREFCLK/1 and fellrefolk/1 fellrefolk/1 fellrefolk/1 fellrefolk/12 fellrefolk/16 fe	equency.	fine the divide facto	or for f _{fllrefclk} .	The divided freque	ncy is used as

110 Reserved for future use. Defaults to $f_{FLLREFCLK}/16$.

111 Reserved for future use. Defaults to $f_{FLLREFCLK}/16$.

nified Clock	System Modu	ıle Reg	gisters					www.ti		
CSCTL4, UC	SCTL4_H, L	JCSCT	L4_L, Unifie	d Clock Systen	n Control Regis	ster 4				
15	14		13	12	11	10	9	8		
7	6		5	4	3	2	1	0		
•			Reserved	•		_	SELA			
rO	r0		r0	rO	rO	rw-0	rw-0	rw-0		
					1					
7	6		5	4	3	2	1	0		
Reserved			SELS		Reserved		SELM			
r0	rw-1		rw-0	rw-0	r0	rw-1	rw-0	rw-0		
eserved ICSCTL4 ICSCTL4_H	Bits 15-11 Bits 7-3	Rese	rved. Reads b	ack as 0.						
ELA		Selec	cts the ACLK s	ource						
CSCTL4 CSCTL4_H		000	XT1CLK							
_		001	VLOCLK							
	010									
	011									
		100	DCOCLKDI\							
		101		•	wise DCOCLKDIV					
		110				•	erwise DCOCLKDIV			
eserved		111 Poso	rved. Reads b		JITS TO X I ZULK WI	ien avallable, otno	erwise DCOCLKDIV			
CSCTL4 CSCTL4_L	Bit 7 Bit 7	Rese	ived. Reads b	ack as u.						
ELS CCCTL4	Dito C 4	Selec	Selects the SMCLK source							
CSCTL4 CSCTL4_L	Bits 6-4 Bits 6-4	000	000 XT1CLK							
		001	VLOCLK							
		010	REFOCLK							
		011	DCOCLK	,						
		100	DCOCLKDI\		order BOOOLKBI	,				
		101 110		•	wise DCOCLKDIV		erwise DCOCLKDIV	,		
		111				,	erwise DCOCLKDIV			
eserved			rved. Reads b		IIIS IO XIZOLIN WII	ien avallable, oth	erwise DCOCLINDIV	•		
JCSCTL4 JCSCTL4_L	Bit 3 Bit 3	11000	rvou. Roudo b	aon ao o.						
ELM CSCTL4	Rite 2.0	Selec	cts the MCLK s	source						
CSCTL4 CSCTL4_L	Bits 2-0 Bits 2-0	000	XT1CLK							
		001	VLOCLK							
		010	REFOCLK							
		011	DCOCLK	,						
		100	DCOCLKDI\		DOCCI KE"	,				
		101		•	wise DCOCLKDIV		amuina DOOOLKEN	,		
		110				,	erwise DCOCLKDIV			
		111	Reserved to	i iuture use. Defal	ins to X12CLK Wh	ieri avallable, oth	erwise DCOCLKDIV	-		

UCSCTL5, UCS	CTL5_H, UCS	CTL5_L, Unified	d Clock Syste	m Control Regist	er 5		
15	14	13	12	11	10	9	8
7	6	5	4	3	2	1	0
Reserved		DIVPA		Reserved	DIVA		
rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0
7	6	5	4	3	2	1	0
Reserved		DIVS		Reserved		DIVM	
rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0

1W-O	144-0		1W-0	TW-O	1W-O				
Reserved UCSCTL5 UCSCTL5_H	Bit 15 Bit 7	Rese	rved. Reads bac	k as 0.					
DIVPA		ACL	ACLK source divider available at external pin						
UCSCTL5 UCSCTL5_H	Bits 14-12 Bits 6-4	000	f _{ACLK} /1						
0000125_11	Dit3 0 4	001	f _{ACLK} /2						
		010	f _{ACLK} /4						
		011	f _{ACLK} /8						
		100	f _{ACLK} /16						
		101	f _{ACLK} /32						
		110	Reserved for for	uture use. De	faults to f _{ACLK} /32.				
		111	Reserved for for	uture use. De	faults to f _{ACLK} /32.				
Reserved UCSCTL5 UCSCTL5_H	Bit 11 Bit 3	Rese	rved. Reads bac	k as 0.					
DIVA		ACL	ACLK source divider						
UCSCTL5	Bits 10-8	000	f _{ACLK} /1						
UCSCTL5_H	Bits 2-0	001	f _{ACLK} /2						
		010	f _{ACLK} /4						
		011	f _{ACLK} /8						
		100	f _{ACLK} /16						
		101	f _{ACLK} /32						
		110	Reserved for for	uture use. De	faults to f _{ACLK} /32.				
		111	Reserved for for	uture use. De	faults to f _{ACLK} /32.				
Reserved	5	Rese	rved. Reads bac	k as 0.					
UCSCTL5 UCSCTL5_L	Bit 7 Bit 7								
DIVS		SMC	LK source divide	r					
UCSCTL5	Bits 6-4	000	f _{ACLK} /1						
UCSCTL5_L	Bits 6-4	001	f _{ACLK} /2						
		010	f _{ACLK} /4						
		011	f _{ACLK} /8						
		100	f _{ACLK} /16						
		101	f _{ACLK} /32						
		110	Reserved for for	uture use. De	faults to f _{ACLK} /32.				
		111	Reserved for for	uture use. De	faults to f _{ACLK} /32.				

Reserved UCSCTL5 UCSCTL5_L	Bit 3 Bit 3	Reser	ved. Reads back as 0.					
DIVM	TI. 5 0.0		MCLK source divider					
UCSCTL5 UCSCTL5_L	Bits 2-0 Bits 2-0	000	f _{ACLK} /1					
		001	f _{ACLK} /2					
		010	f _{ACLK} /4					
		011	f _{ACLK} /8					
		100	f _{ACLK} /16					
		101	f _{ACLK} /32					
		110	Reserved for future use. Defaults to $f_{ACLK}/32$.					
		111	Reserved for future use. Defaults to f _{ACLK} /32.					

	14		•	ed Clock System	11		9	0		
15	14		13	12	11	10	9	8		
7	6	1	5	4	3	2	1	0		
XT2	DRIVE		Reserved	XT2BYPASS		Reserved		XT2OFF		
rw-1	rw-1		r0	rw-0	rO	r0	r0	rw-1		
7	6		5	4	3	2	1	0		
XT1	DRIVE		XTS	XT1BYPASS	Х	CAP	SMCLKOFF	XT10FF		
rw-1	rw-1		rw-0	rw-0	rw-1	rw-1	rw-0	rw-1		
XT2DRIVE UCSCTL6 UCSCTL6_H	Bits 15-14 Bits 7-6		nt for reliable	current can be adjus and quick startup. If	needed, user s	software can reduc	e the drive strength			
0030110_11	DIIS 7-0	00		ent consumption. XT	•	0 0				
		01	Increased d	rive strength XT2 os	cillator. XT2 os	scillator operating r	ange is 8 MHz to 16	6 MHz.		
		10		rive capability XT2 o			· ·			
		11		rive capability and m nge is 24 MHz to 32		nt consumption for	both XT2 oscillator.	XT2 oscillator		
Reserved UCSCTL6 UCSCTL6_H	Bit 13 Bit 5	Rese	rved. Reads b	eack as 0.						
XT2BYPASS		XT2 b	ypass select							
UCSCTL6 UCSCTL6_H	Bit 12 Bit 4	0	XT2 source	d internally						
1 XT2 sourced externally from pin										
Reserved		Rese	rved. Reads b	ack as 0.						
UCSCTL6 UCSCTL6_H	Bits 11-9 Bits 3-1									
XT2OFF	Di. o	Turns	off the XT2 of	scillator.						
UCSCTL6 UCSCTL6_H	Bit 8 Bit 0	0	0 XT2 is on if XT2 is selected via the port selection and XT2 is not in bypass mode of operation.							
	2 0	1	1 XT2 is off if it is not used as a source for ACLK, MCLK, or SMCLK or is not used as a reference source required for FLL operation.							
XT1DRIVE UCSCTL6	Bits 7-6 Bits 7-6			current can be adjus and quick startup. If						
UCSCTL6_L		00	Lowest curre to 8 MHz.	ent consumption for	XT1 LF mode.	XT1 oscillator ope	rating range in HF r	mode is 4 MHz		
		01	Increased d 16 MHz.	rive strength for XT1	LF mode. XT1	1 oscillator operatir	ng range in HF mod	e is 8 MHz to		
		10	Increased d 24 MHz.	rive capability for XT	1 LF mode. X1	Γ1 oscillator operat	ing range in HF mo	de is 16 MHz		
		11		rive capability and m			XT1 LF mode. XT1	oscillator		
XTS		XT1 r	node select							
UCSCTL6	Bit 5	0	Low frequer	ncy mode. XCAP bits	define the cap	pacitance at the XI	N and XOUT pins.			
UCSCTL6_L	Bit 5	1	High freque	ncy mode. XCAP bit	s are not used.					
XTS		XT1 b	ypass select	•						
UCSCTL6	Bit 4	0	XT1 source	d internally						
UCSCTL6_L	Bit 4	1	XT1 source	d externally from pin						
XCAP UCSCTL6 UCSCTL6_L	Bits 3-2 Bits 3-2	Oscill low-fr assun printe	ator capacitor equency mod ned, that C _{XIN}	selection. These bit e (XTS = 0). The eff $_{\rm I}$ = $C_{\rm XOUT}$ and that a d. For details about the selection of the selection of the selection of the selection.	ective capacita parasitic capa	ince (seen by the citance of 2 pF is a	crystal) is Č _{eff} ≈ (C _{XI} added by the packa	_N + 2 pF)/2. It ge and the		

SMCLKOFF		SMCLK off. This bit turns off the SMCLK.					
UCSCTL6 UCSCTL6 L	Bit 1 Bit 1	0	SMCLK off				
0000120_2	Dit 1	1	SMCLK on				
XT10FF		XT1	off. This bit turns off the XT1.				
UCSCTL6 UCSCTL6 L	Bit 0 Bit 0	0	XT1 is on if XT1 is selected via the port selection and XT1 is not in bypass mode of operation.				
0000120_2	Dit 0	1	XT1 is off if it is not used as a source for ACLK, MCLK, or SMCLK or is not used as a reference source required for FLL operation.				

www.ti.com					Unified (Clock System M	odule Registers			
UCSCTL7, UCSC	TL7_H, UCS	SCTL7_L, Unifie	d Clock Systen	n Control Regi	ster 7					
15	14	13	12	11	10	9	8			
7	6	5	4	3	2	1	0			
Reserv	red .	FLLWARNEN	FLLULIE	FLLUNL	OCKHIS	FLLUN	LOCK			
rO	r0	rw-0	rw-(0)	rw-(1)	rw-(1)	r-1	r-1			
7	0	5	4		2	4	0			
/	6 Reserved	5	4 FLLULIFG	3 XT2OFFG	XT1HF0FFG	1 XT1LFOFFG	0 DCOFFG			
rO	r0	rO	rw-(0)	rw-(0)	rw-(0)	rw-(1)	rw-(1)			
Reserved		Reserved. Read	. ,	(0)	(6)	(.)	(.)			
UCSCTL7 UCSCTL7_H	Bit 15 Bit 7									
FLLWARNEN UCSCTL7	Bit 13		. If this bit is set th S is not equal to 00		generated based of severated.	on the FLLUNLOC	KHIS bits. If			
UCSCTL7_H	Bit 5	0 The FLLI	JNLOCKHIS statu	s cannot set OFIF	G.					
		1 The FLLI	JNLOCKHIS statu	s can set OFIFG.						
FLLULIE UCSCTL7 UCSCTL7_H	Bit 12 Bit 4	The FLLULIFG	ndicates when FL	LUNLOCK bits eq	a reset (PUC) is trual to 10. The FLL o PUC can be trige	LÜLIE is automatic	ally cleared			
FLLUNLOCKHIS UCSCTL7 UCSCTL7_H	Bits 11-10 Bits 3-2				ck condition histor main set until clea					
		FLL is locked. No unlock situation has been detected since the last reset of these bits.								
		01 DCOCLK	has been too low	since the bits we	re cleared.					
		10 DCOCLK	has been too fast	t since the bits we	ere cleared.					
		11 DCOCLK	has been both to	o fast and too slo	w since the bits we	ere cleared.				
FLLUNLOCK UCSCTL7	Bits 9-8	Unlock. These b DCOFFG flag is		rrent FLL unlock o	condition. These bi	ts are both set as	long as the			
UCSCTL7_H	Bits 1-0	00 FLL is lo	cked. No unlock co	ondition currently	active.					
		01 DCOCLK	is currently too lo	W.						
		10 DCOCLK	is currently too fa	st.						
		11 DCOERF	ROR. DCO out of r	ange.						
Reserved UCSCTL7 UCSCTL7_L	Bits 7-5 Bits 7-5	Reserved. Read	ls back as 0.							
FLLULIFG UCSCTL7	Bit 4		rupt flag. This flag set, a PUC will be		LLUNLOCK bits e	qual 10b (DCO too	o fast) If the			
UCSCTL7_L	Bit 4	0 FLLUNLO	OCK bits not equa	l to 10b						
		1 FLLUNLO	OCK bits equal to	10b						
XT2OFFG UCSCTL7 UCSCTL7_L	Bit 3 Bit 3		The XT2OFFG ca		lag is also set. XT software. If the XT					
		0 No fault	condition occurred	after the last rese	et.					
		1 XT2 fault	. An XT2 fault occ	urred after the las	t reset.					
XT1HFOFFG UCSCTL7 UCSCTL7_L	Bit 2 Bit 2	XT1 fault conditi	ult flag (HF mode) on exists. The XT 1HFOFFG is set.	. If this bit is set, t 1HFOFFG can be	the OFIFG flag is a cleared via softwa	also set. XT1HFOF are. If the XT1 faul	FFG is set if a t condition still			
		0 No fault (condition occurred	after the last rese	1					

0 No fault condition occurred after the last reset.

1 XT1 fault. An XT1 fault occurred after the last reset.

XT1LFOFFG UCSCTL7 UCSCTL7_L	Bit 1 Bit 1	XT1 oscillator fault flag (LF mode). If this bit is set, the OFIFG flag is also set. XT1LFOFFG is set if a XT1 fault condition exists. The XT1LFOFFG can be cleared via software. If the XT1 fault condition still remains, the XT1LFOFFG is set.
		0 No fault condition occurred after the last reset.
		1 XT1 fault (LF mode). A XT1 fault occurred after the last reset.
DCOFFG UCSCTL7 UCSCTL7_L	Bit 0 Bit 0	DCO fault flag. If this bit is set, the OFIFG flag is also set. The DCOFFG bit is set if DCOx = 0 or DCOx = 31. The DCOOFFG can be cleared via software. If the DCO fault condition still remains, the DCOOFFG is set. As long as DCOFFG is set, FLLUNLOCK shows the DCOERROR condition.
		0 No fault condition occurred after the last reset.
		1 DCO fault. A DCO fault occurred after the last reset.

Note: The FLLWAREN, FLLUIE, FLLUNLOCKHIS, and FLLUNLOCK bits and features are currently under evaluation and may not be present in the final product.

UCSCTL8, UCSCTL8_H, UCSCTL8_L, Unified Clock System Control Register 8

15	14	13	12	11	10	9	8
7	6	5	4	3	2	1	0
		Res			Reserved	Reserved	
r0	rO	r0	rO	rO	r0	rw-(1)	rw-(1)
7	6	5	4	3	2	1	0
	Reserved		Reserved	MODOSCREQ EN	Reserved	Reserved	Reserved
r0	r0	r0	rw-(1)	rw-(0)	rw-(1)	rw-(1)	rw-(1)

Reserved UCSCTL8 UCSCTL8_H	Bits 15-10 Bits 7-2	Reserved. Reads back as 0.
Reserved UCSCTL8 UCSCTL8_H	Bit 9 Bit 1	Reserved. Must always be written as 1.
Reserved UCSCTL8 UCSCTL8_H	Bit 8 Bit 0	Reserved. Must always be written as 1.
Reserved UCSCTL8 UCSCTL8_L	Bits 7-5 Bits 7-5	Reserved. Reads back as 0.
Reserved UCSCTL8 UCSCTL8_L	Bit 4 Bit 4	Reserved. Must always be written as 1.
MODOSCREQEN UCSCTL8 UCSCTL8_L	Bit 3 Bit 3	 MODOSC clock request enable. Setting this enables module requests for the MODOSC. MODOSC requests are disabled. MODOSC requests are enabled.
Reserved UCSCTL8 UCSCTL8_L	Bit 2 Bit 2	Reserved. Must always be written as 1.
Reserved UCSCTL8 UCSCTL8_L	Bit 1 Bit 1	Reserved. Must always be written as 1.
Reserved UCSCTL8 UCSCTL8_L	Bit 0 Bit 0	Reserved. Must always be written as 1.

Power Management Module and Supply Voltage Supervisor

This chapter describes the operation of the Power Management Module (PMM) and the Supply Voltage Supervisors (SVS) of the MSP430x5xx devices.

Topic		Page
4.1	PMM Introduction	78
4.2	PMM Operation	80
4.3	PMM Registers	87

PMM Introduction www.ti.com

4.1 PMM Introduction

The PMM features include:

- Wide supply voltage (DV_{CC}) range: 1.8 V to 3.6 V
- Core voltage (V_{CORE}) generation: 1.4 V, 1.6 V, 1.8 V, and 1.9 V (typical)
- Brown-out-reset (BOR)
- Supply voltage supervisor for DV_{CC} and V_{CORE}
- Supply voltage monitor for DV_{CC} and V_{CORE} with eight programmable levels
- Software accessible power-fail conditions
- Software selectable power-on-reset at power-fail condition
- I/O protection at power-fail condition
- Software selectable supervisor or monitor state output (optional)

The main digital logic of the MSP430 device requires a voltage that is lower than the range allowed by DV_{CC} . For this reason, the PMM incorporates an integrated low-dropout voltage regulator (LDO) that generates a secondary core voltage rail, V_{CORE} . The core voltage is programmable in four steps to allow power consumption optimization. The required minimum voltage for the core depends on the selected MCLK rate, as shown in Figure 4-1

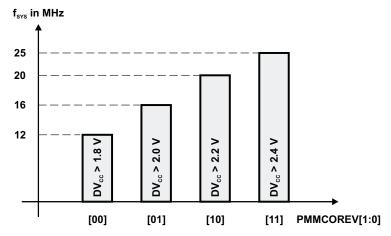


Figure 4-1. System Frequency and Supply/Core Voltages

 DV_{CC} and V_{CORE} can be supervised and monitored. Both supervision and monitoring detect when a voltage has fallen under a specific threshold. Generally speaking, supervision results in a power-on reset (POR) event, while monitoring results in the generation of an interrupt flag, which software can then handle. As such, DV_{CC} (the high-side of the LDO) is supervised and monitored by the high-side supervisor (SVS $_{\text{H}}$) and high-side monitor (SVM $_{\text{H}}$), respectively. V_{CORE} (the low-side of the LDO) is supervised and monitored by the low-side supervisor (SVS $_{\text{L}}$) and low-side monitor SVM $_{\text{L}}$), respectively. The block diagram of the PMM is shown in Figure 4-2.

www.ti.com PMM Introduction

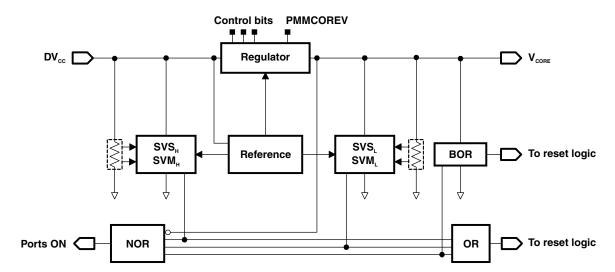


Figure 4-2. PMM Block Diagram

The I/Os and all analog modules including the oscillators are supplied by DV_{CC} . Memories (Flash and RAM) and the digital modules are supplied by the core voltage (V_{CORE}).

PMM Operation www.ti.com

4.2 PMM Operation

The PMM can be configured for four possible levels of core voltage, correlating with four system speed levels. For a given core voltage, there is an associated set of thresholds.

The PMM regulator supports two different load settings. The low current mode can be used if the system consumes less than $I(V_{CORE}) \le 30~\mu A$ (see device specific datasheet). Higher system currents are supported by the full-performance mode. The full-performance mode is required if:

- any internal high frequency clock (>32 kHz) is used by any module
- · an interrupt is executed
- JTAG is active
- in active mode, LPM0, or LPM1

The PMM supports four system speed levels by adjusting the core voltage.

The selected core voltage level remains unchanged when entering a low-power mode. During the system start-up the SVS_H and SVS_L functions are enabled. The typical values of are shown in Table 4-1 for DV_{CC} (high voltage) domain and Table 4-2 for the V_{CORE} (low voltage) domain. Figure 4-3 shows how the system behaves during power-up. If both the high side and the low side voltage supervisors levels are met the system reset is released.

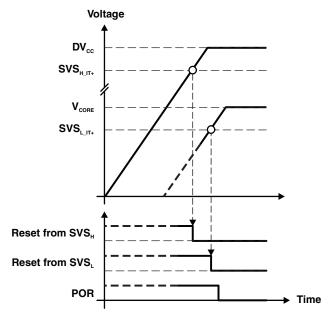


Figure 4-3. Powering Up the System

Once the system is up and running, both voltage domains are supervised and monitored as long as the respective modules are enabled. The PMM supply voltage supervisor levels selected after reset are 1.74 V (typical) for the high side and 1.34 V (typical) for the low side. Once both levels are exceeded the system starts operation. The device specific values can be found in the device specific data sheet.

A power-fail at the high or low side voltage domains may cause system failures. Both high and low side voltage levels are monitored by the supply voltage monitors. If DV_{CC} falls below the supply voltage monitor level for the high side, the supply voltage monitor interrupt flag for the high side, SVMHIFG, is set. Similary, if V_{CORE} falls below the supply voltage monitor level of the low side, the supply voltage monitor interrupt flag for the low side, SVMLIFG, is set.

When DV_{CC} rises above the supply voltage monitor level of the high side, the supply voltage reached interrupt flag SVMHVLRIFG is set. Similary, if V_{CORE} rises above the supply voltage monitor level of the low side, the supply voltage reached interrupt flag SVMLVLRIFG is set. When both the high side and low side levels have been reached, the system can continue to operate normally.

www.ti.com PMM Operation

Supply voltages below the supply voltage supervisor levels cause a system reset (POR) if enabled. Setting SVSHPE will cause a POR when SVSHIFG is set. Similarly, setting SVSLPE will cause a POR when SVSLIFG is set.

Both the supply voltage supervisor and monitor interrupt flags remain set unless cleared by a BOR or by software to allow the application software to determine the latest reset condition.

Figure 4-4 explains the high and low side power fails with respect to the supply voltage supervisor and monitor levels and the respective interrupt flags.

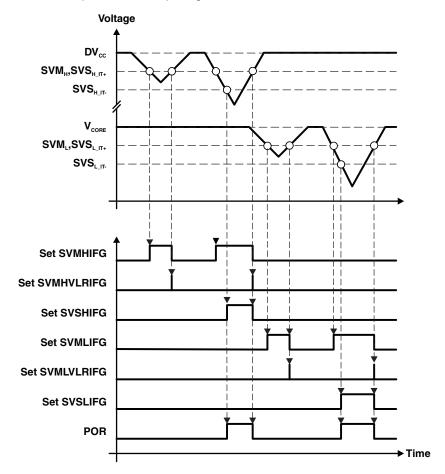


Figure 4-4. High-Side and Low-Side Voltage Failure

Table 4-1. High-Side Supply Voltage Supervisor and Monitor Levels (see the device-specific datasheet)

Parameter		High Side (D	V _{CC}) Voltage	
DV _{CC(min)} in V	≥1.8 ⁽¹⁾	≥2.0	≥2.2	≥2.4
$SVM_H - V_{(SVMH_IT+,typ)}$ in V	1.74 ⁽¹⁾	1.94	2.14	2.26
$SVM_H - V_{(SVMH_IT-,typ)}$ in V	1.74 ⁽¹⁾	1.94	2.14	2.26
$SVS_H - V_{(SVSH_IT+,max)}$ in V	1.79 ⁽¹⁾	1.99	2.19	2.31
$SVS_H - V_{(SVSH_IT+,min)}$ in V	1.69 ⁽¹⁾	1.89	2.09	2.21
$SVS_H - V_{(SVSH_IT-,max)}$ in V	1.69 ⁽¹⁾	1.89	2.09	2.21
SVS _H - V _(SVSH_IT-,min) in V	1.59 ⁽¹⁾	1.79	1.99	2.11

⁽¹⁾ Default value after reset

PMM Operation www.ti.com

Parameter		Low Side (Vo	ORE) Voltage	
PMMCOREV	0 ⁽¹⁾	1	2	3
V _{CORE(typ)} in V	1.40 ⁽¹⁾	1.60	1.80	1.92
$SVM_L - V_{(SVML_IT+,typ)}$ in V	1.34 ⁽¹⁾	1.54	1.74	1.84
$SVM_L - V_{(SVML_IT-,typ)}$ in V	1.34 ⁽¹⁾	1.54	1.74	1.84
$SVS_L - V_{(SVSL_IT+,max)}$ in V	1.39 ⁽¹⁾	1.59	1.79	1.89
$SVS_L - V_{(SVSL_IT+,min)}$ in V	1.29 ⁽¹⁾	1.49	1.69	1.79
$SVS_L - V_{(SVSL_IT-,max)}$ in V	1.32 ⁽¹⁾	1.52	1.72	1.82
$SVS_L - V_{(SVSL_IT-,min)}$ in V	1.22 ⁽¹⁾	1.42	1.62	1.72

Table 4-2. Low-Side Supply Voltage Supervisor and Monitor Levels (see the device specific datasheet)

4.2.1 Supply Voltage Supervisor and Monitor – High Side

The high side supply voltage supervisor/monitor operates in active mode and in the low-power modes. To save power the operation speed can be reduced (default: SVMHFP=0, SVSHFP=0). The blockdiagram is shown in Figure 4-5.

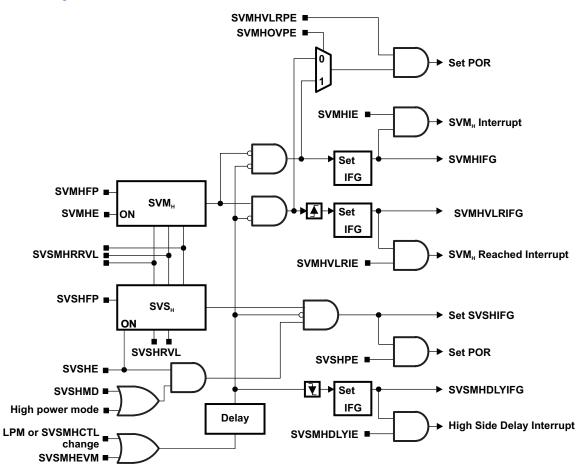


Figure 4-5. High-Side Supply Voltage Supervisor and Monitor

The SVM_H module is enabled by setting SVMHE=1. Its power consumption can be reduced by setting SVMHFP=0. The voltage reset release level is defined by SVSMHRRVL. A rising DV_{CC} level crossing the SVM_H level sets the SVMHVLRIFG interrupt flag. An interrupt is also triggered if SVMHVLRIE = 1. A

⁽¹⁾ Default value after reset

www.ti.com PMM Operation

falling DV_{CC} level crossing the SVMH level sets the SVMHIFG interrupt flag. An interrupt is also triggered if SVMHIE = 1. When DV_{CC} remains lower than the SVM_H level and SVMHIFG is cleared by software, then it is immediately set again by hardware. If desired, a POR can also be generated if SVMHVLRPE = 1 and SVMHOVPE = 0. The SVM_H module also contains overvoltage detection. If DV_{CC} exceeds safe device operation, a POR will be generated when SVMHOVPE = 1 and SVMHVLRPE = 1.

The SVS_H module is enabled by setting SVSHE=1. Its power consumption can be reduced by setting SVSHFP=0. The voltage reset release level is defined by SVSHRVL. A falling DV_{CC} level crossing the SVS_H level sets the SVSHIFG interrupt flag, as well as causes a POR if SVSHPE = 1. When DV_{CC} remains lower than the SVS_H level and SVSHIFG is cleared by software, then it is immediately set again by hardware. The SVS_H is disabled in low-power modes 2, 3, and 4 unless the SVSHMD forces the SVS_H circuit on.

If the power mode of the SVM_H or SVS_H or a voltage level is altered, a delay element masks the interrupts and POR sources until the SVM_H and SVS_H circuits have settled. SVSMHDLYIFG is set indicating when the delay has completed. An interrupt can also be generated if SVSMHDLYIE = 1.

4.2.2 Supply Voltage Supervisor and Monitor – Low Side

The low side supply voltage supervisor/monitor operates in active mode and in the low-power modes. To save power the operation speed can be reduced (default: SVMLFP=0, SVSLFP=0). The blockdiagram is shown in Figure 4-6.

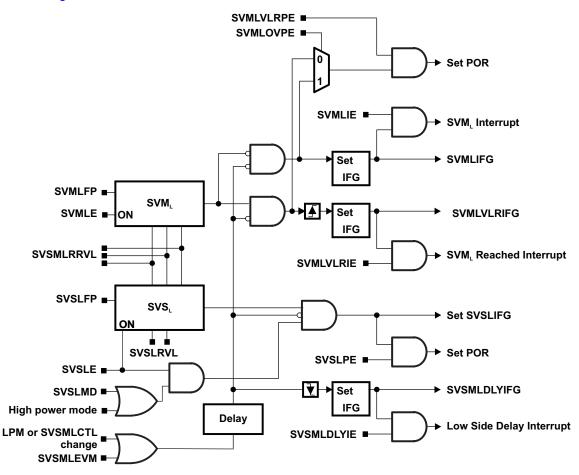


Figure 4-6. Low Side Supply Voltage Supervisor and Monitor

The SVM_L module is enabled by setting SVMLE=1. Its power consumption can be reduced by setting SVMLFP=0. The voltage reset release level is defined by SVSMLRRVL. A rising V_{CORE} level crossing the SVM_L level sets the SVMLVLRIFG interrupt flag. An interrupt is also triggered if SVMLVLRIE = 1. A falling

PMM Operation www.ti.com

 V_{CORE} level crossing the SVM_L level sets the SVMLIFG interrupt flag. An interrupt is also triggered if SVMLIE = 1. When V_{CORE} remains lower than the SVM_L level and SVMLIFG is cleared by software, then it is immediately set again by hardware. If desired, a POR can also be generated if SVMLVLRPE =1 and SVMLOVPE = 0. The SVM_L module also contains overvoltage detection. If V_{CORE} exceeds safe device operation, a POR will be generated when SVMLOVPE = 1 and SVMLVLRPE = 1.

The SVS_L module is enabled by setting SVSLE=1. Its power consumption can be reduced by setting SVSLFP=0. The voltage reset release level is defined by SVSLRVL. A falling V_{CORE} level crossing the SVS_L level sets the SVSLIFG interrupt flag, as well as, causes a POR if SVSLPE = 1. When V_{CORE} remains lower than the SVSL level and SVSLIFG is cleared by software then it is immediately set again by hardware. The SVS_L is disabled in low-power modes 2, 3, and 4 unless the SVSLMD forces the SVS_L circuit on.

If the power mode of the SVM_L or SVS_L or a voltage level is altered a delay element masks the interrupts and POR sources until the SVM_L and SVS_L circuits have settled. SVSMLDLYIFG is set indicating when the delay has completed. An interrupt can also be generated if SVSMLDLYIE = 1.

4.2.3 Supply Voltage Monitor Output (SVMOUT, Optional)

The state of the SVMLIFG, SVMLVLRIFG, SVMHIFG and SVMLVLRIFG can be monitored on the external SVMOUT pin. Each of these interrupt flags can be enabled (SVMLOE, SVMLVLROE, SVMHOE, SVMLVLROE) to generate an output signal. The polarity of the output is selected by the SVMOUTPOL bit. If SVMOUTPOL is set then the output is set to 1 if an enabled interrupt flag is set.

4.2.4 Performance Optimization

The CPU and the digital modules are supplied by the regulated core voltage (V_{CORE}). If the CPU has to run at full speed the core voltage has to be programmed to the highest level (see Figure 4-1). If the full CPU performance is not required the core voltage can be reduced to the desired level to save considerable power. During reset the core voltage defaults to the lowest voltage of 1.4 V (typical). The SVM_L and SVS_L levels are selected accordingly during reset. Figure 4-7 shows how the core voltage can be programmed from one level to another using the built-in supply voltage monitor and supervisor for safe operation.

Steps 1 to 4 show the sequence how the core voltage is increased while Steps 5 and 6 show how the core voltage is decreased.

- Step 1: Program the SVM_I to the new level and wait for (SVSMLDLYIFG) to be set.
- Step 2: Program PMMCOREV to the new V_{CORE} level.
- Step 3: Wait for the voltage level reached (SVMLVLRIFG) interrupt.
- Step 4: Program the SVS_I to the new level.

The desired core voltage level is reached and both the supply voltage monitor and the supply voltage supervisor levels are programmed accordingly. The system speed can now be increased.

Decreasing the core voltage level:

- Step 5: Decrease the system speed to the target speed. Program the SVS_L and SVM_L level to the target values.
- Step 6: Program V_{CORE} to the new level.

The delay element shown in Figure 4-6 is triggered if the configuration registers for the high- or low-side SVS or SVM is changed or if the power-mode (active mode, LPMx) is changed.

www.ti.com PMM Operation

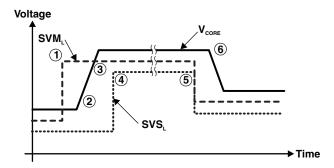


Figure 4-7. Changing V_{CORE} and the SVM_L and SVS_L Levels

4.2.5 Voltage Reference

The voltage reference supplies the voltage regulator, the supply voltage supervisors and the supply voltage monitors. In low-power modes 2, 3, and 4 the reference is clocked by a PWM signal (switched mode) to save power. In LPM5 the reference is switched off. In the other modes the reference is in static mode. In the static mode the reference is more accurate than in switched mode. In switched mode the power consumption and the accuracy of the reference can be further reduced by setting the (PMMREFACC) bit.

4.2.6 Brown-Out Reset (BOR)

The BOR circuit generates a brown-out reset signal which initializes the system at power-up and starts the supply voltage supervisors. The brown-out reset always triggers a POR followed by a PUC.

4.2.7 Manual Control of the Power Management Module

PMM operation requires minimal software involvement. The core voltage and the supply voltage supervisor and monitor of DV_{CC} and V_{CORE} are selected by the user, while the hardware manages proper operation. If the application allows, the user can manually switch off or degrade functionality to save power.

4.2.7.1 Manual Control of the Voltage Regulator

The regulator current mode (full performance or low current) is selected by the hardware. The application software can also manually select the current mode by setting voltage regulator current mode bits (PMMCMD).

				•				
PMMCMD		CMD	10/	Description				
	[1]	[0]	I(V _{CORE})	Description				
	0	0 or 1	0 to 25 mA	Hardware controlled performance mode				
	1	0	≤30 μA	Manually selected low-current mode				
	1	1	≤25 mA	Manually selected full-performance mode				

Table 4-3. Power Mode Overwrite (see also device specific datasheet)

4.2.7.2 Controlling the SVS_{H,L} and SVM_{H,L} Performance

The supply voltage supervisors and supply voltage monitors are detecting supply voltage changes. If the application allows, the power consumption of the $SVM_{H,L}$ and $SVS_{H,L}$ can be reduced by lowering their reaction speed (low power mode). $SVM_{H,L}$ and $SVS_{H,L}$ can be disabled separately by clearing the

PMM Operation www.ti.com

respective enable bits. A predefined performance selection can be enabled by setting SVSHACE=1 (SVSLACE=1) for the supply voltage supervisor and the supply voltage monitor of the high (low) voltage side. If the SVSHACE (SVSLACE) bit is not set, the SVS_H and SVM_H (SVS_L and SVM_L) operation mode is controlled only by SVSHFP (SVSLFP) and can be disabled by clearing the enable bits SVSHE and SVMHE (SVSLE and SVMLE).

Table 4-4. $SVS_{H,L}$ and $SVM_{H,L}$ Performance When SVSHACE = SVSLACE = 0

Control Bit Setting		Active mode, LPM0, LPM1	LPM2, LPM3, LPM4	LPM5
SVSHFP, SVMHFP, SVSLFP,	0	Slow	Slow	Off
SVMLFP	1	Fast	Fast	Off

Table 4-5. $SVS_{H,L}$ and $SVM_{H,L}$ Performance When SVSHACE = SVSLACE = 1

Control Bit S	Active mode, LPM0, LPM1	LPM2, LPM3, LPM4	LPM5	
SVSHFP, SVMHFP, SVSLFP,	0	Slow	Off	Off
SVMLFP	1	Fast	Slow	Off

4.2.7.3 Disabling the Core Voltage Regulator - LPM5

The voltage regulator is disabled by setting the PMMREGOFF bit to 1 and entering LPM4. The current consumption is reduced below ~100 nA (see device specific datasheet). Device wake-up is done through the RST/NMI pin or any other wake-up capable enabled I/O-pin (see device specific datasheet).

```
; Code Sequence to enter LPM5.
MOV #PMMPW+REGOFF,&PMMCTL0 ; Set REGOFF
BIS #LPM4.SR ; Enter LPM4
```

The voltage regulator is turned off when LPM4 is entered while the REGOFF bit is set. An active clock request prevents turning off the voltage regulator. Once the clock request is deasserted the device turns off the voltage regulator and enters LPM5. If an interrupt request clears the REGOFF bit before the voltage regulator is turned off the device enters active mode immediately.

4.2.8 I/O-Port Control

As long as the system is not powered up completely or during a low-voltage condition, the digital input path of the digital I/O is disabled by locking the latest logical level. The data-in registers keep their values and the interrupts associated with digital inputs are not detected. Digital outputs stop driving and weak pullup/pulldown resistors are disabled.

4.2.9 PMM Interrupts

The PMM module generates reset signals and interrupt requests. The reset signals and the interrupt flags are routed to the system control module (SYS) and are together with other reset and interrupt sources making up the reset vector word and the system NMI vector word. For the priorities and the details of these vector words, see the System Control Module chapter.

www.ti.com PMM Registers

4.3 PMM Registers

The PMM registers are listed in Table 4-6. The base address of the PMM module can be found in the devices specific datasheet. The address offset of each PMM register is given in Table 4-6. The password defined in the PMMCTL0 register controls access to all PMM, SVS, and SVM registers. Once the correct password is written the write access is enabled. The write access is disabled by writing a wrong password in byte mode to the PMMCTL0 upper byte. Word accesses to PMMCTL0 with a wrong password triggers a PUC. A write access to a register other than PMMCTL0 while write access is not enabled causes a PUC.

Table 4-6. PMM Registers

Register	Short Form	Register Type	Address	Initial State
PMM control register 0	PMMCTL0	Read/write	00h	0000h
PMM control register 1	PMMCTL1	Read/write	02h	0000h
SVS and SVM high side control register	SVSMHCTL	Read/write	04h	4400h
SVS and SVM low side control register	SVSMLCTL	Read/write	06h	4400h
SVSIN ans SVMOUT control register (optional)	SVSMIO	Read/write	08h	0020h
PMM interrupt flag register	PMMIFG	Read/write	0Ch	0000h
PMM interrupt enable register	PMMRIE	Read/write	0Eh	0000h

PMM Registers www.ti.com

PMMCTL0, Power Management System Control Register 0

15	14	13	12	11	10	9	8					
PMMKEY, Read as 96h, Must be written as A5h												
rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0					
7	6	5	4	3	2	1	0					
PMMHPMRE	Reserved		PMMREGOFF	PMMSWPOR	PMMSWBOR	PMMC	COREV					
rw-0	r-0	r-0	rw-0	rw-0	rw-0	rw-[0]	rw-[0]					

PMMKEY	Bits 15-8	PMM password. Always read as 096h. Must be written with 0A5h or a PUC will be generated.
PMMHPMRE	Bit 7	Global High Power Module Request Enable. If the PMMHPMRE bit is set any module is able to request the PMM high power mode.
Reserved	Bits 6-5	Reserved. Always read 0.
PMMREGOFF	Bit 4	Regulator off. See chapter "Disabling the Core Voltage Regulator - LPM5"
PMMSWPOR	Bit 3	Software POR. Setting this bit to 1 triggers a POR. This bit is self-clearing.
PMMSWBOR	Bit 2	Software BOR. Setting this bit to 1 triggers a BOR. This bit is self-clearing.
PMMCOREV	Bits 1-0	Core voltage. For details please refer to the devices specific datasheet.

00 V_{CORE} is typical at 1.4 V. 01 V_{CORE} is typical at 1.6 V. 10 V_{CORE} is typical at 1.8 V. V_{CORE} is typical at 1.9 V. 11

PMMCTL1, Power Management System Control Register 1

•	_	-	_				
15	14	13	12	11	10	9	8
			Res	erved			
r-0	r-0	r-0	r-0	r-0	r-0	r-0	r-0
7	6	5	4	3	2	1	0
Res	erved	PMN	ICMD	Rese	erved	PMMREFACC	PMMREFMD
r-0	r-0	rw-[0]	rw-[0]	r-0	r-0	rw-0	rw-0
Reserved	Bits 15-6	Reserved. Alway	s read 0.				
PMMCMD	Bits 5-4	Voltage regulator	current mode				

00

The voltage regulator current range is defined by the low-power mode The voltage regulator current range is defined by the low-power mode. 01 The voltage regulator is forced into low-current mode. 10

the voltage reference current consumption is reduced. The accuracy of the voltage reference decreases.

The voltage regulator is forced into full-performance mode. 11 Bits 3-2 Reserved. Always read 0.

PMMREFACC PMM reference accuracy. If PMMREFACC is set to 1 the power consumption of the voltage reference is Bit 1 reduced. The accuracy of the voltage reference decreases especially at higher temperatures. PMM reference mode. If the voltage regulator is in full performance mode the voltage reference operates **PMMREFMD** Bit 0 in continuous (static) mode. If PMMREFMD is set and the voltage regulator is in full-performance mode

Reserved

www.ti.com PMM Registers

SVSMHCTL, High Side Supply Voltage Supervisor and Monitor Control Register

15	14	13	12	11	10	9	8		
SVMHFP	SVMHE	Reserved	SVMHOVPE	SVSHFP	SVSHE	SVSI	HRVL		
rw-[0]	rw-1	r-0	rw-[0]	rw-[0]	rw-1	rw-[0]	rw-[0]		
7	6	5	4	3	2	1	0		
SVSMHACE	SVSMHEVM	Reserved	SVSHMD	SVSMHDLYST		SVSMHRRVL			
rw-[0]	rw-0	r-0	r-0 rw-0 rw-[0] rw-[0] rw-[0]						
SVMHFP	Bit 15	SVM high side fu	II-performance mo	ode. If this bit is set	the SVM _H opera	ites in full-perform	ance mode.		
		_		ation delay is typica					
				ne propagation dela					
SVMHE	Bit 14	SVM high side er	nable. If this bit is	set the SVM _H is en	abled.	·			
Reserved	Bit 13	Reserved. Alway	s read 0.						
SVMHOVPE	Bit 12	SVM high side ov	er-voltage enable	e. If this bit is set the	e SVM _H overvolta	age detection is er	nabled.		
SVSHFP	Bit 11	SVS high side ful	I-performance mo	de. If this bit is set	the SVS _H operat	es in full-performa	ince mode.		
		0 Normal r	node. The propag	ation delay is typica	al 150us. See de	vice specific datas	sheet.		
		1 Full perfo	ormance mode. Th	ne propagation dela	y is typical 1us.	See device specif	c datasheet.		
SVSHE	Bit 10	SVS high side en	able. If this bit is	set the SVS _H is ena	abled.				
SVSHRVL	Bits 9-8			If DV _{CC} falls short o					
SVSMHACE	Bit 7		gh side automatic under hardware co	control enable. If the	nis bit is set the l	ow-power mode o	f the SVS _H and		
SVSMHEVM	Bit 6	SVS and SVM hi	gh side event mas	sk. If this bit is set tl	ne SVS _H and SV	M _H events are ma	isked.		
		0 No event	s are masked						
		1 All event	s are masked.						
Reserved	Bit 5	Reserved. Always	s read 0.						
SVSHMD	Bit 4			et the SVS $_{\rm H}$ interrupot set the SVS $_{\rm H}$ inte					
SVSMHDLYST	Bit 3	delay time. The d SVSHFP = 1 it is	elay time depend ~2 μs in all other	us. If this bit is set t s on the power-mod cases it is ~150 μs e delay has expired	de of the SVS _H a . See the device	ind SVM _H . If SVM	HFP = 1 and		
SVSMHRRVL	Bits 2-0		so used for the S\	ase voltage level. T /M _H to define the vo					

PMM Registers www.ti.com

SVSMLCTL, Low Side Supply Voltage Supervisor and Monitor Control Register

15	14	13	12	11	10	9	8
SVMLFP	SVMLE	Reserved	SVMLOVPE	SVSLFP	SVSLE	SVSI	_RVL
rw-[0]	rw-1	r-0	rw-[0]	rw-[0]	rw-1	rw-[0]	rw-[0]
7	6	5	4	3	2	1	0
SVSMLACE	SVSMLEVM	Reserved	SVSLMD	SVSMLDLYST		SVSMLRRVL	
rw-[0]	rw-0	r-0	rw-0	rw-0	rw-[0]	rw-[0]	rw-[0]
SVMLFP	Bit 15	SVM low side full	-performance mod	de. If this bit is set	the SVM, operat	es in full-performa	nce mode.
				ation delay is typic			
				ne propagation dela		·	
SVMLE	Bit 14	·		set the SVM _L is ena			
Reserved	Bit 13	Reserved. Always		_			
SVMLOVPE	Bit 12	SVM low side over	er-voltage enable.	If this bit is set the	SVM _I overvolta	ge detection is ena	abled.
SVSLFP	Bit 11	SVS low side full-	performance mod	de. If this bit is set t	he SVS _L operate	es in full-performan	ce mode.
		0 Normal n	node. The propag	ation delay is typic	al 150us. See de	vice specific datas	heet.
		1 Full perfo	ormance mode. Th	ne propagation dela	ay is typical 1us.	See device specifi	c datasheet.
SVSLE	Bit 10	SVS low side ena	able. If this bit is s	et the SVS _L is enal	bled.		
SVSLRVL	Bits 9-8			DV _{CC} falls short o			
SVSMLACE	Bit 7	SVS and SVM lov SVM _L circuits is u		control enable. If the	is bit is set the lo	w-power mode of	the SVS _L and
SVSMLEVM	Bit 6	SVS and SVM lov	w side event masl	k. If this bit is set th	ie SVS _L and SVI	∕l _L events are mas	ked.
		0 No event	s are masked.				
		1 All events	s are masked.				
Reserved	Bit 5	Reserved. Always	s read 0.				
SVSLMD	Bit 4			t the SVS_L interrup ot set the SVS_L inte			
SVSMLDLYST	Bit 3	delay time. The d	elay time depend	is. If this bit is set the son the power-mo cases it is ~150 μs	de of the SVS _L a	$n\bar{d}$ SVM _L . If SVML	FP = 1 and
SVSMLRRVL	Bits 2-0		so used for the SV	se voltage level. The $M_{ m L}$ to define the $M_{ m L}$			

www.ti.com PMM Registers

SVSMIO, SVSIN, and SVMOUT Control Register

15	14	13	12	11	10	9	8
	Reserved			SVMHOE		Reserved	
r-0	r-0	r-0	rw-[0]	rw-[0]	r-0	r-0	r-0
7	6	5	4	3	2	1	0
Res	Reserved SVM		SVMLVLROE	SVMLOE		Reserved	
r-0	r-0	rw-[1]	rw-[0]	rw-[0]	r-0	r-0	r-0

Reserved	Bits 15-13	Reserved. Always read 0.
SVMLVLROE	Bit 12	SVM high side voltage level reached output enable. If this bit is set the SVMLVLRIFG bit is output to the device SVMOUT pin. The device specific port logic has to be configured accordingly.
SVMHOE	Bit 11	SVM high side output enable. If this bit is set the SVMHIFG bit is output to the device SVMOUT pin. The device specific port logic has to be configured accordingly.
Reserved	Bits 10-6	Reserved. Always read 0.
SVMOUTPOL	Bit 5	SVMOUT pin polarity. If this bit is set SVMOUT is active high. An error condition is signaled by a 1 at SVMOUT. If SVMOUTPOL is cleared the error condition is signaled by a 0 at the SVMOUT pin.
SVMLVLROE	Bit 4	SVM low side voltage level reached output enable. If this bit is set the SVMLVLRIFG bit is output to the device SVMOUT pin. The device specific port logic has to be configured accordingly.
SVMLOE	Bit 3	SVM low side output enable. If this bit is set the SVMLIFG bit is output to the device SVMOUT pin. The device specific port logic has to be configured accordingly.
Reserved	Bits 2-0	Reserved. Always read 0.

PMM Registers www.ti.com

PMMIFG, Power Management System and Supply Voltage Supervisor and Monitor Interrupt Flag Register

15	14	13	12	11	10	9	8
PMMRSTLPM5 IF1G	Reserved	SVSLIFG ¹	SVSHIFG ¹	Reserved	PMMPORIFG	PMMRSTIFG	PMMBORIFG
rw-[0]	r-0	rw-[0]	rw-[0]	r-0	rw-[0]	rw-[0]	rw-[0]
7	6	5	4	3	2	1	0
Reserved	SVMHVLRIFG ¹	SVMHIFG	SVSMHDLYIF G	Reserved	SVMLVLRIFG ¹	SVMLIFG	SVSMLDLYIFG
r-0	rw-[0]	rw-[0]	rw-0	r-0	rw-[0]	rw-[0]	rw-0

¹ After power up the reset value depends

PMMRSTLPM5IFG	Bit 15	LPM5 Flag. This bit is set if the system was in LPM5 before. The bit is cleared by software or by reading the reset vector word. A power-failure on the $\mathrm{DV}_{\mathrm{CC}}$ domain clears the bit.
		0 No interrupt pending
		1 Interrupt pending
Reserved	Bit 14	Reserved. Always read 0.
SVSLIFG	Bit 13	SVS low side interrupt flag. The bit is cleared by software or by reading the reset vector word.
		0 No interrupt pending
		1 Interrupt pending
SVSHIFG	Bit 12	SVS high side interrupt flag. The bit is cleared by software or by reading the reset vector word.
		0 No interrupt pending
		1 Interrupt pending
Reserved	Bit 11	Reserved. Always read 0.
PMMPORIFG	Bit 10	PMM software POR interrupt flag. This interrupt flag is set if a software POR is triggered. The bit is cleared by software or by reading the reset vector word.
		0 No interrupt pending
		1 Interrupt pending
PMMRSTIFG	Bit 9	PMM RST pin interrupt flag. This interrupt flag is set if the $\overline{\text{RST}}/\text{NMI}$ pin is the reset source. The bit is cleared by software or by reading the reset vector word.
		0 No interrupt pending
		1 Interrupt pending
PMMBORIFG	Bit 8	PMM software BOR interrupt flag. This interrupt flag is set if a software BOR (PMMSWBOR) is triggered. The bit is cleared by software or by reading the reset vector word.
		0 No interrupt pending
		1 Interrupt pending
Reserved	Bit 7	Reserved. Always read 0.
SVMHVLRIFG	Bit 6	SVM high side voltage level reached interrupt flag. The bit is cleared by software or by reading the reset vector (SVSHPE = 1) word or by reading the interrupt vector (SVSHPE = 0) word.
		0 No interrupt pending
		1 Interrupt pending
SVMHIFG	Bit 5	SVM high side interrupt flag. The bit is cleared by software.
		0 No interrupt pending
		1 Interrupt pending
SVSMHDLYIFG	Bit 4	SVS and SVM high side delay expired interrupt flag. This interrupt flag is set if the delay element expired. The bit is cleared by software or by reading the interrupt vector word.
		0 No interrupt pending
		1 Interrupt pending
Reserved	Bit 3	Reserved. Always read 0.
SVMLVLRIFG	Bit 2	SVM low side voltage level reached interrupt flag. The bit is cleared by software or by reading the reset vector (SVSLPE = 1) word or by reading the interrupt vector (SVSLPE = 0) word.
		0 No interrupt pending

Interrupt pending

www.ti.com PMM Registers

SVMLIFG	Bit 1	SVM low side interrupt flag. The bit is cleared by software.				
		0 No interrupt pending				
		1 Interrupt pending				
SVSMLDLYIFG	Bit 0	SVS and SVM low side delay expired interrupt flag. This interrupt flag is set if the delay element expired. The bit is cleared by software or by reading the interrupt vector word.				
		0 No interrupt pending				
		1 Interrupt pending				

PMMRIE, Power Management System Reset Enable and Interrupt Enable Register

15	14	13	12	11	10	9	8
Rese	erved	SVMHVLRPE	SVSHPE	Res	erved	SVMLVLRPE	SVSLPE
r-0	r-0	rw-[0]	rw-[0]	r-0	r-0	rw-[0]	rw-[0]
7	6	5	4	3	2	1	0
Reserved	SVMHVLRIE	SVMHIE	SVSMHDLYIE	Reserved	SVMLVLRIE	SVMLIE	SVSMLDLYIE
r-0	rw-0	rw-0	rw-0	r-0	rw-0	rw-0	rw-0
Reserved	Bits 15-14	Reserved. Always	s read 0.				
SVMHVLRPE	Bit 13	SVM high side vo triggers a POR.	oltage level reache	d POR enable. If	this bit is set, exce	eeding the SVM _H	voltage level
SVSHPE	Bit 12	SVS high side PC	OR enable. If this b	oit is set, falling b	elow the SVS _H vol	tage level triggers	a POR.
Reserved	Bits 11-10	Reserved. Always	s read 0.				
SVMLVLRPE	Bit 9	SVM low side vol triggers a POR.	tage level reached	d por enable. If th	is bit is set, exceed	ding the SVM _L vol	tage level
SVSLPE	Bit 8	SVS low side PO	R enable. If this b	it is set, falling be	elow the SVS_L volta	age level triggers	a POR.
Reserved	Bit 7	Reserved. Always	s read 0.				
SVMHVLRIE	Bit 6	SVM high side re	set voltage level ir	nterrupt enable			
SVMHIE	Bit 5	SVM high side in	terrupt enable. Thi	s bit is cleared by	y software or if the	interrupt vector w	ord is read.
SVSMHDLYIE	Bit 4	SVS and SVM high	gh side delay expi	red interrupt enal	ole		
Reserved	Bit 3	Reserved. Always	s read 0.				
SVMLVLRIE	Bit 2	SVM low side res	set voltage level in	terrupt enable			
SVMLIE	Bit 1	SVM low side inte	errupt enable. This	bit is cleared by	software or if the	nterrupt vector we	ord is read.
SVSMLDLYIE	Bit 0	SVS and SVM lo	w side delay expire	ed interrupt enab	le		

CPUX

This chapter describes the extended MSP430X 16-bit RISC CPU with 1-MB memory access, its addressing modes, and instruction set. The MSP430X CPU is implemented in the MSP430F5xx devices.

Note: The MSP430X CPU implemented on MSP430F5xx devices has, in some cases, slightly different cycle counts from the MSP430X CPU implemented on the 2xx and 4xx families.

96
96
98
99
105
123
139

CPU Introduction www.ti.com

5.1 **CPU Introduction**

The MSP430X CPU incorporates features specifically designed for modern programming techniques such as calculated branching, table processing and the use of high-level languages such as C. The MSP430X CPU can address a 1-MB address range without paging. The MSP430X CPU is completely backwards compatible with the MSP430 CPU.

The MSP430X CPU features include:

- RISC architecture
- Orthogonal architecture
- Full register access including program counter, status register and stack pointer
- Single-cycle register operations
- Large register file reduces fetches to memory.
- 20-bit address bus allows direct access and branching throughout the entire memory range without paging.
- 16-bit data bus allows direct manipulation of word-wide arguments.
- Constant generator provides the six most often used immediate values and reduces code size.
- Direct memory-to-memory transfers without intermediate register holding.
- Byte, word, and 20-bit address-word addressing

The block diagram of the MSP430X CPU is shown in Figure 5-1.

96

www.ti.com CPU Introduction

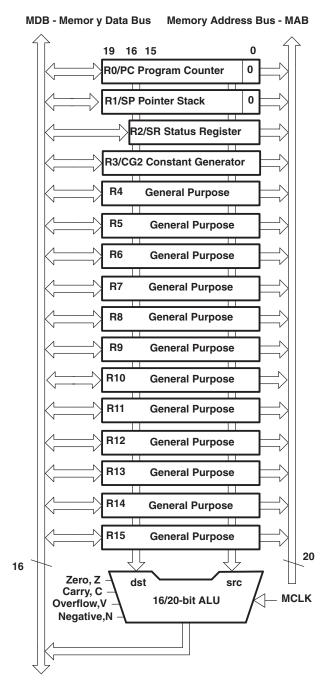


Figure 5-1. MSP430X CPU Block Diagram

CPUX

Interrupts www.ti.com

5.2 Interrupts

The MSP430X has the following interrupt structure:

- Vectored interrupts with no polling necessary
- Interrupt vectors are located downward from address 0FFFEh.

The interrupt vectors contain 16-bit addresses that point into the lower 64-KB memory. This means all interrupt handlers must start in the lower 64-KB memory.

During an interrupt, the program counter and the status register are pushed onto the stack as shown in Figure 5-2. The MSP430X architecture stores the complete 20-bit PC value efficiently by appending the PC bits 19:16 to the stored SR value automatically on the stack. When the RETI instruction is executed, the full 20-bit PC is restored making return from interrupt to any address in the memory range possible.

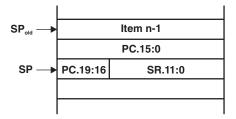


Figure 5-2. Program Counter Storage on the Stack for Interrupts

98

www.ti.com CPU Registers

5.3 CPU Registers

The CPU incorporates sixteen registers R0 to R15. Registers R0, R1, R2, and R3 have dedicated functions. R4 to R15 are working registers for general use.

5.3.1 Program Counter (PC)

The 20-bit program counter (PC/R0) points to the next instruction to be executed. Each instruction uses an even number of bytes (two, four, six, or eight bytes), and the PC is incremented accordingly. Instruction accesses are performed on word boundaries, and the PC is aligned to even addresses. Figure 5-3 shows the program counter.

Figure 5-3. Program Counter

The PC can be addressed with all instructions and addressing modes. A few examples:

```
MOV.W #LABEL,PC; Branch to address LABEL (lower 64 KB)

MOVA #LABEL,PC; Branch to address LABEL (1MB memory)

MOV.W LABEL,PC; Branch to address in word LABEL; (lower 64 KB)

MOV.W @R14,PC; Branch indirect to address in; R14 (lower 64 KB)

ADDA #4,PC; Skip two words (1 MB memory)
```

The BR and CALL instructions reset the upper four PC bits to 0. Only addresses in the lower 64-KB address range can be reached with the BR or CALL instruction. When branching or calling, addresses beyond the lower 64-KB range can only be reached using the BRA or CALLA instructions. Also, any instruction to directly modify the PC does so according to the used addressing mode. For example, MOV.W #value, PC will clear the upper four bits of the PC because it is a .W instruction.

The program counter is automatically stored on the stack with CALL, or CALLA instructions, and during an interrupt service routine. Figure 5-4 shows the storage of the program counter with the return address after a CALLA instruction. A CALL instruction stores only bits 15:0 of the PC.

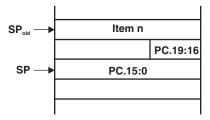


Figure 5-4. Program Counter Storage on the Stack for CALLA

The RETA instruction restores bits 19:0 of the program counter and adds 4 to the stack pointer. The RET instruction restores bits 15:0 to the program counter and adds 2 to the stack pointer.

CPU Registers www.ti.com

5.3.2 Stack Pointer (SP)

The 20-bit stack pointer (SP/R1) is used by the CPU to store the return addresses of subroutine calls and interrupts. It uses a predecrement, postincrement scheme. In addition, the SP can be used by software with all instructions and addressing modes. Figure 5-5 shows the SP. The SP is initialized into RAM by the user, and is always aligned to even addresses.

Figure 5-6 shows the stack usage. Figure 5-7 shows the stack usage when 20-bit address-words are pushed.

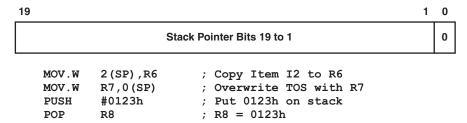


Figure 5-5. Stack Pointer

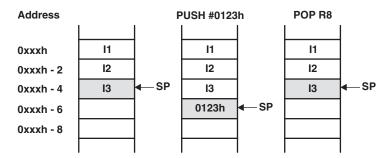


Figure 5-6. Stack Usage

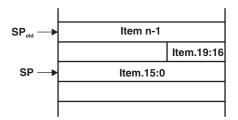



Figure 5-7. PUSHX.A Format on the Stack

The special cases of using the SP as an argument to the PUSH and POP instructions are described and shown in Figure 5-8.

The stack pointer is changed after a PUSH SP instruction.

The stack pointer is not changed after a POP SP instruction. The POP SP instruction places SP1 into the stack pointer SP (SP2 = SP1)

Figure 5-8. PUSH SP, POP SP Sequence

www.ti.com CPU Registers

5.3.3 Status Register (SR)

The 16-bit status register (SR/R2), used as a source or destination register, can only be used in register mode addressed with word instructions. The remaining combinations of addressing modes are used to support the constant generator. Figure 5-9 shows the SR bits. Do not write 20-bit values to the SR. Unpredictable operation can result.

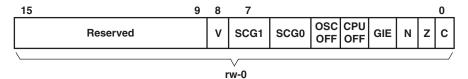


Figure 5-9. Status Register Bits

Table 5-1 describes the status register bits.

Table 5-1. Description of Status Register Bits

Bit	Description				
Reserved	Reserved				
V	Overflow bit. This bit is set when the result of an arithmetic operation overflows the signed-variable range.				
	ADDC(.B), ADDCX(.B.A), ADDA ADDC(.B), ADDCX(.B.A), ADDA negative + negative = positive negative + negative = positive otherwise reset				
	SUB(.B), SUBX(.B,.A), Suba, Subc(.B), SUBCX(.B,.A), Suba, CMP(.B), CMPX(.B,.A), CMPA Set when: positive – negative = negative negative – positive = positive otherwise reset				
SCG1	System clock generator 1. This bit, when set, turns off the DCO dc generator, if DCOCLK is not used for MCLK or SMCLK.				
SCG0	System clock generator 0. This bit, when set, turns off the FLL+ loop control.				
OSCOFF	Oscillator off. This bit, when set, turns off the LFXT1 crystal oscillator, when LFXT1CLK is not used for MCLK or SMCLK.				
CPUOFF	CPU off. This bit, when set, turns off the CPU.				
GIE	General interrupt enable. This bit, when set, enables maskable interrupts. When reset, all maskable interrupts are disabled.				
N	Negative bit. This bit is set when the result of an operation is negative and cleared when the result is positive.				
Z	Zero bit. This bit is set when the result of an operation is zero and cleared when the result is not zero.				
С	Carry bit. This bit is set when the result of an operation produced a carry and cleared when no carry occurred.				

5.3.4 Constant Generator Registers (CG1 and CG2)

Six commonly used constants are generated with the constant generator registers R2 (CG1) and R3 (CG2), without requiring an additional 16-bit word of program code. The constants are selected with the source register addressing modes (As), as described in Table 5-2.

Table 5-2. Values of Constant Generators CG1, CG2

Register	As	Constant	Remarks
R2	00	_	Register mode
R2	01	(0)	Absolute address mode
R2	10	00004h	+4, bit processing
R2	11	00008h	+8, bit processing
R3	00	00000h	0, word processing
R3	01	00001h	+1
R3	10	00002h	+2, bit processing
R3	11	FFh, FFFFh, FFFFFh	-1, word processing

The constant generator advantages are:

- No special instructions required
- No additional code word for the six constants
- No code memory access required to retrieve the constant

The assembler uses the constant generator automatically if one of the six constants is used as an immediate source operand. Registers R2 and R3, used in the constant mode, cannot be addressed explicitly; they act as source-only registers.

Constant Generator – Expanded Instruction Set

The RISC instruction set of the MSP430 has only 27 instructions. However, the constant generator allows the MSP430 assembler to support 24 additional, emulated instructions. For example, the single-operand instruction:

CLR dst

is emulated by the double-operand instruction with the same length:

MOV R3,dst

where the #0 is replaced by the assembler, and R3 is used with As=00.

INC dst

is replaced by:

ADD 0(R3), dst

5.3.5 General Purpose Registers R4 to R15

The twelve CPU registers R4 to R15, contain 8-bit, 16-bit, or 20-bit values. Any byte-write to a CPU register clears bits 19:8. Any word-write to a register clears bits 19:16. The only exception is the SXT instruction. The SXT instruction extends the sign through the complete 20-bit register.

The following figures show the handling of byte, word and address-word data. Note the reset of the leading MSBs, if a register is the destination of a byte or word instruction.

Figure 5-10 shows byte handling (8-bit data, .B suffix). The handling is shown for a source register and a destination memory byte and for a source memory byte and a destination register.

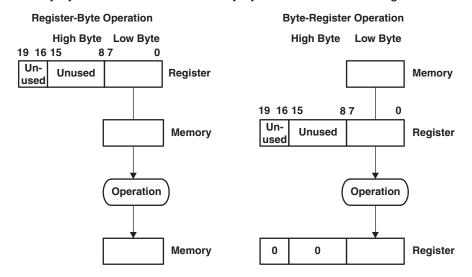


Figure 5-10. Register-Byte/Byte-Register Operation

Figure 5-11 and Figure 5-12 show 16-bit word handling (.W suffix). The handling is shown for a source register and a destination memory word and for a source memory word and a destination register.

Register-Word Operation

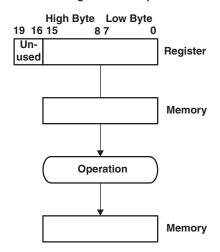


Figure 5-11. Register-Word Operation

SLAU208-June 2008 CPUX 103

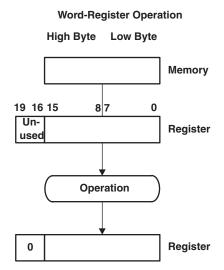


Figure 5-12. Word-Register Operation

Figure 5-13 and Figure 5-14 show 20-bit address-word handling (.A suffix). The handling is shown for a source register and a destination memory address-word and for a source memory address-word and a destination register.

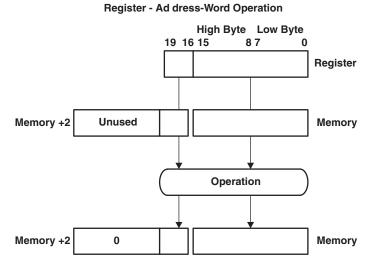


Figure 5-13. Register – Address-Word Operation

www.ti.com Addressing Modes

Address-Word - Register Operation

High Byte Low Byte 19 16 15 8 7 0 Memory +2 Unused Memory Register

Operation

Register

Figure 5-14. Address-Word - Register Operation

5.4 Addressing Modes

Seven addressing modes for the source operand and four addressing modes for the destination operand use 16-bit or 20-bit addresses (see Table 5-3). The MSP430 and MSP430X instructions are usable throughout the entire 1-MB memory range.

Table 5-3. Source/Destination Addressing

As/Ad	Addressing Mode	Syntax	Description	
00/0	Register mode	Rn	Register contents are operand.	
01/1	Indexed mode	X(Rn)	(Rn + X) points to the operand. X is stored in the next word, or stored in combination of the preceding extension word and the next word.	
01/1	Symbolic mode	ADDR	(PC + X) points to the operand. X is stored in the next word, or stored in combination of the preceding extension word and the next word. Indexed mode X(PC) is used.	
01/1	Absolute mode	&ADDR	The word following the instruction contains the absolute address. X is stored in the next word, or stored in combination of the preceding extension word and the next word. Indexed mode X(SR) is used.	
10/–	Indirect register mode	@Rn	Rn is used as a pointer to the operand.	
11/–	Indirect autoincrement	@Rn+	Rn is used as a pointer to the operand. Rn is incremented afterwards by 1 for .B instructions. by 2 for .W instructions, and by 4 for .A instructions.	
11/–	Immediate mode	#N	N is stored in the next word, or stored in combination of the preceding extension word and the next word. Indirect autoincrement mode @PC+ is used.	

The seven addressing modes are explained in detail in the following sections. Most of the examples show the same addressing mode for the source and destination, but any valid combination of source and destination addressing modes is possible in an instruction.

Note: Use of Labels EDE, TONI, TOM, and LEO

Throughout MSP430 documentation EDE, TONI, TOM, and LEO are used as generic labels. They are only labels. They have no special meaning.

SLAU208-June 2008

Addressing Modes www.ti.com

5.4.1 Register Mode

Operation: The operand is the 8-, 16-, or 20-bit content of the used CPU register.

Length: One, two, or three words

Comment: Valid for source and destination

Byte operation: Byte operation reads only the 8 LSBs of the source register Rsrc and writes the

result to the 8 LSBs of the destination register Rdst. The bits Rdst.19:8 are cleared.

The register Rsrc is not modified.

Word operation: Word operation reads the 16 LSBs of the source register Rsrc and writes the result

to the 16 LSBs of the destination register Rdst. The bits Rdst.19:16 are cleared.

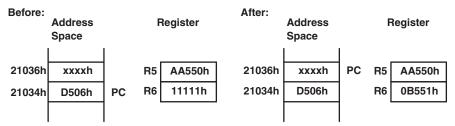
The register Rsrc is not modified.

Address-word operation:

Address-word operation reads the 20 bits of the source register Rsrc and writes the

result to the 20 bits of the destination register Rdst. The register Rsrc is not

modified

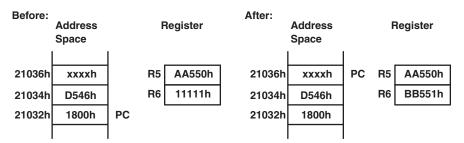

SXT exception: The SXT instruction is the only exception for register operation. The sign of the low

byte in bit 7 is extended to the bits Rdst.19:8.

Example: BIS.WR5,R6;

This instruction logically ORs the 16-bit data contained in R5 with the 16-bit

contents of R6. R6.19:16 is cleared.



A550h.or.1111h = B551h

Example: BISX.AR5,R6;

This instruction logically ORs the 20-bit data contained in R5 with the 20-bit contents of R6.

The extension word contains the A/L-bit for 20-bit data. The instruction word uses byte mode with bits A/L:B/W = 01. The result of the instruction is:

AA550h.or.11111h = BB551h

5.4.2 Indexed Mode

The Indexed mode calculates the address of the operand by adding the signed index to a CPU register. The Indexed mode has three addressing possibilities:

- Indexed mode in lower 64-KB memory
- MSP430 instruction with Indexed mode addressing memory above the lower 64-KB memory
- MSP430X instruction with Indexed mode

Indexed Mode in Lower 64-KB Memory

If the CPU register Rn points to an address in the lower 64 KB of the memory range, the calculated memory address bits 19:16 are cleared after the addition of the CPU register Rn and the signed 16-bit index. This means, the calculated memory address is always located in the lower 64 KB and does not overflow or underflow out of the lower 64-KB memory space. The RAM and the peripheral registers can be accessed this way and existing MSP430 software is usable without modifications as shown in Figure 5-15.

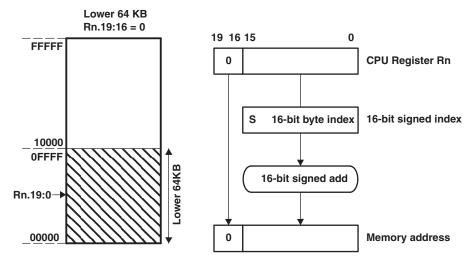


Figure 5-15. Indexed Mode in Lower 64 KB

Length: Two or three words

Operation: The signed 16-bit index is located in the next word after the instruction and is added to

the CPU register Rn. The resulting bits 19:16 are cleared giving a truncated 16-bit memory address, which points to an operand address in the range 00000h to 0FFFFh.

The operand is the content of the addressed memory location.

Comment: Valid for source and destination. The assembler calculates the register index and inserts

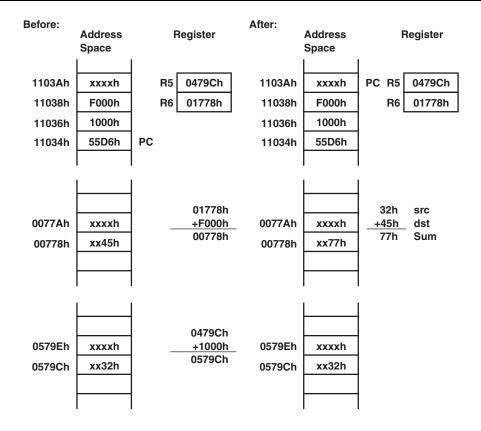
it.

Example: ADD.B 1000h(R5), 0F000h(R6);

This instruction adds the 8-bit data contained in source byte 1000h(R5) and the destination byte 0F000h(R6) and places the result into the destination byte. Source and destination bytes are both located in the lower 64 KB due to the cleared bits 19:16 of

registers R5 and R6.

Source: The byte pointed to by R5 + 1000h results in address 0479Ch + 1000h = 0579Ch after


truncation to a 16-bit address.

Destination: The byte pointed to by R6 + F000h results in address 01778h + F000h = 00778h after

truncation to a 16-bit address.

SLAU208-June 2008 CPUX 107

MSP430 Instruction With Indexed Mode in Upper Memory

If the CPU register Rn points to an address above the lower 64-KB memory, the Rn bits 19:16 are used for the address calculation of the operand. The operand may be located in memory in the range Rn +32 KB, because the index, X, is a signed 16-bit value. In this case, the address of the operand can overflow or underflow into the lower 64-KB memory space (see Figure 5-16 and Figure 5-17).

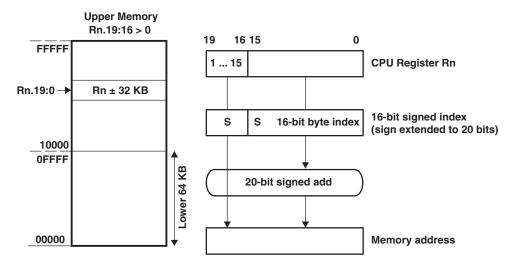


Figure 5-16. Indexed Mode in Upper Memory

108

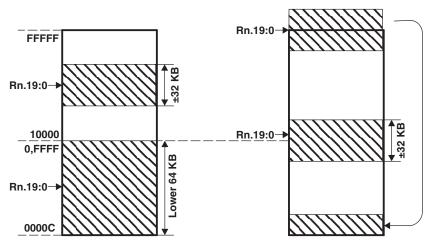


Figure 5-17. Overflow and Underflow for the Indexed Mode

Length: Two or three words

Operation: The sign-extended 16-bit index in the next word after the instruction is added to the

20 bits of the CPU register Rn. This delivers a 20-bit address, which points to an address in the range 0 to FFFFFh. The operand is the content of the addressed

memory location.

Comment: Valid for source and destination. The assembler calculates the register index and

inserts it.

Example: ADD.W 8346h(R5), 2100h(R6);

This instruction adds the 16-bit data contained in the source and the destination addresses and places the 16-bit result into the destination. Source and destination

operand can be located in the entire address range.

Source: The word pointed to by R5 + 8346h. The negative index 8346h is sign-extended,

which results in address 23456h + F8346h = 1B79Ch.

Destination: The word pointed to by R6 + 2100h results in address 15678h + 2100h = 17778h.

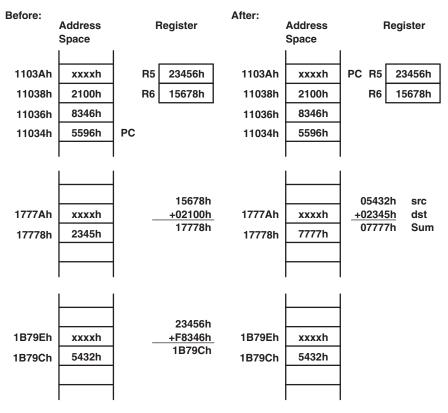


Figure 5-18. Example for the Indexed Mode

MSP430X Instruction With Indexed Mode

When using an MSP430X instruction with Indexed mode, the operand can be located anywhere in the range of Rn + 19 bits.

Length: Three or four words

Operation: The operand address is the sum of the 20-bit CPU register content and the 20-bit

index. The four MSBs of the index are contained in the extension word, the 16 LSBs are contained in the word following the instruction. The CPU register is not

modified

Comment: Valid for source and destination. The assembler calculates the register index and

inserts it.

Example: ADDX.A 12346h(R5), 32100h(R6);

This instruction adds the 20-bit data contained in the source and the destination

addresses and places the result into the destination.

Source: Two words pointed to by R5 + 12346h which results in address 23456h + 12346h =

3579Ch.

Destination: Two words pointed to by R6 + 32100h which results in address 45678h + 32100h =

77778h.

The extension word contains the MSBs of the source index and of the destination index and the A/L-bit for 20-bit data. The instruction word uses byte mode due to the 20-bit data length with bits A/L:B/W = 01.

Before:	Address Space	Register	After:	Address Space	Register
2103Ah 21038h 21036h 21034h 21032h	xxxxh 2100h 2346h 55D6h 1883h	R5 23456h R6 45678h	2103Ah 21038h 21036h 21034h 21032h	xxxxh 2100h 2346h 55D6h 1883h	PC R5 23456h R6 45678h
7777Ah 77778h	0001h 2345h	45678h <u>+32100h</u> 77778h	7777Ah 77778h	0007h 7777h	65432h src +12345h dst 77777h Sum
3579Eh 3579Ch	0006h 5432h	23456h +12346h 3579Ch	3579Eh 3579Ch	0006h 5432h	

5.4.3 Symbolic Mode

The Symbolic mode calculates the address of the operand by adding the signed index to the program counter. The Symbolic mode has three addressing possibilities:

- Symbolic mode in lower 64-KB memory
- MSP430 instruction with symbolic mode addressing memory above the lower 64-KB memory.
- MSP430X instruction with symbolic mode

Symbolic Mode in Lower 64 KB

If the PC points to an address in the lower 64 KB of the memory range, the calculated memory address bits 19:16 are cleared after the addition of the PC and the signed 16-bit index. This means, the calculated memory address is always located in the lower 64 KB and does not overflow or underflow out of the lower 64-KB memory space. The RAM and the peripheral registers can be accessed this way and existing MSP430 software is usable without modifications as shown in Figure 5-19.

SLAU208-June 2008 CPUX 111

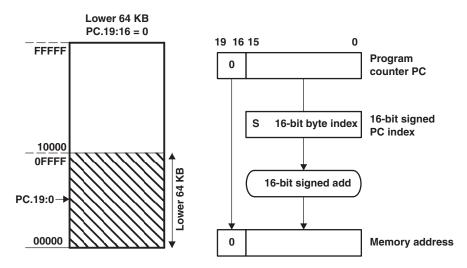


Figure 5-19. Symbolic Mode Running in Lower 64 KB

Operation: The signed 16-bit index in the next word after the instruction is added temporarily to

> the PC. The resulting bits 19:16 are cleared giving a truncated 16-bit memory address, which points to an operand address in the range 00000h, to 0FFFFh. The

operand is the content of the addressed memory location.

Length: Two or three words

Valid for source and destination. The assembler calculates the PC index and Comment:

inserts it.

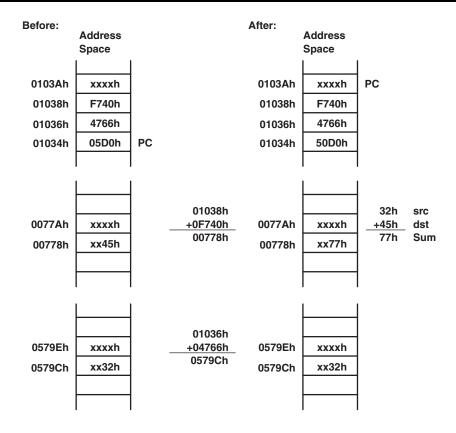
Example: ADD.B EDE, TONI;

> This instruction adds the 8-bit data contained in source byte EDE and destination byte TONI and places the result into the destination byte TONI. Bytes EDE and

TONI and the program are located in the lower 64 KB.

Source: Byte EDE located at address 0,579Ch, pointed to by PC + 4766h where the PC

index 4766h is the result of 0579Ch - 01036h = 04766h. Address 01036h is the


location of the index for this example.

Destination: Byte TONI located at address 00778h, pointed to by PC + F740h, is the truncated

16-bit result of 00778h - 1038h = FF740h. Address 01038h is the location of the

index for this example.

MSP430 Instruction with Symbolic Mode in Upper Memory

If the PC points to an address above the lower 64-KB memory, the PC bits 19:16 are used for the address calculation of the operand. The operand may be located in memory in the range PC +32 KB, because the index, X, is a signed 16-bit value. In this case, the address of the operand can overflow or underflow into the lower 64-KB memory space as shown in Figure 5-20 and Figure 5-21.

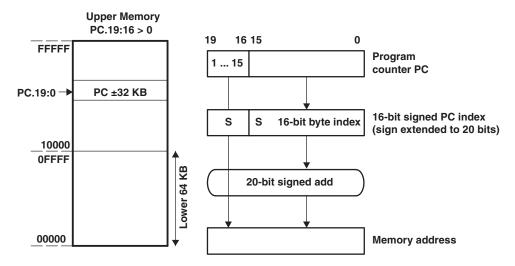


Figure 5-20. Symbolic Mode Running in Upper Memory

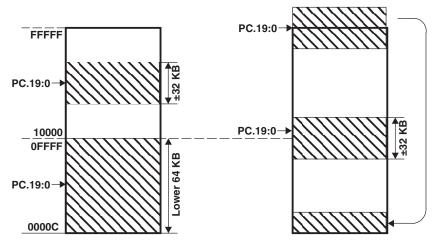


Figure 5-21. Overflow and Underflow for the Symbolic Mode

Length: Two or three words

Operation: The sign-extended 16-bit index in the next word after the instruction is added to the

> 20 bits of the PC. This delivers a 20-bit address, which points to an address in the range 0 to FFFFh. The operand is the content of the addressed memory location.

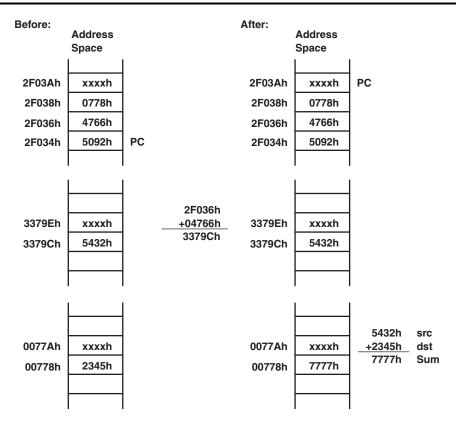
Comment: Valid for source and destination. The assembler calculates the PC index and

inserts it

Example: ADD.W EDE, &TONI;

> This instruction adds the 16-bit data contained in source word EDE and destination word TONI and places the 16-bit result into the destination word TONI. For this

example, the instruction is located at address 2,F034h.


Word EDE at address 3379Ch, pointed to by PC + 4766h which is the 16-bit result Source:

of 3379Ch - 2F036h = 04766h. Address 2F036h is the location of the index for this

example.

Destination: Word TONI located at address 00778h pointed to by the absolute address 00778h.

MSP430X Instruction with Symbolic Mode

When using an MSP430X instruction with Symbolic mode, the operand can be located anywhere in the range of PC + 19 bits.

Length: Three or four words

Operation: The operand address is the sum of the 20-bit PC and the 20-bit index. The four

MSBs of the index are contained in the extension word, the 16 LSBs are contained

in the word following the instruction.

Comment: Valid for source and destination. The assembler calculates the register index and

inserts it.

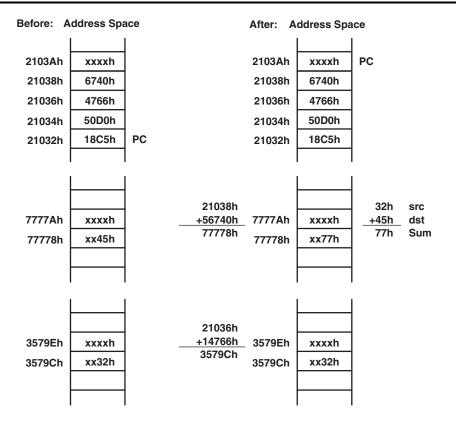
Example: ADDX.B EDE, TONI;

This instruction adds the 8-bit data contained in source byte EDE and destination

byte TONI and places the result into the destination byte TONI.

Source: Byte EDE located at address 3579Ch, pointed to by PC + 14766h, is the 20-bit

result of 3579Ch - 21036h = 14766h. Address 21036h is the address of the index in


this example.

Destination: Byte TONI located at address 77778h, pointed to by PC + 56740h, is the 20-bit

result of 77778h - 21038h = 56740h. Address 21038h is the address of the index in

this example.

5.4.4 Absolute Mode

The Absolute mode uses the contents of the word following the instruction as the address of the operand. The Absolute mode has two addressing possibilities:

- Absolute mode in lower 64-KB memory
- MSP430X instruction with Absolute mode

Absolute Mode in Lower 64 KB

If an MSP430 instruction is used with Absolute addressing mode, the absolute address is a 16-bit value and therefore points to an address in the lower 64 KB of the memory range. The address is calculated as an index from 0 and is stored in the word following the instruction The RAM and the peripheral registers can be accessed this way and existing MSP430 software is usable without modifications.

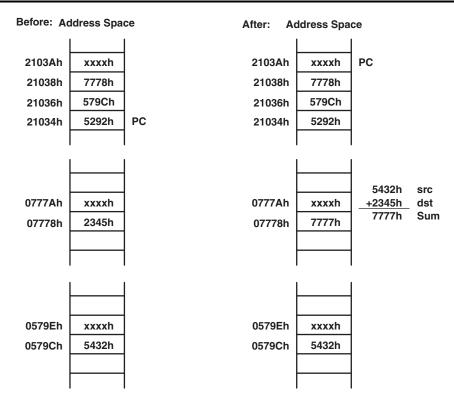
Length: Two or three words

Operation: The operand is the content of the addressed memory location.

Comment: Valid for source and destination. The assembler calculates the index from 0 and

inserts it.

Example: ADD.W &EDE, &TONI;


This instruction adds the 16-bit data contained in the absolute source and

destination addresses and places the result into the destination.

Source: Word at address EDE

Destination: Word at address TONI

MSP430X Instruction with Absolute Mode

If an MSP430X instruction is used with Absolute addressing mode, the absolute address is a 20-bit value and therefore points to any address in the memory range. The address value is calculated as an index from 0. The four MSBs of the index are contained in the extension word, and the 16 LSBs are contained in the word following the instruction.

Length: Three or four words

Operation: The operand is the content of the addressed memory location.

Comment: Valid for source and destination. The assembler calculates the index from 0 and

inserts it.

Example: ADDX.A &EDE, &TONI;

This instruction adds the 20-bit data contained in the absolute source and

destination addresses and places the result into the destination.

Source: Two words beginning with address EDE

Destination: Two words beginning with address TONI

Before:	Address Space	ı	After:	Address Space	ı	
2103Ah	xxxxh		2103Ah	xxxxh	PC	
21038h	7778h		21038h	7778h		
21036h	579Ch		21036h	579Ch		
21034h	52D2h		21034h	52D2h		
21032h	1987h	PC	21032h	1987h		
	l					
					65432h	src
7777Ah	0001h		7777Ah	0007h	+12345h 77777h	dst Sum
77778h	2345h		77778h	7777h	''''	Juili
	I					
3579Eh	0006h		3579Eh	0006h		
3579Ch	5432h		3579Ch	5432h		
	I	I		1	I	

5.4.5 Indirect Register Mode

The Indirect Register mode uses the contents of the CPU register Rsrc as the source operand. The Indirect Register mode always uses a 20-bit address.

Length: One, two, or three words

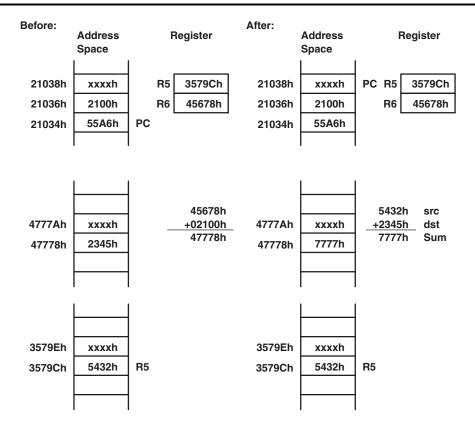
The operand is the content the addressed memory location. The source register Operation:

Rsrc is not modified.

Comment: Valid only for the source operand. The substitute for the destination operand is

0(Rdst).

Example: ADDX.W @R5,2100h(R6)


This instruction adds the two 16-bit operands contained in the source and the

destination addresses and places the result into the destination.

Source: Word pointed to by R5. R5 contains address 3579Ch for this example.

Destination: Word pointed to by R6 + 2100h which results in address 45678h + 2100h = 7778h.

5.4.6 Indirect, Autoincrement Mode

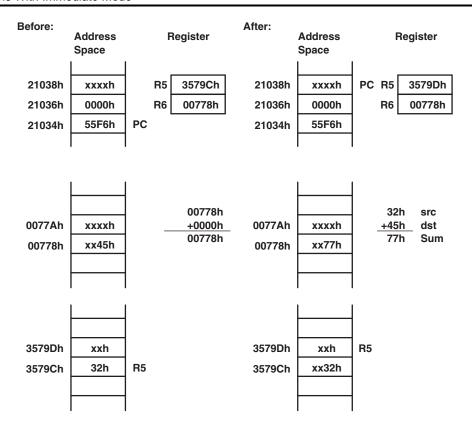
The Indirect Autoincrement mode uses the contents of the CPU register Rsrc as the source operand. Rsrc is then automatically incremented by 1 for byte instructions, by 2 for word instructions, and by 4 for address-word instructions immediately after accessing the source operand. If the same register is used for source and destination, it contains the incremented address for the destination access. Indirect Autoincrement mode always uses 20-bit addresses.

Length: One, two, or three words

Operation: The operand is the content of the addressed memory location.

Comment: Valid only for the source operand

Example: ADD.B@R5+,0(R6)


This instruction adds the 8-bit data contained in the source and the destination

addresses and places the result into the destination.

Source: Byte pointed to by R5. R5 contains address 3,579Ch for this example

Destination: Byte pointed to by R6 + 0h which results in address 0778h for this example

5.4.7 Immediate Mode

odeThe Immediate mode allows accessing constants as operands by including the constant in the memory location following the instruction. The program counter PC is used with the Indirect Autoincrement mode. The PC points to the immediate value contained in the next word. After the fetching of the immediate operand, the PC is incremented by 2 for byte, word, or address-word instructions. The Immediate mode has two addressing possibilities:

- 8-bit or 16-bit constants with MSP430 instructions
- 20-bit constants with MSP430X instruction

MSP430 Instructions With Immediate Mode

If an MSP430 instruction is used with Immediate addressing mode, the constant is an 8- or 16-bit value and is stored in the word following the instruction.

Length: Two or three words. One word less if a constant of the constant generator can be

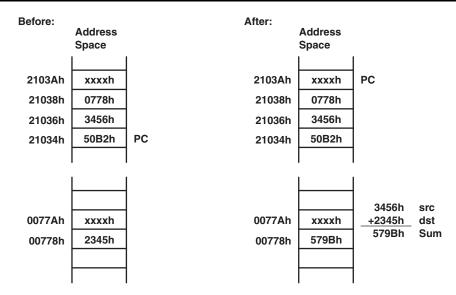
used for the immediate operand.

Operation: The 16-bit immediate source operand is used together with the 16-bit destination

operand.

Comment: Valid only for the source operand

Example: ADD #3456h,&TONI


This instruction adds the 16-bit immediate operand 3456h to the data in the

destination address TONI.

Source: 16-bit immediate value 3456h

Destination: Word at address TONI

MSP430X Instructions With Immediate Mode

If an MSP430X instruction is used with immediate addressing mode, the constant is a 20-bit value. The 4 MSBs of the constant are stored in the extension word and the 16 LSBs of the constant are stored in the word following the instruction.

Length: Three or four words. One word less if a constant of the constant generator can be

used for the immediate operand.

Operation: The 20-bit immediate source operand is used together with the 20-bit destination

operand.

Comment: Valid only for the source operand

Example: ADDX.A #23456h,&TONI;

This instruction adds the 20-bit immediate operand 23456h to the data in the

destination address TONI.

Source: 20-bit immediate value 23456h

Destination: Two words beginning with address TONI

Before:	Adduses	Α	fter:	A alalua a a		
	Address Space			Address Space		
	ı	1		ı		
2103Ah	xxxxh		2103Ah	xxxxh	PC	
21038h	7778h		21038h	7778h		
21036h	3456h		21036h	3456h		
21034h	50F2h		21034h	50F2h		
21032h	1907h	PC	21032h	1907h		
	I			1		
					23456h	src
7777Ah	0001h		7777Ah	0003h	+12345h	dst
77778h	2345h		77778h	579Bh	3579Bh	Sum

5.5 MSP430 and MSP430X Instructions

MSP430 instructions are the 27 implemented instructions of the MSP430 CPU. These instructions are used throughout the 1-MB memory range unless their 16-bit capability is exceeded. The MSP430X instructions are used when the addressing of the operands or the data length exceeds the 16-bit capability of the MSP430 instructions.

There are three possibilities when choosing between an MSP430 and MSP430X instruction:

- To use only the MSP430 instructions: The only exceptions are the CALLA and the RETA instruction.
 This can be done if a few, simple rules are met:
 - Placement of all constants, variables, arrays, tables, and data in the lower 64 KB. This allows the
 use of MSP430 instructions with 16-bit addressing for all data accesses. No pointers with 20-bit
 addresses are needed.
 - Placement of subroutine constants immediately after the subroutine code. This allows the use of the symbolic addressing mode with its 16-bit index to reach addresses within the range of PC +32 KB.
- To use only MSP430X instructions: The disadvantages of this method are the reduced speed due to the additional CPU cycles and the increased program space due to the necessary extension word for any double operand instruction.
- Use the best fitting instruction where needed

The following sections list and describe the MSP430 and MSP430X instructions.

5.5.1 MSP430 Instructions

The MSP430 instructions can be used, regardless if the program resides in the lower 64 KB or beyond it. The only exceptions are the instructions CALL and RET which are limited to the lower 64 KB address range. CALLA and RETA instructions have been added to the MSP430X CPU to handle subroutines in the entire address range with no code size overhead.

MSP430 Double Operand (Format I) Instructions

Figure 5-22 shows the format of the MSP430 double operand instructions. Source and destination words are appended for the Indexed, Symbolic, Absolute and Immediate modes. Table 5-4 lists the twelve MSP430 double operand instructions.

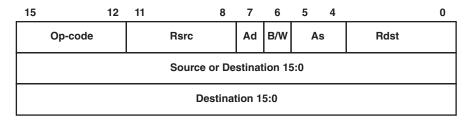


Figure 5-22. MSP430 Double Operand Instruction Format

Table 5-4. MSP430 Double Operand Instructions

Masassis	S-Reg,	Onenation	Status Bits ⁽¹⁾				
Mnemonic	D-Reg	Operation	V	N	Z	С	
MOV(.B)	src,dst	$\operatorname{src} o \operatorname{dst}$	-	-	_	_	
ADD(.B)	src,dst	$\operatorname{src} + \operatorname{dst} \to \operatorname{dst}$	*	*	*	*	
ADDC(.B)	src,dst	$\text{src} + \text{dst} + \text{C} \rightarrow \text{dst}$	*	*	*	*	
SUB(.B)	src,dst	$dst + .not.src + 1 \rightarrow dst$	*	*	*	*	
SUBC(.B)	src,dst	$\text{dst + .not.src + C} \rightarrow \text{dst}$	*	*	*	*	

^{(1) * =} The status bit is affected.

SLAU208 – June 2008 CPUX 123
Submit Documentation Feedback

^{– =} The status bit is not affected.

^{0 =} The status bit is cleared.

^{1 =} The status bit is set.

Masassis	S-Reg,	Omenskien	Status Bits ⁽¹⁾				
Mnemonic	D-Reg	Operation	V	N	Z	С	
CMP(.B)	src,dst	dst - src	*	*	*	*	
DADD(.B)	src,dst	$\text{src} + \text{dst} + \text{C} \rightarrow \text{dst (decimally)}$	*	*	*	*	
BIT(.B)	src,dst	src .and. dst	0	*	*	Z	
BIC(.B)	src,dst	.not.src .and. $dst \rightarrow dst$	_	-	-	-	
BIS(.B)	src,dst	$\text{src .or. dst} \rightarrow \text{dst}$	_	-	-	-	
XOR(.B)	src,dst	$\text{src .xor. dst} \to \text{dst}$	*	*	*	Z	
AND(.B)	src,dst	src .and. $\operatorname{dst} \to \operatorname{dst}$	0	*	*	Z	

Table 5-4, MSP430 Double Operand Instructions (continued)

MSP430 Single Operand (Format II) Instructions

Figure 5-23 shows the format for MSP430 single operand instructions, except RETI. The destination word is appended for the Indexed, Symbolic, Absolute and Immediate modes. Table 5-5 lists the seven single operand instructions.

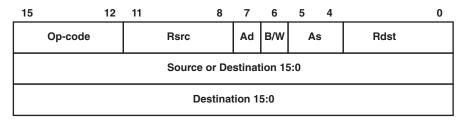


Figure 5-23. MSP430 Single Operand Instructions

Table 5-5. MSP430 Single Operand Instructions

Mnemonic	S-Reg,	Onematica		Status	Bits ⁽¹⁾	
winemonic	D-Reg	Operation	V	N	Z	С
RRC(.B)	dst	$C \to MSB \to \!\! \dots \!\! \dots \!\! LSB \to C$	*	*	*	*
RRA(.B)	dst	$MSB \to MSB \to \! LSB \to C$	0	*	*	*
PUSH(.B)	src	$SP - 2 \to SP,src \to SP$	_	-	-	-
SWPB	dst	bit 15bit $8 \leftrightarrow bit 7bit 0$	-	-	-	-
CALL	dst	Call subroutine in lower 64 KB	-	-	-	-
RETI		$TOS \to SR, SP + 2 \to SP$	*	*	*	*
		$TOS \to PC, SP + 2 \to SP$				
SXT	dst	Register mode: bit 7 \rightarrow bit 8bit 19 Other modes: bit 7 \rightarrow bit 8bit 15	0	*	*	Z

^{(1) * =} The status bit is affected.

Jumps

Figure 5-24 shows the format for MSP430 and MSP430X jump instructions. The signed 10-bit word offset of the jump instruction is multiplied by two, sign-extended to a 20-bit address, and added to the 20-bit program counter. This allows jumps in a range of -511 to +512 words relative to the program counter in the full 20-bit address space Jumps do not affect the status bits. Table 5-6 lists and describes the eight jump instructions.

⁻ = The status bit is not affected.

^{0 =} The status bit is cleared.

^{1 =} The status bit is set.

www.ti.com Emulated Instructions

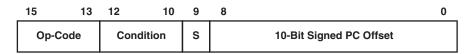


Figure 5-24. Format of the Conditional Jump Instructions

Table 5-6. Conditional Jump Instructions

Mnemonic	S-Reg, D-Reg	Operation
JEQ/JZ	Label	Jump to label if zero bit is set
JNE/JNZ	Label	Jump to label if zero bit is reset
JC	Label	Jump to label if carry bit is set
JNC	Label	Jump to label if carry bit is reset
JN	Label	Jump to label if negative bit is set
JGE	Label	Jump to label if $(N . XOR. V) = 0$
JL	Label	Jump to label if $(N.XOR. V) = 1$
JMP	Label	Jump to label unconditionally

Emulated Instructions

In addition to the MSP430 and MSP430X instructions, emulated instructions are instructions that make code easier to write and read, but do not have op-codes themselves. Instead, they are replaced automatically by the assembler with a core instruction. There is no code or performance penalty for using emulated instructions. The emulated instructions are listed in Table 5-7.

Table 5-7. Emulated Instructions

Instruction	Fundamentian	Fundation	Status Bits ⁽¹⁾				
	Explanation	Emulation	V	N	Z	С	
ADC(.B) dst	Add Carry to dst	ADDC(.B) #0,dst	*	*	*	*	
BR dst	Branch indirectly dst	MOV dst,PC	-	-	_	-	
CLR(.B) dst	Clear dst	MOV(.B) #0,dst	-	_	_	_	
CLRC	Clear Carry bit	BIC #1,SR	-	-	_	0	
CLRN	Clear Negative bit	BIC #4,SR	-	0	_	_	
CLRZ	Clear Zero bit	BIC #2,SR	_	_	0	_	
DADC(.B) dst	Add Carry to dst decimally	DADD(.B) #0,dst	*	*	*	*	
DEC(.B) dst	Decrement dst by 1	SUB(.B) #1,dst	*	*	*	*	
DECD(.B) dst	Decrement dst by 2	SUB(.B) #2,dst	*	*	*	*	
DINT	Disable interrupt	BIC #8,SR	_	_	_	_	
EINT	Enable interrupt	BIS #8,SR	_	_	_	_	
INC(.B) dst	Increment dst by 1	ADD(.B) #1,dst	*	*	*	*	
INCD(.B) dst	Increment dst by 2	ADD(.B) #2,dst	*	*	*	*	
INV(.B) dst	Invert dst	XOR(.B) #-1,dst	*	*	*	*	
NOP	No operation	MOV R3,R3	_	_	_	_	
POP dst	Pop operand from stack	MOV @SP+,dst	_	_	_	_	
RET	Return from subroutine	MOV @SP+,PC	_	_	_	_	
RLA(.B) dst	Shift left dst arithmetically	ADD(.B) dst,dst	*	*	*	*	
RLC(.B) dst	Shift left dst logically through Carry	ADDC(.B) dst,dst	*	*	*	*	
SBC(.B) dst	Subtract Carry from dst	SUBC(.B) #0,dst	*	*	*	*	

^{(1) * =} The status bit is affected.

^{– =} The status bit is not affected.

^{0 =} The status bit is cleared.

^{1 =} The status bit is set.

Table 5-7. Emulated Instructions (continued)

lu atm. ati a u	Funlametica	Fundation.	Status Bits ⁽¹⁾				
Instruction	Explanation	Emulation	V	N	Z	С	
SETC	Set Carry bit	BIS #1,SR	-	-	_	1	
SETN	Set Negative bit	BIS #4,SR	-	1	_	_	
SETZ	Set Zero bit	BIS #2,SR	-	-	1	_	
TST(.B) dst	Test dst (compare with 0)	CMP(.B) #0,dst	0	*	*	1	

MSP430 Instruction Execution

The number of CPU clock cycles required for an instruction depends on the instruction format and the addressing modes used - not the instruction itself. The number of clock cycles refers to MCLK.

Instruction Cycles and Length for Interrupt, Reset, and Subroutines

Table 5-8 lists the length and the CPU cycles for reset, interrupts, and subroutines.

Table 5-8. Interrupt, Return, and Reset Cycles and Length

Action	Execution Time (MCLK Cycles)	Length of Instruction (Words)
Return from interrupt RETI	5	1
Return from subroutine RET	4	1
Interrupt request service (cycles needed before first instruction)	6	_
WDT reset	4	-
Reset (RST/NMI)	4	-

Format-II (Single Operand) Instruction Cycles and Lengths

Table 5-9 lists the length and the CPU cycles for all addressing modes of the MSP430 single operand instructions.

Table 5-9. MSP430 Format-II Instruction Cycles and Length

Addressing	No.	of Cycles		l amouth of	
Addressing Mode	RRA, RRC SWPB, SXT	PUSH	CALL	Length of Instruction	Example
Rn	1	3	4	1	SWPB R5
@Rn	3	3	4	1	RRC @R9
@Rn+	3	3	4	1	SWPB @R10+
#N	N/A	3	4	2	CALL #LABEL
X(Rn)	4	4	5	2	CALL 2(R7)
EDE	4	4	5	2	PUSH EDE
&EDE	4	4	6	2	SXT &EDE

Jump Instructions Cycles and Lengths

All jump instructions require one code word, and take two CPU cycles to execute, regardless of whether the jump is taken or not.

Format-I (Double Operand) Instruction Cycles and Lengths

Table 5-10 lists the length and CPU cycles for all addressing modes of the MSP430 format-I instructions.

Table 5-10. MSP430 Format-I Instructions Cycles and Length

Add	ressing Mode	No. of	Length of	Example
Source	Destination	Cycles	Instruction	Example
Rn	Rm	1	1	MOV R5,R8
	PC	3	1	BR R9
	x(Rm)	4 ⁽¹⁾	2	ADD R5,4(R6)
	EDE	4 ⁽¹⁾	2	XOR R8, EDE
	&EDE	4 ⁽¹⁾	2	MOV R5, &EDE
@Rn	Rm	2	1	AND @R4,R5
	PC	4	1	BR @R8
	x(Rm)	5 ⁽¹⁾	2	XOR @R5,8(R6)
	EDE	5 ⁽¹⁾	2	MOV @R5,EDE
	&EDE	5 ⁽¹⁾	2	XOR @R5, &EDE
@Rn+	Rm	2	1	ADD @R5+,R6
	PC	4	1	BR @R9+
	x(Rm)	5 ⁽¹⁾	2	XOR @R5,8(R6)
	EDE	5 ⁽¹⁾	2	MOV @R9+,EDE
	&EDE	5 ⁽¹⁾	2	MOV @R9+,&EDE
#N	Rm	2	2	MOV #20,R9
	PC	3	2	BR #2AEh
	x(Rm)	5 ⁽¹⁾	3	MOV #0300h,0(SP)
	EDE	5 ⁽¹⁾	3	ADD #33,EDE
	&EDE	5 ⁽¹⁾	3	ADD #33,&EDE
x(Rn)	Rm	3	2	MOV 2(R5),R7
	PC	5	2	BR 2(R6)
	TONI	6 ⁽¹⁾	3	MOV 4(R7),TONI
	x(Rm)	6 ⁽¹⁾	3	ADD 4(R4),6(R9)
	&TONI	6 ⁽¹⁾	3	MOV 2(R4),&TONI
EDE	Rm	3	2	AND EDE, R6
	PC	5	2	BR EDE
	TONI	6 ⁽¹⁾	3	CMP EDE, TONI
	x(Rm)	6 ⁽¹⁾	3	MOV EDE, 0(SP)
	&TONI	6 ⁽¹⁾	3	MOV EDE, &TONI
&EDE	Rm	3	2	MOV &EDE,R8
	PC	5	2	BR &EDE
	TONI	6 ⁽¹⁾	3	MOV &EDE, TONI
	x(Rm)	6 ⁽¹⁾	3	MOV &EDE,0(SP)
	&TONI	6 ⁽¹⁾	3	MOV &EDE, &TONI

⁽¹⁾ MOV, BIT, and CMP instructions execute in one fewer cycle.

5.5.2 MSP430X Extended Instructions

The extended MSP430X instructions give the MSP430X CPU full access to its 20-bit address space. Most MSP430X instructions require an additional word of op-code called the extension word. Some extended instructions do not require an additional word and are noted in the instruction description. All addresses, indexes and immediate numbers have 20-bit values, when preceded by the extension word.

There are two types of extension word:

- Register/register mode for Format-I instructions and register mode for Format-II instructions
- Extension word for all other address mode combinations

127

SLAU208-June 2008

Register Mode Extension Word

The register mode extension word is shown in Figure 5-25 and described in Table 5-11. An example is shown in Figure 5-27.

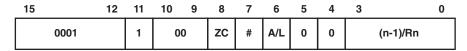


Figure 5-25. Extension Word for Register Modes

Table 5-11. Description of the Extension Word Bits for Register Mode

Bit	Descr	iption										
15:11	Extens	sion wor	d op-code. Op-codes 1800h to 1FFFh are extension words.									
10:9	Reser	/ed	I									
ZC	Zero carry bit											
	0	The executed instruction uses the status of the carry bit C.										
	1		xecuted instruction uses the carry bit as 0. The carry bit will be defined by the result of the final cion after instruction execution.									
#	Repeti	Repetition bit										
	0	The number of instruction repetitions is set by extension-word bits 3:0.										
	1	The number of instructions repetitions is defined by the value of the four LSBs of Rn. See description for bits 3:0.										
A/L		_	ttension bit. Together with the B/W bits of the following MSP430 instruction, the AL bit defines the used the instruction.									
	A/L	B/W	Comment									
	0	0	Reserved									
	0	1	20-bit address word									
	1	0	16-bit word									
	1	1	8-bit byte									
5:4	Reser	/ed										
3:0	Repeti	tion cou	int									
	# = 0	·										
	# = 1	These	four bits define the CPU register whose bits $3:0$ set the number of repetitions. Rn. $3:0$ contain $n-1$.									

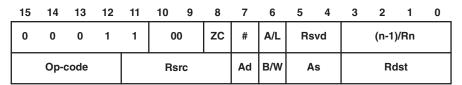
Non-Register Mode Extension Word

The extension word for non-register modes is shown in Figure 5-26 and described in Table 5-12. An example is shown in Figure 5-28.

Figure 5-26. Extension Word for Non-Register Modes

Table 5-12. Description of the Extension Word Bits for Non-Register Modes

Bit	Description
15:11	Extension word op-code. Op-codes 1800h to 1FFFh are extension words.
Source Bits 19:16	The four MSBs of the 20-bit source. Depending on the source addressing mode, these four MSBs may belong to an immediate operand, an index or to an absolute address.


Table 5-12. Description of the Extension Word Bits for Non-Register Modes (continued)

Bit	Desc	ription	1									
A/L		Data length extension bit. Together with the B/W-bits of the following MSP430 instruction, the AL bit defines the used data length of the instruction.										
	A/L	B/W	Comment									
	0	0	Reserved									
	0	1	20-bit address word									
	1	0	16-bit word									
	1	1	8-bit byte									
5:4	Rese	rved										
Destination Bits 19:16			BBs of the 20-bit destination. Depending on the destination addressing mode, these four MSBs may nindex or to an absolute address.									

Note: B/W and A/L Bit Settings for SWPBX and SXTX

The B/W and A/L bit settings for SWPBX and SXTX are:

A/L B/W
0 0 SWPBX.A, SXTX.A
0 1 N/A
1 0 SWPB.W, SXTX.W
1 1 N/A

XORX.A R9,R8

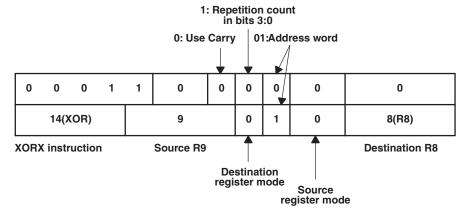
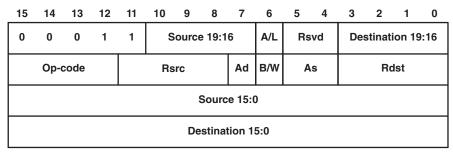



Figure 5-27. Example for an Extended Register/Register Instruction

XORX.A #12345h, 45678h(R15)

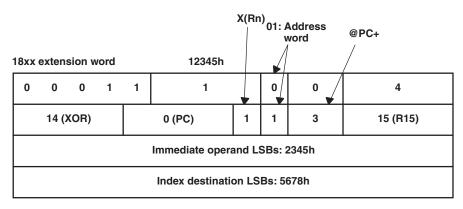


Figure 5-28. Example for an Extended Immediate/Indexed Instruction

Extended Double Operand (Format-I) Instructions

All twelve double-operand instructions have extended versions as listed in Table 1-13.

Table 5-13. Extended Double Operand Instructions

Mnomonio	Operanda	Operation	Status Bits ⁽¹⁾					
Mnemonic	Operands	Operation	V	N	Z	С		
MOVX(.B,.A)	src,dst	src o dst	-	-	-	_		
ADDX(.B,.A)	src,dst	$src + dst \rightarrow dst$	*	*	*	*		
ADDCX(.B,.A)	src,dst	$src + dst + C \rightarrow dst$	*	*	*	*		
SUBX(.B,.A)	src,dst	$dst + .not.src + 1 \rightarrow dst$	*	*	*	*		
SUBCX(.B,.A)	src,dst	$\text{dst} + .\text{not.src} + \text{C} \rightarrow \text{dst}$	*	*	*	*		
CMPX(.B,.A)	src,dst	dst - src	*	*	*	*		
DADDX(.B,.A)	src,dst	$\begin{array}{l} \text{src + dst + C} \rightarrow \text{dst} \\ \text{(decimal)} \end{array}$	*	*	*	*		
BITX(.B,.A)	src,dst	src .and. dst	0	*	*	Z		
BICX(.B,.A)	src,dst	.not.src .and. $\text{dst} \rightarrow \text{dst}$	-	-	-	-		
BISX(.B,.A)	src,dst	$\text{src .or. dst} \to \text{dst}$	-	-	-	_		
XORX(.B,.A)	src,dst	$\text{src .xor. dst} \to \text{dst}$	*	*	*	Z		
ANDX(.B,.A)	src,dst	$src.and. dst \rightarrow dst$	0	*	*	Z		

^{1) * =} The status bit is affected.

⁻ = The status bit is not affected.

^{0 =} The status bit is cleared.

^{1 =} The status bit is set.

The four possible addressing combinations for the extension word for format-I instructions are shown in Figure 5-29.

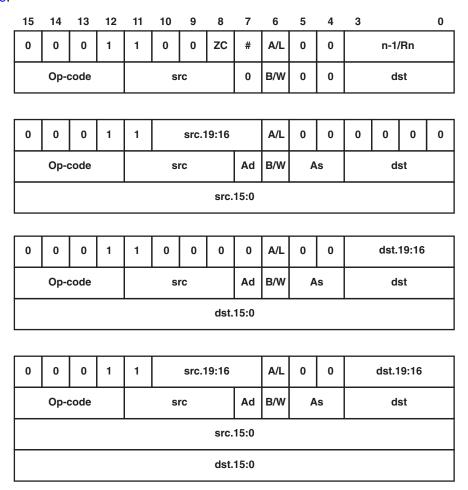


Figure 5-29. Extended Format-I Instruction Formats

If the 20-bit address of a source or destination operand is located in memory, not in a CPU register, then two words are used for this operand as shown in Figure 5-30.

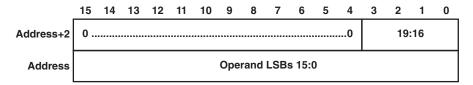


Figure 5-30. 20-Bit Addresses in Memory

Extended Single Operand (Format-II) Instructions

Extended MSP430X Format-II instructions are listed in Table 5-14.

Table 5-14. Extended Single-Operand Instructions

Mnomonio	Onerende	Operation		Status Bits ⁽¹⁾			
Mnemonic	Operands	Operation	n	٧	N	Z	С
CALLA	dst	Call indirect to subroutine (20-bit address)		_	-	_	_
POPM.A	#n,Rdst	Pop n 20-bit registers from stack	1 to 16	*	*	*	*
POPM.W	#n,Rdst	Pop n 16-bit registers from stack	1 to 16	*	*	*	*
PUSHM.A	#n,Rsrc	Push n 20-bit registers to stack	1 to 16	*	*	*	*
PUSHM.W	#n,Rsrc	Push n 16-bit registers to stack	1 to 16	*	*	*	*
PUSHX(.B,.A)	src	Push 8/16/20-bit source to stack		*	*	*	*
RRCM(.A)	#n,Rdst	Rotate right Rdst n bits through carry (16-/20-bit register)	1 to 4	*	*	*	*
RRUM(.A)	#n,Rdst	Rotate right Rdst n bits unsigned (16-/20-bit register)	1 to 4	0	*	*	Z
RRAM(.A)	#n,Rdst	Rotate right Rdst n bits arithmetically (16-/20-bit register)	1 to 4	_	_	_	_
RLAM(.A)	#n,Rdst	Rotate left Rdst n bits arithmetically (16-/20-bit register)	1 to 4	_	-	-	_
RRCX(.B,.A)	dst	Rotate right dst through carry (8-/16-/20-bit data)	1	*	*	*	Z
RRUX(.B,.A)	dst	Rotate right dst unsigned (8-/16-/20-bit)	1	0	*	*	Z
RRAX(.B,.A)	dst	Rotate right dst arithmetically	1				
SWPBX(.A)	dst	Exchange low byte with high byte	1				
SXTX(.A)	Rdst	$Bit7 \rightarrow bit8 \dots bit19$	1				
SXTX(.A)	dst	$Bit7 \rightarrow bit8 \dots MSB$	1				

^{(1) * =} The status bit is affected.

The three possible addressing mode combinations for format-II instructions are shown in Figure 5-31.

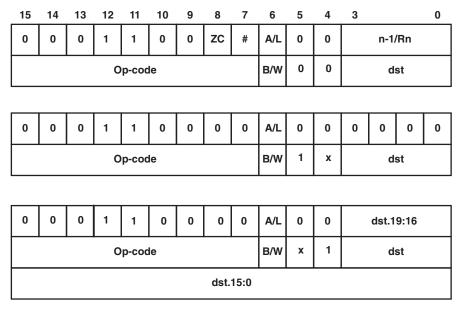


Figure 5-31. Extended Format-II Instruction Format

⁻ = The status bit is not affected.

^{0 =} The status bit is cleared.

^{1 =} The status bit is set.

Extended Format II Instruction Format Exceptions

Exceptions for the Format II instruction formats are shown in Figure 5-32 through Figure 5-35.

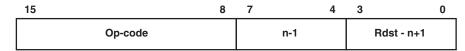


Figure 5-32. PUSHM/POPM Instruction Format

Figure 5-33. RRCM, RRAM, RRUM and RLAM Instruction Format

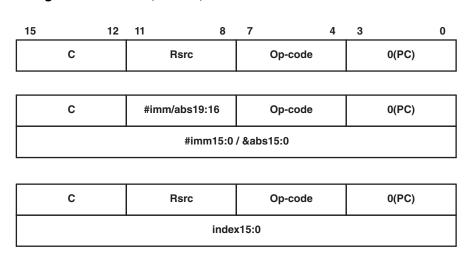


Figure 5-34. BRA Instruction Format

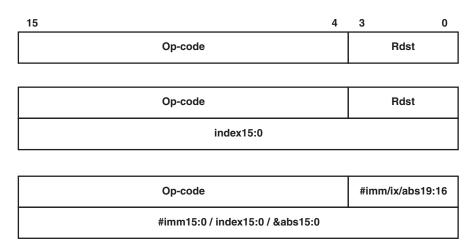


Figure 5-35. CALLA Instruction Format

Extended Emulated Instructions

The extended instructions together with the constant generator form the extended emulated instructions. Table 5-15 lists the emulated instructions.

Table 5-15. Extended Emulated Instructions

Instruction	Explanation	Emulation
ADCX(.B,.A) dst	Add carry to dst	ADDCX(.B,.A) #0,dst
BRA dst	Branch indirect dst	MOVA dst,PC
RETA	Return from subroutine	MOVA @SP+,PC
CLRA Rdst	Clear Rdst	MOV #0, Rdst
CLRX(.B,.A) dst	Clear dst	MOVX(.B,.A) #0,dst
DADCX(.B,.A) dst	Add carry to dst decimally	DADDX(.B,.A) #0,dst
DECX(.B,.A) dst	Decrement dst by 1	SUBX(.B,.A) #1,dst
DECDA Rdst	Decrement Rdst by 2	SUBA #2,Rdst
DECDX(.B,.A) dst	Decrement dst by 2	SUBX(.B,.A) #2,dst
<pre>INCX(.B,.A) dst</pre>	Increment dst by 1	ADDX(.B,.A) #1,dst
INCDA Rdst	Increment Rdst by 2	ADDA #2,Rdst
<pre>INCDX(.B,.A) dst</pre>	Increment dst by 2	ADDX(.B,.A) #2,dst
INVX(.B,.A) dst	Invert dst	XORX(.B,.A) #-1,dst
RLAX(.B,.A) dst	Shift left dst arithmetically	ADDX(.B,.A) dst,dst
RLCX(.B,.A) dst	Shift left dst logically through carry	ADDCX(.B,.A) dst,dst
SBCX(.B,.A) dst	Subtract carry from dst	SUBCX(.B,.A) #0,dst
TSTA Rdst	Test Rdst (compare with 0)	CMPA #0,Rdst
TSTX(.B,.A) dst	Test dst (compare with 0)	CMPX(.B,.A) #0,dst
POPX dst	Pop to dst	MOVX(.B, .A) @SP+,dst

MSP430X Address Instructions

MSP430X address instructions are instructions that support 20-bit operands but have restricted addressing modes. The addressing modes are restricted to the register mode and the Immediate mode, except for the MOVA instruction as listed in Table 5-16. Restricting the addressing modes removes the need for the additional extension-word op-code improving code density and execution time. Address instructions should be used any time an MSP430X instruction is needed with the corresponding restricted addressing mode.

Table 5-16. Address Instructions, Operate on 20-Bit Register Data

	0	Ownerthan	S	tatus	Bits	(1)
Mnemonic	Operands	Operation	٧	N	Z	С
ADDA	Rsrc,Rdst	Add source to destination register	*	*	*	*
	#imm20,Rdst					
MOVA	Rsrc,Rdst	Move source to destination	-	-	-	-
	#imm20,Rdst					
	z16(Rsrc),Rdst					
	EDE,Rdst					
	&abs20,Rdst					
	@Rsrc,Rdst					
	@Rsrc+,Rdst					
	Rsrc,z16(Rdst)					
	Rsrc,&abs20					
CMPA	ADDA	Compare source to destination register	*	*	*	*
	ADDA					
SUBA	ADDA	Subtract source from destination register	*	*	*	*
	ADDA					

^{(1) * =} The status bit is affected.

⁻ = The status bit is not affected.

^{0 =} The status bit is cleared.

^{1 =} The status bit is set.

MSP430X Instruction Execution

The number of CPU clock cycles required for an MSP430X instruction depends on the instruction format and the addressing modes used, not the instruction itself. The number of clock cycles refers to MCLK.

MSP430X Format-II (Single-Operand) Instruction Cycles and Lengths

Table 5-17 lists the length and the CPU cycles for all addressing modes of the MSP430X extended single-operand instructions.

Table 5-17. MSP430X Format II Instruction Cycles and Length

		Execution	Cycles/Len	gth of Ins	truction (Wo	ords)	
Instruction	Rn	@Rn	@Rn+	#N	X(Rn)	EDE	&EDE
RRAM	n/1	-	-	-	_	-	-
RRCM	n/1	-	-	_	-	-	-
RRUM	n/1	_	_	-	-	-	-
RLAM	n/1	_	_	-	-	-	-
PUSHM	2+n/1	_	_	-	-	-	-
PUSHM.A	2+2n/1	_	_	_	-	-	_
POPM	2+n/1	_	_	-	-	-	-
POPM.A	2+2n/1	_	_	-	-	-	-
CALLA	5/1	6/1	6/1	5/2	5 ⁽¹⁾ /2	7/2	7/2
RRAX(.B)	1+n/2	4/2	4/2	-	5/3	5/3	5/3
RRAX.A	1+n/2	6/2	6/2	_	7/3	7/3	7/3
RRCX(.B)	1+n/2	4/2	4/2	-	5/3	5/3	5/3
RRCX.A	1+n/2	6/2	6/2	_	7/3	7/3	7/3
PUSHX(.B)	4/2	4/2	4/2	4/3	5 ⁽¹⁾ /3	5/3	5/3
PUSHX.A	5/2	6/2	6/2	5/3	7 ⁽¹⁾ /3	7/3	7/3
POPX(.B)	3/2	_	_	_	5/3	5/3	5/3
POPX.A	4/2	_	_	_	7/3	7/3	7/3

⁽¹⁾ Add one cycle when Rn = SP.

MSP430X Format-I (Double-Operand) Instruction Cycles and Lengths

Table 5-18 lists the length and CPU cycles for all addressing modes of the MSP430X extended format-I instructions.

Table 5-18. MSP430X Format-I Instruction Cycles and Length

A	ddressing Mode	No. of	Cycles	Length of Instruction	Examples		
Source	Destination	.B/.W	.А	.B/.W/.A			
Rn	Rm ⁽¹⁾	2	2	2	BITX.B R5,R8		
	PC	4	4	2	ADDX R9,PC		
	x(Rm)	5 ⁽²⁾	7 ⁽³⁾	3	ANDX.A R5,4(R6)		
	EDE	5 ⁽²⁾	7 ⁽³⁾	3	XORX R8, EDE		
	&EDE	5 ⁽²⁾	7 ⁽³⁾	3	BITX.W R5, &EDE		
@Rn	Rm	3	4	2	BITX @R5,R8		
	PC	5	6	2	ADDX @R9,PC		
	x(Rm)	6 ⁽²⁾	9 ⁽³⁾	3	ANDX.A @R5,4(R6)		
	EDE	6 ⁽²⁾	9 ⁽³⁾	3	XORX @R8,EDE		
	&EDE	6 ⁽²⁾	9(3)	3	BITX.B @R5,&EDE		
@Rn+	Rm	3	4	2	BITX @R5+,R8		
	PC	5	6	2	ADDX.A @R9+,PC		
	x(Rm)	6 ⁽²⁾	9 ⁽³⁾	3	ANDX @R5+,4(R6)		
	EDE	6 ⁽²⁾	9 ⁽³⁾	3	XORX.B @R8+,EDE		
	&EDE	6 ⁽²⁾	9(3)	3	BITX @R5+,&EDE		
#N	Rm	3	3	33	BITX #20,R8		
	PC ⁽⁴⁾	4	4	3	ADDX.A #FE000h,PC		
	x(Rm)	6 ⁽²⁾	8 ⁽³⁾	4	ANDX #1234,4(R6)		
	EDE	6 ⁽²⁾	8 ⁽³⁾	4	XORX #A5A5h, EDE		
	&EDE	6 ⁽²⁾	8 ⁽³⁾	4	BITX.B #12,&EDE		
x(Rn)	Rm	4	5	3	BITX 2(R5),R8		
	PC ⁽⁴⁾	6	7	3	SUBX.A 2(R6),PC		
	TONI	7 ⁽²⁾	10 ⁽³⁾	4	ANDX 4(R7),4(R6)		
	x(Rm)	7 ⁽²⁾	10 ⁽³⁾	4	XORX.B 2(R6),EDE		
	&TONI	7 ⁽²⁾	10 ⁽³⁾	4	BITX 8(SP), &EDE		
EDE	Rm	4	5	3	BITX.B EDE,R8		
	PC ⁽⁴⁾	6	7	3	ADDX.A EDE,PC		
	TONI	7 ⁽²⁾	10 ⁽³⁾	4	ANDX EDE, 4(R6)		
	x(Rm)	7 ⁽²⁾	10 ⁽³⁾	4	ANDX EDE, TONI		
	&TONI	7 ⁽²⁾	10 ⁽³⁾	4	BITX EDE, &TONI		
&EDE	Rm	4	5	3	BITX &EDE,R8		
	PC ⁽⁴⁾	6	7	3	ADDX.A &EDE,PC		
	TONI	7 ⁽²⁾	10 ⁽³⁾	4	ANDX.B &EDE,4(R6)		
	x(Rm)	7 ⁽²⁾	10 ⁽³⁾	4	XORX &EDE, TONI		
	&TONI	7 ⁽²⁾	10 ⁽³⁾	4	BITX &EDE, &TONI		

Repeat instructions require n+1 cycles where n is the number of times the instruction is executed. Reduce the cycle count by one for MOV, BIT, and CMP instructions. Reduce the cycle count by two for MOV, BIT, and CMP instructions. Reduce the cycle count by one for MOV, ADD, and SUB instructions.

CPUX SLAU208-June 2008 137

⁽²⁾

MSP430X Address Instruction Cycles and Lengths

Table 5-19 lists the length and the CPU cycles for all addressing modes of the MSP430X address instructions.

Table 5-19. Address Instruction Cycles and Length

Addressing Mode			on Time Cycles)		Instruction ords)	
Source	Destination	MOVA BRA	CMPA ADDA SUBA	MOVA	CMPA ADDA SUBA	Example
Rn	Rn	1	1	1	1	CMPA R5,R8
	PC	3	3	1	1	SUBA R9,PC
	x(Rm)	4	_	2	_	MOVA R5,4(R6)
	EDE	4	-	2	-	MOVA R8, EDE
	&EDE	4	-	2	-	MOVA R5, &EDE
@Rn	Rm	3	-	1	-	MOVA @R5,R8
	PC	5	_	1	_	MOVA @R9,PC
@Rn+	Rm	3	_	1	_	MOVA @R5+,R8
	PC	5	-	1	_	MOVA @R9+,PC
#N	Rm	2	3	2	2	CMPA #20,R8
	PC	3	3	2	2	SUBA #FE000h,PC
x(Rn)	Rm	4	_	2	_	MOVA 2(R5),R8
	PC	6	_	2	_	MOVA 2(R6),PC
EDE	Rm	4	_	2	_	MOVA EDE, R8
	PC	6	_	2	_	MOVA EDE, PC
&EDE	Rm	4	_	2	_	MOVA &EDE, R8
	PC	6	_	2	_	MOVA &EDE,PC

5.6 Instruction Set Description

Table 5-20 shows all available instructions:

Table 5-20. Instruction Map of MSP430X

	000	040	080	0C0	100	140	180	1C0	200	240	280	2C0	300	340	380	3C0
0xxx					MOVA,	CMPA, A	DDA, SL	JBA, RRO	CM, RRA	M, RLAM	, RRUM					
10xx	RRC	RRC. B	SWPB		RRA	RRA. B	SXT		PUSH	PUSH .B	CALL		RETI	CALL A		
14xx		ļ.			Į.	PUS	SHM.A, F	OPM.A,	PUSHM.	W, POPI	۸.W		Į.			
18xx					_	`tanalan	Mord Ca		t Land Fa	rm of II Im	atri i ati a m					
1Cxx		Extension Word For Format I and Format II Instructions														
20xx		JNE/JNZ														
24xx		JEQ/JZ														
28xx		JNC														
2Cxx		JC														
30xx		JN														
34xx								J	GE							
38xx								J	IL							
3Cxx								JN	ИP							
4xxx								MOV,	MOV.B							
5xxx								ADD,	ADD.B							
6xxx								ADDC,	ADDC.B							
7xxx								SUBC,	SUBC.B							
8xxx								SUB,	SUB.B							
9xxx								CMP,	CMP.B							
Axxx								DADD,	DADD.B							
Bxxx								BIT,	BIT.B							
Cxxx								BIC,	BIC.B							
Dxxx								BIS,	BIS.B							
Exxx								XOR,	XOR.B							
Fxxx								AND,	AND.B							

5.6.1 Extended Instruction Binary Descriptions

Detailed MSP430X instruction binary descriptions are shown in the following tables.

Instruction	I	Instruction Group			src or data.19:16	ı	nstru Iden	ıctio tifier		dst	
	15			12	11 8	7			4	3 0	
MOVA	0	0	0	0	src	0	0	0	0	dst	MOVA @Rsrc,Rdst
	0	0	0	0	src	0	0	0	1	dst	MOVA @Rsrc+,Rdst
	0	0	0	0	&abs.19:16	0	0	1	0	dst	MOVA &abs20,Rdst
					&abs	.15:0)				
	0	0	0	0	src	0	0	1	1	dst	MOVA x(Rsrc),Rdst
					x.1	5:0					±15-bit index x
	0	0	0	0	src	0	1	1	0	&abs.19:16	MOVA Rsrc,&abs20
					&abs	.15:0)				
	0	0	0	0	src	0	1	1	1	dst	MOVA Rsrc, X(Rdst)
					x.1	5:0					±15-bit index x
	0	0	0	0	imm.19:16	1	0	0	0	dst	MOVA #imm20,Rdst
					imm	.15:0					
CMPA	0	0	0	0	imm.19:16	1	0	0	1	dst	CMPA #imm20,Rdst
					imm	.15:0					
ADDA	0	0	0	0	imm.19:16	1	0	1	0	dst	ADDA #imm20,Rdst
					imm	.15:0					
SUBA	0	0	0	0	imm.19:16	1	0	1	1	dst	SUBA #imm20,Rdst
					imm	.15:0					
MOVA	0	0	0	0	src	1	1	0	0	dst	MOVA Rsrc, Rdst
CMPA	0	0	0	0	src	1	1	0	1	dst	CMPA Rsrc, Rdst
ADDA	0	0	0	0	src	1	1	1	0	dst	ADDA Rsrc, Rdst
SUBA	0	0	0	0	src	1	1	1	1	dst	SUBA Rsrc, Rdst

Instruction	Instruction Group				Bit Loc.	Ins	t. ID	ı	nstru Iden	ıctio tifier		dst	
	15			12	11 10	9	8	7			4	3 0	
RRCM.A	0	0	0	0	n – 1	0	0	0	1	0	0	dst	RRCM.A #n,Rdst
RRAM.A	0	0	0	0	n – 1	0	1	0	1	0	0	dst	RRAM.A #n,Rdst
RLAM.A	0	0	0	0	n – 1	1	0	0	1	0	0	dst	RLAM.A #n,Rdst
RRUM.A	0	0	0	0	n – 1	1	1	0	1	0	0	dst	RRUM.A #n,Rdst
RRCM.W	0	0	0	0	n – 1	0	0	0	1	0	1	dst	RRCM.W #n,Rdst
RRAM.W	0	0	0	0	n – 1	0	1	0	1	0	1	dst	RRAM.W #n,Rdst
RLAM.W	0	0	0	0	n – 1	1	0	0	1	0	1	dst	RLAM.W #n,Rdst
RRUM.W	0	0	0	0	n – 1	1	1	0	1	0	1	dst	RRUM.W #n,Rdst

			ı	nstru	n Ide	ntifie	r					d	st				
Instruction	15			12	11			8	7	6	5	4	3			0	
RETI	0	0	0	1	0	0	1	1	0	0	0	0	0	0	0	0	
CALLA	0	0	0	1	0	0	1	1	0	1	0	0	dst				CALLA Rdst
	0	0	0	1	0	0	1	1	0	1	0	1	dst				CALLA x(Rdst)
	x.15:0																
	0	0	0	1	0	0	1	1	0	1	1	0		dst			CALLA @Rdst
	0	0	0	1	0	0	1	1	0	1	1	1		d	lst		CALLA @Rdst+
	0	0	0	1	0	0	1	1	1	0	0	0	&abs.19:16				CALLA &abs20
	&abs.15:0																
	0	0	0	1	0	0	1	1	1	0	0	1	x.19:16				CALLA EDE
								x.1	5:0								CALLA x(PC)
	0	0	0	1	0	0	1	1	1	0	1	1	imm.19:16				CALLA #imm20
	imm.15:0																
Reserved	0	0	0	1	0	0	1	1	1	0	1	0	х	Х	х	Х	
Reserved	0	0	0	1	0	0	1	1	1	1	х	х	х	Х	х	х	
PUSHM.A	0	0	0	1	0	1	0	0		n ·	- 1		dst				PUSHM.A #n,Rdst
PUSHM.W	0	0	0	1	0	1	0	1	n – 1				dst				PUSHM.W #n,Rdst
POPM.A	0	0	0	1	0	1	1	0	n – 1				dst - n + 1				POPM.A #n,Rdst
POPM.W	0	0	0	1	0	1	1	1		n ·	- 1		dst - n + 1				POPM.W #n,Rdst

5.6.2 MPS430 Instructions

The MSP430 instructions are listed and described on the following pages.

* ADC[.W] Add carry to destination

* ADC.B Add carry to destination

Syntax ADC dst or ADC.W dst

ADC.B dst

ADDC.B #0,dst

Description The carry bit (C) is added to the destination operand. The previous contents of the

destination are lost.

Status Bits N: Set if result is negative, reset if positive

Z: Set if result is zero, reset otherwise

C: Set if dst was incremented from 0FFFh to 0000, reset otherwise Set if dst was incremented from 0FFh to 00, reset otherwise

V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 16-bit counter pointed to by R13 is added to a 32-bit counter pointed to by R12.

ADD @R13,0(R12) ; Add LSDs

ADC 2(R12) ; Add carry to MSD

Example The 8-bit counter pointed to by R13 is added to a 16-bit counter pointed to by R12.

ADD.B @R13,0(R12) ; Add LSDs

ADC.B 1(R12) ; Add carry to MSD

ADD[.W] Add source word to destination word Add source byte to destination byte ADD.B **Syntax** ADD src, dst or ADD.W src, dst

ADD.B src,dst

 $src + dst \rightarrow dst$ Operation

Description The source operand is added to the destination operand. The previous content of the

destination is lost.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

> Z: Set if result is zero, reset otherwise

C: Set if there is a carry from the MSB of the result, reset otherwise

Set if the result of two positive operands is negative, or if the result of two negative

numbers is positive, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Ten is added to the 16-bit counter CNTR located in lower 64 K. Example

ADD.W #10,&CNTR ; Add 10 to 16-bit counter

Example A table word pointed to by R5 (20-bit address in R5) is added to R6. The jump to label

TONI is performed on a carry.

@R5,R6 ; Add table word to R6. R6.19:16 = 0 ADD.W

JC TONI ; Jump if carry ; No carry . . .

A table byte pointed to by R5 (20-bit address) is added to R6. The jump to label TONI is **Example**

performed if no carry occurs. The table pointer is auto-incremented by 1. R6.19:8 = 0

ADD.B @R5+,R6 ; Add byte to R6. R5 + 1. R6: 000xxh

JNC TONI ; Jump if no carry ; Carry occurred . . .

ADDC[.W] Add source word and carry to destination word
ADDC.B Add source byte and carry to destination byte

Syntax ADDC src,dst or ADDC.W src,dst

ADDC.B src,dst

Description The source operand and the carry bit C are added to the destination operand. The

previous content of the destination is lost.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Z: Set if result is zero, reset otherwise

C: Set if there is a carry from the MSB of the result, reset otherwise

V: Set if the result of two positive operands is negative, or if the result of two negative numbers is positive, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Constant value 15 and the carry of the previous instruction are added to the 16-bit

counter CNTR located in lower 64 K.

ADDC.W #15,&CNTR ; Add 15 + C to 16-bit CNTR

Example A table word pointed to by R5 (20-bit address) and the carry C are added to R6. The

jump to label TONI is performed on a carry. R6.19:16 = 0

ADDC.W @R5,R6 ; Add table word + C to R6
JC TONI ; Jump if carry
... ; No carry

Example A table byte pointed to by R5 (20-bit address) and the carry bit C are added to R6. The

jump to label TONI is performed if no carry occurs. The table pointer is auto-incremented

by 1. R6.19:8 = 0

ADDC.B @R5+,R6 ; Add table byte + C to R6. R5 + 1
JNC TONI ; Jump if no carry
... ; Carry occurred

AND[.W] Logical AND of source word with destination word **AND.B** Logical AND of source byte with destination byte

Syntax AND src,dst or AND.W src,dst

AND.B src,dst

Operation src .and. $dst \rightarrow dst$

Description The source operand and the destination operand are logically ANDed. The result is

placed into the destination. The source operand is not affected.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Z: Set if result is zero, reset otherwise

C: Set if the result is not zero, reset otherwise. C = (.not. Z)

V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The bits set in R5 (16-bit data) are used as a mask (AA55h) for the word TOM located in

the lower 64 K. If the result is zero, a branch is taken to label TONI. R5.19:16 = 0

MOV #AA55h,R5 ; Load 16-bit mask to R5
AND R5,&TOM ; TOM .and. R5 -> TOM
JZ TONI ; Jump if result 0
... ; Result > 0

or shorter:

AND #AA55h,&TOM ; TOM .and. AA55h -> TOM JZ TONI ; Jump if result 0

Example A table byte pointed to by R5 (20-bit address) is logically ANDed with R6. R5 is

incremented by 1 after the fetching of the byte. R6.19:8 = 0

AND.B @R5+,R6 ; AND table byte with R6. R5 + 1

146

BIC[.W] Clear bits set in source word in destination word BIC.B Clear bits set in source byte in destination byte

Syntax BIC src,dst or BIC.W src,dst

BIC.B src,dst

Operation (.not. src) .and. $dst \rightarrow dst$

Description The inverted source operand and the destination operand are logically ANDed. The

result is placed into the destination. The source operand is not affected.

Status Bits N: Not affected

Z: Not affectedC: Not affectedV: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The bits 15:14 of R5 (16-bit data) are cleared. R5.19:16 = 0

BIC #0C000h,R5 ; Clear R5.19:14 bits

Example A table word pointed to by R5 (20-bit address) is used to clear bits in R7. R7.19:16 = 0

BIC.W @R5,R7 ; Clear bits in R7 set in @R5

Example A table byte pointed to by R5 (20-bit address) is used to clear bits in Port1.

BIC.B @R5,&P1OUT ; Clear I/O port P1 bits set in @R5

BIS[.W] Set bits set in source word in destination word
BIS.B Set bits set in source byte in destination byte

Syntax BIS src,dst or BIS.W src,dst

BIS.B src, dst

Operation $\operatorname{src.or.dst} \to \operatorname{dst}$

Description The source operand and the destination operand are logically ORed. The result is placed

into the destination. The source operand is not affected.

Status Bits N: Not affected

Z: Not affectedC: Not affectedV: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Bits 15 and 13 of R5 (16-bit data) are set to one. R5.19:16 = 0

BIS #A000h,R5 ; Set R5 bits

Example A table word pointed to by R5 (20-bit address) is used to set bits in R7. R7.19:16 = 0

BIS.W @R5,R7 ; Set bits in R7

Example A table byte pointed to by R5 (20-bit address) is used to set bits in Port1. R5 is

incremented by 1 afterwards.

BIS.B @R5+,&P10UT ; Set I/O port P1 bits. R5 + 1

BIT[.W] Test bits set in source word in destination word
BIT.B Test bits set in source byte in destination byte

Syntax BIT src, dst or BIT.W src, dst

BIT.B src, dst

Operation src .and. dst

Description The source operand and the destination operand are logically ANDed. The result affects

only the status bits in SR.

Register mode: the register bits Rdst.19:16 (.W) resp. Rdst. 19:8 (.B) are not cleared!

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Z: Set if result is zero, reset otherwise

C: Set if the result is not zero, reset otherwise. C = (.not. Z)

V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Test if one (or both) of bits 15 and 14 of R5 (16-bit data) is set. Jump to label TONI if this

is the case. R5.19:16 are not affected.

BIT #C000h,R5 ; Test R5.15:14 bits

JNZ TONI ; At least one bit is set in R5

... ; Both bits are reset

Example A table word pointed to by R5 (20-bit address) is used to test bits in R7. Jump to label

TONI if at least one bit is set. R7.19:16 are not affected.

BIT.W @R5,R7 ; Test bits in R7

JC TONI ; At least one bit is set

... ; Both are reset

Example A table byte pointed to by R5 (20-bit address) is used to test bits in output Port1. Jump

to label TONI if no bit is set. The next table byte is addressed.

BIT.B @R5+,&P1OUT ; Test I/O port P1 bits. R5 + 1

JNC TONI ; No corresponding bit is set

... ; At least one bit is set

* BR. **BRANCH** Branch to destination in lower 64K address space

Syntax 1 4 1 BR dst Operation $dst \rightarrow PC$ **Emulation** MOV dst, PC

Description

An unconditional branch is taken to an address anywhere in the lower 64K address space. All source addressing modes can be used. The branch instruction is a word

instruction.

Status Bits Status bits are not affected.

Example Examples for all addressing modes are given.

BR #EXEC ; Branch to label EXEC or direct branch (e.g. #0A4h) ; Core instruction MOV @PC+,PC BR EXEC ; Branch to the address contained in EXEC ; Core instruction MOV X(PC),PC ; Indirect address ; Branch to the address contained in absolute BR &EXEC ; address EXEC ; Core instruction MOV X(0),PC ; Indirect address BR R5 ; Branch to the address contained in R5 ; Core instruction MOV R5,PC ; Indirect R5 BR @R5 ; Branch to the address contained in the word ; pointed to by R5. ; Core instruction MOV @R5,PC ; Indirect, indirect R5 BR @R5+ ; Branch to the address contained in the word pointed ; to by R5 and increment pointer in R5 afterwards. ; The next time-S/W flow uses R5 pointer-it can ; alter program execution due to access to ; next address in a table pointed to by R5 ; Core instruction MOV @R5,PC ; Indirect, indirect R5 with autoincrement ; Branch to the address contained in the address BR X(R5) ; pointed to by R5 + X (e.g. table with address ; starting at X). X can be an address or a label ; Core instruction MOV X(R5),PC ; Indirect, indirect R5 + X

CALL Call a subroutine in lower 64 K

Syntax CALL dst

Operation $dst \rightarrow PC$ 16-bit dst is evaluated and stored

 $SP - 2 \rightarrow SP$

PC → @SP updated PC with return address to TOS

tmp → PC saved 16-bit dst to PC

Description A subroutine call is made from an address in the lower 64 K to a subroutine address in

the lower 64 K. All seven source addressing modes can be used. The call instruction is a

word instruction. The return is made with the RET instruction.

Status Bits Status bits are not affected.

PC.19:16 cleared (address in lower 64 K)

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Examples Examples for all addressing modes are given.

Immediate Mode: Call a subroutine at label EXEC (lower 64 K) or call directly to address.

CALL #EXEC ; Start address EXEC CALL #0AA04h ; Start address 0AA04h

Symbolic Mode: Call a subroutine at the 16-bit address contained in address EXEC.

EXEC is located at the address (PC + X) where X is within PC + 32 K.

CALL EXEC ; Start address at @EXEC. z16(PC)

Absolute Mode: Call a subroutine at the 16-bit address contained in absolute address

EXEC in the lower 64 K.

CALL &EXEC ; Start address at @EXEC

Register mode: Call a subroutine at the 16-bit address contained in register R5.15:0.

CALL R5 ; Start address at R5

Indirect Mode: Call a subroutine at the 16-bit address contained in the word pointed to by

register R5 (20-bit address).

CALL @R5 ; Start address at @R5

* CLR[.W] Clear destination
* CLR.B Clear destination

Syntax CLR dst or CLR.W dst

CLR.B dst

Emulation MOV #0,dst

MOV.B #0,dst

Description The destination operand is cleared.

Status Bits Status bits are not affected.

Example RAM word TONI is cleared.

CLR TONI ; 0 -> TONI

Example Register R5 is cleared.

CLR R5

Example RAM byte TONI is cleared.

CLR.B TONI ; 0 -> TONI

152

* CLRC Clear carry bit

Description The carry bit (C) is cleared. The clear carry instruction is a word instruction.

Status Bits N: Not affected

Z: Not affectedC: ClearedV: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 16-bit decimal counter pointed to by R13 is added to a 32-bit counter pointed to by

R12.

CLRC ; C=0: defines start

DADD @R13,0(R12) ; add 16-bit counter to low word of 32-bit counter

DADC 2(R12) ; add carry to high word of 32-bit counter

* CLRN Clear negative bit

or

(.NOT.src .AND. $dst \rightarrow dst$)

Emulation BIC #4,SR

Description The constant 04h is inverted (0FFFBh) and is logically ANDed with the destination

operand. The result is placed into the destination. The clear negative bit instruction is a

word instruction.

Status Bits N: Reset to 0

Z: Not affectedC: Not affectedV: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The Negative bit in the status register is cleared. This avoids special treatment with

negative numbers of the subroutine called.

CLRN

CALL SUBR

• • • • • •

.

SUBR JN SUBRET ; If input is negative: do nothing and return

.

SUBRET RET

* CLRZ Clear zero bit

or

(.NOT.src .AND. $dst \rightarrow dst$)

Emulation BIC #2,SR

Description The constant 02h is inverted (0FFFDh) and logically ANDed with the destination

operand. The result is placed into the destination. The clear zero bit instruction is a word

instruction.

Status Bits N: Not affected

Z: Reset to 0C: Not affectedV: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The zero bit in the status register is cleared.

CLRZ

Indirect, Auto-Increment mode: Call a subroutine at the 16-bit address contained in the word pointed to by register R5 (20-bit address) and increment the 16-bit address in R5 afterwards by 2. The next time the software uses R5 as a pointer, it can alter the program execution due to access to the next word address in the table pointed to by R5.

CALL @R5+ ; Start address at @R5. R5 + 2

Indexed mode: Call a subroutine at the 16-bit address contained in the 20-bit address pointed to by register (R5 + X), e.g. a table with addresses starting at X. The address is within the lower 64 KB. X is within +32 KB.

CALL X(R5) ; Start address at @(R5+X). z16(R5)

CMP[.W] Compare source word and destination word CMP.B Compare source byte and destination byte

Syntax CMP src, dst or CMP.W src, dst

CMP.B src,dst

Operation (.not.src) + 1 + dst

or

dst - src

Emulation BIC #2,SR

Description

The source operand is subtracted from the destination operand. This is made by adding the 1's complement of the source + 1 to the destination. The result affects only the status

bits in SR.

Register mode: the register bits Rdst.19:16 (.W) resp. Rdst. 19:8 (.B) are not cleared.

Status Bits

Set if result is negative (src > dst), reset if positive (src = dst)

Z: Set if result is zero (src = dst), reset otherwise (src \neq dst)

C: Set if there is a carry from the MSB, reset otherwise

Set if the subtraction of a negative source operand from a positive destination operand delivers a negative result, or if the subtraction of a positive source operand from a negative destination operand delivers a positive result, reset otherwise (no

overflow).

Mode Bits

OSCOFF, CPUOFF, and GIE are not affected.

Example

Compare word EDE with a 16-bit constant 1800h. Jump to label TONI if EDE equals the constant. The address of EDE is within PC + 32 K.

```
#01800h,EDE
                           ; Compare word EDE with 1800h
CMP
         TONT
                           ; EDE contains 1800h
JEQ
                           ; Not equal
```

Example

A table word pointed to by (R5 + 10) is compared with R7. Jump to label TONI if R7 contains a lower, signed 16-bit number. R7.19:16 is not cleared. The address of the source operand is a 20-bit address in full memory range.

```
CMP.W
         10(R5),R7
                            ; Compare two signed numbers
JL
         TONI
                            ; R7 < 10(R5)
                            ; R7 >= 10(R5)
. . .
```

Example

A table byte pointed to by R5 (20-bit address) is compared to the value in output Port1. Jump to label TONI if values are equal. The next table byte is addressed.

```
CMP.B
         @R5+,&P1OUT
                           ; Compare P1 bits with table. R5 + 1
JEO
         TONI
                           ; Equal contents
                           ; Not equal
```


* DADC[.W] Add carry decimally to destination
* DADC.B Add carry decimally to destination

Syntax DADC dst or DADC.W dst

DADC.B dst

Operation $dst + C \rightarrow dst (decimally)$

Emulation DADD #0,dst DADD.B #0,dst

Description The carry bit (C) is added decimally to the destination.

Status Bits N: Set if MSB is 1

Z: Set if dst is 0, reset otherwise

C: Set if destination increments from 9999 to 0000, reset otherwise Set if destination increments from 99 to 00, reset otherwise

V: Undefined

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The four-digit decimal number contained in R5 is added to an eight-digit decimal number

pointed to by R8.

CLRC ; Reset carry

; next instruction's start condition is defined

DADD R5,0(R8) ; Add LSDs + C
DADC 2(R8) ; Add carry to MSD

Example The two-digit decimal number contained in R5 is added to a four-digit decimal number

pointed to by R8.

CLRC ; Reset carry

; next instruction's start condition is defined

DADD.B R5,0(R8) ; Add LSDs + C
DADC 1(R8) ; Add carry to MSDs

* **DADD[.W]** Add source word and carry decimally to destination word * **DADD.B** Add source byte and carry decimally to destination byte

Syntax DADD src, dst or DADD.W src, dst

DADD.B src,dst

Operation $\operatorname{src} + \operatorname{dst} + \operatorname{C} \to \operatorname{dst} (\operatorname{decimally})$

Description The source operand and the destination operand are treated as two (.B) or four (.W)

binary coded decimals (BCD) with positive signs. The source operand and the carry bit C are added decimally to the destination operand. The source operand is not affected. The previous content of the destination is lost. The result is not defined for non-BCD

numbers.

Status Bits N: Set if MSB of result is 1 (word > 7999h, byte > 79h), reset if MSB is 0.

Z: Set if result is zero, reset otherwise

C: Set if the BCD result is too large (word > 9999h, byte > 99h), reset otherwise

V: Undefined

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Decimal 10 is added to the 16-bit BCD counter DECCNTR.

```
DADD #10h,&DECCNTR ; Add 10 to 4-digit BCD counter
```

Example

The eight-digit BCD number contained in 16-bit RAM addresses BCD and BCD+2 is added decimally to an eight-digit BCD number contained in R4 and R5 (BCD+2 and R5 contain the MSDs). The carry C is added, and cleared.

```
CLRC ; Clear carry

DADD.W &BCD,R4 ; Add LSDs. R4.19:16 = 0

DADD.W &BCD+2,R5 ; Add MSDs with carry. R5.19:16 = 0

JC OVERFLOW ; Result >9999,9999: go to error routine
... ; Result ok
```

Example

The two-digit BCD number contained in word BCD (16-bit address) is added decimally to a two-digit BCD number contained in R4. The carry C is added, also. R4.19:8 = 0CLRC; Clear carryDADD.B &BCD,R4; Add BCD to R4 decimally. R4: 0,00ddh

```
CLRC ; Clear carry
DADD.B &BCD,R4 ; Add BCD to R4 decimally.
R4: 0,00ddh
```


* DEC[.W] Decrement destination

* DEC.B Decrement destination

Syntax DEC dst or DEC.W dst

DEC.B dst

Description The destination operand is decremented by one. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 1, reset otherwiseC: Reset if dst contained 0, set otherwise

V: Set if an arithmetic overflow occurs, otherwise reset.

Set if initial value of destination was 08000h, otherwise reset.

Set if initial value of destination was 080h, otherwise reset.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R10 is decremented by 1.

```
DEC R10 ; Decrement R10
```

- ; Move a block of 255 bytes from memory location starting with EDE to
- ; memory location starting with TONI. Tables should not overlap: start of
- ; destination address TONI must not be within the range EDE to EDE+0FEh

MOV #EDE,R6 MOV #510,R10

L\$1 MOV @R6+,TONI-EDE-1(R6)

DEC R10 JNZ L\$1

Do not transfer tables using the routine above with the overlap shown in Figure 5-36.

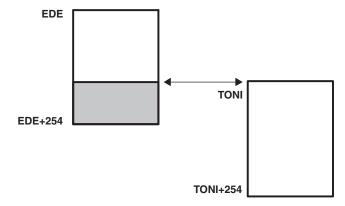


Figure 5-36. Decrement Overlap

* DECD[.W] Double-decrement destination

* DECD.B Double-decrement destination

Syntax DECD dst or DECD. W dst

DECD.B dst

Operation $dst - 2 \rightarrow dst$ EmulationSUB #2, dst

SUB.B #2,dst

Description The destination operand is decremented by two. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 2, reset otherwise

C: Reset if dst contained 0 or 1, set otherwise

V: Set if an arithmetic overflow occurs, otherwise reset.

Set if initial value of destination was 08001 or 08000h, otherwise reset.

Set if initial value of destination was 081 or 080h, otherwise reset.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R10 is decremented by 2.

```
DECD R10 ; Decrement R10 by two
```

- ; Move a block of 255 bytes from memory location starting with EDE to
- ; memory location starting with TONI.
- ; Tables should not overlap: start of destination address TONI must not
- ; be within the range EDE to EDE+0FEh

MOV #EDE,R6 MOV #255,R10

L\$1 MOV.B @R6+,TONI-EDE-2(R6)

DECD R10 JNZ L\$1

Example Memory at location LEO is decremented by two.

DECD.B LEO ; Decrement MEM(LEO)

Decrement status byte STATUS by two.

DECD.B STATUS

160

* **DINT** Disable (general) interrupts

or

(0FFF7h .AND. SR \rightarrow SR / .NOT.src .AND. dst \rightarrow dst)

Emulation BIC #8, SR

Description All interrupts are disabled.

The constant 08h is inverted and logically ANDed with the status register (SR). The

result is placed into the SR.

Status Bits Status bits are not affected.

Mode Bits GIE is reset. OSCOFF and CPUOFF are not affected.

Example The general interrupt enable (GIE) bit in the status register is cleared to allow a

nondisrupted move of a 32-bit counter. This ensures that the counter is not modified

during the move by any interrupt.

DINT ; All interrupt events using the GIE bit are disabled

NOP

MOV COUNTHI, R5 ; Copy counter

MOV COUNTLO, R6

EINT ; All interrupt events using the GIE bit are enabled

Note: Disable Interrupt

If any code sequence needs to be protected from interruption, DINT should be executed at least one instruction before the beginning of the uninterruptible sequence, or it should be followed by a NOP instruction.

* EINT Enable (general) interrupts

Syntax EINT Operation $1 \rightarrow GIE$

or

(0008h .OR. SR \rightarrow SR / .src .OR. dst \rightarrow dst)

Emulation BIS #8,SR

Description All interrupts are enabled.

The constant #08h and the status register SR are logically ORed. The result is placed

into the SR.

Status Bits Status bits are not affected.

Mode Bits GIE is set. OSCOFF and CPUOFF are not affected.

Example The general interrupt enable (GIE) bit in the status register is set.

> PUSH.B &P1IN

BIC.B @SP,&P1IFG ; Reset only accepted flags

EINT ; Preset port 1 interrupt flags stored on stack

; other interrupts are allowed

BIT #Mask,@SP

JEQ MaskOK ; Flags are present identically to mask: jump

MaskOK BIC #Mask,@SP

.

; Housekeeping: inverse to PUSH instruction INCD SP ; at the start of interrupt subroutine. Corrects

; the stack pointer.

RETI

Note: **Enable Interrupt**

The instruction following the enable interrupt instruction (EINT) is always executed, even if an interrupt service request is pending when the interrupts are enabled.

* INC[.W] Increment destination

* INC.B Increment destination

Syntax INC dst or INC.W dst

INC.B dst

Operation $dst + 1 \rightarrow dst$ **Emulation** ADD #1, dst

Description The destination operand is incremented by one. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 0FFFh, reset otherwiseSet if dst contained 0FFh, reset otherwiseC: Set if dst contained 0FFFh, reset otherwiseSet if dst contained 0FFh, reset otherwise

V: Set if dst contained 07FFFh, reset otherwise Set if dst contained 07Fh, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The status byte, STATUS, of a process is incremented. When it is equal to 11, a branch

to OVFL is taken.

INC.B STATUS
CMP.B #11,STATUS

JEQ OVFL

* INCD[.W] Double-increment destination
* INCD.B Double-increment destination
Syntax INCD dst or INCD.W dst

INCD.B dst

Operation $dst + 2 \rightarrow dst$ **Emulation** ADD #2, dst

Description The destination operand is incremented by two. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 0FFFEh, reset otherwise Set if dst contained 0FEh, reset otherwise

C: Set if dst contained 0FFFEh or 0FFFFh, reset otherwise Set if dst contained 0FEh or 0FFh, reset otherwise

V: Set if dst contained 07FFEh or 07FFFh, reset otherwise Set if dst contained 07Eh or 07Fh, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The item on the top of the stack (TOS) is removed without using a register.

PUSH R5; R5 is the result of a calculation, which is stored

; in the system stack

INCD \mbox{SP} ; Remove TOS by double-increment from stack

; Do not use INCD.B, SP is a word-aligned register

RET

Example The byte on the top of the stack is incremented by two.

 ${\tt INCD.B} \quad {\tt O(SP)} \quad \text{; Byte on TOS is increment by two}$

* INV[.W] Invert destination
* INV.B Invert destination

Syntax INV dst or INV.W dst

INV.B dst

Emulation XOR #0FFFFh,dst

XOR.B #0FFh,dst

Description The destination operand is inverted. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 0FFFh, reset otherwise Set if dst contained 0FFh, reset otherwise

C: Set if result is not zero, reset otherwise (= .NOT. Zero)

V: Set if initial destination operand was negative, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Content of R5 is negated (twos complement).

MOV #00AEh,R5 ; R5 = 000AEh
INV R5 ; Invert R5, R5 = 0FF51h
INC R5 ; R5 is now negated, R5 = 0FF52h

Example Content of memory byte LEO is negated.

MOV.B #0AEh,LEO ; MEM(LEO) = 0AEh
INV.B LEO ; Invert LEO, MEM(LEO) = 051h
INC.B LEO ; MEM(LEO) is negated, MEM(LEO) = 052h

JC Jump if carry

JHS Jump if higher or same (unsigned)

Syntax JC label

JHS label

Operation If C = 1: PC + $(2 \times Offset) \rightarrow PC$

If C = 0: execute the following instruction

Description The carry bit C in the status register is tested. If it is set, the signed 10-bit word offset

> contained in the instruction is multiplied by two, sign extended, and added to the 20-bit program counter PC. This means a jump in the range -511 to +512 words relative to the PC in the full memory range. If C is reset, the instruction after the jump is executed.

JC is used for the test of the carry bit C.

JHS is used for the comparison of unsigned numbers.

Status Bits Status bits are not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The state of the port 1 pin P1IN.1 bit defines the program flow.

```
; Port 1, bit 1 set? Bit -> C
BIT.B
        #2,&P1IN
JC
        Label1
                       ; Yes, proceed at Label1
                       ; No, continue
. . .
```

Example If R5 ≥ R6 (unsigned) the program continues at Label2

```
CMP
        R6,R 5
                        ; Is R5 >= R6? Info to C
JHS
        Label2
                       ; Yes, C = 1
                        ; No, R5 < R6. Continue
. . .
```

Example If R5 ≥ 12345h (unsigned operands) the program continues at Label2

```
CMPA
        #12345h,R5
                       ; Is R5 >= 12345h? Info to C
                       ; Yes, 12344h < R5 <= F,FFFFh. C = 1
JHS
        Label2
                       ; No, R5 < 12345h. Continue
. . .
```


JEQ Jump if equal
JZ Jump if zero
Syntax JEQ label
JZ label

Operation If Z = 1: PC + $(2 \times Offset) \rightarrow PC$

If Z = 0: execute following instruction

Description The zero bit Z in the status register is tested. If it is set, the signed 10-bit word offset

contained in the instruction is multiplied by two, sign extended, and added to the 20-bit program counter PC. This means a jump in the range –511 to +512 words relative to the PC in the full memory range. If Z is reset, the instruction after the jump is executed.

JZ is used for the test of the zero bit Z. JEQ is used for the comparison of operands.

Status Bits Status bits are not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The state of the P2IN.0 bit defines the program flow.

BIT.B #1,&P2IN ; Port 2, bit 0 reset?

JZ Label1 ; Yes, proceed at Label1

... ; No, set, continue

Example If R5 = 15000h (20-bit data) the program continues at Label2.

CMPA #15000h,R5 ; Is R5 = 15000h? Info to SR JEQ Label2 ; Yes, R5 = 15000h. Z = 1

... ; No, R5 not equal 15000h. Continue

Example R7 (20-bit counter) is incremented. If its content is zero, the program continues at

Label4.

ADDA #1,R7 ; Increment R7

JZ Label4 ; Zero reached: Go to Label4
... ; R7 not equal 0. Continue here.

JGE Jump if greater or equal (signed)

Syntax JGE label

If (N .xor. V) = 0: PC + $(2 \times Offset) \rightarrow PC$ Operation

If $(N \cdot xor. V) = 1$: execute following instruction

Description The negative bit N and the overflow bit V in the status register are tested. If both bits are

> set or both are reset, the signed 10-bit word offset contained in the instruction is multiplied by two, sign extended, and added to the 20-bit program counter PC. This means a jump in the range -511 to +512 words relative to the PC in full Memory range. If

only one bit is set, the instruction after the jump is executed.

JGE is used for the comparison of signed operands: also for incorrect results due to

overflow, the decision made by the JGE instruction is correct.

Note that JGE emulates the non-implemented JP (jump if positive) instruction if used after the instructions AND, BIT, RRA, SXTX and TST. These instructions clear the V bit.

Status Bits Status bits are not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example If byte EDE (lower 64 K) contains positive data, go to Label1. Software can run in the full

memory range.

```
TST.B
        &EDE
                        ; Is EDE positive? V <- 0
JGE
        Label1
                        ; Yes, JGE emulates JP
                        ; No, 80h <= EDE <= FFh
. . .
```

If the content of R6 is greater than or equal to the memory pointed to by R7, the program **Example**

continues a Label5. Signed data. Data and program in full memory range.

```
@R7,R6
                         ; Is R6 >= @R7?
CMP
JGE
        Label5
                         ; Yes, go to Label5
                         ; No, continue here
. . .
```

Example If R5 ≥ 12345h (signed operands) the program continues at Label2. Program in full

memory range.

```
CMPA
        #12345h,R5
                       ; Is R5 >= 12345h?
        Label2
                       ; Yes, 12344h < R5 <= 7FFFFh
JGE
                       ; No, 80000h <= R5 < 12345h
```


JL Jump if greater or equal (signed)

Syntax JL label

Operation If (N .xor. V) = 1: PC + $(2 \times Offset) \rightarrow PC$

If (N .xor. V) = 0: execute following instruction

Description The negative bit N and the overflow bit V in the status register are tested. If only one is

set, the signed 10-bit word offset contained in the instruction is multiplied by two, sign extended, and added to the 20-bit program counter PC. This means a jump in the range –511 to +512 words relative to the PC in full memory range. If both bits N and V are set

or both are reset, the instruction after the jump is executed.

JL is used for the comparison of signed operands: also for incorrect results due to

overflow, the decision made by the JL instruction is correct.

Status Bits Status bits are not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example If byte EDE contains a smaller, signed operand than byte TONI, continue at Label1. The

address EDE is within PC \pm 32 K.

CMP.B &TONI, EDE ; IS EDE < TONI

JL Label1 ; Yes

... ; No, TONI <= EDE

Example If the signed content of R6 is less than the memory pointed to by R7 (20-bit address) the

program continues at Label Label5. Data and program in full memory range.

Example If R5 < 12345h (signed operands) the program continues at Label2. Data and program in

full memory range.

CMPA #12345h,R5 ; Is R5 < 12345h?

JL Label2 ; Yes, 80000h =< R5 < 12345h
... ; No, 12344h < R5 <= 7FFFFh</pre>

JMP Jump unconditionally

Syntax JMP label

Operation $PC + (2 \times Offset) \rightarrow PC$

Description The signed 10-bit word offset contained in the instruction is multiplied by two, sign

extended, and added to the 20-bit program counter PC. This means an unconditional jump in the range -511 to +512 words relative to the PC in the full memory. The JMP instruction may be used as a BR or BRA instruction within its limited range relative to the

program counter.

Status Bits Status bits are not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The byte STATUS is set to 10. Then a jump to label MAINLOOP is made. Data in lower

64 K, program in full memory range.

MOV.B #10,&STATUS ; Set STATUS to 10 JMP MAINLOOP ; Go to main loop

Example The interrupt vector TAIV of Timer A3 is read and used for the program flow. Program in

full memory range, but interrupt handlers always starts in lower 64K.

ADD &TAIV,PC ; Add Timer_A interrupt vector to PC
RETI ; No Timer_A interrupt pending

JMP IHCCR1 ; Timer block 1 caused interrupt

JMP IHCCR2 ; Timer block 2 caused interrupt

RETI ; No legal interrupt, return

JN Jump if negative

Syntax JN label

Operation If N = 1: $PC + (2 \times Offset) \rightarrow PC$

If N = 0: execute following instruction

Description The negative bit N in the status register is tested. If it is set, the signed 10-bit word offset

contained in the instruction is multiplied by two, sign extended, and added to the 20-bit program counter PC. This means a jump in the range -511 to +512 words relative to the PC in the full memory range. If N is reset, the instruction after the jump is executed.

Status Bits Status bits are not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The byte COUNT is tested. If it is negative, program execution continues at Label0. Data

in lower 64 K, program in full memory range.

```
TST.B &COUNT ; Is byte COUNT negative?

JN Label0 ; Yes, proceed at Label0
... ; COUNT >= 0
```

Example R6 is subtracted from R5. If the result is negative, program continues at Label2. Program

in full memory range.

```
SUB R6,R5 ; R5 - R6 -> R5 

JN Label2 ; R5 is negative: R6 > R5 (N = 1) 

... ; R5 >= 0. Continue here.
```

Example R7 (20-bit counter) is decremented. If its content is below zero, the program continues at

Label4. Program in full memory range.

```
SUBA #1,R7 ; Decrement R7 JN Label4 ; R7 < 0: Go to Label4 ... ; R7 >= 0. Continue here.
```


JNC Jump if no carry

JLO Jump if lower (unsigned)

Syntax JNC label

JLO label

Operation If C = 0: $PC + (2 \times Offset) \rightarrow PC$

If C = 1: execute following instruction

Description The carry bit C in the status register is tested. If it is reset, the signed 10-bit word offset

contained in the instruction is multiplied by two, sign extended, and added to the 20-bit program counter PC. This means a jump in the range –511 to +512 words relative to the PC in the full memory range. If C is set, the instruction after the jump is executed.

JNC is used for the test of the carry bit C.

JLO is used for the comparison of unsigned numbers.

Status Bits Status bits are not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example If byte EDE < 15 the program continues at Label2. Unsigned data. Data in lower 64 K,

program in full memory range.

CMP.B #15,&EDE ; Is EDE < 15? Info to C
JLO Label2 ; Yes, EDE < 15. C = 0
... ; No, EDE >= 15. Continue

Example The word TONI is added to R5. If no carry occurs, continue at Label0. The address of

TONI is within PC \pm 32 K.

ADD TONI,R5 ; TONI + R5 -> R5. Carry -> C

JNC Label0 ; No carry

... ; Carry = 1: continue here

JNZ Jump if not zero
JNE Jump if not equal

Syntax JNZ label

JNE label

Operation If Z = 0: PC + $(2 \times Offset) \rightarrow PC$

If Z = 1: execute following instruction

Description The zero bit Z in the status register is tested. If it is reset, the signed 10-bit word offset

contained in the instruction is multiplied by two, sign extended, and added to the 20-bit program counter PC. This means a jump in the range –511 to +512 words relative to the PC in the full memory range. If Z is set, the instruction after the jump is executed.

JNZ is used for the test of the zero bit Z.

JNE is used for the comparison of operands.

Status Bits Status bits are not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The byte STATUS is tested. If it is not zero, the program continues at Label3. The

address of STATUS is within PC \pm 32 K.

TST.B STATUS ; Is STATUS = 0?

JNZ Label3 ; No, proceed at Label3

... ; Yes, continue here

Example If word EDE ≠ 1500 the program continues at Label2. Data in lower 64 K, program in full

memory range.

CMP #1500,&EDE ; Is EDE = 1500? Info to SR
JNE Label2 ; No, EDE not equal 1500.
... ; Yes, R5 = 1500. Continue

Example R7 (20-bit counter) is decremented. If its content is not zero, the program continues at

Label4. Program in full memory range.

SUBA #1,R7 ; Decrement R7

JNZ Label4 ; Zero not reached: Go to Label4
... ; Yes, R7 = 0. Continue here.

MOV[.W] Move source word to destination word Move source byte to destination byte MOV.B **Syntax** MOV src,dst or MOV.W src,dst

MOV.B src,dst

Operation

 $src \rightarrow dst$

Description

The source operand is copied to the destination. The source operand is not affected.

Status Bits

Z: Not affected C: Not affected Not affected

Not affected

Mode Bits

OSCOFF, CPUOFF, and GIE are not affected.

Example

Move a 16-bit constant 1800h to absolute address-word EDE (lower 64 K).

VOM #01800h, &EDE ; Move 1800h to EDE

Example

The contents of table EDE (word data, 16-bit addresses) are copied to table TOM. The length of the tables is 030h words. Both tables reside in the lower 64K.

```
MOV
               #EDE,R10
                                       ; Prepare pointer (16-bit address)
Loop
       MOV
               @R10+,TOM-EDE-2(R10)
                                       ; R10 points to both tables.
                                       ; R10+2
       CMP
               #EDE+60h,R10
                                       ; End of table reached?
       JLO
               Loop
                                       ; Not yet
                                       ; Copy completed
```

Example

The contents of table EDE (byte data, 16-bit addresses) are copied to table TOM. The length of the tables is 020h bytes. Both tables may reside in full memory range, but must be within R10 \pm 32 K.

```
#EDE, R10
       MOVA
                                        ; Prepare pointer (20-bit)
       MOV
               #20h,R9
                                        ; Prepare counter
       MOV.B
               @R10+,TOM-EDE-1(R10)
                                      ; R10 points to both tables.
Loop
                                        ; R10+1
       DEC
               R9
                                        ; Decrement counter
       JNZ
               Loop
                                        ; Not yet done
                                        ; Copy completed
       . . .
```


www.ti.com

* NOP No operation

Emulation MOV #0, R3

Description No operation is performed. The instruction may be used for the elimination of instructions

during the software check or for defined waiting times.

Status Bits Status bits are not affected.

* POP[.W] Pop word from stack to destination
* POP.B Pop byte from stack to destination

Syntax POP dst

POP.B dst

Operation $@SP \rightarrow temp$

 $\begin{array}{c} \text{SP + 2} \rightarrow \text{SP} \\ \text{temp} \rightarrow \text{dst} \end{array}$

Emulation MOV @SP+,dst or MOV.W @SP+,dst

MOV.B@SP+,dst

Description The stack location pointed to by the stack pointer (TOS) is moved to the destination. The

stack pointer is incremented by two afterwards.

Status Bits Status bits are not affected.

Example The contents of R7 and the status register are restored from the stack.

POP R7 ; Restore R7

POP SR ; Restore status register

Example The contents of RAM byte LEO is restored from the stack.

POP.B LEO ; The low byte of the stack is moved to LEO.

Example The contents of R7 is restored from the stack.

```
POP.B R7; The low byte of the stack is moved to R7, ; the high byte of R7 is 00h
```

Example The contents of the memory pointed to by R7 and the status register are restored from the stack.

```
POP.B 0(R7) ; The low byte of the stack is moved to the ; the byte which is pointed to by R7 : Example: R7 = 203h ; Mem(R7) = low byte of system stack : Example: R7 = 20Ah ; Mem(R7) = low byte of system stack POP SR ; Last word on stack moved to the SR
```

Note: The System Stack Pointer

The system stack pointer (SP) is always incremented by two, independent of the byte suffix.

PUSH[.W] Save a word on the stack
PUSH.B Save a byte on the stack
Syntax PUSH dst or PUSH.W dst

PUSH.B dst

Operation $SP - 2 \rightarrow SP$

 $dst \rightarrow @SP$

Description The 20-bit stack pointer SP is decremented by two. The operand is then copied to the

RAM word addressed by the SP. A pushed byte is stored in the low byte, the high byte is

not affected.

Status Bits Status bits are not affected.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Save the two 16-bit registers R9 and R10 on the stack.

PUSH R9 ; Save R9 and R10 XXXXh

PUSH R10 ; YYYYh

Example Save the two bytes EDE and TONI on the stack. The addresses EDE and TONI are

within PC \pm 32 K.

PUSH.B EDE ; Save EDE xxXXh PUSH.B TONI ; Save TONI xxYYh

RET Return from subroutine

Syntax RET

Operation @SP →PC.15:0 Saved PC to PC.15:0. $PC.19:16 \leftarrow 0$

 $SP + 2 \rightarrow SP$

Description The 16-bit return address (lower 64 K), pushed onto the stack by a CALL instruction is

restored to the PC. The program continues at the address following the subroutine call.

The four MSBs of the program counter PC.19:16 are cleared.

Status Bits Status bits are not affected.

PC.19:16: Cleared

OSCOFF, CPUOFF, and GIE are not affected. **Mode Bits**

Example Call a subroutine SUBR in the lower 64 K and return to the address in the lower 64K

after the CALL.

CALL #SUBR ; Call subroutine starting at SUBR

; Return by RET to here . . . SUBR PUSH R14 ; Save R14 (16 bit data)

> ; Subroutine code ; Restore R14 POP R14

; Return to lower 64 K RET

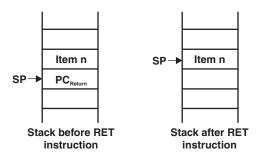


Figure 5-37. Stack After a RET Instruction

178

RETI Return from interrupt

Syntax RETI

Operation @SP → SR.15:0 Restore saved status register SR with PC.19:16

 $\mathsf{SP} + \mathsf{2} \to \mathsf{SP}$

@SP \rightarrow PC.15:0 Restore saved program counter PC.15:0

 $SP + 2 \rightarrow SP$ House keeping

Description The status register is restored to the value at the beginning of the interrupt service

routine. This includes the four MSBs of the program counter PC.19:16. The stack pointer

is incremented by two afterward.

The 20-bit PC is restored from PC.19:16 (from same stack location as the status bits) and PC.15:0. The 20-bit program counter is restored to the value at the beginning of the

interrupt service routine. The program continues at the address following the last executed instruction when the interrupt was granted. The stack pointer is incremented by

two afterward.

Status Bits N: Restored from stack

C: Restored from stackZ: Restored from stackV: Restored from stack

Mode Bits OSCOFF, CPUOFF, and GIE are restored from stack.

Example Interrupt handler in the lower 64 K. A 20-bit return address is stored on the stack.

INTRPT PUSHM.A #2,R14 ; Save R14 and R13 (20-bit data)

... ; Interrupt handler code

POPM.A #2,R14; Restore R13 and R14 (20-bit data)

RETI ; Return to 20-bit address in full memory range

* RLA[.W] Rotate left arithmetically * RLA.B Rotate left arithmetically **Syntax** RLA dst or RLA.W dst

RLA.B dst

Operation $C \leftarrow MSB \leftarrow MSB-1 \dots LSB+1 \leftarrow LSB \leftarrow 0$

Emulation ADD dst, dst ADD. B dst, dst

Description

The destination operand is shifted left one position as shown in Figure 5-38. The MSB is shifted into the carry bit (C) and the LSB is filled with 0. The RLA instruction acts as a signed multiplication by 2.

An overflow occurs if dst ≥ 04000h and dst < 0C000h before operation is performed: the result has changed sign.

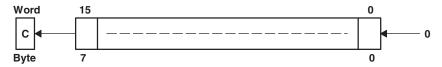


Figure 5-38. Destination Operand—Arithmetic Shift Left

An overflow occurs if dst ≥ 040h and dst < 0C0h before the operation is performed: the result has changed sign.

Status Bits

- N: Set if result is negative, reset if positive
- Z: Set if result is zero, reset otherwise
- C: Loaded from the MSB
- V: Set if an arithmetic overflow occurs:the initial value is 04000h ≤ dst < 0C000h; reset otherwise

Set if an arithmetic overflow occurs:the initial value is 040h ≤ dst < 0C0h; reset otherwise

Mode Bits

OSCOFF, CPUOFF, and GIE are not affected.

Example

R7 is multiplied by 2.

```
; Shift left R7 (x 2)
RLA
```

Example

The low byte of R7 is multiplied by 4.

```
RLA.B
              ; Shift left low byte of R7
        R7
                                             (x 2)
RLA.B
              ; Shift left low byte of R7
                                             (x4)
```

Note: RLA Substitution

The assembler does not recognize the instructions:

```
RLA @R5+
                  RLA.B @R5+
                                        RLA(.B) @R5
```

They must be substituted by:

```
ADD @R5+,-2(R5)
                  ADD.B @R5+,-1(R5)
                                        ADD(.B) @R5
```


* RLC[.W] Rotate left through carry

* RLC.B Rotate left through carry

Syntax RLC dst or RLC.W dst

RLC.B dst

Operation $C \leftarrow MSB \leftarrow MSB-1 \dots LSB+1 \leftarrow LSB \leftarrow C$

Emulation ADDC dst,dst

Description The destination operand is shifted left one position as shown in Figure 5-39. The carry bit (C) is shifted into the LSB and the MSB is shifted into the carry bit (C).

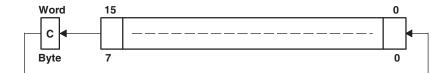


Figure 5-39. Destination Operand—Carry Left Shift

Status Bits N: Set if result is negative, reset if positive

Z: Set if result is zero, reset otherwise

C: Loaded from the MSB

V: Set if an arithmetic overflow occurs:the initial value is 04000h ≤ dst < 0C000h; reset otherwise

Set if an arithmetic overflow occurs:the initial value is $040h \le dst < 0C0h$; reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R5 is shifted left one position.

RLC R5 ; (R5 x 2) + C \rightarrow R5

Example The input P1IN.1 information is shifted into the LSB of R5.

BIT.B #2,&P1IN ; Information -> Carry RLC R5 ; Carry=P0in.1 -> LSB of R5

Example The MEM(LEO) content is shifted left one position.

RLC.B LEO ; $Mem(LEO) \times 2 + C \rightarrow Mem(LEO)$

Note: RLA Substitution

The assembler does not recognize the instructions:

RLC @R5+ RLC.B @R5+ RLC(.B) @R5

They must be substituted by:

ADDC @R5+,-2(R5) ADDC.B @R5+,-1(R5) ADDC(.B) @R5

RRA[.W] Rotate right arithmetically destination word RRA.B Rotate right arithmetically destination byte

Syntax RRA.B dst or RRA.W dst

 $MSB \rightarrow MSB \rightarrow MSB-1 \rightarrow ... LSB+1 \rightarrow LSB \rightarrow C$ Operation

The destination operand is shifted right arithmetically by one bit position as shown in Description Figure 5-40. The MSB retains its value (sign). RRA operates equal to a signed division

by 2. The MSB is retained and shifted into the MSB-1. The LSB+1 is shifted into the

LSB. The previous LSB is shifted into the carry bit C.

Status Bits Set if result is negative (MSB = 1), reset otherwise (MSB = 0)

> Z: Set if result is zero, reset otherwise

C: Loaded from the LSB

V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The signed 16-bit number in R5 is shifted arithmetically right one position.

RRA R5 ; R5/2 -> R5

Example The signed RAM byte EDE is shifted arithmetically right one position.

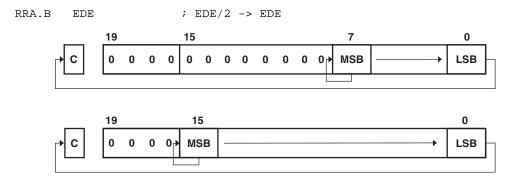


Figure 5-40. Rotate Right Arithmetically RRA.B and RRA.W

RRC[.W] Rotate right through carry destination word RRC.B Rotate right through carry destination byte

Syntax RRC dst or RRC.W dst

RRC.B dst

 $\textbf{Operation} \qquad \text{C} \rightarrow \text{MSB} \rightarrow \text{MSB-1} \rightarrow ... \text{ LSB+1} \rightarrow \text{LSB} \rightarrow \text{C}$

Description The destination operand is shifted right by one bit position as shown in Figure 5-41. The

carry bit C is shifted into the MSB and the LSB is shifted into the carry bit C.

Status Bits N: Set if result is negative (MSB = 1), reset otherwise (MSB = 0)

Z: Set if result is zero, reset otherwise

C: Loaded from the LSB

V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example RAM word EDE is shifted right one bit position. The MSB is loaded with 1.

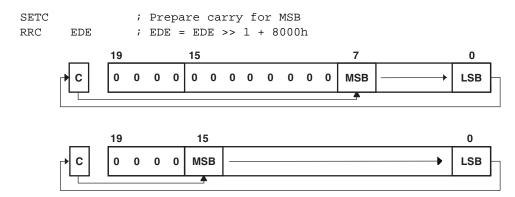


Figure 5-41. Rotate Right Through Carry RRC.B and RRC.W

* **SBC[.W]** Subtract source and borrow/.NOT. carry from destination * **SBC.B** Subtract source and borrow/.NOT. carry from destination

Syntax SBC dst or SBC.W dst

SBC.B dst

Operation $dst + 0FFFFh + C \rightarrow dst$

 $dst + 0FFh + C \rightarrow dst$

Emulation SUBC #0,dst

SUBC.B #0,dst

Description The carry bit (C) is added to the destination operand minus one. The previous contents

of the destination are lost.

Status Bits N: Set if result is negative, reset if positive

Z: Set if result is zero, reset otherwise

C: Set if there is a carry from the MSB of the result, reset otherwise

Set to 1 if no borrow, reset if borrow

V: Set if an arithmetic overflow occurs, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 16-bit counter pointed to by R13 is subtracted from a 32-bit counter pointed to by

R12.

SUB @R13,0(R12) ; Subtract LSDs

SBC 2(R12) ; Subtract carry from MSD

Example The 8-bit counter pointed to by R13 is subtracted from a 16-bit counter pointed to by

R12.

SUB.B @R13,0(R12) ; Subtract LSDs

SBC.B 1(R12) ; Subtract carry from MSD

Note: Borrow Implementation

The borrow is treated as a .NOT. carry:

Borrow Carry Bit
Yes 0

No 1

* **SETC** Set carry bit

Description The carry bit (C) is set.

Status Bits N: Not affected

Z: Not affected

C: Set

V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Emulation of the decimal subtraction:

Subtract R5 from R6 decimally.

Assume that R5 = 03987h and R6 = 04137h.

```
DSUB
       ADD
              #06666h,R5
                             ; Move content R5 from 0-9 to 6-0Fh
                             ; R5 = 03987h + 06666h = 09FEDh
       INV
              R5
                             ; Invert this (result back to 0-9)
                             ; R5 = .NOT. R5 = 06012h
       SETC
                             ; Prepare carry = 1
       DADD
                             ; Emulate subtraction by addition of:
              R5,R6
                             ; (010000h - R5 - 1)
                             ; R6 = R6 + R5 + 1
                             ; R6 = 0150h
```


* **SETN** Set carry bit

 $\begin{tabular}{lll} Syntax & SETN \\ Operation & $1 \to N$ \\ Emulation & $BIS $ \#4 $, SR$ \\ \end{tabular}$

Description The negative bit (N) is set.

Status Bits N: Set

Z: Not affectedC: Not affectedV: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

* **SETZ** Set zero bit

Emulation BIS #2,SR

 $\textbf{Description} \qquad \text{The zero bit (Z) is set.}$

Status Bits N: Not affected

Z: Set

C: Not affectedV: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

SUB[.W] Subtract source word from destination word SUB.B Subtract source byte from destination byte

Syntax SUB src,dst or SUB.W src,dst

SUB.B src, dst

 $(.not.src) + 1 + dst \rightarrow dst$ or $dst - src \rightarrow dst$ Operation

Description The source operand is subtracted from the destination operand. This is made by adding

the 1's complement of the source + 1 to the destination. The source operand is not

affected, the result is written to the destination operand.

Set if result is negative (src > dst), reset if positive (src \leq dst) **Status Bits** N:

> Z: Set if result is zero (src = dst), reset otherwise (src \neq dst)

C: Set if there is a carry from the MSB, reset otherwise

Set if the subtraction of a negative source operand from a positive destination operand delivers a negative result, or if the subtraction of a positive source operand from a negative destination operand delivers a positive result, reset otherwise (no overflow).

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

A 16-bit constant 7654h is subtracted from RAM word EDE. **Example**

SUB ; Subtract 7654h from EDE #7654h, & EDE

A table word pointed to by R5 (20-bit address) is subtracted from R7. Afterwards, if R7 **Example**

contains zero, jump to label TONI. R5 is then auto-incremented by 2. R7.19:16 = 0.

SUB ; Subtract table number from R7. R5 + 2 @R5+,R7JZTONI ; R7 = @R5 (before subtraction) ; R7 <> @R5 (before subtraction)

Byte CNT is subtracted from byte R12 points to. The address of CNT is within PC \pm 32 **Example**

K. The address R12 points to is in full memory range.

CNT,0(R12) ; Subtract CNT from @R12 SUB.B

SUBC[.W] Subtract source word with carry from destination word

SUBC.B Subtract source byte with carry from destination byte

Syntax SUBC src,dst or SUBC.W src,dst

SUBC.B src,dst

Operation (.not.src) + C + dst \rightarrow dst or dst - (src - 1) + C \rightarrow dst

Description The source operand is subtracted from the destination operand. This is done by adding

the 1's complement of the source + carry to the destination. The source operand is not affected, the result is written to the destination operand. Used for 32, 48, and 64-bit

operands.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Z: Set if result is zero, reset otherwise

C: Set if there is a carry from the MSB, reset otherwise

V: Set if the subtraction of a negative source operand from a positive destination operand delivers a negative result, or if the subtraction of a positive source operand from a negative destination operand delivers a positive result, reset otherwise (no overflow)

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example A 16-bit constant 7654h is subtracted from R5 with the carry from the previous

instruction. R5.19:16 = 0

SUBC.W #7654h,R5 ; Subtract 7654h + C from R5

Example A 48-bit number (3 words) pointed to by R5 (20-bit address) is subtracted from a 48-bit

counter in RAM, pointed to by R7. R5 points to the next 48-bit number afterwards. The

address R7 points to is in full memory range.

Example Byte CNT is subtracted from the byte, R12 points to. The carry of the previous instruction

is used. The address of CNT is in lower 64 K.

SUBC.B &CNT,0(R12) ; Subtract byte CNT from @R12

SWPB Swap bytes
Syntax SWPB dst

Operation $dst.15:8 \leftrightarrow dst.7:0$

Description The high and the low byte of the operand are exchanged. PC.19:16 bits are cleared in

register mode.

Status Bits Status bits are not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Exchange the bytes of RAM word EDE (lower 64 K).

MOV #1234h,&EDE ; 1234h -> EDE SWPB &EDE ; 3412h -> EDE

Before SWPB

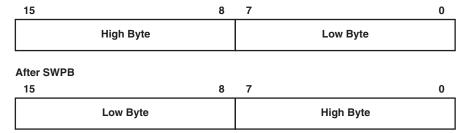


Figure 5-42. Swap Bytes in Memory



Figure 5-43. Swap Bytes in a Register

SXT Extend sign
Syntax SXT dst

Operation $dst.7 \rightarrow dst.15:8$, $dst.7 \rightarrow dst.19:8$ (register mode)

Description Register mode: the sign of the low byte of the operand is extended into the bits

Rdst.19:8.

Rdst.7 = 0: Rdst.19:8 = 000h afterwards Rdst.7 = 1: Rdst.19:8 = FFFh afterwards

Other Modes: the sign of the low byte of the operand is extended into the high byte.

dst.7 = 0: high byte = 00h afterwards dst.7 = 1: high byte = FFh afterwards

Status Bits N: Set if result is negative, reset otherwise

Z: Set if result is zero, reset otherwise

C: Set if result is not zero, reset otherwise (C = .not.Z)

V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The signed 8-bit data in EDE (lower 64 K) is sign extended and added to the 16-bit

signed data in R7.

MOV.B &EDE,R5 ; EDE -> R5. 00XXh

SXT R5 ; Sign extend low byte to R5.19:8

ADD R5,R7 ; Add signed 16-bit values

Example The signed 8-bit data in EDE (PC +32 K) is sign extended and added to the 20-bit data

in R7.

MOV.B EDE,R5 ; EDE -> R5. 00XXh

SXT R5; Sign extend low byte to R5.19:8

ADDA R5,R7 ; Add signed 20-bit values

* TST[.W] Test destination
* TST.B Test destination

Syntax TST dst or TST.W dst

TST.B dst

Operation dst + 0FFFFh + 1

dst + 0FFh + 1

Emulation CMP #0,dst

CMP.B #0,dst

Description The destination operand is compared with zero. The status bits are set according to the

result. The destination is not affected.

Status Bits N: Set if destination is negative, reset if positive

Z: Set if destination contains zero, reset otherwise

C: Set V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R7 is tested. If it is negative, continue at R7NEG; if it is positive but not zero, continue at

R7POS.

TST R7 ; Test R7
JN R7NEG ; R7 is negative
JZ R7ZERO ; R7 is zero

R7POS ; R7 is positive but not zero

R7NEG ; R7 is negative R7ZERO ; R7 is zero

Example The low byte of R7 is tested. If it is negative, continue at R7NEG; if it is positive but not

zero, continue at R7POS.

TST.B R7 ; Test low byte of R7

JN R7NEG ; Low byte of R7 is negative JZ R7ZERO ; Low byte of R7 is zero

R7POS ; Low byte of R7 is positive but not zero

R7NEG ; Low byte of R7 is negative R7ZERO ; Low byte of R7 is zero

XOR[.W] Exclusive OR source word with destination wordXOR.B Exclusive OR source byte with destination byte

Syntax XOR src,dst or XOR.W src,dst

XOR.B src,dst

Operation $\operatorname{src} .\operatorname{xor} .\operatorname{dst} \to \operatorname{dst}$

Description The source and destination operands are exclusively ORed. The result is placed into the

destination. The source operand is not affected. The previous content of the destination

is lost.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Z: Set if result is zero, reset otherwise

C: Set if result is not zero, reset otherwise (C = .not. Z)

V: Set if both operands are negative before execution, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Toggle bits in word CNTR (16-bit data) with information (bit = 1) in address-word TONI.

Both operands are located in lower 64 K.

XOR &TONI, &CNTR ; Toggle bits in CNTR

Example A table word pointed to by R5 (20-bit address) is used to toggle bits in R6. R6.19:16 = 0.

XOR @R5,R6 ; Toggle bits in R6

Example Reset to zero those bits in the low byte of R7 that are different from the bits in byte EDE.

R7.19:8 = 0. The address of EDE is within PC \pm 32 K.

XOR.B EDE,R7 ; Set different bits to 1 in R7.

INV.B R7; Invert low byte of R7, high byte is 0h

5.6.3 Extended Instructions

The extended MSP430X instructions give the MSP430X CPU full access to its 20-bit address space. MSP430X instructions require an additional word of op-code called the extension word. All addresses, indexes, and immediate numbers have 20-bit values, when preceded by the extension word. The MSP430X extended instructions are listed and described in the following pages.

* ADCX.A Add carry to destination address-word

* ADCX.[W] Add carry to destination word
* ADCX.B Add carry to destination byte

Syntax ADCX.Adst

ADCX dst or ADCX.W dst

ADCX.B dst

Operation $dst + C \rightarrow dst$

Emulation ADDCX.A #0,dst

ADDCX #0,dst
ADDCX.B #0,dst

Description The carry bit (C) is added to the destination operand. The previous contents of the

destination are lost.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Z: Set if result is zero, reset otherwise

C: Set if there is a carry from the MSB of the result, reset otherwise

V: Set if the result of two positive operands is negative, or if the result of two negative

numbers is positive, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 40-bit counter, pointed to by R12 and R13, is incremented.

INCX.A @R12 ; Increment lower 20 bits
ADCX.A @R13 ; Add carry to upper 20 bits

ADDX.A Add source address-word to destination address-word

ADDX.[W] Add source word to destination word
ADDX.B Add source byte to destination byte

Syntax ADDX.A src,dst

ADDX src, dst or ADDX.W src, dst

ADDX.B src,dst

Operation $\operatorname{src} + \operatorname{dst} \to \operatorname{dst}$

Description The source operand is added to the destination operand. The previous contents of the

destination are lost. Both operands can be located in the full address space.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Z: Set if result is zero, reset otherwise

C: Set if there is a carry from the MSB of the result, reset otherwise

V: Set if the result of two positive operands is negative, or if the result of two negative numbers is positive, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Ten is added to the 20-bit pointer CNTR located in two words CNTR (LSBs) and

CNTR+2 (MSBs).

ADDX.A #10,CNTR ; Add 10 to 20-bit pointer

Example

A table word (16-bit) pointed to by R5 (20-bit address) is added to R6. The jump to label TONI is performed on a carry.

```
ADDX.W @R5,R6 ; Add table word to R6
JC TONI ; Jump if carry
... ; No carry
```

Example

A table byte pointed to by R5 (20-bit address) is added to R6. The jump to label TONI is performed if no carry occurs. The table pointer is auto-incremented by 1.

```
ADDX.B @R5+,R6 ; Add table byte to R6. R5 + 1. R6: 000xxh JNC TONI ; Jump if no carry .... ; Carry occurred
```

Note: Use ADDA for the following two cases for better code density and execution.

```
ADDX.A Rsrc,Rdst
ADDX.A #imm20,Rdst
```


ADDCX.A Add source address-word and carry to destination address-word

ADDCX.[W] Add source word and carry to destination word ADDCX.B Add source byte and carry to destination byte

Syntax ADDCX.A src,dst

ADDCX src, dst or ADDCX.W src, dst

ADDCX.B src,dst

Operation $\operatorname{src} + \operatorname{dst} + \operatorname{C} \to \operatorname{dst}$

Description The source operand and the carry bit C are added to the destination operand. The

previous contents of the destination are lost. Both operands may be located in the full

address space.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Z: Set if result is zero, reset otherwise

C: Set if there is a carry from the MSB of the result, reset otherwise

V: Set if the result of two positive operands is negative, or if the result of two negative

numbers is positive, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Constant 15 and the carry of the previous instruction are added to the 20-bit counter

CNTR located in two words.

```
ADDCX.A #15,&CNTR ; Add 15 + C to 20-bit CNTR
```

Example

A table word pointed to by R5 (20-bit address) and the carry C are added to R6. The jump to label TONI is performed on a carry.

```
ADDCX.W @R5,R6 ; Add table word + C to R6
JC TONI ; Jump if carry
... ; No carry
```

Example

A table byte pointed to by R5 (20-bit address) and the carry bit C are added to R6. The jump to label TONI is performed if no carry occurs. The table pointer is auto-incremented by 1.

```
ADDCX.B @R5+,R6 ; Add table byte + C to R6. R5 + 1
JNC TONI ; Jump if no carry
... ; Carry occurred
```


ANDX.A Logical AND of source address-word with destination address-word

ANDX.[W] Logical AND of source word with destination word ANDX.B Logical AND of source byte with destination byte

Syntax ANDX.A src, dst

ANDX src, dst or ANDX.W src, dst

ANDX.B src, dst

Operation $src.and. dst \rightarrow dst$

Description The source operand and the destination operand are logically ANDed. The result is

placed into the destination. The source operand is not affected. Both operands may be

located in the full address space.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

> **Z**: Set if result is zero, reset otherwise

C: Set if the result is not zero, reset otherwise. C = (.not. Z)

V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The bits set in R5 (20-bit data) are used as a mask (AAA55h) for the address-word TOM

located in two words. If the result is zero, a branch is taken to label TONI.

```
MOVA
         #AAA55h,R5
                         ; Load 20-bit mask to R5
         R5,TOM
                         ; TOM .and. R5 -> TOM
ANDX.A
         TONI
                         ; Jump if result 0
JZ
                         ; Result > 0
. . .
```

or shorter:

```
ANDX.A
         #AAA55h,TOM
                        ; TOM .and. AAA55h -> TOM
JZ
         TONI
                        ; Jump if result 0
```

Example

A table byte pointed to by R5 (20-bit address) is logically ANDed with R6. R6.19:8 = 0. The table pointer is auto-incremented by 1.

```
ANDX.B
         @R5+,R6
                        ; AND table byte with R6. R5 + 1
```


BICX.A Clear bits set in source address-word in destination address-word

BICX.[W] Clear bits set in source word in destination word Clear bits set in source byte in destination byte

Syntax BICX.A src, dst

BICX src, dst or BICX.W src, dst

BICX.B src, dst

Operation (.not. src) .and. $dst \rightarrow dst$

Description The inverted source operand and the destination operand are logically ANDed. The

result is placed into the destination. The source operand is not affected. Both operands

may be located in the full address space.

Status Bits N: Not affected

Z: Not affectedC: Not affectedV: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The bits 19:15 of R5 (20-bit data) are cleared.

BICX.A #0F8000h,R5 ; Clear R5.19:15 bits

Example A table word pointed to by R5 (20-bit address) is used to clear bits in R7. R7.19:16 = 0.

BICX.W @R5,R7 ; Clear bits in R7

Example A table byte pointed to by R5 (20-bit address) is used to clear bits in output Port1.

BICX.B @R5,&P1OUT ; Clear I/O port P1 bits

BISX.A Set bits set in source address-word in destination address-word

BISX.[W] Set bits set in source word in destination word BISX.B Set bits set in source byte in destination byte

Syntax BISX.A src, dst

BISX src, dst or BISX.W src, dst

BISX.B src,dst

Operation $\operatorname{src.or.dst} \to \operatorname{dst}$

Description The source operand and the destination operand are logically ORed. The result is placed

into the destination. The source operand is not affected. Both operands may be located

in the full address space.

Status Bits N: Not affected

Z: Not affectedC: Not affectedV: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Bits 16 and 15 of R5 (20-bit data) are set to one.

BISX.A #018000h,R5 ; Set R5.16:15 bits

Example A table word pointed to by R5 (20-bit address) is used to set bits in R7.

BISX.W @R5,R7 ; Set bits in R7

Example A table byte pointed to by R5 (20-bit address) is used to set bits in output Port1.

BISX.B @R5,&P1OUT ; Set I/O port P1 bits

BITX.A Test bits set in source address-word in destination address-word

BITX.[W] Test bits set in source word in destination word
BITX.B Test bits set in source byte in destination byte

Syntax BITX.A src,dst

BITX src,dst or BITX.W src,dst

BITX.B src,dst

Description The source operand and the destination operand are logically ANDed. The result affects

only the status bits. Both operands may be located in the full address space.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Z: Set if result is zero, reset otherwise

C: Set if the result is not zero, reset otherwise. C = (.not. Z)

V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Test if bit 16 or 15 of R5 (20-bit data) is set. Jump to label TONI if so.

```
BITX.A #018000h,R5 ; Test R5.16:15 bits

JNZ TONI ; At least one bit is set

... ; Both are reset
```

Example

A table word pointed to by R5 (20-bit address) is used to test bits in R7. Jump to label TONI if at least one bit is set.

```
BITX.W @R5,R7 ; Test bits in R7: C = .not.Z

JC TONI ; At least one is set

... ; Both are reset
```

Example

A table byte pointed to by R5 (20-bit address) is used to test bits in input Port1. Jump to label TONI if no bit is set. The next table byte is addressed.

```
BITX.B @R5+,&P1IN ; Test input P1 bits. R5 + 1

JNC TONI ; No corresponding input bit is set

... ; At least one bit is set
```


* CLRX.A Clear destination address-word

* CLRX.[W] Clear destination word
* CLRX.B Clear destination byte

Syntax CLRX.A dst

CLRX dst or CLRX.W dst

CLRX.B dst

Operation $0 \rightarrow dst$

Emulation MOVX.A #0,dst

MOVX #0,dst
MOVX.B #0,dst

Description The destination operand is cleared.

Status Bits Status bits are not affected.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example RAM address-word TONI is cleared.

CLRX.A TONI ; 0 -> TONI

CMPX.A Compare source address-word and destination address-word

CMPX.[W] Compare source word and destination wordCMPX.B Compare source byte and destination byte

Syntax CMPX.A src,dst

CMPX src, dst or CMPX.W src, dst

CMPX.B src,dst

Operation (.not. src) + 1 + dst or dst - src

Description The source operand is subtracted from the destination operand by adding the 1's

complement of the source + 1 to the destination. The result affects only the status bits.

Both operands may be located in the full address space.

Status Bits N: Set if result is negative (src > dst), reset if positive ($src \le dst$)

Z: Set if result is zero (src = dst), reset otherwise (src \neq dst)

C: Set if there is a carry from the MSB, reset otherwise

V: Set if the subtraction of a negative source operand from a positive destination operand delivers a negative result, or if the subtraction of a positive source operand from a negative destination operand delivers a positive result, reset otherwise (no overflow)

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Compare EDE with a 20-bit constant 18000h. Jump to label TONI if EDE equals the

constant.

```
CMPX.A #018000h,EDE ; Compare EDE with 18000h
JEQ TONI ; EDE contains 18000h
... ; Not equal
```

Example

A table word pointed to by R5 (20-bit address) is compared with R7. Jump to label TONI if R7 contains a lower, signed, 16-bit number.

```
CMPX.W @R5,R7 ; Compare two signed numbers JL ; R7 < @R5 ... ; R7 >= @R5
```

Example

A table byte pointed to by R5 (20-bit address) is compared to the input in I/O Port1. Jump to label TONI if the values are equal. The next table byte is addressed.

```
CMPX.B @R5+,&P1IN ; Compare P1 bits with table. R5 + 1 
JEQ TONI ; Equal contents ... ; Not equal
```

Note: Use CMPA for the following two cases for better density and execution.

```
CMPA Rsrc,Rdst
CMPA #imm20,Rdst
```


* DADCX.A Add carry decimally to destination address-word

* DADCX.[W] Add carry decimally to destination word * DADCX.B Add carry decimally to destination byte

Syntax DADCX.A dst

DADCX dst or DADCX.W dst

DADCX.B dst

Operation $dst + C \rightarrow dst (decimally)$

Emulation DADDX.A #0,dst

> DADDX #0, dst DADDX.B #0,dst

Description The carry bit (C) is added decimally to the destination.

Status Bits Set if MSB of result is 1 (address-word > 79999h, word > 7999h, byte > 79h), reset

if MSB is 0

Z: Set if result is zero, reset otherwise

Set if the BCD result is too large (address-word > 99999h, word > 9999h, byte >

99h), reset otherwise

V: Undefined

OSCOFF, CPUOFF, and GIE are not affected. Mode Bits

Example The 40-bit counter, pointed to by R12 and R13, is incremented decimally.

DADDX.A #1,0(R12) ; Increment lower 20 bits DADCX.A 0(R13) ; Add carry to upper 20 bits

DADDX.A Add source address-word and carry decimally to destination address-word

DADDX.[W] Add source word and carry decimally to destination wordDADDX.B Add source byte and carry decimally to destination byte

Syntax DADDX.A src,dst

DADDX src, dst or DADDX.W src, dst

DADDX.B src,dst

Operation $\operatorname{src} + \operatorname{dst} + \operatorname{C} \to \operatorname{dst} (\operatorname{decimally})$

Description The source operand and the destination operand are treated as two (.B), four (.W), or

five (.A) binary coded decimals (BCD) with positive signs. The source operand and the carry bit C are added decimally to the destination operand. The source operand is not affected. The previous contents of the destination are lost. The result is not defined for non-BCD numbers. Both operands may be leasted in the full address space.

non-BCD numbers. Both operands may be located in the full address space.

Status Bits N: Set if MSB of result is 1 (address-word > 79999h, word > 7999h, byte > 79h), reset if MSB is 0.

Z: Set if result is zero, reset otherwise

C: Set if the BCD result is too large (address-word > 99999h, word > 9999h, byte > 99h), reset otherwise

V: Undefined

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Decimal 10 is added to the 20-bit BCD counter DECCNTR located in two words.

```
DADDX.A #10h,&DECCNTR ; Add 10 to 20-bit BCD counter
```

Example

The eight-digit BCD number contained in 20-bit addresses BCD and BCD+2 is added decimally to an eight-digit BCD number contained in R4 and R5 (BCD+2 and R5 contain the MSDs).

Example

The two-digit BCD number contained in 20-bit address BCD is added decimally to a two-digit BCD number contained in R4.

```
CLRC ; Clear carry
DADDX.B BCD,R4 ; Add BCD to R4 decimally.
; R4: 000ddh
```


* **DECX.A** Decrement destination address-word

* **DECX.[W]** Decrement destination word * **DECX.B** Decrement destination byte

Syntax DECX.Adst

DECX dst or DECX.W dst

DECX.B dst

Operation $dst - 1 \rightarrow dst$ **Emulation** SUBX.A #1, dst

SUBX #1,dst SUBX.B #1,dst

Description The destination operand is decremented by one. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 1, reset otherwiseC: Reset if dst contained 0, set otherwise

V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example RAM address-word TONI is decremented by 1.

DECX.A TONI ; Decrement TONI

* **DECDX.A** Double-decrement destination address-word

* **DECDX.[W]** Double-decrement destination word * **DECDX.B** Double-decrement destination byte

Syntax DECDX.A dst

DECDX dst or DECDX.W dst

DECDX.B dst

Emulation SUBX.A #2,dst

SUBX #2,dst
SUBX.B #2,dst

Description The destination operand is decremented by two. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 2, reset otherwise

C: Reset if dst contained 0 or 1, set otherwise

V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example RAM address-word TONI is decremented by 2.

DECDX.A TONI ; Decrement TONI

* INCX.A Increment destination address-word

* INCX.[W] Increment destination word * INCX.B Increment destination byte

Syntax INCX.A dst

INCX dst or INCX.W dst

INCX.B dst

Operation $dst + 1 \rightarrow dst$

Emulation ADDX.A #1,dst

> ADDX #1,dst ADDX.B #1,dst

Description The destination operand is incremented by one. The original contents are lost.

Status Bits Set if result is negative, reset if positive

> Z: Set if dst contained 0FFFFh, reset otherwise Set if dst contained 0FFFFh, reset otherwise Set if dst contained 0FFh, reset otherwise

> Set if dst contained 0FFFFh, reset otherwise Set if dst contained 0FFFFh, reset otherwise Set if dst contained 0FFh, reset otherwise

Set if dst contained 07FFFh, reset otherwise Set if dst contained 07FFFh, reset otherwise Set if dst contained 07Fh, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected. RAM address-wordTONI is incremented by 1. Example

> INCX.A TONI ; Increment TONI (20-bits)

* INCDX.A Double-increment destination address-word

* INCDX.[W] Double-increment destination word
* INCDX.B Double-increment destination byte

Syntax INCDX.A dst

INCDX dst or INCDX.W dst

INCDX.B dst

Emulation ADDX.A #2,dst

ADDX #2,dst ADDX.B #2,dst

Description The destination operand is incremented by two. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 0FFFEh, reset otherwise Set if dst contained 0FFFEh, reset otherwise Set if dst contained 0FEh, reset otherwise

C: Set if dst contained 0FFFEh or 0FFFFh, reset otherwise Set if dst contained 0FFFEh or 0FFFh, reset otherwise Set if dst contained 0FEh or 0FFh, reset otherwise

V: Set if dst contained 07FFFEh or 07FFFFh, reset otherwise Set if dst contained 07FFEh or 07FFFh, reset otherwise Set if dst contained 07Eh or 07Fh, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example RAM byte LEO is incremented by two; PC points to upper memory.

INCDX.B LEO ; Increment LEO by two

* INVX.A Invert destination
* INVX.[W] Invert destination
* INVX.B Invert destination

Syntax INVX.A dst

INVX dst or INVX.W dst

INVX.B dst

Emulation XORX.A #0FFFFFh, dst

XORX #0FFFFh,dst
XORX.B #0FFh,dst

Description The destination operand is inverted. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive

Z: Set if dst contained 0FFFFh, reset otherwise Set if dst contained 0FFFh, reset otherwise Set if dst contained 0FFh, reset otherwise

C: Set if result is not zero, reset otherwise (= .NOT. Zero)

V: Set if initial destination operand was negative, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example 20-bit content of R5 is negated (twos complement).

INVX.A R5 ; Invert R5

INCX.A R5 ; R5 is now negated

Example Content of memory byte LEO is negated. PC is pointing to upper memory.

INVX.B LEO ; Invert LEO

INCX.B LEO ; MEM(LEO) is negated

MOVX.A Move source address-word to destination address-word

MOVX.[W] Move source word to destination word MOVX.B Move source byte to destination byte

Syntax MOVX.A src,dst

MOVX src, dst or MOVX.W src, dst

MOVX.B src,dst

Description The source operand is copied to the destination. The source operand is not affected.

Both operands may be located in the full address space.

Status Bits N: Not affected

Z: Not affectedC: Not affectedV: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Move a 20-bit constant 18000h to absolute address-word EDE.

```
MOVX.A #018000h,&EDE ; Move 18000h to EDE
```

Example

The contents of table EDE (word data, 20-bit addresses) are copied to table TOM. The length of the table is 030h words.

```
MOVA #EDE,R10 ; Prepare pointer (20-bit address)

Loop MOVX.W @R10+,TOM-EDE-2(R10) ; R10 points to both tables.
; R10+2

CMPA #EDE+60h,R10 ; End of table reached?
JLO Loop ; Not yet
... ; Copy completed
```

Example

The contents of table EDE (byte data, 20-bit addresses) are copied to table TOM. The length of the table is 020h bytes.

```
MOVA
               #EDE,R10
                                       ; Prepare pointer (20-bit)
      MOV
               #20h,R9
                                       ; Prepare counter
      MOVX.W
               @R10+,TOM-EDE-2(R10)
                                       ; R10 points to both tables.
qool
                                       ; R10+1
      DEC
               R9
                                       ; Decrement counter
      JNZ
               Loop
                                       ; Not yet done
                                       ; Copy completed
```

Ten of the 28 possible addressing combinations of the MOVX.A instruction can use the MOVA instruction. This saves two bytes and code cycles. Examples for the addressing combinations are:

```
MOVX.A
        Rsrc,Rdst
                           MOVA
                                  Rsrc,Rdst
                                                   ; Reg/Reg
        #imm20,Rdst
                                  #imm20,Rdst
MOVX.A
                           MOVA
                                                   ; Immediate/Reg
MOVX.A
        &abs20,Rdst
                           MOVA
                                  &abs20,Rdst
                                                   ; Absolute/Reg
        @Rsrc,Rdst
                           MOVA
                                  @Rsrc,Rdst
MOVX.A
                                                   ; Indirect/Reg
        @Rsrc+,Rdst
MOVX.A
                           MOVA
                                  @Rsrc+,Rdst
                                                   ; Indirect, Auto/Reg
MOVX.A
        Rsrc,&abs20
                           MOVA
                                  Rsrc,&abs20
                                                   ; Reg/Absolute
```


The next four replacements are possible only if 16-bit indexes are sufficient for the addressing.

MOVX.A	z20(Rsrc),Rdst	MOVA	z16(Rsrc),Rdst	;	Indexed/Reg
MOVX.A	Rsrc,z20(Rdst)	MOVA	Rsrc,z16(Rdst)	;	Reg/Indexed
MOVX.A	symb20,Rdst	MOVA	symb16,Rdst	;	Symbolic/Reg
MOVX.A	Rsrc,symb20	MOVA	Rsrc,symb16	;	Reg/Symbolic

POPM.A Restore n CPU registers (20-bit data) from the stack
POPM.[W] Restore n CPU registers (16-bit data) from the stack

 $\mbox{Syntax} \qquad \mbox{POPM.A $\#n$, $Rdst} \qquad \qquad 1 \leq n \leq 16 \label{eq:syntax}$

POPM.W #n,Rdst or POPM #n,Rdst $1 \le n \le 16$

Operation POPM.A: Restore the register values from stack to the specified CPU registers. The

stack pointer SP is incremented by four for each register restored from stack. The 20-bit

values from stack (2 words per register) are restored to the registers.

POPM.W: Restore the 16-bit register values from stack to the specified CPU registers. The stack pointer SP is incremented by two for each register restored from stack. The 16-bit values from stack (one word per register) are restored to the CPU registers.

Note: This instruction does not use the extension word.

Description POPM.A: The CPU registers pushed on the stack are moved to the extended CPU

registers, starting with the CPU register (Rdst - n + 1). The stack pointer is incremented

by (n y 4) after the operation.

POPM.W: The 16-bit registers pushed on the stack are moved back to the CPU registers, starting with CPU register (Rdst – n + 1). The stack pointer is incremented by (n y 2) after the instruction. The MSBs (Rdst.19:16) of the restored CPU registers are

cleared.

Status Bits Status bits are not affected, except SR is included in the operation.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Restore the 20-bit registers R9, R10, R11, R12, R13 from the stack.

POPM.A #5,R13 ; Restore R9, R10, R11, R12, R13

Example Restore the 16-bit registers R9, R10, R11, R12, R13 from the stack.

POPM.W #5,R13 ; Restore R9, R10, R11, R12, R13

PUSHM.A Save n CPU registers (20-bit data) on the stack
PUSHM.[W] Save n CPU registers (16-bit words) on the stack

Syntax PUSHM.A #n, Rdst $1 \le n \le 16$

PUSHM.W #n, Rdst or PUSHM #n, Rdst $1 \le n \le 16$

Operation PUSHM.A: Save the 20-bit CPU register values on the stack. The stack pointer (SP) is

decremented by four for each register stored on the stack. The MSBs are stored first

(higher address).

PUSHM.W: Save the 16-bit CPU register values on the stack. The stack pointer is

decremented by two for each register stored on the stack.

Description PUSHM.A: The n CPU registers, starting with Rdst backwards, are stored on the stack.

The stack pointer is decremented by $(n \times 4)$ after the operation. The data (Rn.19:0) of

the pushed CPU registers is not affected.

PUSHM.W: The n registers, starting with Rdst backwards, are stored on the stack. The stack pointer is decremented by $(n \times 2)$ after the operation. The data (Rn.19:0) of the

pushed CPU registers is not affected.

Note: This instruction does not use the extension word.

Status Bits Status bits are not affected.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Save the five 20-bit registers R9, R10, R11, R12, R13 on the stack.

PUSHM.A #5,R13 ; Save R13, R12, R11, R10, R9

Example Save the five 16-bit registers R9, R10, R11, R12, R13 on the stack.

PUSHM.W #5,R13 ; Save R13, R12, R11, R10, R9

* POPX.A Restore single address-word from the stack

* POPX.[W] Restore single word from the stack
* POPX.B Restore single byte from the stack

Syntax POPX.A dst

POPX dst or POPX.W dst

POPX.B dst

Operation Restore the 8/16/20-bit value from the stack to the destination. 20-bit addresses are

possible. The stack pointer SP is incremented by two (byte and word operands) and by

four (address-word operand).

Emulation MOVX(.B,.A) @SP+,dst

Description The item on TOS is written to the destination operand. register mode, indexed mode,

symbolic mode, and absolute mode are possible. The stack pointer is incremented by

two or four.

Note: the stack pointer is incremented by two also for byte operations.

Status Bits Status bits are not affected.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Write the 16-bit value on TOS to the 20-bit address &EDE.

POPX.W &EDE ; Write word to address EDE

Example Write the 20-bit value on TOS to R9.

POPX.A R9 ; Write address-word to R9

PUSHX.A Restore single address-word from the stack

PUSHX.[W] Restore single word from the stack
PUSHX.B Restore single byte from the stack

Syntax PUSHX.A src

PUSHX src Or PUSHX.W src

PUSHX.B src

Operation Save the 8/16/20-bit value of the source operand on the TOS. 20-bit addresses are

possible. The stack pointer (SP) is decremented by two (byte and word operands) or by

four (address-word operand) before the write operation.

Description The stack pointer is decremented by two (byte and word operands) or by four

(address-word operand). Then the source operand is written to the TOS. All seven

addressing modes are possible for the source operand.

Note: This instruction does not use the extension word.

Status Bits Status bits are not affected.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Save the byte at the 20-bit address &EDE on the stack.

PUSHX.B &EDE ; Save byte at address EDE

Example Save the 20-bit value in R9 on the stack.

PUSHX.A R9 ; Save address-word in R9

RLAM.A Rotate left arithmetically the 20-bit CPU register content RLAM.[W] Rotate left arithmetically the 16-bit CPU register content

Syntax RLAM. A #n, Rdst $1 \le n \le 4$

RLAM.W #n,Rdst or RLAM #n,Rdst $1 \le n \le 4$

 $\textbf{Operation} \qquad \quad C \leftarrow \text{MSB} \leftarrow \text{MSB-1} \ \ \text{LSB+1} \leftarrow \text{LSB} \leftarrow 0$

Description The destination operand is shifted arithmetically left one, two, three, or four positions as

shown in Figure 5-44. RLAM works as a multiplication (signed and unsigned) with 2, 4,

8, or 16. The word instruction RLAM.W clears the bits Rdst.19:16.

Note: This instruction does not use the extension word.

Status Bits N: Set if result is negative

.A: Rdst.19 = 1, reset if Rdst.19 = 0 .W: Rdst.15 = 1, reset if Rdst.15 = 0

Z: Set if result is zero, reset otherwise

C: Loaded from the MSB (n = 1), MSB-1 (n = 2), MSB-2 (n = 3), MSB-3 (n = 4)

V: Undefined

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 20-bit operand in R5 is shifted left by three positions. It operates equal to an

arithmetic multiplication by 8.

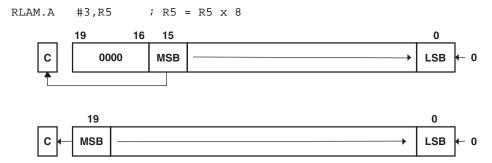


Figure 5-44. Rotate Left Arithmetically—RLAM[.W] and RLAM.A

* RLAX.A Rotate left arithmetically address-word

* RLAX.[W] Rotate left arithmetically word
* RLAX.B Rotate left arithmetically byte

Syntax RLAX.A dst

RLAX dst or RLAX.W dst

RLAX.B dst

Operation $C \leftarrow MSB \leftarrow MSB-1 \dots LSB+1 \leftarrow LSB \leftarrow 0$

Emulation ADDX.Adst,dst

ADDX dst,dst
ADDX.B dst,dst

Description The destination operand is shifted left one position as shown in Figure 5-45. The MSB

is shifted into the carry bit (C) and the LSB is filled with 0. The RLAX instruction acts as

a signed multiplication by 2.

Status Bits N: Set if result is negative, reset if positive

Z: Set if result is zero, reset otherwise

C: Loaded from the MSB

V: Set if an arithmetic overflow occurs: the initial value is 040000h ≤ dst < 0C0000h; reset otherwise

Set if an arithmetic overflow occurs: the initial value is $04000h \le dst < 0C000h$; reset otherwise

Set if an arithmetic overflow occurs: the initial value is $040h \le dst < 0C0h$; reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 20-bit value in R7 is multiplied by 2.

RLAX.A R7 ; Shift left R7 (20-bit)

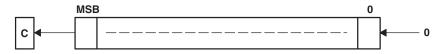


Figure 5-45. Destination Operand-Arithmetic Shift Left

* RLCX.A Rotate left through carry address-word

* RLCX.[W] Rotate left through carry word * RLCX.B Rotate left through carry byte

Syntax RLCX.A dst

RLCX dst or RLCX.W dst

RLCX.B dst

Operation $C \leftarrow MSB \leftarrow MSB-1 \dots LSB+1 \leftarrow LSB \leftarrow C$

Emulation ADDCX.A dst,dst

> ADDCX dst, dst ADDCX.B dst, dst

The destination operand is shifted left one position as shown in Figure 5-46. The carry Description

bit (C) is shifted into the LSB and the MSB is shifted into the carry bit (C).

Status Bits N: Set if result is negative, reset if positive

> Z: Set if result is zero, reset otherwise

C: Loaded from the MSB

V: Set if an arithmetic overflow occurs: the initial value is 040000h ≤ dst < 0C0000h; reset otherwise

Set if an arithmetic overflow occurs: the initial value is 04000h ≤ dst < 0C000h; reset otherwise

Set if an arithmetic overflow occurs: the initial value is $040h \le dst < 0C0h$; reset

otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 20-bit value in R5 is shifted left one position.

> RLCX.A R5 $; (R5 \times 2) + C -> R5$

Example The RAM byte LEO is shifted left one position. PC is pointing to upper memory.

RLCX.B LEO ; RAM(LEO) \times 2 + C -> RAM(LEO)

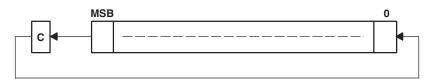


Figure 5-46. Destination Operand-Carry Left Shift

RRAM.A Rotate right arithmetically the 20-bit CPU register content
RRAM.[W] Rotate right arithmetically the 16-bit CPU register content

Syntax RRAM. A #n, Rdst $1 \le n \le 4$

RRAM.W #n, Rdst or RRAM #n, Rdst $1 \le n \le 4$

 $\textbf{Operation} \qquad \quad \mathsf{MSB} \to \mathsf{MSB} \to \mathsf{MSB-1} \, \dots \, \mathsf{LSB+1} \to \mathsf{LSB} \to \mathsf{C}$

Description The destination operand is shifted right arithmetically by one, two, three, or four bit

positions as shown in Figure 5-47. The MSB retains its value (sign). RRAM operates equal to a signed division by 2/4/8/16. The MSB is retained and shifted into MSB-1. The LSB+1 is shifted into the LSB, and the LSB is shifted into the carry bit C. The word instruction RRAM.W clears the bits Rdst.19:16.

Note: This instruction does not use the extension word.

Status Bits N: Set if result is negative

.A: Rdst.19 = 1, reset if Rdst.19 = 0 .W: Rdst.15 = 1, reset if Rdst.15 = 0

Z: Set if result is zero, reset otherwise

C: Loaded from the LSB (n = 1), LSB+1 (n = 2), LSB+2 (n = 3), or LSB+3 (n = 4)

V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The signed 20-bit number in R5 is shifted arithmetically right two positions.

RRAM.A #2,R5 ; R5/4 -> R5

Example The signed 20-bit value in R15 is multiplied by 0.75. $(0.5 + 0.25) \times R15$.

```
PUSHM.A
            #1,R15
                              ; Save extended R15 on stack
RRAM.A
            #1,R15
                              ; R15 y 0.5 -> R15
            @SP+,R15
                              ; R15 y 0.5 + R15 = 1.5 y R15 -> R15
ADDX.A
                              ; (1.5 \text{ y R15}) \text{ y } 0.5 = 0.75 \text{ y R15} \rightarrow \text{R15}
RRAM.A
            #1,R15
            19
                             15
              0000
                            MSB
                                                                           LSB
               19
                                                                            0
              MSB
                                                                           LSB
```

Figure 5-47. Rotate Right Arithmetically RRAM[.W] and RRAM.A

RRAX.A Rotate right arithmetically the 20-bit operand RRAX.[W] Rotate right arithmetically the 16-bit operand RRAX.B Rotate right arithmetically the 8-bit operand

Syntax RRAX.A Rdst

RRAX.W Rdst RRAX Rdst RRAX.B Rdst RRAX.A dst

RRAX dst or RRAX.W dst

RRAX.B dst

 $\textbf{Operation} \qquad \qquad \text{MSB} \rightarrow \text{MSB} \rightarrow \text{MSB-1} \ ... \ \text{LSB+1} \rightarrow \text{LSB} \rightarrow \text{C}$

Description Register mode for the destination: the destination operand is shifted right by one bit

position as shown in Figure 5-48. The MSB retains its value (sign). The word instruction RRAX.W clears the bits Rdst.19:16, the byte instruction RRAX.B clears the bits Rdst.19:8. The MSB retains its value (sign), the LSB is shifted into the carry bit. RRAX

here operates equal to a signed division by 2.

All other modes for the destination: the destination operand is shifted right arithmetically by one bit position as shown in Figure 5-49. The MSB retains its value (sign), the LSB is shifted into the carry bit. RRAX here operates equal to a signed division by 2. All addressing modes - with the exception of the Immediate Mode - are possible in the full memory.

Status Bits N: Set if result is negative, reset if positive

.A: dst.19 = 1, reset if dst.19 = 0 .W: dst.15 = 1, reset if dst.15 = 0 .B: dst.7 = 1, reset if dst.7 = 0

Z: Set if result is zero, reset otherwise

C: Loaded from the LSB

V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The signed 20-bit number in R5 is shifted arithmetically right four positions.

RPT #4
RRAX.A R5 ; R5/16 -> R5

Example The signed 8-bit value in EDE is multiplied by 0.5.

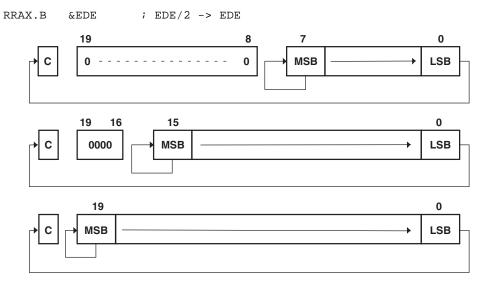


Figure 5-48. Rotate Right Arithmetically RRAX(.B,.A) - Register Mode

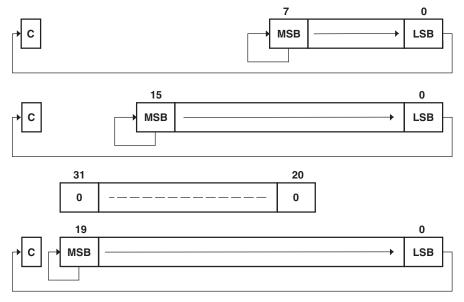


Figure 5-49. Rotate Right Arithmetically RRAX(.B,.A) – Non-Register Mode

RRCM.A Rotate right through carry the 20-bit CPU register content RRCM.[W] Rotate right through carry the 16-bit CPU register content

Syntax RRCM. A #n, Rdst $1 \le n \le 4$

RRCM.W #n,Rdst or RRCM #n,Rdst $1 \le n \le 4$

 $\textbf{Operation} \qquad \qquad C \to MSB \to MSB-1 \ ... \ LSB+1 \to LSB \to C$

Description The destination operand is shifted right by one, two, three, or four bit positions as

shown in Figure 5-50. The carry bit C is shifted into the MSB, the LSB is shifted into the

carry bit. The word instruction RRCM.W clears the bits Rdst.19:16.

Note: This instruction does not use the extension word.

Status Bits N: Set if result is negative

.A: Rdst.19 = 1, reset if Rdst.19 = 0 .W: Rdst.15 = 1, reset if Rdst.15 = 0

Z: Set if result is zero, reset otherwise

C: Loaded from the LSB (n = 1), LSB+1 (n = 2), LSB+2 (n = 3), or LSB+3 (n = 4)

V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The address-word in R5 is shifted right by three positions. The MSB-2 is loaded with 1.

```
SETC ; Prepare carry for MSB-2 RRCM.A #3,R5 ; R5 = R5 3 + 20000h
```

Example

The word in R6 is shifted right by two positions. The MSB is loaded with the LSB. The MSB–1 is loaded with the contents of the carry flag.

Figure 5-50. Rotate Right Through Carry RRCM[.W] and RRCM.A

RRCX.A Rotate right through carry the 20-bit operand RRCX.[W] Rotate right through carry the 16-bit operand RRCX.B Rotate right through carry the 8-bit operand

Syntax RRCX.A Rdst

> RRCX.W Rdst RRCX Rdst RRCX.B Rdst RRCX.A dst

RRCX dst or RRCX.W dst

RRCX.B dst

Operation

 $C \rightarrow MSB \rightarrow MSB-1 \dots LSB+1 \rightarrow LSB \rightarrow C$

Description

Register mode for the destination: the destination operand is shifted right by one bit position as shown in Figure 5-51. The word instruction RRCX.W clears the bits Rdst.19:16, the byte instruction RRCX.B clears the bits Rdst.19:8. The carry bit C is shifted into the MSB, the LSB is shifted into the carry bit.

All other modes for the destination: the destination operand is shifted right by one bit position as shown in Figure 5-52. The carry bit C is shifted into the MSB, the LSB is shifted into the carry bit. All addressing modes - with the exception of the Immediate Mode - are possible in the full memory.

Status Bits

Set if result is negative

.A: dst.19 = 1, reset if dst.19 = 0.W: dst.15 = 1, reset if dst.15 = 0.B: dst.7 = 1, reset if dst.7 = 0

Z: Set if result is zero, reset otherwise

Loaded from the LSB C:

V: Reset

Mode Bits

OSCOFF, CPUOFF, and GIE are not affected.

Example

The 20-bit operand at address EDE is shifted right by one position. The MSB is loaded with 1.

```
SETC
                  ; Prepare carry for MSB
RRCX.A
         EDE
                  ; EDE = EDE 1 + 80000h
```

Example

The word in R6 is shifted right by twelve positions.

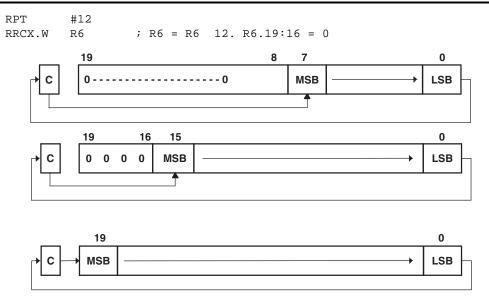


Figure 5-51. Rotate Right Through Carry RRCX(.B,.A) – Register Mode

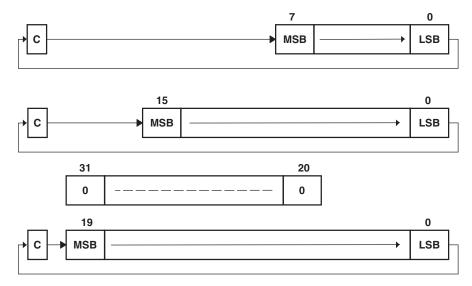


Figure 5-52. Rotate Right Through Carry RRCX(.B,.A) - Non-Register Mode

RRUM.A Rotate right through carry the 20-bit CPU register content RRUM.[W] Rotate right through carry the 16-bit CPU register content

Syntax RRUM.A #n, Rdst $1 \le n \le 4$

> $1 \le n \le 4$ RRUM.W #n, Rdst or RRUM #n, Rdst

Operation $0 \rightarrow \text{MSB} \rightarrow \text{MSB-1} \dots \text{LSB+1} \rightarrow \text{LSB} \rightarrow \text{C}$

Description The destination operand is shifted right by one, two, three, or four bit positions as

> shown in Figure 5-53. Zero is shifted into the MSB, the LSB is shifted into the carry bit. RRUM works like an unsigned division by 2, 4, 8, or 16. The word instruction RRUM.W

clears the bits Rdst.19:16.

Note: This instruction does not use the extension word.

Status Bits N: Set if result is negative

> .A: Rdst.19 = 1, reset if Rdst.19 = 0.W: Rdst.15 = 1, reset if Rdst.15 = 0

Z: Set if result is zero, reset otherwise

C: Loaded from the LSB (n = 1), LSB+1 (n = 2), LSB+2 (n = 3), or LSB+3 (n = 4)

V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The unsigned address-word in R5 is divided by 16.

> RRUM.A #4,R5 ; $R5 = R5 + 4 \cdot R5/16$

Example The word in R6 is shifted right by one bit. The MSB R6.15 is loaded with 0.

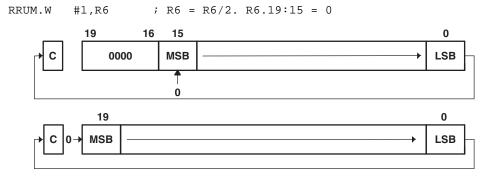


Figure 5-53. Rotate Right Unsigned RRUM[.W] and RRUM.A

RRUX.A Rotate right unsigned the 20-bit operand
RRUX.[W] Rotate right unsigned the 16-bit operand
RRUX.B Rotate right unsigned the 8-bit operand

Syntax RRUX.A Rdst

RRUX.W Rdst RRUX Rdst RRUX.B Rdst

 $\textbf{Operation} \hspace{1cm} \textbf{C=0} \rightarrow \textbf{MSB} \rightarrow \textbf{MSB-1} \; ... \; \textbf{LSB+1} \rightarrow \textbf{LSB} \rightarrow \textbf{C}$

Description RRUX is valid for register mode only: the destination operand is shifted right by one bit

position as shown in Figure 5-54. The word instruction RRUX.W clears the bits Rdst.19:16. The byte instruction RRUX.B clears the bits Rdst.19:8. Zero is shifted into

the MSB, the LSB is shifted into the carry bit.

Status Bits N: Set if result is negative

.A: dst.19 = 1, reset if dst.19 = 0.W: dst.15 = 1, reset if dst.15 = 0.B: dst.7 = 1, reset if dst.7 = 0

Z: Set if result is zero, reset otherwise

C: Loaded from the LSB

V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The word in R6 is shifted right by twelve positions.

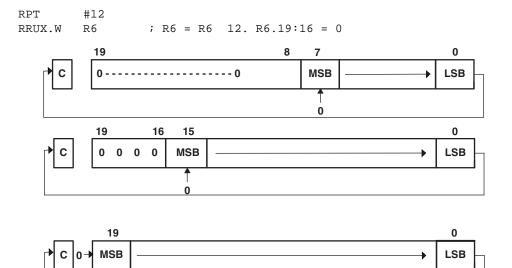


Figure 5-54. Rotate Right Unsigned RRUX(.B,.A) - Register Mode

227

* SBCX.A Subtract source and borrow/.NOT. carry from destination address-word

* **SBCX.[W]** Subtract source and borrow/.NOT. carry from destination word * **SBCX.B** Subtract source and borrow/.NOT. carry from destination byte

Syntax SBCX.Adst

SBCX dst or SBCX.W dst

SBCX.B dst

Operation $dst + 0FFFFFh + C \rightarrow dst$

 $dst + 0FFFFh + C \rightarrow dst$ $dst + 0FFh + C \rightarrow dst$

Emulation SBCX.A #0,dst

SBCX #0,dst SBCX.B #0,dst

Description The carry bit (C) is added to the destination operand minus one. The previous contents

of the destination are lost.

Status Bits N: Set if result is negative, reset if positive

Z: Set if result is zero, reset otherwise

C: Set if there is a carry from the MSB of the result, reset otherwise

Set to 1 if no borrow, reset if borrow

/: Set if an arithmetic overflow occurs, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 8-bit counter pointed to by R13 is subtracted from a 16-bit counter pointed to by

R12.

SUBX.B @R13,0(R12) ; Subtract LSDs

SBCX.B 1(R12) ; Subtract carry from MSD

Note: Borrow Implementation

The borrow is treated as a .NOT. carry:

Borrow Carry Bit
Yes 0
No 1

SUBX.A Subtract source address-word from destination address-word

SUBX.[W] Subtract source word from destination word SUBX.B Subtract source byte from destination byte

Syntax SUBX.A src,dst

SUBX src, dst or SUBX.W src, dst

SUBX.B src,dst

Operation (.not. src) + 1 + dst \rightarrow dst or dst – src \rightarrow dst

Description The source operand is subtracted from the destination operand. This is done by adding

the 1's complement of the source + 1 to the destination. The source operand is not affected. The result is written to the destination operand. Both operands may be located

in the full address space.

Status Bits N: Set if result is negative (src > dst), reset if positive (src \leq dst)

Z: Set if result is zero (src = dst), reset otherwise (src \neq dst)

C: Set if there is a carry from the MSB, reset otherwise

V: Set if the subtraction of a negative source operand from a positive destination operand delivers a negative result, or if the subtraction of a positive source operand from a negative destination operand delivers a positive result, reset otherwise (no overflow).

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example A 20-bit constant 87654h is subtracted from EDE (LSBs) and EDE+2 (MSBs).

```
SUBX.A #87654h,EDE ; Subtract 87654h from EDE+2 EDE
```

Example

A table word pointed to by R5 (20-bit address) is subtracted from R7. Jump to label TONI if R7 contains zero after the instruction. R5 is auto-incremented by 2. R7.19:16 = 0.

```
SUBX.W @R5+,R7 ; Subtract table number from R7. R5 + 2 JZ TONI ; R7 = @R5 (before subtraction) ... ; R7 <> @R5 (before subtraction)
```

Example

Byte CNT is subtracted from the byte R12 points to in the full address space. Address of CNT is within PC \pm 512 K.

```
SUBX.B CNT,0(R12) ; Subtract CNT from @R12
```

Note: Use SUBA for the following two cases for better density and execution.

```
SUBX.A Rsrc,Rdst
SUBX.A #imm20,Rdst
```

229

SUBCX.A Subtract source address-word with carry from destination address-word

SUBCX.[W] Subtract source word with carry from destination word SUBCX.B Subtract source byte with carry from destination byte

Syntax SUBCX.A src, dst

SUBCX src, dst or SUBCX.W src, dst

SUBCX.B src,dst

Operation (.not. src) + C + dst \rightarrow dst or dst - (src - 1) + C \rightarrow dst

Description The source operand is subtracted from the destination operand. This is made by adding

the 1's complement of the source + carry to the destination. The source operand is not affected, the result is written to the destination operand. Both operands may be located

in the full address space.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Z: Set if result is zero, reset otherwise

C: Set if there is a carry from the MSB, reset otherwise

V: Set if the subtraction of a negative source operand from a positive destination operand delivers a negative result, or if the subtraction of a positive source operand from a negative destination operand delivers a positive result, reset otherwise (no overflow).

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example A 20-bit constant 87654h is subtracted from R5 with the carry from the previous instruction.

```
SUBCX.A #87654h,R5 ; Subtract 87654h + C from R5
```

Example A 48-bit number (3 words) pointed to by R5 (20-bit address) is subtracted from a 48-bit counter in RAM, pointed to by R7. R5 auto-increments to point to the next 48-bit number.

```
SUBX.W @R5+,0(R7) ; Subtract LSBs. R5 + 2 
SUBCX.W @R5+,2(R7) ; Subtract MIDs with C. R5 + 2 
SUBCX.W @R5+,4(R7) ; Subtract MSBs with C. R5 + 2
```

Example

Byte CNT is subtracted from the byte R12 points to. The carry of the previous instruction is used. 20-bit addresses.

```
SUBCX.B &CNT,0(R12); Subtract byte CNT from @R12
```


SWPBX.A Swap bytes of lower word

SWPBX.[W] Swap bytes of word

Syntax SWPBX.A dst

SWPBX dst or SWPBX.W dst

Operation $dst.15:8 \leftrightarrow dst.7:0$

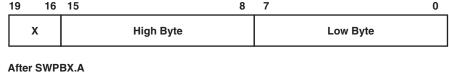
Description Register Mode: Rn.15:8 are swapped with Rn.7:0. When the .A extension is used,

Rn.19:16 are unchanged. When the .W extension is used, Rn.19:16 are cleared.

Other Modes: When the .A extension is used, bits 31:20 of the destination address are cleared, bits 19:16 are left unchanged, and bits 15:8 are swapped with bits 7:0. When the .W extension is used, bits 15:8 are swapped with bits 7:0 of the addressed word.

Status Bits Status bits are not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.


Example Exchange the bytes of RAM address-word EDE.

MOVX.A #23456h, &EDE ; 23456h -> EDE SWPBX.A EDE ; 25634h -> EDE

Example Exchange the bytes of R5.

MOVA #23456h,R5 ; 23456h -> R5 SWPBX.W R5 ; 05634h -> R5

Before SWPBX.A

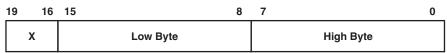
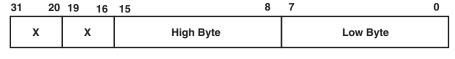



Figure 5-55. Swap Bytes SWPBX.A Register Mode

Before SWPBX.A

After SWPBX.A

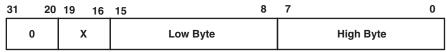


Figure 5-56. Swap Bytes SWPBX.A In Memory

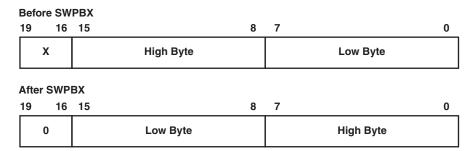


Figure 5-57. Swap Bytes SWPBX[.W] Register Mode

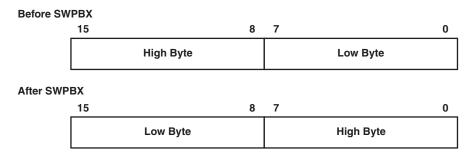


Figure 5-58. Swap Bytes SWPBX[.W] In Memory

SXTX.A Extend sign of lower byte to address-word

SXTX.[W] Extend sign of lower byte to word

Syntax SXTX.A dst

SXTX dst or SXTX.W dst

Operation dst.7 \rightarrow dst.15:8, Rdst.7 \rightarrow Rdst.19:8 (Register Mode)

Description Register Mode: The sign of the low byte of the operand (Rdst.7) is extended into the bits

Rdst.19:8.

Other Modes: SXTX.A: the sign of the low byte of the operand (dst.7) is extended into

dst.19:8. The bits dst.31:20 are cleared.

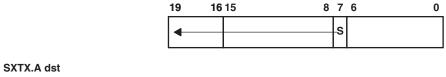
SXTX[.W]: the sign of the low byte of the operand (dst.7) is extended into dst.15:8.

Status Bits N: Set if result is negative, reset otherwise

Z: Set if result is zero, reset otherwise

C: Set if result is not zero, reset otherwise (C = .not.Z)

V: Reset


Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The signed 8-bit data in EDE.7:0 is sign extended to 20 bits: EDE.19:8. Bits 31:20

located in EDE+2 are cleared.

SXTX.A &EDE ; Sign extended EDE -> EDE+2/EDE

SXTX.A Rdst

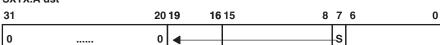
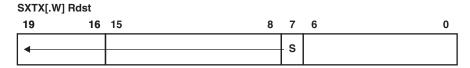



Figure 5-59. Sign Extend SXTX.A

SXTX[.W] dst

Figure 5-60. Sign Extend SXTX[.W]

* TSTX.A Test destination address-word

* TSTX.[W] Test destination word
* TSTX.B Test destination byte

Syntax TSTX.A dst

TSTX dst or TSTX.W dst

TSTX.B dst

Operation dst + 0FFFFFh + 1

dst + 0FFFFh + 1dst + 0FFh + 1

Emulation CMPX.A #0,dst

CMPX #0,dst
CMPX.B #0,dst

Description The destination operand is compared with zero. The status bits are set according to the

result. The destination is not affected.

Status Bits N: Set if destination is negative, reset if positive

Z: Set if destination contains zero, reset otherwise

C: Set V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example RAM byte LEO is tested; PC is pointing to upper memory. If it is negative, continue at

LEONEG; if it is positive but not zero, continue at LEOPOS.

TSTX.B LEO ; Test LEO
JN LEONEG ; LEO is negative
JZ LEOZERO ; LEO is zero

LEOPOS ; LEO is positive but not zero

LEONEG ; LEO is negative LEOZERO ; LEO is zero

XORX.A Exclusive OR source address-word with destination address-word

XORX.[W] Exclusive OR source word with destination word **XORX.B** Exclusive OR source byte with destination byte

Syntax XORX.A src,dst

XORX src, dst or XORX.W src, dst

XORX.B src,dst

Operation $\operatorname{src.xor.dst} \to \operatorname{dst}$

Description The source and destination operands are exclusively ORed. The result is placed into

the destination. The source operand is not affected. The previous contents of the destination are lost. Both operands may be located in the full address space.

Status Bits N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)

Z: Set if result is zero, reset otherwise

C: Set if result is not zero, reset otherwise (carry = .not. Zero)

V: Set if both operands are negative (before execution), reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Toggle bits in address-word CNTR (20-bit data) with information in address-word TONI

(20-bit address).

XORX.A TONI, &CNTR ; Toggle bits in CNTR

Example A table word pointed to by R5 (20-bit address) is used to toggle bits in R6.

XORX.W @R5,R6 ; Toggle bits in R6. R6.19:16 = 0

Example Reset to zero those bits in the low byte of R7 that are different from the bits in byte EDE

(20-bit address).

5.6.4 Address Instructions

MSP430X address instructions are instructions that support 20-bit operands but have restricted addressing modes. The addressing modes are restricted to the Register mode and the Immediate mode, except for the MOVA instruction. Restricting the addressing modes removes the need for the additional extension-word op-code improving code density and execution time. The MSP430X address instructions are listed and described in the following pages.

ADDA Add 20-bit source to a 20-bit destination register

Syntax ADDA Rsrc, Rdst

ADDA #imm20, Rdst

Operation src + Rdst → Rdst

Description The 20-bit source operand is added to the 20-bit destination CPU register. The previous

contents of the destination are lost. The source operand is not affected.

Status Bits Set if result is negative (Rdst.19 = 1), reset if positive (Rdst.19 = 0)

> Z: Set if result is zero, reset otherwise

C: Set if there is a carry from the 20-bit result, reset otherwise

V: Set if the result of two positive operands is negative, or if the result of two negative

numbers is positive, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example R5 is increased by 0A4320h. The jump to TONI is performed if a carry occurs.

#0A4320h,R5 ; Add A4320h to 20-bit R5 ADDA

JC TONI ; Jump on carry ; No carry occurred

* **BRA** Branch to destination

Description An unconditional branch is taken to a 20-bit address anywhere in the full address

space. All seven source addressing modes can be used. The branch instruction is an address-word instruction. If the destination address is contained in a memory location

X, it is contained in two ascending words: X (LSBs) and (X + 2) (MSBs).

Status Bits N: Not affected

Z: Not affectedC: Not affectedV: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Examples Examples for all addressing modes are given.

Immediate Mode: Branch to label EDE located anywhere in the 20-bit address space or

branch directly to address.

BRA #EDE ; MOVA #imm20,PC

BRA #01AA04h

Symbolic Mode: Branch to the 20-bit address contained in addresses EXEC (LSBs) and EXEC+2 (MSBs). EXEC is located at the address (PC + X) where X is within +32 K.

Indirect addressing.

BRA EXEC ; MOVA z16(PC),PC

Note: if the 16-bit index is not sufficient, a 20-bit index may be used with the following

instruction.

MOVX.A EXEC, PC ; 1M byte range with 20-bit index

Absolute Mode: Branch to the 20-bit address contained in absolute addresses EXEC

(LSBs) and EXEC+2 (MSBs). Indirect addressing.

BRA &EXEC ; MOVA &abs20,PC

Register Mode: Branch to the 20-bit address contained in register R5. Indirect R5.

BRA R5 ; MOVA R5, PC

Indirect Mode: Branch to the 20-bit address contained in the word pointed to by register

R5 (LSBs). The MSBs have the address (R5 + 2). Indirect, indirect R5.

BRA @R5 ; MOVA @R5,PC

Indirect, Auto-Increment Mode: Branch to the 20-bit address contained in the words pointed to by register R5 and increment the address in R5 afterwards by 4. The next time the S/W flow uses R5 as a pointer, it can alter the program execution due to access to the next address in the table pointed to by R5. Indirect, indirect R5.

BRA @R5+ ; MOVA @R5+,PC. R5 + 4

Indexed Mode: Branch to the 20-bit address contained in the address pointed to by register (R5 + X) (e.g., a table with addresses starting at X). (R5 + X) points to the LSBs, (R5 + X + 2) points to the MSBs of the address. X is within R5 + 32 K. Indirect, indirect (R5 + X).

BRA X(R5) ; MOVA z16(R5), PC

Note: if the 16-bit index is not sufficient, a 20-bit index X may be used with the following instruction:

MOVX.A X(R5),PC ; 1M byte range with 20-bit index

238

CALLA Call a subroutine

Syntax CALLA dst

Operation dst → tmp 20-bit dst is evaluated and stored

 $SP - 2 \rightarrow SP$

PC.19:16 → @SP updated PC with return address to TOS (MSBs)

 $SP - 2 \rightarrow SP$

 $PC.15:0 \rightarrow @SP \text{ updated PC to TOS (LSBs)}$

tmp → PC saved 20-bit dst to PC

Description A subroutine call is made to a 20-bit address anywhere in the full address space. All

> seven source addressing modes can be used. The call instruction is an address-word instruction. If the destination address is contained in a memory location X, it is contained in two ascending words: X (LSBs) and (X + 2) (MSBs). Two words on the stack are needed for the return address. The return is made with the instruction RETA.

Status Bits N: Not affected

> Z: Not affected C: Not affected V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Examples Examples for all addressing modes are given.

Immediate Mode: Call a subroutine at label EXEC or call directly an address.

; Start address EXEC CALLA #EXEC CALLA #01AA04h ; Start address 01AA04h

> Symbolic Mode: Call a subroutine at the 20-bit address contained in addresses EXEC (LSBs) and EXEC+2 (MSBs). EXEC is located at the address (PC + X) where X is

within +32 K. Indirect addressing.

CALLA ; Start address at @EXEC. z16(PC)

> Absolute Mode: Call a subroutine at the 20-bit address contained in absolute addresses EXEC (LSBs) and EXEC+2 (MSBs). Indirect addressing.

CALLA &EXEC ; Start address at @EXEC

> Register Mode: Call a subroutine at the 20-bit address contained in register R5. Indirect R5.

R5 CALLA ; Start address at @R5

> Indirect Mode: Call a subroutine at the 20-bit address contained in the word pointed to by register R5 (LSBs). The MSBs have the address (R5 + 2). Indirect, indirect R5.

@R5 ; Start address at @R5 CATITIA

> Indirect, Auto-Increment Mode: Call a subroutine at the 20-bit address contained in the words pointed to by register R5 and increment the 20-bit address in R5 afterwards by 4. The next time the S/W flow uses R5 as a pointer, it can alter the program execution due to access to the next word address in the table pointed to by R5. Indirect, indirect R5.

CALLA @R5+ ; Start address at @R5. R5 + 4

Indexed Mode: Call a subroutine at the 20-bit address contained in the address pointed to by register (R5 + X); e.g., a table with addresses starting at X. (R5 + X) points to the LSBs, (R5 + X + 2) points to the MSBs of the word address. X is within R5 +32 K. Indirect, indirect (R5 + X).

; Start address at @(R5+X). z16(R5) CALLA X(R5)

240

* CLRA Clear 20-bit destination register

Emulation MOVA #0, Rdst

Description The destination register is cleared.

Status Bits Status bits are not affected.

Example The 20-bit value in R10 is cleared.

CLRA R10 ; 0 -> R10

CMPA Compare the 20-bit source with a 20-bit destination register

Syntax CMPA Rsrc, Rdst

CMPA #imm20, Rdst

Operation (.not. src) + 1 + Rdst or Rdst - src

Description The 20-bit source operand is subtracted from the 20-bit destination CPU register. This

is made by adding the 1's complement of the source + 1 to the destination register. The

result affects only the status bits.

Status Bits N: Set if result is negative (src > dst), reset if positive ($src \le dst$)

Z: Set if result is zero (src = dst), reset otherwise (src \neq dst)

C: Set if there is a carry from the MSB, reset otherwise

V: Set if the subtraction of a negative source operand from a positive destination operand delivers a negative result, or if the subtraction of a positive source operand from a negative destination operand delivers a positive result, reset

otherwise (no overflow)

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example A 20-bit immediate operand and R6 are compared. If they are equal the program

continues at label EQUAL.

```
CMPA #12345h,R6 ; Compare R6 with 12345h
```

Example The 20-bit values in R5 and R6 are compared. If R5 is greater than (signed) or equal to

R6, the program continues at label GRE.

```
CMPA R6,R5 ; Compare R6 with R5 (R5 - R6)
```

JGE GRE ; R5 >= R6 ... ; R5 < R6

* **DECDA** Double-decrement 20-bit destination register

Description The destination register is decremented by two. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive

Z: Set if Rdst contained 2, reset otherwise

C: Reset if Rdst contained 0 or 1, set otherwise

V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 20-bit value in R5 is decremented by 2.

DECDA R5 ; Decrement R5 by two

* **INCDA** Double-increment 20-bit destination register

Description The destination register is incremented by two. The original contents are lost.

Status Bits N: Set if result is negative, reset if positive

Z: Set if Rdst contained 0FFFEh, reset otherwise Set if Rdst contained 0FFFEh, reset otherwise Set if Rdst contained 0FEh, reset otherwise

C: Set if Rdst contained 0FFFEh or 0FFFFh, reset otherwise Set if Rdst contained 0FFFEh or 0FFFh, reset otherwise Set if Rdst contained 0FEh or 0FFh, reset otherwise

V: Set if Rdst contained 07FFFh or 07FFFh, reset otherwise Set if Rdst contained 07FFEh or 07FFh, reset otherwise Set if Rdst contained 07Eh or 07Fh, reset otherwise

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 20-bit value in R5 is incremented by 2.

INCDA R5 ; Increment R5 by two

MOVA Move the 20-bit source to the 20-bit destination

Syntax MOVA Rsrc, Rdst

> MOVA #imm20, Rdst MOVA z16(Rsrc), Rdst

MOVA EDE, Rdst MOVA &abs20, Rdst MOVA @Rsrc, Rdst MOVA @Rsrc+, Rdst MOVA Rsrc, z16 (Rdst) MOVA Rsrc, &abs20

Operation $src \rightarrow Rdst$

 $Rsrc \rightarrow dst$

Description The 20-bit source operand is moved to the 20-bit destination. The source operand is not

affected. The previous content of the destination is lost.

Status Bits N: Not affected

> **Z**: Not affected C: Not affected Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Examples Copy 20-bit value in R9 to R8.

> MOVA R9,R8 ; R9 -> R8

> > Write 20-bit immediate value 12345h to R12.

MOVA #12345h,R12 ; 12345h -> R12

Copy 20-bit value addressed by (R9 + 100h) to R8. Source operand in addresses (R9 +

100h) LSBs and (R9 + 102h) MSBs.

; Index: + 32 K. 2 words transferred MOVA 100h(R9),R8

Move 20-bit value in 20-bit absolute addresses EDE (LSBs) and EDE+2 (MSBs) to R12.

MOVA &EDE,R12 ; &EDE -> R12. 2 words transferred

Move 20-bit value in 20-bit addresses EDE (LSBs) and EDE+2 (MSBs) to R12. PC

index ± 32 K.

; EDE -> R12. 2 words transferred EDE,R12 MOVA

Copy 20-bit value R9 points to (20 bit address) to R8. Source operand in addresses

@R9 LSBs and @(R9 + 2) MSBs.

; @R9 -> R8. 2 words transferred MOVA @R9,R8

> Copy 20-bit value R9 points to (20 bit address) to R8. R9 is incremented by four afterwards. Source operand in addresses @R9 LSBs and @(R9 + 2) MSBs.

MOVA @R9+,R8

; @R9 -> R8. R9 + 4. 2 words transferred.

Copy 20-bit value in R8 to destination addressed by (R9 + 100h). Destination operand in addresses @(R9 + 100h) LSBs and @(R9 + 102h) MSBs.

MOVA R8,100h(R9) ; Index: +- 32 K. 2 words transferred

Move 20-bit value in R13 to 20-bit absolute addresses EDE (LSBs) and EDE+2 (MSBs).

MOVA R13, &EDE ; R13 -> EDE. 2 words transferred

Move 20-bit value in R13 to 20-bit addresses EDE (LSBs) and EDE+2 (MSBs). PC index \pm 32 K.

MOVA R13,EDE ; R13 -> EDE. 2 words transferred

* **RETA** Return from subroutine

Syntax RETA

Operation @SP \rightarrow PC.15:0 LSBs (15:0) of saved PC to PC.15:0

 $SP + 2 \rightarrow SP$

 $@SP \rightarrow PC.19:16 MSBs (19:16)$ of saved PC to PC.19:16

 $SP + 2 \rightarrow SP$

Emulation MOVA @SP+, PC

Description The 20-bit return address information, pushed onto the stack by a CALLA instruction, is

restored to the program counter PC. The program continues at the address following the subroutine call. The status register bits SR.11:0 are not affected. This allows the

transfer of information with these bits.

Status Bits N: Not affected

Z: Not affectedC: Not affectedV: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example Call a subroutine SUBR from anywhere in the 20-bit address space and return to the

address after the CALLA.

CALLA #SUBR ; Call subroutine starting at SUBR

... ; Return by RETA to here

SUBR PUSHM.A #2,R14 ; Save R14 and R13 (20 bit data)

... ; Subroutine code

POPM.A #2,R14 ; Restore R13 and R14 (20 bit data) RETA ; Return (to full address space)

* **TSTA** Test 20-bit destination register

Syntax TSTA Rdst

Operation dst + 0FFFFFh + 1

dst + 0FFFFh + 1dst + 0FFh + 1

Emulation CMPA #0, Rdst

Description The destination register is compared with zero. The status bits are set according to the

result. The destination register is not affected.

Status Bits N: Set if destination register is negative, reset if positive

Z: Set if destination register contains zero, reset otherwise

C: Set V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 20-bit value in R7 is tested. If it is negative, continue at R7NEG; if it is positive but

not zero, continue at R7POS.

TSTA R7 ; Test R7

JN R7NEG ; R7 is negative JZ R7ZERO ; R7 is zero

R7POS ; R7 is positive but not zero

R7NEG ; R7 is negative R7ZERO ; R7 is zero

SUBA Subtract 20-bit source from 20-bit destination register

Syntax SUBA Rsrc, Rdst

SUBA #imm20, Rdst

Operation (.not.src) + 1 + Rdst \rightarrow Rdst or Rdst – src \rightarrow Rdst

Description The 20-bit source operand is subtracted from the 20-bit destination register. This is

made by adding the 1's complement of the source + 1 to the destination. The result is

written to the destination register, the source is not affected.

Status Bits N: Set if result is negative (src > dst), reset if positive ($src \le dst$)

Z: Set if result is zero (src = dst), reset otherwise (src \neq dst)

C: Set if there is a carry from the MSB (Rdst.19), reset otherwise

V: Set if the subtraction of a negative source operand from a positive destination operand delivers a negative result, or if the subtraction of a positive source operand from a negative destination operand delivers a positive result, reset

otherwise (no overflow)

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The 20-bit value in R5 is subtracted from R6. If a carry occurs, the program continues at

label TONI.

SUBA R5,R6 ; R6 - R5 -> R6

JC TONI ; Carry occurred

.. ; No carry

250

Flash Memory Controller

This chapter describes the operation of the MSP430x5xx flash memory controller.

Topic		Page
6.1	Flash Memory Introduction	252
6.2	Flash Memory Segmentation	253
6.3	Flash Memory Operation	255
6.4	Flash Memory Registers	269

6.1 Flash Memory Introduction

The MSP430 flash memory is byte-, word- and long-word addressable and programmable. The flash memory module has an integrated controller that controls programming and erase operations. The module contains three registers, a timing generator, and a voltage generator to supply program and erase voltages. The cumulative high-voltage time must not be exceeded and each word can be written not more than twice before another erase cycle. See device specific datasheet for details.

The flash memory features include:

- Internal programming voltage generation
- Byte, Word (2 bytes), and Long (4 bytes) programmable
- Ultralow-power operation
- Segment erase, bank erase and mass erase
- · Marginal 0 and marginal 1 read modes
- Each bank can be erased individually while program execution can proceed in a different flash bank. The bank sizes are in the device-specific data sheet.

The block diagram of the flash memory and controller is shown in Figure 6-1.

Note: Minimum V_{CORE} During Flash Write or Erase

The minimum V_{CORE} voltage during a flash write or erase operation is 1.6 V. If V_{CORE} falls below 1.6 V during a write or erase, the result of the write or erase will be unpredictable.

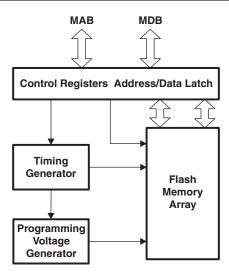


Figure 6-1. Flash Memory Module Block Diagram

6.2 Flash Memory Segmentation

The MSP430 flash main memory is partitioned into segments. Each bank contains 512-byte segments. Single bits, bytes or words can be written to flash memory, but a segment is the smallest size of the flash memory that can be erased.

The flash memory is partitioned into main and information memory sections. There is no difference in the operation of the main and information memory sections. Code and data can be located in either section. The difference between the sections is the segment size.

There are four information memory segments, A through D. Each information memory segment contains 128 bytes and can be erased individually.

The bootstrap loader memory consists of four segments, A through D. Each bootstrap loader memory segment contains 512 bytes and can be erased individually.

The main memory segment size is 512 byte. See the device-specific data sheet for the start and end addresses of each bank and for the complete memory map of a device.

Figure 6-2 shows the flash segmentation using an example of 256-KB flash that has four banks of 64 KB, the segments A through D, and the information memory.

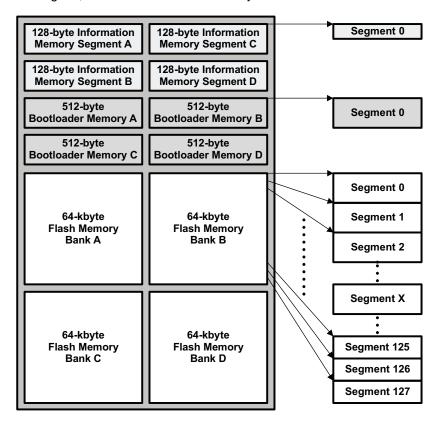


Figure 6-2. Flash Memory Segments, 256-KB Example

6.2.1 Segment A

Segment A of the information memory is locked separately from all other segments with the LOCKA bit. If LOCKA = 1, segment A cannot be written or erased, and all information memory is protected from being segment erased. If LOCKA = 0, segment A can be erased and written like any other flash memory segment.

The state of the LOCKA bit is toggled when a 1 is written to it. Writing a 0 to LOCKA has no effect. This allows existing flash programming routines to be used unchanged.

```
; Unlock Info Memory
           #FWKEY+LOCKINFO, &FCTL4 ; Clear LOCKINFO
  BIC
; Unlock SegmentA
        #LOCKA,&FCTL3
SEGA_UNLOCKED
  BIT
                                    ; Test LOCKA
        SEGA_UNLOCKED ; Already unlocked? #FWKEY+LOCKA,&FCTL3 ; No, unlock SegmentA
  JZ
  MOV
SEGA_UNLOCKED
                                     ; Yes, continue
; SegmentA is unlocked
; Lock SegmentA
  BIT #LOCKA,&FCTL3
JNZ SEGALOCKED
                                    ; Test LOCKA
                                    ; Already locked?
  MOV #FWKEY+LOCKA,&FCTL3 ; No, lock SegmentA
SEGA_LOCKED
                                     ; Yes, continue
; SegmentA is locked
; Lock Info Memory
```

BIS #FWKEY+LOCKINFO,&FCTL4 ; Set LOCKINFO

6.3 Flash Memory Operation

The default mode of the flash memory is read mode. In read mode, the flash memory is not being erased or written, the flash timing generator and voltage generator are off, and the memory operates identically to ROM.

Read and Fetch While Erase – The flash memory allows to execute a program from flash while a different flash bank is erased. Data reads are also possible from any flash bank not being erased.

Note: Read and Fetch While Erase

The read and fetch while erase feature is available in flash memory configurations where more than one flash bank is available. If there is one flash bank available, holding the complete flash program memory, the read from the program memory and information memory and bootstrap-loader memory during the erase is not provided.

MSP430 flash memory is in-system programmable (ISP) without the need for additional external voltage. The CPU can program the flash memory. The flash memory write/erase modes are selected by the BLKWRT, WRT, MERAS, and ERASE bits and are:

- Byte/word/long-word (32-bit) write
- Block write
- Segment erase
- Bank erase (only main memory)
- Mass erase (all main memory banks)
- Read during bank erase (except for the one currently read from)

Reading or writing to flash memory while it is busy programming or erasing (page, mass or bank) from the same bank is prohibited. Any flash erase or programming can be initiated from within flash memory or RAM.

6.3.1 Erasing Flash Memory

The logical value of an erased flash memory bit is 1. Each bit can be programmed from 1 to 0 individually but to reprogram from 0 to 1 requires an erase cycle. The smallest amount of flash that can be erased is one segment. There are three erase modes selected by the ERASE and MERAS bits listed in Table 6-1.

Table 6-1. Erase Modes

MERAS	ERASE	Erase Mode
0	1	Segment erase
1	0	Bank erase (of one bank) selected by the dummy write address
1	1	Mass erase (all memory banks, information memory A to D and bootstrap loader segments A to D are not erased)

Erase Cycle www.ti.com

Erase Cycle

An erase cycle is initiated by a dummy write to the address range of the segment to be erased. The dummy write starts the erase operation. Figure 6-3 shows the erase cycle timing. The BUSY bit is set immediately after the dummy write and remains set throughout the erase cycle. BUSY, MERAS, and ERASE are automatically cleared when the cycle completes. The mass erase cycle timing is not dependent on the amount of flash memory present on a device. Erase cycle times are equivalent for all MSP430F5xx devices.

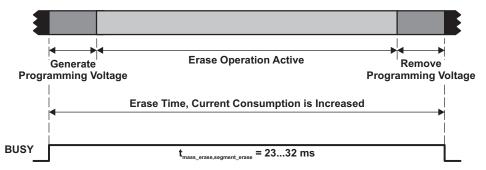


Figure 6-3. Erase Cycle Timing

Erasing Main Memory

The main memory consists of one or more banks. Each bank can be erased individually (bank erase). All main memory banks can be erased in the mass erase mode.

Erasing Information Memory or Flash Segments

The information memory A to D and the bootstrap loader segments A to D can be erased in segment erase mode. They are not erased during a bank erase or a mass erase.

Initiating Erase From Flash

An erase cycle can be initiated from within flash memory. Code can be executed from flash or RAM during a bank erase. The executed code cannot be located in a bank to be erased.

During a segment erase, the CPU is held until the erase cycle completes. After the erase cycle ends, the CPU resumes code execution with the instruction following the dummy write.

When initiating an erase cycle from within flash memory, it is possible to erase the code needed for execution after the erase operation. If this occurs, CPU execution will be unpredictable after the erase cycle.

The flow to initiate an erase from flash is shown in Figure 6-4.

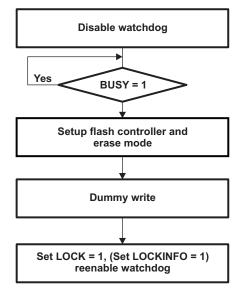


Figure 6-4. Erase Cycle From Flash

```
; Segment Erase from flash.
; Assumes Program Memory. Information memory or BSL
; requires LOCKINFO to be cleared as well.
; Assumes ACCVIE = NMIIE = OFIE = 0.
   VOM
         #WDTPW+WDTHOLD, &WDTCTL
                                  ; Disable WDT
L1 BIT
         #BUSY,&FCTL3
                                  ; Test BUSY
   JNZ
                                  ; Loop while busy
        L1
   MOV
         #FWKEY,&FCTL3
                                  ; Clear LOCK
   VOM
        #FWKEY+ERASE,&FCTL1
                                  ; Enable segment erase
   CLR
       &0FC10h
                                  ; Dummy write
         #BUSY,&FCTL3
L2 BIT
                                  ; Test BUSY
                                  ; Loop while busy
   JNZ
        L2
   VOM
         #FWKEY+LOCK,&FCTL3
                                  ; Done, set LOCK
                                   ; Re-enable WDT?
```


Initiating Erase From RAM

An erase cycle can be initiated from RAM. In this case, the CPU is not held and continues to execute code from RAM. The mass erase (all main memory banks) operation is initiated while executing from RAM. The BUSY bit is used to determine the end of the erase cycle. If the flash is busy completing a bank erase, flash addresses of a different bank can be used to read data or to fetch instructions. While the flash is BUSY, starting an erase cycle or a programming cycle causes an access violation, ACCIFG is set to 1, and the result of the erase operation is unpredictable.

The flow to initiate an erase from flash from RAM is shown in Figure 6-5.

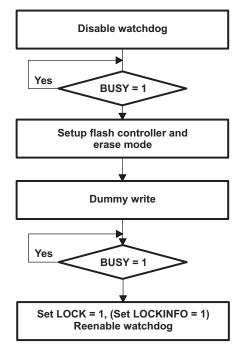


Figure 6-5. Erase Cycle From RAM

```
; segment Erase from RAM.
; Assumes Program Memory. Information memory or BSL
; requires LOCKINFO to be cleared as well.
; Assumes ACCVIE = NMIIE = OFIE = 0.
   MOV
         #WDTPW+WDTHOLD, &WDTCTL
                                     ; Disable WDT
         #BUSY,&FCTL3
   BIT
                                     ; Test BUSY
L1
                                     ; Loop while busy
   JNZ
         T.1
   VOM
         #FWKEY,&FCTL3
                                     ; Clear LOCK
   MOV
         #FWKEY+ERASE,&FCTL1
                                     ; Enable page erase
   CLR
         &0FC10h
                                     ; Dummy write
L2
   BIT
         #BUSY,&FCTL3
                                     ; Test BUSY
   JNZ
                                     ; Loop while busy
         L2
   MOV
         #FWKEY+LOCK,&FCTL3
                                    ; Done, set LOCK
                                     ; Re-enable WDT?
```


www.ti.com Byte/Word Write

6.3.2 Writing Flash Memory

The write modes, selected by the WRT and BLKWRT bits, are listed in Table 6-2.

Tahl	le 6-2	2 W	rita	Mo	aah
Iau	IC U-	2. VV	IIIC	IVIU	uca

BLKWRT	WRT	Write Mode
0	1	Byte/word write
1	0	Long-word write
1	1	Long-word block write

The write modes use a sequence of individual write instructions. Using the long-word write mode is approximately twice as fast as the byte/word mode. Using the long-word block write mode is approximately four times faster than byte/word mode, because the voltage generator remains on for the complete block write, and long-words are written in parallel. Any instruction that modifies a destination can be used to modify a flash location in either byte/word write mode, long-word write mode, or block long-word write mode.

The BUSY bit is set while the write operation is active and cleared when the operation completes. If the write operation is initiated from RAM, the CPU must not access flash while BUSY is set to 1. Otherwise, an access violation occurs, ACCVIFG is set, and the flash write is unpredictable.

Byte/Word Write

A byte/word write operation can be initiated from within flash memory or from RAM. When initiating from within flash memory the CPU is held while the write completes. After the write completes, the CPU resumes code execution with the instruction following the write access. The byte/word write timing is shown in Figure 6-6.

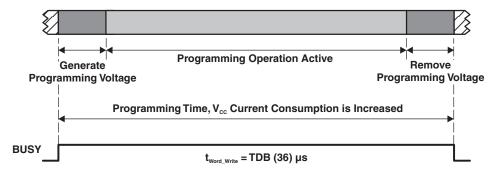


Figure 6-6. Byte/Word/Long-Word Write Timing

When a byte/word write is executed from RAM, the CPU continues to execute code from RAM. The BUSY bit must be zero before the CPU accesses flash again, otherwise an access violation occurs, ACCVIFG is set, and the write result is unpredictable.

In byte/word write mode, the internally-generated programming voltage is applied to the complete 128-byte block. The cumulative programming time, t_{CPT} , must not be exceeded for any block. Each byte or word write adds to the cumulative program time of a segment. If the maximum cumulative program time is reached or exceeded the segment must be erased. Further programming or using the data returns unpredictable results. See the device-specific data sheet for specifications.

Initiating Byte/Word Write From Flash

The flow to initiate a byte/word write from flash is shown in Figure 6-7.

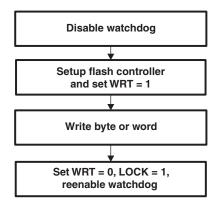


Figure 6-7. Initiating a Byte/Word Write From Flash

```
; Byte/word write from flash.
; Assumes 0x0FF1E is already erased
; Assumes ACCVIE = NMIIE = OFIE = 0.
  MOV #WDTPW+WDTHOLD, &WDTCTL ; Disable WDT
  MOV
  MOV #FWKEY, &FCTL1

MOV #FWKEY+WRT, &FCTL1
        #FWKEY,&FCTL3
                                  ; Clear LOCK
                                  ; Enable write
        #0123h,&0FF1Eh
  MOV
                                  ; 0123h -> 0x0FF1E
                                  ; Done. Clear WRT
  MOV
        #FWKEY,&FCTL1
        #FWKEY+LOCK,&FCTL3
  VOM
                                   ; Set LOCK
                                   ; Re-enable WDT?
   . . .
```


Initiating Byte/Word Write From RAM

The flow to initiate a byte/word write from RAM is shown in Figure 6-8.

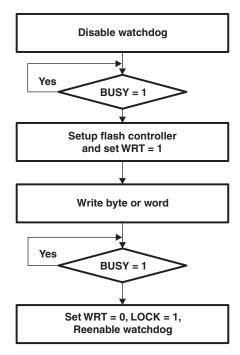


Figure 6-8. Initiating a Byte/Word Write From RAM

```
; Byte/word write from RAM.
; Assumes 0x0FF1E is already erased
; Assumes ACCVIE = NMIIE = OFIE = 0.
                                    ; Disable WDT
   VOM
        #WDTPW+WDTHOLD, &WDTCTL
L1
   BIT
         #BUSY,&FCTL3
                                    ; Test BUSY
   JNZ
         L1
                                    ; Loop while busy
   MOV
         #FWKEY,&FCTL3
                                    ; Clear LOCK
         #FWKEY+WRT,&FCTL1
                                    ; Enable write
   MOV
                                   ; 0123h \rightarrow 0x0FF1E
   VOM
         #0123h,&0FF1Eh
         #BUSY,&FCTL3
L2 BIT
                                   ; Test BUSY
   JNZ
                                   ; Loop while busy
   MOV
         #FWKEY,&FCTL1
                                   ; Clear WRT
   MOV
         #FWKEY+LOCK,&FCTL3
                                   ; Set LOCK
                                    ; Re-enable WDT?
```


Long-Word Write www.ti.com

Long-Word Write

A long-word write operation can be initiated from within flash memory or from RAM. The BUSY bit is set to 1 after 32 bits are written to the flash controller and the programming cycle starts. When initiating from within flash memory, the CPU is held while the write completes. After the write completes, the CPU resumes code execution with the instruction following the write access. The long-word write timing is shown in Figure 6-6.

A long-word consists of four consecutive bytes aligned to at 32-bit address (only the lower two address bits are different). The bytes can be written in any order or any combination of bytes and words. If a byte or word is written more than once, the last data written to the four bytes are stored into the flash memory.

If a write to a flash address outside of the 32-bit address happens before all four bytes are available, the data written so far is discarded, and the latest byte/word written defines the new 32-bit aligned address.

When 32 bits are available, the write cycle is executed. When executing from RAM, the CPU continues to execute code. The BUSY bit must be zero before the CPU accesses flash again, otherwise an access violation occurs, ACCVIFG is set, and the write result is unpredictable.

In long-word write mode, the internally-generated programming voltage is applied to a complete 128-byte block. The cumulative programming time, t_{CPT} , must not be exceeded for any block. Each byte or word write adds to the cumulative program time of a segment. If the maximum cumulative program time is reached or exceeded the segment must be erased. Further programming or using the data returns unpredictable results.

With each byte or word write, the amount of time the block is subjected to the programming voltage accumulates. If the cumulative programming time is reached or exceeded, the block must be erased before further programming or use. See the device-specific data sheet for specifications.

Initiating Long-Word Write From Flash

The flow to initiate a long-word write from flash is shown in Figure 6-9.

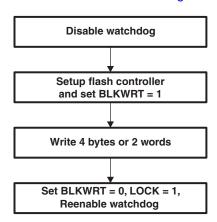


Figure 6-9. Initiating Long-Word Write From Flash

```
; Long-word write from flash.
; Assumes 0x0FF1C and 0x0FF1E is already erased
; Assumes ACCVIE = NMIIE = OFIE = 0.
  MOV
       #WDTPW+WDTHOLD,&WDTCTL ; Disable WDT
  VOM
        #FWKEY,&FCTL3
                                  ; Clear LOCK
  VOM
        #FWKEY+BLKWRT,&FCTL1
                                   ; Enable 2-word write
        #0123h,&0FF1Ch
#45676h,&0FF1Eh
  VOM
                                   ; 0123h -> 0x0FF1C
                                   ; 04567h -> 0x0FF1E
  VOM
  MOV
        #FWKEY,&FCTL1
                                   ; Done. Clear BLKWRT
        #FWKEY+LOCK,&FCTL3
  VOM
                                   ; Set LOCK
                                   ; Re-enable WDT?
   . . .
```


Initiating Long-Word Write From RAM

The flow to initiate a long-word write from RAM is shown in Figure 6-10.

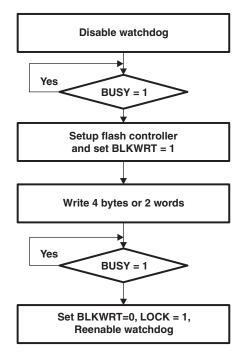


Figure 6-10. Initiating Long-Word Write from RAM

```
; Two 16-bit word writes from RAM.
; Assumes 0x0FF1C and 0x0FF1E is already erased
; Assumes ACCVIE = NMIIE = OFIE = 0.
        #WDTPW+WDTHOLD, &WDTCTL
                                   ; Disable WDT
   VOM
L1
   BIT
         #BUSY,&FCTL3
                                   ; Test BUSY
   JNZ
         L1
                                   ; Loop while busy
   MOV
         #FWKEY,&FCTL3
                                   ; Clear LOCK
         #FWKEY+BLKWRT,&FCTL1
   MOV
                                  ; Enable write
   VOM
         #0123h,&0FF1Ch
                                   ; 0123h -> 0x0FF1C
         #4567h,&0FF1Eh
                                   ; 4567h -> 0x0FF1E
   VOM
L2
   BIT
         #BUSY,&FCTL3
                                   ; Test BUSY
   JNZ
                                   ; Loop while busy
   MOV
         #FWKEY,&FCTL1
                                   ; Clear WRT
                                   ; Set LOCK
   MOV
         #FWKEY+LOCK,&FCTL3
    . . .
                                    ; Re-enable WDT?
```


Block Write www.ti.com

Block Write

The block write can be used to accelerate the flash write process when many sequential bytes or words need to be programmed. The flash programming voltage remains on for the duration of writing the 128-byte row. The cumulative programming time t_{CPT} must not be exceeded for any row during a block write.

A block write cannot be initiated from within flash memory. The block write must be initiated from RAM. The BUSY bit remains set throughout the duration of the block write. The WAIT bit must be checked between writing four bytes, or two words to the block. When WAIT is set, then four bytes, or two 16-bit words of the block can be written. When writing successive blocks, the BLKWRT bit must be cleared after the current block is completed. BLKWRT can be set initiating the next block write after the required flash recovery time given by t_{END} . BUSY is cleared following each block write completion, indicating the next block can be written. Figure 6-11 shows the block write timing.

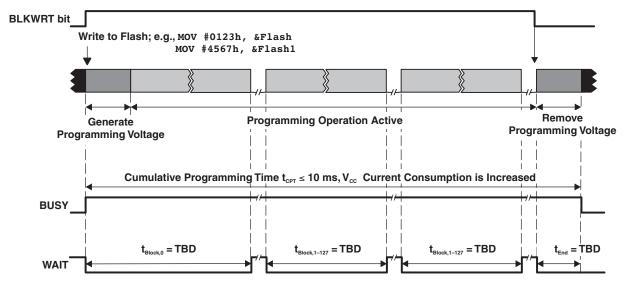


Figure 6-11. Block-Write Cycle Timing

Block Write Flow and Example

A block write flow is shown in Figure 6-12 and the following code example.

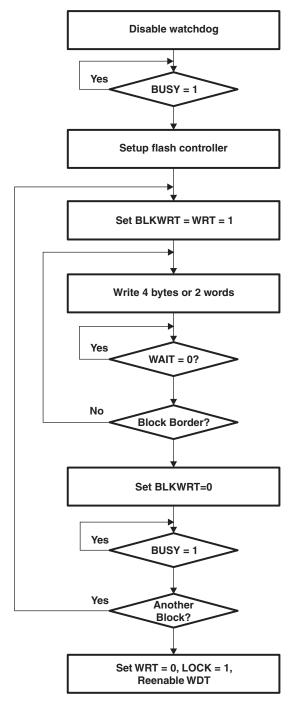


Figure 6-12. Block Write Flow


```
; Write one block starting at OFOOOh.
; Must be executed from RAM, Assumes Flash is already erased.
; Assumes ACCVIE = NMIIE = OFIE = 0.
   VOM
        #32,R5
                                    ; Use as write counter
   MOV
        #0F000h,R6
                                    ; Write pointer
         #WDTPW+WDTHOLD, &WDTCTL
   MOV
                                    ; Disable WDT
          #BUSY,&FCTL3
                                    ; Test BUSY
L1 BIT
   JNZ
         L1
                                    ; Loop while busy
          #FWKEY,&FCTL3
   VOM
                                    ; Clear LOCK
          #FWKEY+BLKWRT+WRT,&FCTL1
   MOV
                                    ; Enable block write
L2 MOV
         Write_Value1,0(R6)
                                    ; Write 1st location
         Write_Value2,2(R6)
                                    ; Write 2nd word
   VOM
L3 BIT #WAIT, &FCTL3
                                    ; Test WAIT
   JZ
        L3
                                     ; Loop while WAIT=0
   INCD R6
                                     ; Point to next words
   INCD R6
                                     ; Point to next words
   DEC
        R5
                                     ; Decrement write counter
   JNZ
       L2
                                    ; End of block?
   MOV #FWKEY,&FCTL1
                                    ; Clear WRT, BLKWRT
L4 BIT
                                    ; Test BUSY
         #BUSY,&FCTL3
   JNZ
         T.4
                                     ; Loop while busy
   MOV
         #FWKEY+LOCK,&FCTL3
                                    ; Set LOCK
                                     ; Re-enable WDT if needed
   . . .
```

6.3.3 Flash Memory Access During Write or Erase

When a write or an erase operation is initiated from RAM while BUSY = 1, the CPU may not write to any flash location. Otherwise, an access violation occurs, ACCVIFG is set, and the result is unpredictable.

When a write operation is initiated from within flash memory, the CPU continues code execution with the next instruction fetch after the write cycle completed (BUSY = 0).

The op-code 3FFFh is the JMP PC instruction. This causes the CPU to loop until the flash operation is finished. When the operation is finished and BUSY = 0, the flash controller allows the CPU to fetch the op-code and program execution resumes.

The flash access conditions while BUSY = 1 are listed in Table 6-3.

Table 6-3. Flash Access While the Flash is busy (BUSY = 1)

Flash Operation	Flash Access	WAIT	Result
	Read	0	From the erased bank: ACCVIFG = 0. 03FFFh is the value read. From any other flash location: ACCVIFG = 0. Valid read.
Bank erase	Write	0	ACCVIFG = 1. Write is ignored.
Daim oraco	Instruction fetch	0	From the erased bank: ACCVIFG = 0. CPU fetches 03FFFh. This is the JMP PC instruction. From any other flash location: ACCVIFG = 0. Valid instruction fetch.
	Read	0	ACCVIFG = 0. 03FFFh is the value read.
Segment erase	Write	0	ACCVIFG = 1. Write is ignored.
	Instruction fetch	0	ACCVIFG = 0. CPU fetches 03FFFh. This is the JMP PC instruction.
	Read	0	ACCVIFG = 0. 03FFFh is the value read.
Word/byte write or long-word write	Write	0	ACCVIFG = 1. Write is ignored.
long word write	Instruction fetch	0	ACCVIFG = 0. CPU fetches 03FFFh. This is the JMP PC instruction.
	Any	0	ACCVIFG = 1, LOCK = 1, block write is exited.
Block write	Read	1	ACCVIFG = 0: 03FFFh is the value read.
DIOCK WITE	Write	1	ACCVIFG = 0, Valid write.
	Instruction fetch	1	ACCVIFG = 1, LOCK = 1, block write is exited.

Interrupts are automatically disabled during any flash operation.

The watchdog timer (in watchdog mode) should be disabled before a flash erase cycle. A reset will abort the erase and the result will be unpredictable. After the erase cycle has completed, the watchdog may be reenabled.

6.3.4 Stopping Write or Erase Cycle

Any write or erase operation can be stopped before its normal completion by setting the emergency exit bit EMEX. Setting the EMEX bit stops the active operation immediately and stops the flash controller. All flash operations cease, the flash returns to read mode, and all bits in the FCTL1 register are reset. The LOCK bit of FCTL3 is set. The result of the intended operation is unpredictable.

6.3.5 Checking Flash memory

The result of a programming cycle of the flash memory can be checked by calculating and storing a checksum (CRC) of parts and/or the complete flash memory content. The CRC module can be used for this purpose (see the device-specific data sheet). During the runtime of the system, the known checksums can be recalculated and compared with the expected values stored in the flash memory. The program checking the flash memory content is executed in RAM. To get an early indication of weak memory cells, reading the flash can be done in combination with the device-specific marginal read modes. The marginal read modes are controlled by the FCTL4.MRG0 and FCTL4.MRG1 register bits if available (device specific).

6.3.6 Configuring and Accessing the Flash Memory Controller

The FCTLx registers are 16-bit password-protected read/write registers. Any read or write access must use word instructions, and write accesses must include the write password 0A5h in the upper byte. Any write to any FCTLx register with a value other than 0A5h in the upper byte is a security key violation, sets the KEYV flag, and triggers a PUC system reset. Any read of any FCTLx registers reads 096h in the upper byte.

Any write to FCTL1 during an erase or byte/word/double-word write operation is an access violation and sets ACCVIFG. Writing to FCTL1 is allowed in block write mode when WAIT = 1, but writing to FCTL1 in block write mode when WAIT = 0 is an access violation and sets ACCVIFG.

Any write to FCTL2 (this register is currently not implemented) when BUSY = 1 is an access violation.

Any FCTLx register may be read when BUSY = 1. A read does not cause an access violation.

6.3.7 Flash Memory Controller Interrupts

The flash controller has two interrupt sources, KEYV and ACCVIFG. ACCVIFG is set when an access violation occurs. When the ACCVIE bit is reenabled after a flash write or erase, a set ACCVIFG flag generates an interrupt request. ACCVIFG sources the NMI interrupt vector, so it is not necessary for GIE to be set for ACCVIFG to request an interrupt. ACCVIFG may also be checked by software to determine if an access violation occurred. ACCVIFG must be reset by software.

The key violation flag, KEYV, is set when any of the flash control registers are written with an incorrect password. When this occurs, a PUC is generated immediately, resetting the device.

6.3.8 Programming Flash Memory Devices

There are three options for programming an MSP430 flash device. All options support in-system programming:

- Program via JTAG
- Program via the bootstrap loader
- Program via a custom solution

Programming Flash Memory via JTAG

MSP430 devices can be programmed via the JTAG port. The JTAG interface requires four signals (5 signals on 20- and 28-pin devices), ground and optionally VCC and RST/NMI.

The JTAG port is protected with a fuse. Blowing the fuse completely disables the JTAG port and is not reversible. Further access to the device via JTAG is not possible For more details see the application report Programming a Flash-Based MSP430 Using the JTAG Interface at www.ti.com/msp430.

Programming Flash Memory via Bootstrap Loader (BSL)

Every MSP430 flash device contains a bootstrap loader. The BSL enables users to read or program the flash memory or RAM using a UART serial interface. Access to the MSP430 flash memory via the BSL is protected by a 256-bit user-defined password. For more details, see the application report Features of the MSP430 Bootstrap Loader at www.ti.com/msp430.

Programming Flash Memory via Custom Solution

The ability of the MSP430 CPU to write to its own flash memory allows for in-system and external custom programming solutions as shown in Figure 6-13. The user can choose to provide data to the MSP430 through any means available (UART, SPI, etc.). User-developed software can receive the data and program the flash memory. Since this type of solution is developed by the user, it can be completely customized to fit the application needs for programming, erasing, or updating the flash memory.

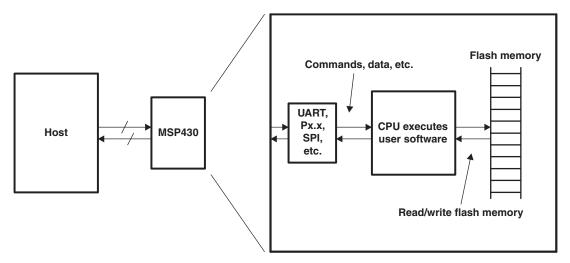


Figure 6-13. User-Developed Programming Solution

6.4 Flash Memory Registers

The flash memory registers are listed in Table 6-4. The base address can be found in the device-specific data sheet. The address offset is given in Table 6-4.

Table 6-4. Flash Controller Registers

Register	Short Form	Register Type	Address	Initial State
Flash memory control register 1	FCTL1	Read/write	0000h	9600h
Flash memory control register 3	FCTL3	Read/write	0004h	9658h
Flash memory control register 4	FCTL4	Read/write	0006h	9600h
Interrupt Enable 1	IE1	Read/write	000Ah	0000h
Interrupt Flag 1	IFG1	Read/write	000Ch	0000h

Flash Memory Registers www.ti.com

FCTL1, Flash Memory Control Register 1

15 14 13 12 11 10 9 8

FRKEY, Read as 096h FWKEY, Must be written as 0A5h

7	6	5	4	3	2	1	0
BLKWRT	WRT	SWRT	Reserved	Reserved	MERAS	ERASE	Reserved
rw-0	rw-0	rw-0	r-0	r-0	rw-0	rw-0	r-0

FRKEY/FWKEYBits 15–8FCTL password. Always read as 096h. Must be written as 0A5h or a PUC will be generated.BLKWRTBit 7See following table.WRTBit 6See following table.

 BLKWRT
 WRT
 Write Mode

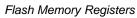
 0
 1
 Byte/word write

 1
 0
 Long-word write

 1
 1
 Long-word block write

SWRT Bit 5 Smart write. If this bit is set the program time is shortened. The programming quality has to be checked by marginal read modes.

ReservedBits 4-3
Reserved. Must be written to 0. Always read 0. **MERAS**Bit 2
Mass erase and erase. These bits are


Mass erase and erase. These bits are used together to select the erase mode. MERAS and ERASE are automatically reset when EMEX is set.

ERASE	Erase Cycle
0	No erase
1	Segment erase
0	Bank erase (of one bank)
1	Mass erase (Erase all flash memory banks)
	0

Reserved Bit 0 Reserved. Always read 0.

Bit 1

ERASE

www.ti.com

FCTL3, Flash Memory Control Register 3								
15	14	13	12	11	10	9	8	
FWKEYx, Read as 096h Must be written as 0A5h								

7	6	5	4	3	2	1	0
Reserved	LOCKA	EMEX	LOCK	WAIT	ACCVIFG	KEYV	BUSY
r-0	rw-1	rw-0	rw-1	r-1	rw-0	rw-(0)	rw-0
FWKEYx	Bits 15-8	FCTLx pa	ssword. Always read	as 096h. Must be	e written as 0A5h or	a PUC will be ge	enerated.
Reserved	Bit 7	Reserved	. Always read 0.				
LOCKA	Bit 6	Segment	A lock. Write a 1 to th	is bit to change it	ts state. Writing 0 ha	as no effect.	
		0	Segment A, B, C, D a	ire unlocked. and	are erased during	a mass erase.	
		1	Segment A of the info protected from all era		is write protected. S	Segment B, C, ar	d D are
EMEX	Bit 5	Emergen	cy exit. Setting this bit	stops any erase	or write operation.	The LOCK bit is s	et.
		0	No emergency exit				
		1	Emergency exit				
LOCK	Bit 4	during a b write mod	s bit unlocks the flash byte/word write or erast e if the LOCK bit is se ends normally.	se operation and	the operation will co	emplete normally.	In the block
		0	Unlocked				
		1	Locked				
WAIT	Bit 3	Wait. Indi	cates the flash memor	ry is being writter	n to.		
		0	The flash memory is a	not ready for the	next byte/word write	e.	
		1	The flash memory is a	ready for the nex	t byte/word write.		
ACCVIFG	Bit 2	Access vi	olation interrupt flag				
		0	No interrupt pending				
		1	Interrupt pending				
KEYV	Bit 1		urity key violation. Thi gister and generates a				en to any flash
		0	FCTLx password was	written correctly			
		1	FCTLx password was	written incorrect	ly		
BUSY	Bit 0	Busy. Thi	s bit indicates if the fla	sh is currently bu	usy erasing or progr	amming.	
		0	Not busy				
		1	Busy				

Flash Memory Registers www.ti.com

FCTL4, Flash Memory Control Register 4

15 14 13 12 11 10 9 8

FWKEYx, Read as 096h
Must be written as 0A5h

7	6	5	4	3	2	1	0
LOCKINFO	Reserved	MRG1	MRG0		Reserved		VPE
rw-0	r-0	rw-0	rw-0	r-0	r-0	r-0	rw-0
FWKEYx	Bits 15-8	FCTLx passw	ord. Always read	as 096h. Must be	e written as 0A5h or	a PUC will be ge	nerated.
LOCKINFO	Bit 7	Lock information memory. If set the information memory cannot be erased in segment erase mode and cannot be written to.					
Descryed	Dit 6	Posonyod Alv	vave road as 0				

Reserved Bit 6 Reserved. Always read as 0.

MRG1 Bit 5 Marginal read 1 mode. This be

Marginal read 1 mode. This bit enables the marginal 1 read mode. The marginal read 1 bit is valid for reads from the flash memory only. During a fetch cycle the marginal mode is turned off automatically. If both MRG1 and MRG0 are set MRG1 is active and MRG0 is ignored.

Marginal 1 read mode is disabled.Marginal 1 read mode is enabled.

MRG0

Bit 4

Marginal read 0 mode. This bit enables the marginal 0 read mode. The marginal read 1 bit is valid for reads from the flash memory only. During a fetch cycle the marginal mode is turned off automatically. If both MRG1 and MRG0 are set MRG1 is active and MRG0 is ignored.

Marginal 0 read mode is disabled.

1 Marginal 0 read mode is enabled.

Reserved Bit 3–1 Reserved. Always read as 0.

VPE Bit 0 Voltage changed during prog

Voltage changed during program error. This bit is set by hardware and can only be cleared by software. If DVCC changed significantly during programming, this bit is set to indicate an invalid result. The ACCVIFG bit is set if VPE is set.

IE1, Interrupt Enable Register 1

7	6	5	4	3	2	1	0
		ACCVIE					

rw-0

Bits 7–6, 4–0 These bits may be used by other modules. See the device-specific data sheet.

ACCVIE

Bit 5

Flash memory access violation interrupt enable. This bit enables the ACCVIFG

Flash memory access violation interrupt enable. This bit enables the ACCVIFG interrupt. Because other bits in IE1 may be used for other modules, it is recommended to set or clear this bit using BIS.B or BIC.B instructions, rather than MOV.B or CLR.B instructions.

0 Interrupt not enabled

1 Interrupt enabled

Digital I/O

This chapter describes the operation of the digital I/O ports. The digital I/O ports are implemented in all MSP430x5xx devices.

Topi	С		Page
7.	1	Digital I/O Introduction	274
7.	2	Digital I/O Operation	275
7.	3	Digital I/O Registers	279

Digital I/O Introduction www.ti.com

Digital I/O Introduction 7.1

MSP430x5xx devices may have up to 12 digital I/O ports implemented, P1 to P11 and PJ. Most ports have eight I/O pins, however some ports may contain less. See the device-specific data sheet for ports available. Each I/O pin is individually configurable for input or output direction, and each I/O line can be individually read or written to. All ports have individually configurable pullup or pulldown resistors, as well as, configurable drive strength.

Ports P1 and P2 always have interrupt capability. Each interrupt for the P1 and P2 I/O lines can be individually enabled and configured to provide an interrupt on a rising edge or falling edge of an input signal. All P1 I/O lines source a single interrupt vector P1IV, and all P2 I/O lines source a different, single interrupt vector P2IV. On some MSP430x5xx devices, additional ports with interrupt capability may be available. Please refer to the device specific datasheet for details.

Individual ports can be accessed as byte wide ports or can be combined into word wide ports and accessed via word formats. Port pairs P1/P2, P3/P4, P5/P6, P7/P8, etc. are associated with the names PA, PB, PC, PD, etc., respectively. When writing to port PA with word operations, all 16 bits are written to the port. Writing to the lower byte of the PA port using byte operations, the upper byte remains unchanged. Similarly, writing to the upper byte of the PA port using byte instructions leaves the lower byte unchanged. Similarly for other ports. Writing to a port that contains less than the maximum number of bits possible, the unused bits are a "do not care". All port registers are handled in this manner with this naming convention except for the interrupt vector registers, P1IV and P2IV. These are word accessible only, and PAIV does not exist.

Reading of the PA port using word operations causes all 16 bits to be transferred to the destination. Reading the lower or upper byte of the PA port (P1 or P2) and storing to memory using byte operations causes only the lower or upper byte to be transferred to the destination, respectively. Reading of the PA port and storing to a general purpose register using byte operations causes the byte transferred to be written to the least significant byte of the register. The upper significant byte of the destination register will be cleared automatically. Ports PB, PC, PD, and PE behave similarly. When reading from ports that contain less than the maximum bits possible, unused bits are read as zeros. Similarly, for Port PJ.

The digital I/O features include:

- Independently programmable individual I/Os
- Any combination of input or output
- Individually configurable P1 and P2 interrupts
- Independent input and output data registers
- Individually configurable pullup or pulldown resistors

274

www.ti.com Digital I/O Operation

7.2 Digital I/O Operation

The digital I/O is configured with user software. The setup and operation of the digital I/O is discussed in the following sections.

7.2.1 Input Register PxIN

Each bit in each PxIN register reflects the value of the input signal at the corresponding I/O pin when the pin is configured as I/O function. These registers are read only.

- Bit = 0: The input is low
- Bit = 1: The input is high

Note: Writing to Read-Only Registers PxIN

Writing to these read-only registers results in increased current consumption while the write attempt is active.

7.2.2 Output Registers PxOUT

Each bit in each PxOUT register is the value to be output on the corresponding I/O pin when the pin is configured as I/O function, output direction.

- Bit = 0: The output is low
- Bit = 1: The output is high

If the pin is configured as I/O function, input direction and the pullup/pulldown resistor is enabled, the corresponding bit in the PxOUT register selects pullup or pulldown.

- Bit = 0: The pin is pulled down
- Bit = 1: The pin is pulled up

7.2.3 Direction Registers PxDIR

Each bit in each PxDIR register selects the direction of the corresponding I/O pin, regardless of the selected function for the pin. PxDIR bits for I/O pins that are selected for other functions must be set as required by the other function.

- Bit = 0: Port pin is switched to input direction
- Bit = 1: Port pin is switched to output direction

7.2.4 Pullup/Pulldown Resistor Enable Registers PxREN

Each bit in each PxREN register enables or disables the pullup/pulldown resistor of the corresponding I/O pin. The corresponding bit in the PxOUT register selects if the pin is pulled up or pulled down.

- Bit = 0: Pullup/pulldown resistor disabled
- Bit = 1: Pullup/pulldown resistor enabled

Table 7-1 summarizes the usage of PxDIRx, PxRENx, and PxOUTx for proper I/O configuration.

 PxDIRx
 PxRENx
 PxOUTx
 I/O Configuration

 0
 0
 x
 Input

 0
 1
 0
 Input with pulldown resistor

 0
 1
 1
 Input with pullup resistor

 1
 x
 x
 Output

Table 7-1. I/O Configuration

SLAU208 – June 2008 Digital I/O 275

Digital I/O Operation www.ti.com

7.2.5 Output Drive Strength Registers PxDS

Each bit in each PxDS register selects either full drive or reduced drive strength. Default is reduced drive strength.

- Bit = 0: Reduced drive strength
- Bit = 1: Full drive strength

Note: **Drive Strength and EMI**

All outputs default to reduced drive strength to reduce EMI. Using full drive strength can result in increased EMI.

7.2.6 Function Select Registers PxSEL

Port pins are often multiplexed with other peripheral module functions. See the device-specific data sheet to determine pin functions. Each PxSELx bit is used to select the pin function - I/O port or peripheral module function.

- Bit = 0: I/O Function is selected for the pin
- Bit = 1: Peripheral module function is selected for the pin

Setting PxSELx = 1 does not automatically set the pin direction. Other peripheral module functions may require the PxDIRx bits to be configured according to the direction needed for the module function. See the pin schematics in the device-specific datasheet.

Note: P1 and P2 Interrupts Are Disabled When PxSEL = 1

When any PxSEL bit is set, the corresponding pin's interrupt function is disabled. Therefore, signals on these pins will not generate P1 or P2 interrupts, regardless of the state of the corresponding P1IE or P2IE bit.

When a port pin is selected as an input to a peripheral, the input signal to the peripheral is a latched representation of the signal at the device pin. While PxSELx=1, the internal input signal follows the signal at the pin. However, if the PxSELx=0, the input to the peripheral maintains the value of the input signal at the device pin before the PxSELx bit was reset.

7.2.7 P1 and P2 Interrupts

Each pin in ports P1 and P2 have interrupt capability, configured with the PxIFG, PxIE, and PxIES registers. All P1 interrupt flags are prioritized, with P1IFG.0 being the highest, and combined to source a single interrupt vector. The highest priority enabled interrupt generates a number in the P1IV register. This number can be evaluated or added to the program counter to automatically enter the appropriate software routine. Disabled P1 interrupts do not affect the P1IV value. The same functionality exists for P2. The PxIV registers are word access only.

Each PxIFGx bit is the interrupt flag for its corresponding I/O pin and is set when the selected input signal edge occurs at the pin. All PxIFGx interrupt flags request an interrupt when their corresponding PxIE bit and the GIE bit are set. Software can also set each PxIFG flag, providing a way to generate a software initiated interrupt.

- Bit = 0: No interrupt is pending
- Bit = 1: An interrupt is pending

Only transitions, not static levels, cause interrupts. If any PxIFGx flag becomes set during a Px interrupt service routine, or is set after the RETI instruction of a Px interrupt service routine is executed, the set PxIFGx flag generates another interrupt. This ensures that each transition is acknowledged.

276

Note: PxIFG Flags When Changing PxOUT, PxDIR, or PxREN

Writing to P1OUT, P1DIR, P1REN, P2OUT, P2DIR, or P2REN can result in setting the corresponding P1IFG or P2IFG flags.

Any access, read or write, of the P1IV register automatically resets the highest pending interrupt flag. If another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt. For example, assume that P1IFG.0 has the highest priority. If the P1IFG.0 and P1IFG.2 flags are set when the interrupt service routine accesses the P1IV register, P1IFG.0 is reset automatically. After the RETI instruction of the interrupt service routine is executed, the P1IFG.2 will generate another interrupt.

Port P2 interrupts behave similarly, and source a separate single interrupt vector and utilizes the P2IV register.

P1IV, P2IV Software Example

The following software example shows the recommended use of P1IV and the handling overhead. The P1IV value is added to the PC to automatically jump to the appropriate routine. The P2IV is similar.

The numbers at the right margin show the necessary CPU cycles for each instruction. The software overhead for different interrupt sources includes interrupt latency and return-from-interrupt cycles, but not the task handling itself.

;Interru	pt handle	r for PlIFGx			Cycles
P1_HND			;	Interrupt latency	6
	ADD	&P1IV,PC		Add offset to Jump table	3
	RETI		;	Vector 0: No interrupt	5
	JMP	P1_0_HND	;	Vector 2: Port 1 bit 0	2
	JMP	P1_1_HND	;	Vector 4: Port 1 bit 1	2
	JMP	P1_2_HND	;	Vector 6: Port 1 bit 2	2
	JMP	P1_3_HND	;	Vector 8: Port 1 bit 3	2
	JMP	P1_4_HND	;	Vector 10: Port 1 bit 4	2
	JMP	P1_5_HND	;	Vector 12: Port 1 bit 5	2
	JMP	P1_6_HND	;	Vector 14: Port 1 bit 6	2
	JMP	P1_7_HND	;	Vector 16: Port 1 bit 7	2
P1_7_HND			;	Vector 16: Port 1 bit 7	
			;	Task starts here	
	RETI		;	Back to main program	5
P1_6_HND			;	Vector 14: Port 1 bit 6	
			;	Task starts here	
	RETI		;	Back to main program	5
P1_5_HND			;	Vector 12: Port 1 bit 5	
			;	Task starts here	
	RETI		;	Back to main program	5
P1_4_HND			;	Vector 10: Port 1 bit 4	
			;	Task starts here	
	RETI		;	Back to main program	5
P1_3_HND			;	Vector 8: Port 1 bit 3	
			;	Task starts here	
	RETI		;	Back to main program	5
P1_2_HND			;	Vector 6: Port 1 bit 2	
			;	Task starts here	
	RETI		;	Back to main program	5
P1_1_HND			;	Vector 4: Port 1 bit 1	
			;	Task starts here	
	RETI		;	Back to main program	5
P1_0_HND				Vector 2: Port 1 bit 0	
			;	Task starts here	
	RETI		;	Back to main program	5

Interrupt Edge Select Registers P1IES, P2IES

Each PxIES bit selects the interrupt edge for the corresponding I/O pin.

- Bit = 0: The PxIFGx flag is set with a low-to-high transition
- Bit = 1: The PxIFGx flag is set with a high-to-low transition

Note: Writing to PxIESx

Writing to P1IES or P2IES can result in setting the corresponding interrupt flags.

PxIESx	PxINx	PxIFGx
$0 \rightarrow 1$	0	May be set
$0 \rightarrow 1$	1	Unchanged
$1 \rightarrow 0$	0	Unchanged
$1 \rightarrow 0$	1	May be set

Interrupt Enable P1IE, P2IE

Each PxIE bit enables the associated PxIFG interrupt flag.

- Bit = 0: The interrupt is disabled
- Bit = 1: The interrupt is enabled

7.2.8 Configuring Unused Port Pins

Unused I/O pins should be configured as I/O function, output direction, and left unconnected on the PC board, to prevent a floating input and reduce power consumption. The value of the PxOUT bit is don't care, since the pin is unconnected. Alternatively, the integrated pullup/pulldown resistor can be enabled by setting the PxREN bit of the unused pin to prevent the floating input. See chapter *System Resets*, *Interrupts*, *and Operating Modes* for termination of unused pins.

Note: Configuring Port J and Shared JTAG pins:

It is important to remember in the application to take special precautions to ensure that the Port J is configured properly to prevent any floating input. Since Port PJ is shared with the JTAG function, floating inputs may not be noticed when in an emulation environment . Port J is initialized to high impedance inputs by default.

www.ti.com Digital I/O Registers

7.3 Digital I/O Registers

The digital I/O registers are listed in Table 7-2. The base addresses can be found in the device specific datasheet Each port grouping begins at its base address. The address offsets are given in Table 7-2.

Table 7-2. Digital I/O Registers

Port	Register	Short Form	Address Offset	Register Type	Initial State
P1	P1 Interrupt Vector	P1IV	0Eh	Read only	0000h
P2	P2 Interrupt Vector	P2IV	1Eh	Read only	0000h
P1	Input	P1IN	00h	Read only	
	Output	P1OUT	02h	Read/write	Unchanged
	Direction	P1DIR	04h	Read/write	00h
	Resistor Enable	P1REN	06h	Read/write	00h
	Output drive strength	P1DS	08h	Read/write	00h
	Port Select	P1SEL	0Ah	Read/write	00h
	Interrupt Edge Select	P1IES	18h	Read/write	Unchanged
	Interrupt Enable	P1IE	1Ah	Read/write	00h
	Interrupt Flag	P1IFG	1Ch	Read/write	00h
P2	Input	P2IN	01h	Read only	
	Output	P2OUT	03h	Read/write	Unchanged
	Direction	P2DIR	05h	Read/write	00h
	Resistor Enable	P2REN	07h	Read/write	00h
	Output drive strength	P2DS	09h	Read/write	00h
	Port Select	P2SEL	0Bh	Read/write	00h
	Interrupt Edge Select	P2IES	19h	Read/write	Unchanged
	Interrupt Enable	P2IE	1Bh	Read/write	00h
	Interrupt Flag	P2IFG	1Dh	Read/write	00h
P3	Input	P3IN	00h	Read only	
	Output	P3OUT	02h	Read/write	Unchanged
	Direction	P3DIR	04h	Read/write	00h
	Resistor Enable	P3REN	06h	Read/write	00h
	Output drive strength	P3DS	08h	Read/write	00h
	Port Select	P3SEL	0Ah	Read/write	00h
P4	Input	P4IN	01h	Read only	
	Output	P4OUT	03h	Read/write	Unchanged
	Direction	P4DIR	05h	Read/write	00h
	Resistor Enable	P4REN	07h	Read/write	00h
	Output drive strength	P4DS	09h	Read/write	00h
	Port Select	P4SEL	0Bh	Read/write	00h
P5	Input	P5IN	00h	Read only	
	Output	P5OUT	02h	Read/write	Unchanged
	Direction	P5DIR	04h	Read/write	00h
	Resistor Enable	P5REN	06h	Read/write	00h
	Output drive strength	P5DS	08h	Read/write	00h
	Port Select	P5SEL	0Ah	Read/write	00h

Digital I/O Registers www.ti.com

Table 7-2. Digital I/O Registers (continued)

Port	Register	Short Form	Address Offset	Register Type	Initial State
P6	Input	P6IN	01h	Read only	
	Output	P6OUT	03h	Read/write	Unchanged
	Direction	P6DIR	05h	Read/write	00h
	Resistor Enable	P6REN	07h	Read/write	00h
	Output drive strength	P6DS	09h	Read/write	00h
	Port Select	P6SEL	0Bh	Read/write	00h
P7	Input	P7IN	00h	Read only	
	Output	P7OUT	02h	Read/write	Unchanged
	Direction	P7DIR	04h	Read/write	00h
	Resistor Enable	P7REN	06h	Read/write	00h
	Output drive strength	P7DS	08h	Read/write	00h
	Port Select	P7SEL	0Ah	Read/write	00h
28	Input	P8IN	01h	Read only	
	Output	P8OUT	03h	Read/write	Unchanged
	Direction	P8DIR	05h	Read/write	00h
	Resistor Enable	P8REN	07h	Read/write	00h
	Output drive strength	P8DS	09h	Read/write	00h
	Port Select	P8SEL	0Bh	Read/write	00h
9	Input	P9IN	00h	Read only	
	Output	P9OUT	02h	Read/write	Unchanged
	Direction	P9DIR	04h	Read/write	00h
	Resistor Enable	P9REN	06h	Read/write	00h
	Output drive strength	P9DS	08h	Read/write	00h
	Port Select	P9SEL	0Ah	Read/write	00h
P10	Input	P10IN	01h	Read only	
	Output	P10OUT	03h	Read/write	Unchanged
	Direction	P10DIR	05h	Read/write	00h
	Resistor Enable	P10REN	07h	Read/write	00h
	Output drive strength	P10DS	09h	Read/write	00h
	Port Select	P10SEL	0Bh	Read/write	00h
P11	Input	P11IN	00h	Read only	
	Output	P11OUT	02h	Read/write	Unchanged
	Direction	P11DIR	04h	Read/write	00h
	Resistor Enable	P11REN	06h	Read/write	00h
	Output drive strength	P11DS	08h	Read/write	00h
	Port Select	P11SEL	0Ah	Read/write	00h
- J	Input	PJIN	00h	Read only	
	Output	PJOUT	02h	Read/write	Unchanged
	Direction	PJDIR	04h	Read/write	00h
	Resistor Enable	PJREN	06h	Read/write	00h
	Output drive strength	PJDS	08h	Read/write	00h

280

www.ti.com Digital I/O Registers

IV, Port 1 Int	terrupt Vector	Register					
15	14	13	12	11	10	9	8
0	0	0	0	0	0	0	0
rO	r0	r0	r0	r0	r0	r0	r0
7	6	5	4	3	2	1	0
0	0			P1IVx			0
r0	r0	r0	r-0	r-0	r-0	r-0	r0

P1IVx Bits 15-0 Port 1 interrupt vector value

P1IVx Contents	Interrupt Source	Interrupt Flag	Interrupt Priority
00h	No interrupt pending		
02h	Port 1.0 interrupt	P1IFG.0	Highest
04h	Port 1.1 interrupt	P1IFG.1	
06h	Port 1.2 interrupt	P1IFG.2	
08h	Port 1.3 interrupt	P1IFG.3	
0Ah	Port 1.4 interrupt	P1IFG.4	
0Ch	Port 1.5 interrupt	P1IFG.5	
0Eh	Port 1.6 interrupt	P1IFG.6	
10h	Port 1.7 interrupt	P1IFG.7	Lowest

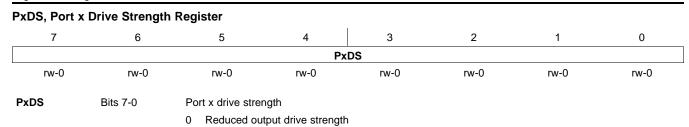
P2IV, Port 2 Interrupt Vector Register

15	14	13	12	11	10	9	8
0	0	0	0	0	0	0	0
r0	rO	rO	r0	r0	r0	r0	r0
7	6	5	4	3	2	1	0
0	0			P2IVx			0
rO	rO	r0	r-0	r-0	r-0	r-0	r0

P2IVx Bits 15-0 Port 2 interrupt vector value

P2IVx Contents	Interrupt Source	Interrupt Flag	Interrupt Priority
00h	No interrupt pending		
02h	Port 2.0 interrupt	P2IFG.0	Highest
04h	Port 2.1 interrupt	P2IFG.1	
06h	Port 2.2 interrupt	P2IFG.2	
08h	Port 2.3 interrupt	P2IFG.3	
0Ah	Port 2.4 interrupt	P2IFG.4	
0Ch	Port 2.5 interrupt	P2IFG.5	
0Eh	Port 2.6 interrupt	P2IFG.6	
10h	Port 2.7 interrupt	P2IFG.7	Lowest

Digital I/O Registers www.ti.com P1IES Port 1 Interrupt Edge Select Register 6 3 2 0 4 P1IES rw rw rw rw rw rw P1IES Bits 7-0 Port 1 interrupt edge select P1IFGx flag is set with a low-to-high transition P1IFGx flag is set with a high-to-low transition P1IE, Port 1 Interrupt Enable Register 3 P1IE rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 P1IE Bits 7-0 Port 1 interrupt enable Corresponding port interrupt disabled Corresponding port interrupt enabled P1IFG, Port 1 Interrupt Flag Register 6 3 0 P1IFG rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 P1IFG Bits 7-0 Port 1 interrupt flag No interrupt is pending Interrupt is pending P2IES Port 2 Interrupt Edge Select Register 7 4 3 2 1 0 P2IES rw rw rw rw rw rw rw P2IES Bits 7-0 Port 2 interrupt edge select P2IFGx flag is set with a low-to-high transition P2IFGx flag is set with a high-to-low transition P2IE, Port 2 Interrupt Enable Register 7 6 5 3 2 0 P2IE rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 P2IE Bits 7-0 Port 2 interrupt enable Corresponding port interrupt disabled Corresponding port interrupt enabled



Digital I/O Registers www.ti.com P2IFG, Port 2 Interrupt Flag Register 6 2 4 3 1 0 P2IFG rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 P2IFG Bits 7-0 Port 2 interrupt flag No interrupt is pending Interrupt is pending PxIN, Port x Input Register 3 **PxIN** r r r **PxIN** Bits 7-0 Port x input. Read only. PxOUT, Port x Output Register 7 0 6 5 4 3 2 1 **PxOUT** rw rw rw rw rw rw rw **PxOUT** Bits 7-0 Port x output When I/O configured to output mode: The output is low 0 1 The output is high When I/O configured to input mode and pullups/pulldowns enabled: Pull-down selected Pullup selected PxDIR, Port x Direction Register 7 6 5 4 3 2 0 1 **PxDIR** rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 **PxDIR** Bits 7-0 Port x direction Port configured as input Port configured as output PxREN, Port x Resistor Enable Register 7 6 5 4 3 2 0 **PxREN** rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 **PxREN** Port x pullup/pulldown resistor enable Bits 7-0 Pullup/pulldown disabled

Pullup/pulldown enabled

Digital I/O Registers www.ti.com

1 Full output drive strength

RAM Controller

The RAM Controller (RAMCTL) allows control of the operation of the RAM.

Top	oic		Page
	8.1	RAMCTL Introduction	286
1	8.2	RAMCTL Operation	286
8	8.3	RAMCTL Module Registers	287

RAMCTL Introduction www.ti.com

8.1 **RAMCTL Introduction**

The RAMCTL provides access to the different power modes of the RAM. The RAMCTL allows the ability to reduce the leakage current while the CPU is off. The RAM can also be switched off. In retention mode the RAM content is saved while the RAM content is lost in off mode. The RAM is partitioned in sectors. typically of 4k-byte (sector) size. Please refer to the device specific datasheet for actual block allocation and size. Each sector is controlled by the RAM Controller RAM Sector Off control bit (RCRSyOFF) of the RAMCTL control register 0 (RCCTL0). The RCCTL0 register is password protected. Only if the correct password is written during a word write, the RCCTL0 register content can be modified. Byte write accesses or write accesses with a wrong password are ignored.

8.2 **RAMCTL Operation**

Active Mode

In active mode the RAM can be read and written at any time. If a RAM address of a sector needs to hold data the whole sector cannot be switched off.

Low-Power Modes

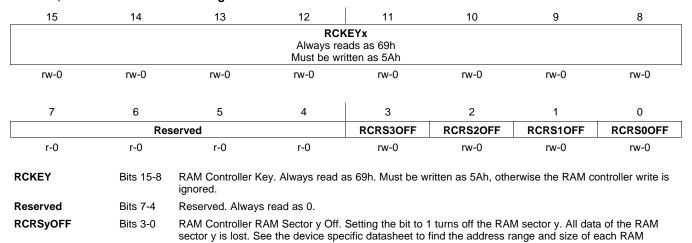
In all low-power modes, the CPU is switched off. As soon as the CPU is switched off, the RAM enters retention mode to reduce the leakage current.

RAM Off Mode

Each sector can be turned off independently of each other by setting the respective RCRSyOFF bit to 1. Reading from a switched off RAM sector returns 0 as data. All data previously stored into a switched off RAM sector is lost and cannot be read, even if the sector is turned on again.

Stack pointer

The program stack is located in RAM. Sectors holding the stack must not be turned off if an interrupt has to be executed or a low-power mode is entered.


8.3 RAMCTL Module Registers

The RAMCTL module register is listed in Table 8-1. The base address can be found in the device specific datasheet. The address offset is given in Table 8-1.

Table 8-1. RAMCTL Module Register

Register	Short Form	Register Type	Address	Initial State
RAMCTL control register 0	RCCTL0	Read/write	0000h	0000h

RCCTL0, RAM Controller Control Register 0

DMA Controller

The DMA controller module transfers data from one address to another without CPU intervention. This chapter describes the operation of the DMA controller that is available on all MSP430x5xx devices.

Topic		Page
9.	DMA Introduction	290
9.	2 DMA Operation	292
9.	B DMA Registers	303

DMA Introduction www.ti.com

9.1 DMA Introduction

The direct memory access (DMA) controller transfers data from one address to another, without CPU intervention, across the entire address range. For example, the DMA controller can move data from the ADC12 A conversion memory to RAM.

Devices that contain a DMA controller may have up to eight DMA channels available. Therefore, depending on the number of DMA channels available, some features described in this chapter are not applicable to all devices.

Using the DMA controller can increase the throughput of peripheral modules. It can also reduce system power consumption by allowing the CPU to remain in a low-power mode without having to awaken to move data to or from a peripheral.

The DMA controller features include:

- Up to eight independent transfer channels
- Configurable DMA channel priorities
- Requires only two MCLK clock cycles per transfer
- Byte or word and mixed byte/word transfer capability
- Block sizes up to 65535 bytes or words
- Configurable transfer trigger selections
- Selectable edge or level-triggered transfer
- · Four addressing modes
- · Single, block, or burst-block transfer modes

The DMA controller block diagram is shown in Figure 9-1.

www.ti.com DMA Introduction

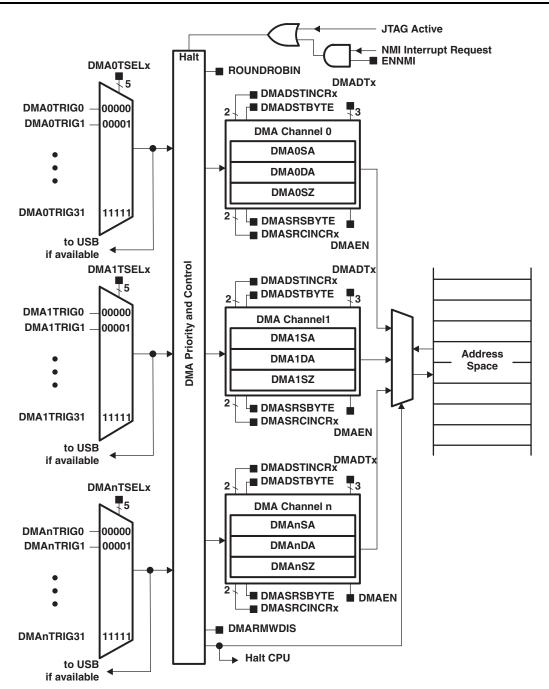


Figure 9-1. DMA Controller Block Diagram

DMA Operation www.ti.com

9.2 DMA Operation

The DMA controller is configured with user software. The setup and operation of the DMA is discussed in the following sections.

9.2.1 DMA Addressing Modes

The DMA controller has four addressing modes. The addressing mode for each DMA channel is independently configurable. For example, channel 0 may transfer between two fixed addresses, while channel 1 transfers between two blocks of addresses. The addressing modes are shown in Figure 9-2. The addressing modes are:

- · Fixed address to fixed address
- Fixed address to block of addresses
- · Block of addresses to fixed address
- Block of addresses to block of addresses

The addressing modes are configured with the DMASRCINCRx and DMADSTINCRx control bits. The DMASRCINCRx bits select if the source address is incremented, decremented, or unchanged after each transfer. The DMADSTINCRx bits select if the destination address is incremented, decremented, or unchanged after each transfer.

Transfers may be byte-to-byte, word-to-word, byte-to-word, or word-to-byte. When transferring word-to-byte, only the lower byte of the source-word transfers. When transferring byte-to-word, the upper byte of the destination-word is cleared when the transfer occurs.

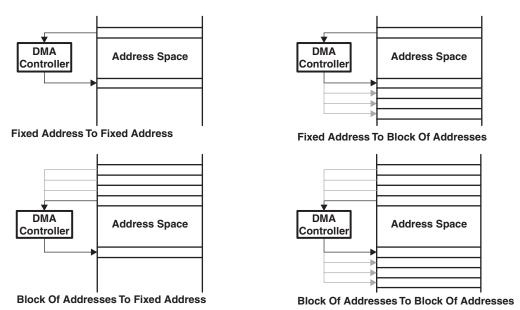


Figure 9-2. DMA Addressing Modes

9.2.2 DMA Transfer Modes

The DMA controller has six transfer modes selected by the DMADTx bits as listed in Table 9-1. Each channel is individually configurable for its transfer mode. For example, channel 0 may be configured in single transfer mode, while channel 1 is configured for burst-block transfer mode, and channel 2 operates in repeated block mode. The transfer mode is configured independently from the addressing mode. Any addressing mode can be used with any transfer mode.

Two types of data can be transferred selectable by the DMAxCTL DSTBYTE and SRCBYTE fields. The source and/or destination location can be either byte or word data. It is also possible to transfer byte to byte, word to word or any combination.

www.ti.com Single Transfer

Table	9-1	$DM\Delta$	Transfer	Modes

DMADTx	Transfer Mode	Description
000	Single transfer	Each transfer requires a trigger. DMAEN is automatically cleared when DMAxSZ transfers have been made.
001	Block transfer	A complete block is transferred with one trigger. DMAEN is automatically cleared at the end of the block transfer.
010, 011	Burst-block transfer	CPU activity is interleaved with a block transfer. DMAEN is automatically cleared at the end of the burst-block transfer.
100	Repeated single transfer	Each transfer requires a trigger. DMAEN remains enabled.
101	Repeated block transfer	A complete block is transferred with one trigger. DMAEN remains enabled.
110, 111	Repeated burst-block transfer	CPU activity is interleaved with a block transfer. DMAEN remains enabled.

Single Transfer

In single transfer mode, each byte/word transfer requires a separate trigger. The single transfer state diagram is shown in Figure 9-3.

The DMAxSZ register is used to define the number of transfers to be made. The DMADSTINCRx and DMASRCINCRx bits select if the destination address and the source address are incremented or decremented after each transfer. If DMAxSZ = 0, no transfers occur.

The DMAxSA, DMAxDA, and DMAxSZ registers are copied into temporary registers. The temporary values of DMAxSA and DMAxDA are incremented or decremented after each transfer. The DMAxSZ register is decremented after each transfer. When the DMAxSZ register decrements to zero it is reloaded from its temporary register and the corresponding DMAIFG flag is set. When DMADTx = 0, the DMAEN bit is cleared automatically when DMAxSZ decrements to zero and must be set again for another transfer to occur.

In repeated single transfer mode, the DMA controller remains enabled with DMAEN = 1, and a transfer occurs every time a trigger occurs.

Block Transfers www.ti.com

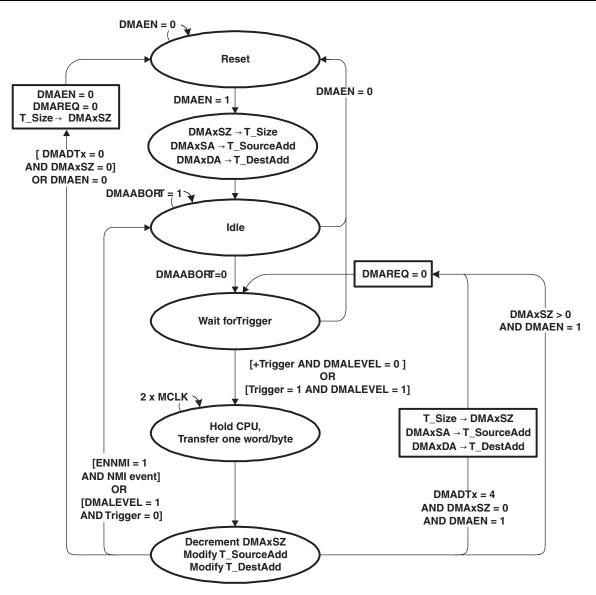


Figure 9-3. DMA Single Transfer State Diagram

Block Transfers

In block transfer mode, a transfer of a complete block of data occurs after one trigger. When DMADTx = 1, the DMAEN bit is cleared after the completion of the block transfer and must be set again before another block transfer can be triggered. After a block transfer has been triggered, further trigger signals occurring during the block transfer are ignored. The block transfer state diagram is shown in Figure 9-4.

The DMAxSZ register is used to define the size of the block and the DMADSTINCRx and DMASRCINCRx bits select if the destination address and the source address are incremented or decremented after each transfer of the block. If DMAxSZ = 0, no transfers occur.

The DMAxSA, DMAxDA, and DMAxSZ registers are copied into temporary registers. The temporary values of DMAxSA and DMAxDA are incremented or decremented after each transfer in the block. The DMAxSZ register is decremented after each transfer of the block and shows the number of transfers remaining in the block. When the DMAxSZ register decrements to zero it is reloaded from its temporary register and the corresponding DMAIFG flag is set.

www.ti.com Block Transfers

During a block transfer, the CPU is halted until the complete block has been transferred. The block transfer takes 2 x MCLK x DMAxSZ clock cycles to complete. CPU execution resumes with its previous state after the block transfer is complete.

In repeated block transfer mode, the DMAEN bit remains set after completion of the block transfer. The next trigger after the completion of a repeated block transfer triggers another block transfer.

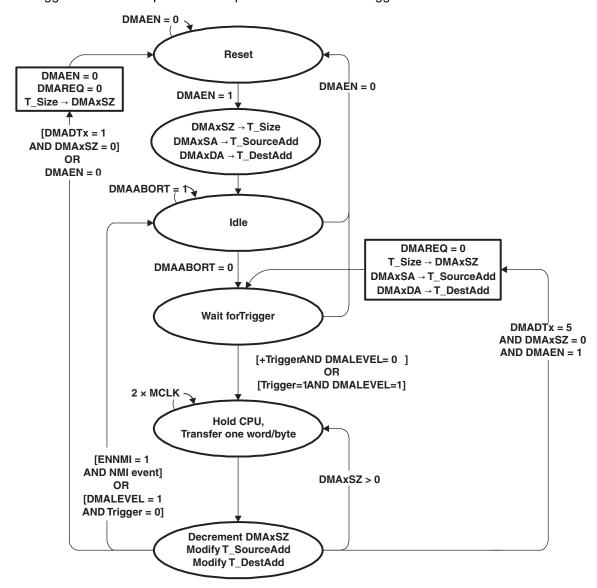


Figure 9-4. DMA Block Transfer State Diagram

9.2.2.1 Burst-Block Transfers

In burst-block mode, transfers are block transfers with CPU activity interleaved. The CPU executes 2 MCLK cycles after every four byte/word transfers of the block resulting in 20% CPU execution capacity. After the burst-block, CPU execution resumes at 100% capacity and the DMAEN bit is cleared. DMAEN must be set again before another burst-block transfer can be triggered. After a burst-block transfer has been triggered, further trigger signals occurring during the burst-block transfer are ignored. The burst-block transfer state diagram is shown in Figure 9-5.

The DMAxSZ register is used to define the size of the block and the DMADSTINCRx and DMASRCINCRx bits select if the destination address and the source address are incremented or decremented after each transfer of the block. If DMAxSZ = 0, no transfers occur.

Block Transfers www.ti.com

The DMAxSA, DMAxDA, and DMAxSZ registers are copied into temporary registers. The temporary values of DMAxSA and DMAxDA are incremented or decremented after each transfer in the block. The DMAxSZ register is decremented after each transfer of the block and shows the number of transfers remaining in the block. When the DMAxSZ register decrements to zero it is reloaded from its temporary register and the corresponding DMAIFG flag is set.

In repeated burst-block mode the DMAEN bit remains set after completion of the burst-block transfer and no further trigger signals are required to initiate another burst-block transfer. Another burst-block transfer begins immediately after completion of a burst-block transfer. In this case, the transfers must be stopped by clearing the DMAEN bit, or by an NMI interrupt when ENNMI is set. In repeated burst-block mode the CPU executes at 20% capacity continuously until the repeated burst-block transfer is stopped.

www.ti.com Block Transfers

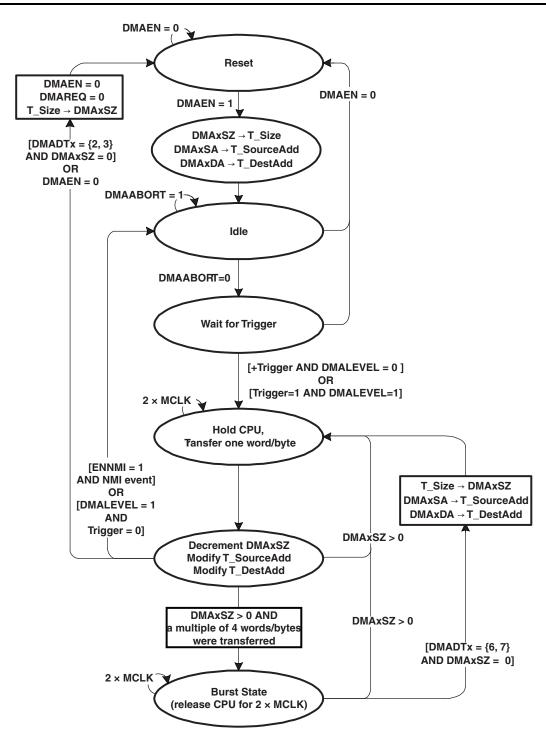


Figure 9-5. DMA Burst-Block Transfer State Diagram

9.2.3 Initiating DMA Transfers

Each DMA channel is independently configured for its trigger source with the DMAxTSELx. The DMAxTSELx bits should be modified only when the DMACTLx DMAEN bit is 0. Otherwise, unpredictable DMA triggers may occur. Table 9-2 describes the trigger operation for each type of module. Please refer to the specific device datasheet for the list of triggers available, along with their respective DMAxTSELx values.

Edge-Sensitive Triggers www.ti.com

When selecting the trigger, the trigger must not have already occurred, or the transfer will not take place.

Note: DMA Trigger Selection and USB

On devices that contain a USB module, the triggers selection from DMA channels 0, 1, or 2 can be used for the USB time stamp event selection. Please refer to the USB module description for further details.

Edge-Sensitive Triggers

When DMALEVEL = 0, edge-sensitive triggers are used and the rising edge of the trigger signal initiates the transfer. In single-transfer mode, each transfer requires its own trigger. When using block or burst-block modes, only one trigger is required to initiate the block or burst-block transfer.

Level-Sensitive Triggers

When DMALEVEL = 1, level-sensitive triggers are used. For proper operation, level-sensitive triggers can only be used when external trigger DMAE0 is selected as the trigger. DMA transfers are triggered as long as the trigger signal is high and the DMAEN bit remains set.

The trigger signal must remain high for a block or burst-block transfer to complete. If the trigger signal goes low during a block or burst-block transfer, the DMA controller is held in its current state until the trigger goes back high or until the DMA registers are modified by software. If the DMA registers are not modified by software, when the trigger signal goes high again, the transfer resumes from where it was when the trigger signal went low.

When DMALEVEL = 1, transfer modes selected when DMADTx = {0, 1, 2, 3} are recommended because the DMAEN bit is automatically reset after the configured transfer.

Halting Executing Instructions for DMA Transfers

The DMARMWDIS bit controls when the CPU is halted for DMA transfers. When DMARMWDIS = 0, the CPU is halted immediately and the transfer begins when a trigger is received. In this case, it is possible that CPU read-modify-write operations can be interrupted by a DMA transfer. When DMARMWDIS = 1, the CPU finishes the currently executing read-modify-write operation before the DMA controller halts the CPU and the transfer begins. See Table 9-2

Table 9-2. DMA Trigger Operation

Module	Operation
DMA	A transfer is triggered when the DMAREQ bit is set. The DMAREQ bit is automatically reset when the transfer starts. A transfer is triggered when the DMAxIFG flag is set. DMA0IFG triggers channel 1, DMA1IFG triggers channel 2, and DMA2IFG triggers channel 0. None of the DMAxIFG flags are automatically reset when the transfer starts.
	A transfer is triggered by the external trigger DMAE0.
Timer_A	A transfer is triggered when the TACCR0 CCIFG flag is set. The TACCR0 CCIFG flag is automatically reset when the transfer starts. If the TACCR0 CCIE bit is set, the TACCR0 CCIFG flag will not trigger a transfer. A transfer is triggered when the TACCR2 CCIFG flag is set. The TACCR2 CCIFG flag is automatically reset when the transfer starts. If the TACCR2 CCIE bit is set, the TACCR2 CCIFG flag will not trigger a transfer.
Timer_B	A transfer is triggered when the TBCCR0 CCIFG flag is set. The TBCCR0 CCIFG flag is automatically reset when the transfer starts. If the TBCCR0 CCIE bit is set, the TBCCR0 CCIFG flag will not trigger a transfer. A transfer is triggered when the TBCCR2 CCIFG flag is set. The TBCCR2 CCIFG flag is automatically reset when the transfer starts. If the TBCCR2 CCIE bit is set, the TBCCR2 CCIFG flag will not trigger a transfer.
USCI_Ax	A transfer is triggered when USCI_Ax receives new data. UCAxRXIFG is automatically reset when the transfer starts. If UCAxRXIE is set, the UCAxRXIFG will not trigger a transfer. A transfer is triggered when USCI_Ax is ready to transmit new data. UCAxTXIFG is automatically reset when the transfer starts. If UCAxTXIE is set, the UCAxTXIFG will not trigger a transfer.
USCI_Bx	A transfer is triggered when USCI_Bx receives new data. UCBxRXIFG is automatically reset when the transfer starts. If UCBxRXIE is set, the UCBxRXIFG will not trigger a transfer. A transfer is triggered when USCI_Bx is ready to transmit new data. UCBxTXIFG is automatically reset when the transfer starts. If UCBxTXIE is set, the UCBxTXIFG will not trigger a transfer.
DAC12_A	A transfer is triggered when the DAC12_xCTL0 DAC12IFG flag is set. The DAC12_xCTL0 DAC12IFG flag is automatically cleared when the transfer starts. If the DAC12_xCTL0 DAC12IE bit is set, the DAC12_xCTL0 DAC12IFG flag will not trigger a transfer.
ADC12_A	A transfer is triggered by an ADC12IFGx flag. When single-channel conversions are performed, the corresponding ADC12IFGx is the trigger. When sequences are used, the ADC12IFGx for the last conversion in the sequence is the trigger. A transfer is triggered when the conversion is completed and the ADC12IFGx is set. Setting the ADC12IFGx with software will not trigger a transfer. All ADC12IFGx flags are automatically reset when the associated ADC12MEMx register is accessed by the DMA controller.
MPY	A transfer is triggered when the hardware multiplier is ready for a new operand.
Reserved	No transfer is triggered.

9.2.4 Stopping DMA Transfers

There are two ways to stop DMA transfers in progress:

- A single, block, or burst-block transfer may be stopped with an NMI interrupt, if the ENNMI bit is set in register DMACTL1.
- A burst-block transfer may be stopped by clearing the DMAEN bit.

9.2.5 DMA Channel Priorities

The default DMA channel priorities are DMA0 through DMA7. If two or three triggers happen simultaneously or are pending, the channel with the highest priority completes its transfer (single, block or burst-block transfer) first, then the second priority channel, then the third priority channel. Transfers in progress are not halted if a higher priority channel is triggered. The higher priority channel waits until the transfer in progress completes before starting.

The DMA channel priorities are configurable with the ROUNDROBIN bit. When the ROUNDROBIN bit is set, the channel that completes a transfer becomes the lowest priority. The *order* of the priority of the channels always stays the same, DMA0-DMA1-DMA2, for example for three channels:

DMA Priority	Transfer Occurs	New DMA Priority
DMA0 - DMA1 - DMA2	DMA1	DMA2 - DMA0 - DMA1
DMA2 - DMA0 - DMA1	DMA2	DMA0 - DMA1 - DMA2
DMA0 - DMA1 - DMA2	DMA0	DMA1 - DMA2 - DMA0

SLAU208-June 2008 DMA Controller 299

When the ROUNDROBIN bit is cleared the channel priority returns to the default priority.

9.2.6 DMA Transfer Cycle Time

The DMA controller requires one or two MCLK clock cycles to synchronize before each single transfer or complete block or burst-block transfer. Each byte/word transfer requires two MCLK cycles after synchronization, and one cycle of wait time after the transfer. Because the DMA controller uses MCLK, the DMA cycle time is dependent on the MSP430 operating mode and clock system setup.

If the MCLK source is active, but the CPU is off, the DMA controller will use the MCLK source for each transfer, without re-enabling the CPU. If the MCLK source is off, the DMA controller will temporarily restart MCLK, sourced with DCOCLK, for the single transfer or complete block or burst-block transfer. The CPU remains off, and after the transfer completes, MCLK is turned off. The maximum DMA cycle time for all operating modes is shown in Table 9-3.

Table 9-3. Maximum Single-Transfer DMA Cycle Time

CPU Operating Mode Clock Source	Maximum DMA Cycle Time
Active mode MCLK=DCOCLK	4 MCLK cycles
Active mode MCLK=LFXT1CLK	4 MCLK cycles
Low-power mode LPM0/1 MCLK=DCOCLK	5 MCLK cycles
Low-power mode LPM3/4 MCLK=DCOCLK	5 MCLK cycles + 5 μs ⁽¹⁾
Low-power mode LPM0/1 MCLK=LFXT1CLK	5 MCLK cycles
Low-power mode LPM3 MCLK=LFXT1CLK	5 MCLK cycles
Low-power mode LPM4 MCLK=LFXT1CLK	5 MCLK cycles + 5 μs ⁽¹⁾

⁽¹⁾ The additional 5 s are needed to start the DCOCLK. It is the t_(LPMx) parameter in the data sheet.

9.2.7 Using DMA With System Interrupts

DMA transfers are not interruptible by system interrupts. System interrupts remain pending until the completion of the transfer. NMI interrupts can interrupt the DMA controller if the ENNMI bit is set.

System interrupt service routines are interrupted by DMA transfers. If an interrupt service routine or other routine must execute with no interruptions, the DMA controller should be disabled prior to executing the routine.

9.2.8 DMA Controller Interrupts

Each DMA channel has its own DMAIFG flag. Each DMAIFG flag is set in any mode, when the corresponding DMAxSZ register counts to zero. If the corresponding DMAIE and GIE bits are set, an interrupt request is generated.

All DMAIFG flags are prioritized, with DMA0IFG being the highest, and combined to source a single interrupt vector. The highest priority enabled interrupt generates a number in the DMAIV register. This number can be evaluated or added to the program counter to automatically enter the appropriate software routine. Disabled DMA interrupts do not affect the DMAIV value.

Any access, read or write, of the DMAIV register automatically resets the highest pending interrupt flag. If another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt. For example, assume that DMA0 has the highest priority. If the DMA0IFG and DMA2IFG flags are set when the interrupt service routine accesses the DMAIV register, DMA0IFG is reset automatically. After the RETI instruction of the interrupt service routine is executed, the DMA2IFG will generate another interrupt.

DMAIV Software Example

The following software example shows the recommended use of DMAIV and the handling overhead for a three channel DMA controller. The DMAIV value is added to the PC to automatically jump to the appropriate routine.

The numbers at the right margin show the necessary CPU cycles for each instruction. The software overhead for different interrupt sources includes interrupt latency and return-from-interrupt cycles, but not the task handling itself.

```
; Interrupt handler for DMAxIFG
                                                   Cycles
DMA HND
                              ; Interrupt latency
                                                             6
                  &DMAIV,PC ; Add offset to Jump table
         ADD
         RETI
                              ; Vector 0: No interrupt
         JMP
                  DMA0_HND
                              ; Vector 2: DMA channel 0
                  DMA1_HND
         JMP
                              ; Vector 4: DMA channel 1
         JMP
                  DMA2_HND
                              ; Vector 6: DMA channel 2
         JMP
                  DMA3_HND
                              ; Vector 8: DMA channel 3
         JMP
                  DMA4_HND
                              ; Vector 10: DMA channel 4
         JMP
                  DMA5_HND
                              ; Vector 12: DMA channel 5
                                                             2
         JMP
                  DMA6_HND
                              ; Vector 14: DMA channel 6
                                                             2
                  DMA7_HND
                              ; Vector 16: DMA channel 7
         JMP
DMA7_HND
                              ; Vector 16: DMA channel 7
                              ; Task starts here
         RETT
                              ; Back to main program
                                                             5
DMA6_HND
                              ; Vector 14: DMA channel 6
                              ; Task starts here
         RETT
                              ; Back to main program
                                                             5
DMA5_HND
                              ; Vector 12: DMA channel 5
                              ; Task starts here
         . . .
         RETI
                              ; Back to main program
                                                             5
DMA4_HND
                              ; Vector 10: DMA channel 4
                              ; Task starts here
         RETI
                              ; Back to main program
                                                             5
DMA3_HND
                              ; Vector 8: DMA channel 3
                              ; Task starts here
                              ; Back to main program
         RETT
                                                             5
DMA2_HND
                              ; Vector 6: DMA channel 2
                              ; Task starts here
         . . .
         RETT
                              ; Back to main program
                                                             5
                              ; Vector 4: DMA channel 1
DMA1 HND
                              ; Task starts here
         RETI
                              ; Back to main program
                                                             5
                              ; Vector 2: DMA channel 0
DMA0_HND
                              ; Task starts here
                              ; Back to main program
         RETT
                                                             5
```

9.2.9 Using the USCI B &C Module with the DMA Controller

The USCI_B I²C module provides two trigger sources for the DMA controller. The USCI_B I²C module can trigger a transfer when new I²C data is received and the when the transmit data is needed.

9.2.10 Using ADC12 with the DMA Controller

MSP430 devices with an integrated DMA controller can automatically move data from any ADC12MEMx register to another location. DMA transfers are done without CPU intervention and independently of any low-power modes. The DMA controller increases throughput of the ADC12 module, and enhances low-power applications allowing the CPU to remain off while data transfers occur.

DMA transfers can be triggered from any ADC12IFGx flag. When CONSEQx = {0,2} the ADC12IFGx flag for the ADC12MEMx used for the conversion can trigger a DMA transfer. When CONSEQx = {1,3}, the ADC12IFGx flag for the last ADC12MEMx in the sequence can trigger a DMA transfer. Any ADC12IFGx flag is automatically cleared when the DMA controller accesses the corresponding ADC12MEMx.

9.2.11 Using DAC12 With the DMA Controller

MSP430 devices with an integrated DMA controller can automatically move data to the DAC12_xDAT register. DMA transfers are done without CPU intervention and independently of any low-power modes. The DMA controller increases throughput to the DAC12 module, and enhances low-power applications allowing the CPU to remain off while data transfers occur.

Applications requiring periodic waveform generation can benefit from using the DMA controller with the DAC12. For example, an application that produces a sinusoidal waveform may store the sinusoid values in a table. The DMA controller can continuously and automatically transfer the values to the DAC12 at specific intervals creating the sinusoid with zero CPU execution. The DAC12_xCTL DAC12IFG flag is automatically cleared when the DMA controller accesses the DAC12_xDAT register.

www.ti.com DMA Registers

9.3 DMA Registers

The DMA module registers are listed in Table 9-4. The base addresses can be found in the device specific datasheet. Each channel starts at its respective base address. The address offsets are listed in Table 9-4.

Table 9-4. DMA Registers

	- Tubio O 41 Bilin (Rogiotoro					
Register	Short Form	Register Type	Address Offset	Initial State		
DMA control 0	DMACTL0	Read/write	00h	0000h		
DMA control 1	DMACTL1	Read/write	02h	0000h		
DMA control 2	DMACTL2	Read/write	04h	0000h		
DMA control 3	DMACTL3	Read/write	06h	0000h		
DMA control 4	DMACTL4	Read/write	08h	0000h		
DMA interrupt vector	DMAIV	Read only	0Eh	0000h		
DMA channel 0 control	DMA0CTL	Read/write	00h	0000h		
DMA channel 0 source address	DMA0SA	Read/write	02h	Unchanged		
DMA channel 0 destination address	DMA0DA	Read/write	06h	Unchanged		
DMA channel 0 transfer size	DMA0SZ	Read/write	0Ah	Unchanged		
DMA channel 1 control	DMA1CTL	Read/write	00h	0000h		
DMA channel 1 source address	DMA1SA	Read/write	02h	Unchanged		
DMA channel 1 destination address	DMA1DA	Read/write	06h	Unchanged		
DMA channel 1 transfer size	DMA1SZ	Read/write	0Ah	Unchanged		
DMA channel 2 control	DMA2CTL	Read/write	00h	0000h		
DMA channel 2 source address	DMA2SA	Read/write	02h	Unchanged		
DMA channel 2 destination address	DMA2DA	Read/write	06h	Unchanged		
DMA-channel 2 transfer size	DMA2SZ	Read/write	0Ah	Unchanged		
DMA channel 3 control	DMA3CTL	Read/write	00h	0000h		
DMA channel 3 source address	DMA3SA	Read/write	02h	Unchanged		
DMA channel 3 destination address	DMA3DA	Read/write	06h	Unchanged		
DMA-channel 3 transfer size	DMA3SZ	Read/write	0Ah	Unchanged		
DMA channel 4 control	DMA4CTL	Read/write	00h	0000h		
DMA channel 4 source address	DMA4SA	Read/write	02h	Unchanged		
DMA channel 4 destination address	DMA4DA	Read/write	06h	Unchanged		
DMA-channel 4 transfer size	DMA4SZ	Read/write	0Ah	Unchanged		
DMA channel 5 control	DMA5CTL	Read/write	00h	0000h		
DMA channel 5 source address	DMA5SA	Read/write	02h	Unchanged		
DMA channel 5 destination address	DMA5DA	Read/write	06h	Unchanged		
DMA-channel 5 transfer size	DMA5SZ	Read/write	0Ah	Unchanged		
DMA channel 6 control	DMA6CTL	Read/write	00h	0000h		
DMA channel 6 source address	DMA6SA	Read/write	02h	Unchanged		
DMA channel 6 destination address	DMA6DA	Read/write	06h	Unchanged		
DMA-channel 6 transfer size	DMA6SZ	Read/write	0Ah	Unchanged		
DMA channel 7 control	DMA7CTL	Read/write	00h	0000h		
DMA channel 7 source address	DMA7SA	Read/write	02h	Unchanged		
DMA channel 7 destination address	DMA7DA	Read/write	06h	Unchanged		
DMA-channel 7 transfer size	DMA7SZ	Read/write	0Ah	Unchanged		

15	14	13	12	11	10	9	8
	Reserved				DMA1TSELx		
rO	rO	r0	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)
7	6	5	4	3	2	1	0
	Reserved				DMA0TSELx		
r0	rO	rO	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)

Reserved Bits 15-13 Reserved. Read only. Always read as 0.

DMA1TSELx Bits 12-8 DMA trigger select. These bits select the DMA transfer trigger. Refer to the device specific datasheet for

number of channels and trigger assignment.

00000 DMA1TRIG0 00001 DMA1TRIG1 00010 DMA1TRIG2

:

11110 DMA1TRIG3011111 DMA1TRIG31

Reserved Bits 7-5 Reserved. Read only. Always read as 0.

DMA0TSELx Bits 4-0 Same as DMA1TSELx

DMACTL1, DMA Control Register 1

15	14	13	12	11	10	9	8
	Reserved DMA3TSELx						
rO	rO	r0	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)
7	6	5	4	3	2	1	0
	Reserved				DMA2TSELx		
rO	r0	r0	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)

Reserved Bits 15-13 Reserved. Read only. Always read as 0.

DMA3TSELx Bits 12-8 DMA trigger select. These bits select the DMA transfer trigger. Refer to the device specific datasheet for

number of channels and trigger assignment.

00000 DMA3TRIG0 00001 DMA3TRIG1 00010 DMA3TRIG2 :

11110 DMA3TRIG3011111 DMA3TRIG31

Reserved Bits 7-5 Reserved. Read only. Always read as 0.

DMA2TSELx Bits 4-0 Same as DMA3TSELx

DMACTL2	. DMA	Control	Register 2
---------	-------	---------	------------

15	14	13	12	11	10	9	8		
Reserved			Reserved				DMA5TSELx		
r0	r0	r0	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)		
7	6	5	4	3	2	1	0		
	Reserved				DMA4TSELx				
rO	r0	r0	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)		

Reserved Bits 15-13 Reserved. Read only. Always read as 0.

DMA5TSELx DMA trigger select. These bits select the DMA transfer trigger. Refer to the device specific datasheet for Bits 12-8

number of channels and trigger assignment.

DMA5TRIG31

00000 DMA5TRIG0 00001 DMA5TRIG1 00010 DMA5TRIG2

11110 DMA5TRIG30

11111 Reserved Bits 7-5 Reserved. Read only. Always read as 0.

DMA4TSELx Bits 4-0 Same as DMA5TSELx

DMACTL3, DMA Control Register 3

15	14	13	12	11	10	9	8
	Reserved				DMA7TSELx		
r0	r0	rO	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)
7	6	5	4	3	2	1	0
	Reserved			1	DMA6TSELx		
r0	r0	r0	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)

Reserved Bits 15-13 Reserved. Read only. Always read as 0.

DMA7TSELx DMA trigger select. These bits select the DMA transfer trigger. Refer to the device specific datasheet for Bits 12-8

number of channels and trigger assignment.

00000 DMA7TRIG0 00001 DMA7TRIG1 00010 DMA7TRIG2

11110 DMA7TRIG30 11111 DMA7TRIG31

Reserved Bits 7-5 Reserved. Read only. Always read as 0.

DMA6TSELx Bits 4-0 Same as DMA7TSELx

- ,									
DMACTL4, [OMA Contro	ol Register 4							
15	14	13	12	11	10	9	8		
0	0	0	0	0	0	0	0		
r0	r0	r0	r0	r0	r0	r0	r0		
7	6	5	4	3	2	1	0		
0	0	0	0	0	DMARMWDIS	ROUND ROBIN	ENNMI		
r0	r0	r0	r0	r0	rw-(0)	rw-(0)	rw-(0)		
Reserved	Bits 15-3	Reserved. Read	only. Always read	as 0.					
DMARMWDIS	Bit 2	Read-Modify-Write Disable. This bit when set, inhibits any DMA transfers from occurring during CPU read-modify-write operations.							
		0 DMA transfers can occur during read-modify-write CPU operations							
		1 DMA transfers inhibited during read-modify-write CPU operations							
ROUNDROBIN	Bit 1	Round robin. Thi	s bit enables the r	ound-robin DMA	channel priorities.				
		0 DMA channel priority is DMA0 - DMA1 - DMA2 DMA7							
		1 DMA cha	annel priority chan	ges with each tra	nsfer				
ENNMI	Bit 0	interrupts a DMA	Enable NMI. This bit enables the interruption of a DMA transfer by an NMI interrupt. When an NMI interrupts a DMA transfer, the current transfer is completed normally, further transfers are stopped, and DMAABORT is set.						
		0 NMI inte	rrupt does not inte	errupt DMA transfe	er				
		1 NMI inte	rrupt interrupts a [DMA transfer					

DMAxCTL, **DMA** Channel x Control Register

15	14	13	12	11	10	9	8
Reserved	DMADTx			DMADS	TINCRx	DMASRCINCRx	
r0	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)
7	6	5	4	3	2	1	0
DMA DSTBYTE	DMA SRCBYTE	DMALEVEL	DMAEN	DMAIFG	DMAIE	DMAABORT	DMAREQ
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)

Reserved Bit 15 Reserved. Read only. Always read as 0.

DMADTx Bits 14-12 DMA transfer mode

000 Single transfer 001 Block transfer 010 Burst-block transfer 011 Burst-block transfer 100 Repeated single transfer 101 Repeated block transfer 110 Repeated burst-block transfer Repeated burst-block transfer 111

DMADSTINCRx Bits 11-10

DMA destination increment. This bit selects automatic incrementing or decrementing of the destination address after each byte or word transfer. When DMADSTBYTE=1, the destination address increments/decrements by one. When DMADSTBYTE=0, the destination address increments/decrements by two. The DMAxDA is copied into a temporary register and the temporary register is incremented or decremented. DMAxDA is not incremented or decremented.

Destination address is unchanged
 Destination address is unchanged
 Destination address is decremented
 Destination address is incremented

DMASRCINCRx Bits 9-8

DMA source increment. This bit selects automatic incrementing or decrementing of the source address for each byte or word transfer. When DMASRCBYTE=1, the source address increments/decrements by one. When DMASRCBYTE=0, the source address increments/decrements by two. The DMAxSA is copied into a temporary register and the temporary register is incremented or decremented. DMAxSA is not incremented or decremented.

Source address is unchanged
 Source address is unchanged
 Source address is decremented
 Source address is incremented

DMADSTBYTE Bit 7 DMA destination byte. This bit selects the destination as a byte or word.

0 Word1 Byte

DMASRCBYTE Bit 6 DMA source byte. This bit selects the source as a byte or word.

0 Word1 Byte

DMALEVEL Bit 5 DMA level. This bit selects between edge-sensitive and level-sensitive triggers.

Edge sensitive (rising edge)Level sensitive (high level)

DMAEN Bit 4 DMA enable

0 Disabled1 Enabled

DMAIFG	Bit 3	DMA interrupt flag
		0 No interrupt pending
		1 Interrupt pending
DMAIE	Bit 2	DMA interrupt enable
		0 Disabled
		1 Enabled
DMAABORT	Bit 1	DMA abort. This bit indicates if a DMA transfer was interrupt by an NMI.
		0 DMA transfer not interrupted
		1 DMA transfer was interrupted by NMI
DMAREQ	Bit 0	DMA request. Software-controlled DMA start. DMAREQ is reset automatically.
		0 No DMA start
		1 Start DMA

31	30	29	28	27	26	25	24
			Rese	erved			
r0	rO	r0	rO	r0	rO	rO	r0
23	22	21	20	19	18	17	16
	R	eserved			DMA	xSAx	
r0	rO	rO	rO	rw	rw	rw	rw
15	14	13	12	11	10	9	8
			DMA	xSAx			
rw	rw	rw	rw	rw	rw	rw	rw
7	6	5	4	3	2	1	0
			DMA	xSAx			
rw	rw	rw	rw	rw	rw	rw	rw
served	Bits 31-20	Reserved. Read	only. Always read	d as 0.			
//AxSA	Bits 15-0			address register p			

during block and burst-block transfers. There are two words for the DMAxSA register. Bits 31-20 are reserved and always read as zero. Reading or writing bits 19-16 requires the use of extended instructions. When writing to DMAxSA with word instructions, bits 19-16 are cleared.

DMAxDA, DMA Destination Address Register

31	30	29	28	27	26	25	24	
	Reserved							
r0	r0	r0	r0	r0	r0	r0	r0	
23	22	21	20	19	18	17	16	
	Rese	erved			DMA	xDAx		
r0	r0	r0	r0	rw	rw	rw	rw	
15	14	13	12	11	10	9	8	
			DMA	xDAx				
rw	rw	rw	rw	rw	rw	rw	rw	
7	6	5	4	3	2	1	0	
			DMA	xDAx				
rw	rw	rw	rw	rw	rw	rw	rw	

Reserved

Bits 31-20

Reserved. Read only. Always read as 0.

DMAxDAx Bits 15-0 DMA destination address. The destination address register points to the DMA destination address for single transfers or the first destination address for block transfers. The destination address register remains unchanged during block and burst-block transfers. There are two words for the DMAxDA register. Bits 31-20 are reserved and always read as zero. Reading or writing bits 19-16 requires the use of extended instructions. When writing to DMAxDA with word instructions, bits 19-16 are cleared.

DMAxSZ, D	MA Size	Address	Register
-----------	---------	----------------	----------

•		_					
15	14	13	12	11	10	9	8
			DMA	xSZx			
rw	rw	rw	rw	rw	rw	rw	rw
7	6	5	4	3	2	1	0
			DMA	xSZx			
rw	rw	rw	rw	rw	rw	rw	rw

DMAxSZx Bits 15-0

DMA size. The DMA size register defines the number of byte/word data per block transfer. DMAxSZ register decrements with each word or byte transfer. When DMAxSZ decrements to 0, it is immediately and automatically reloaded with its previously initialized value.

00000h Transfer is disabled

00001h One byte or word is transferred00002h Two bytes or words are transferred

:

0FFFFh 65535 bytes or words are transferred

DMAIV, DMA Interrupt Vector Register

15	14	13	12	11	10	9	8
0	0	0	0	0	0	0	0
r0	rO	rO	r0	rO	rO	r0	r0
7	6	5	4	3	2	1	0
0	0			DMAIVx			0
r0	r0	r-(0)	r-(0)	r-(0)	r-(0)	r-(0)	r0

DMAIVx

Bits 15-0 DMA interrupt vector value

DMAIV Contents	Interrupt Source	Interrupt Flag	Interrupt Priority
00h	No interrupt pending		
02h	DMA channel 0	DMA0IFG	Highest
04h	DMA channel 1	DMA1IFG	
06h	DMA channel 2	DMA2IFG	
08h	DMA channel 3	DMA3IFG	
0Ah	DMA channel 4	DMA4IFG	
0Ch	DMA channel 5	DMA5IFG	
0Eh	DMA channel 6	DMA6IFG	
10h	DMA channel 7	DMA7IFG	Lowest

32-Bit Hardware Multiplier (MPY32)

This chapter describes the 32-bit hardware multiplier (MPY32). The 32-bit hardware multiplier is implemented in all MSP430x5xx devices.

pic		Page
10.1	32-Bit Hardware Multiplier Introduction	312
10.2	32-Bit Hardware Multiplier Operation	314
10.3	32-Bit Hardware Multiplier Registers	326
	10.1 10.2	10.1 32-Bit Hardware Multiplier Introduction

10.1 32-Bit Hardware Multiplier Introduction

The 32-bit hardware multiplier is a peripheral and is not part of the MSP430 CPU. This means its activities do not interfere with the CPU activities. The multiplier registers are peripheral registers that are loaded and read with CPU instructions.

The hardware multiplier supports:

- Unsigned multiply
- Signed multiply
- Unsigned multiply accumulate
- · Signed multiply accumulate
- 8-bit, 16-bit, 24-bit, and 32-bit operands
- Saturation
- Fractional numbers
- 8-bit and 16-bit operation compatible with 16-bit hardware multiplier
- 8-bit and 24-bit multiplications without requiring a "sign extend" instruction

The 32-bit hardware multiplier block diagram is shown in Figure 10-1.

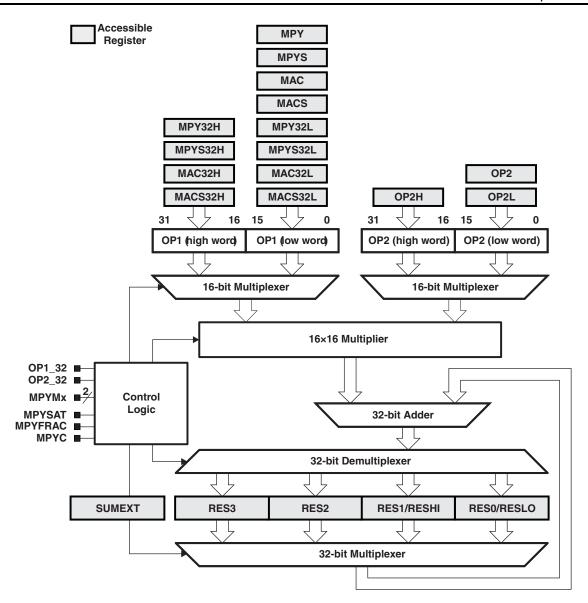


Figure 10-1. 32-Bit Hardware Multiplier Block Diagram

10.2 32-Bit Hardware Multiplier Operation

The hardware multiplier supports 8-bit, 16-bit, 24-bit, and 32-bit operands with unsigned multiply, signed multiply, unsigned multiply-accumulate, and signed multiply-accumulate operations. The size of the operands are defined by the address the operand is written to and if it is written as word or byte. The type of operation is selected by the address the first operand is written to.

The hardware multiplier has two 32-bit operand registers, operand one OP1 and operand two OP2, and a 64-bit result register accessible via registers RES0 to RES3. For compatibility with the 16×16 hardware multiplier the result of a 8-bit or 16-bit operation is accessible via RESLO, RESHI, and SUMEXT, as well. RESLO stores the low word of the 16×16-bit result, RESHI stores the high word of the result, and SUMEXT stores information about the result.

The result of a 8-bit or 16-bit operation is ready in three MCLK cycles and can be read with the next instruction after writing to OP2, except when using an indirect addressing mode to access the result. When using indirect addressing for the result, a NOP is required before the result is ready.

The result of a 24-bit or 32-bit operation can be read with successive instructions after writing OP2 or OP2H starting with RES0, except when using an indirect addressing mode to access the result. When using indirect addressing for the result, a NOP is required before the result is ready.

Table 10-1 summarizes when each word of the 64-bit result is available for the various combinations of operand sizes. With a 32-bit wide second operand, OP2L and OP2H need to be written. Depending on when the two 16-bit parts are written, the result availability may vary; thus, the table shows two entries, one for OP2L written and one for OP2H written. The worst case defines the actual result availability.

						-		
Operation		Result ready in MCLK cycles						
Operation (OP1 × OP2)	RES0	RES1	RES2	RES3	MPYC Bit	After		
8/16 × 8/16	3	3	4	4	3	OP2 written		
$24/32 \times 8/16$	3	5	6	7	7	OP2 written		
$8/16 \times 24/32$	3	5	6	7	7	OP2L written		
	N/A	3	4	4	4	OP2H written		
$24/32 \times 24/32$	3	8	10	11	11	OP2L written		
	N/A	3	5	6	6	OP2H written		

Table 10-1. Result Availability (MPYFRAC = 0, MPYSAT = 0)

10.2.1 Operand Registers

Operand one OP1 has twelve registers, shown in Table 10-2, used to load data into the multiplier and also select the multiply mode. Writing the low-word of the first operand to a given address selects the type of multiply operation to be performed but does not start any operation. When writing a second word to a high-word register with suffix 32H the multiplier assumes a 32-bit wide OP1, otherwise 16-bits are assumed. The last address written prior to writing OP2 defines the width of the first operand. For example, if MPY32L is written first followed by MPY32H, all 32 bits are used and the data width of OP1 is set to 32 bits. If MPY32H is written first followed by MPY32L, the multiplication will ignore MPY32H and assume a 16-bit wide OP1 using the data written into MPY32L.

Repeated multiply operations may be performed without reloading OP1 if the OP1 value is used for successive operations. It is not necessary to re-write the OP1 value to perform the operations.

Table 10-2. OP1 Registers

OP1 Register Name	Operation				
MPY	Unsigned multiply – operand bits 0 up to 15				
MPYS	Signed multiply – operand bits 0 up to 15				
MAC	Unsigned multiply accumulate -operand bits 0 up to 15				
MACS	CS Signed multiply accumulate – operand bits 0 up to 15				
MPY32L	Unsigned multiply – operand bits 0 up to 15				
MPY32H	Unsigned multiply – operand bits 16 up to 31				
MPYS32L	Signed multiply – operand bits 0 up to 15				
MPYS32H	Signed multiply – operand bits 16 up to 31				
MAC32L	Unsigned multiply accumulate – operand bits 0 up to 15				
MAC32H	Unsigned multiply accumulate – operand bits 16 up to 31				
MACS32L	Signed multiply accumulate – operand bits 0 up to 15				
MACS32H	Signed multiply accumulate – operand bits 16 up to 31				

Writing the second operand to the operand two register OP2 initiates the multiply operation. Writing OP2 starts the selected operation with a 16-bit wide second operand together with the values stored in OP1. Writing OP2L starts the selected operation with a 32-bit wide second operand and the multiplier expects a the high-word to be written to OP2H. Writing to OP2H without a preceding write to OP2L is ignored.

Table 10-3. OP2 Registers

OP2 Register Name	Operation
OP2	Start multiplication with 16-bit wide operand two (OP2) (operand bits 0 up to 15)
OP2L	Start multiplication with 32-bit wide operand two (OP2) (operand bits 0 up to 15)
OP2H	Continue multiplication with 32-bit wide operand two (OP2) (operand bits 16 up to 31)

For 8-bit or 24-bit operands the operand registers can be accessed with byte instructions. Accessing the multiplier with a byte instruction during a signed operation will automatically cause a sign extension of the byte within the multiplier module. For 24-bit operands only the high-word should be written as byte. If the 24-bit operands are sign-extended is defined by the register that is used to write the low-word to because this register defines if the operation is unsigned or signed.

The high-word of a 32-bit operand remains unchanged when changing the size of the operand to 16 bit either by modifying the operand size bits or by writing to the respective operand register. During the execution of the 16-bit operation the content of the high-word is ignored.

Note: Changing of First or Second Operand During Multiplication

By default changing OP1 or OP2 while the selected multiply operation is being calculated will render any results invalid that are not ready at the time the new operand(s) are changed. Writing OP2 or OP2L will abort any ongoing calculation and start a new operation. Results that are not ready at that time are invalid also for following MAC or MACS operations.

To avoid this behavior the MPYDLYWRTEN bit can be set to 1. Then all writes to any MPY32 registers are delayed with MPYDLY32=0 until the 64-bit result is ready or with MPYDLY32=1 until the 32-bit result is ready. For MAC and MACS operations always the complete 64-bit result should be ready.

See Table 10-1 for how many CPU cycles are needed until a certain result register is ready and valid for each of the different modes.

10.2.2 Result Registers

The multiplication result is always 64-bits wide. It is accessible via registers RES0 to RES3. Used with a signed operation MPYS or MACS the results are appropriately sign extended. If the result registers are loaded with initial values before a MACS operation the user software must take care that the written value is properly sign extended to 64 bits.

Note: Changing of Result Registers During Multiplication

The result registers must not be modified by the user software after writing the second operand into OP2 or OP2L until the initiated operation is completed.

In addition to RES0 to RES3, for compatibility with the 16×16 hardware multiplier the 32-bit result of a 8-bit or 16-bit operation is accessible via RESLO, RESHI, and SUMEXT. In this case the result low register RESLO holds the lower 16-bits of the calculation result and the result high register RESHI holds the upper 16-bits. RES0 and RES1 are identical to RESLO and RESHI, respectively, in usage and access of calculated results.

The sum extension registers SUMEXT contents depend on the multiply operation and are listed in Table 10-4. If all operands are 16 bits wide or less the 32-bit result is used to determine sign and carry. If one of the operands is larger than 16 bits the 64-bit result is used.

The MPYC bit reflects the multiplier's carry as listed in Table 10-4 and, thus, can be used as 33rd or 65th bit of the result, if fractional or saturation mode is not selected. With MAC or MACS operations, the MPYC bit reflects the carry of the 32-bit or 64-bit accumulation and is not taken into account for successive MAC and MACS operations as the 33rd or 65th bit.

Mode	SUMEXT	MPYC
MPY	SUMEXT is always 0000h.	MPYC is always 0.
MPYS	SUMEXT contains the extended sign of the result.	MPYC contains the sign of the result.
	00000h Result was positive or zero	0 Result was positive or zero
	0FFFFh Result was negative	1 Result was negative
MAC	SUMEXT contains the carry of the result.	MPYC contains the carry of the result.
	0000h No carry for result	0 No carry for result
	0001h Result has a carry	1 Result has a carry
MACS	SUMEXT contains the extended sign of the result.	MPYC contains the carry of the result.
	00000h Result was positive or zero	0 No carry for result
	0FFFFh Result was negative	1 Result has a carry

Table 10-4. SUMEXT Contents and MPYC Contents

MACS Underflow and Overflow

The multiplier does not automatically detect underflow or overflow in MACS mode. For example working with 16-bit input data and 32-bit results, i.e. using just RESLO and RESHI, the available range for positive numbers is 0 to 07FFF FFFFh and for negative numbers is 0FFFF FFFFh to 08000 0000h. An underflow occurs when the sum of two negative numbers yields a result that is in the range for a positive number. An overflow occurs when the sum of two positive numbers yields a result that is in the range for a negative number.

The SUMEXT register contains the sign of the result in both cases described above, 0FFFFh for a 32-bit overflow and 0000h for a 32-bit underflow. The MPYC bit in MPY32CTL0 can be used to detect the overflow condition. If the carry is different than the sign reflected by the SUMEXT register an overflow or underflow occurred. User software must handle these conditions appropriately.

10.2.3 Software Examples

Examples for all multiplier modes follow. All 8×8 modes use the absolute address for the registers because the assembler will not allow .B access to word registers when using the labels from the standard definitions file.

There is no sign extension necessary in software. Accessing the multiplier with a byte instruction during a signed operation will automatically cause a sign extension of the byte within the multiplier module.

```
; 32x32 Unsigned Multiply
          #01234h,&MPY32L ; Load low word of 1st operand
   VOM
           #01234h,&MPY32H ; Load high word of 1st operand
   MOV
          #05678h,&OP2L ; Load low word of 2nd operand
   MOV
           #05678h,&OP2H
   MOV
                           ; Load high word of 2nd operand
                            ; Process results
   . . .
; 16x16 Unsigned Multiply
   MOV #01234h, &MPY
                         ; Load 1st operand
   MOV
           #05678h,&OP2
                          ; Load 2nd operand
                           ; Process results
   . . .
; 8x8 Unsigned Multiply. Absolute addressing.
   MOV.B #012h,&MPY_B ; Load 1st operand
   MOV.B #034h,&OP2_B
                           ; Load 2nd operand
                           ; Process results
; 32x32 Signed Multiply
   MOV #01234h,&MPYS32L ; Load low word of 1st operand
          #01234h,&MPYS32H ; Load high word of 1st operand
   VOM
         #05678h,&OP2L ; Load low word of 2nd operand
   MOV
   MOV
          #05678h, &OP2H ; Load high word of 2nd operand
                           ; Process results
   . . .
; 16x16 Signed Multiply
        #01234h,&MPYS ; Load 1st operand
   VOM
           #05678h,&OP2
                           ; Load 2nd operand
   MOV
                            ; Process results
; 8x8 Signed Multiply. Absolute addressing.
   MOV.B #012h,&MPYS_B ; Load 1st operand
   MOV.B #034h,&OP2_B
                          ; Load 2nd operand
                           ; Process results
```

10.2.4 Fractional Numbers

The 32-bit multiplier provides support for fixed-point signal processing. In fixed-point signal processing, fractional number are represented by using a fixed decimal point. To classify different ranges of decimal numbers, a Q-format is used. Different Q-formats represent different locations of the decimal point. Figure 10-2 shows the format of a signed Q15 number using 16 bits. Every bit after the decimal point has a resolution of 1/2, the most significant bit is used as the sign bit. The most negative number is 08000h and the maximum positive number is 07FFFh. This gives a range from -1.0 to $0.999969482 \approx 1.0$ for the signed Q15 format with 16 bits.

Fractional Number Mode www.ti.com

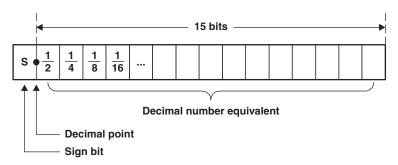


Figure 10-2. Q15 Format Representation

The range can be increased by shifting the decimal point to the right as shown in Figure 10-3. The signed Q14 format with 16 bits gives a range from -2.0 to $1.999938965 \approx 2.0$.

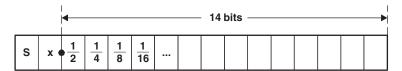


Figure 10-3. Q14 Format Representation

The benefit of using 16-bit signed Q15 or 32-bit signed Q31 numbers with multiplication is that the product of two number in the range from -1.0 to 1.0 is always in that same range.

Fractional Number Mode

Multiplying two fractional numbers using the default multiplication mode with MPYFRAC = 0 and MPYSAT = 0 gives a result with 2 sign bits. For example if two 16-bit Q15 numbers are multiplied a 32-bit result in Q30 format is obtained. To convert the result into Q15 format manually, the first 15 trailing bits and the extended sign bit must be removed. However, when the fractional mode of the multiplier is used, the redundant sign bit is automatically removed yielding a result in Q31 format for the multiplication of two 16-bit Q15 numbers. Reading the result register RES1 gives the result as 16-bit Q15 number. The 32-bit Q31 result of a multiplication of two 32-bit Q31 numbers is accessed by reading registers RES2 and RES3.

The fractional mode is enabled with MPYFRAC = 1 in register MPY32CTL0. The actual content of the result register(s) is not modified when MPYFRAC = 1. When the result is accessed using software, the value is left-shifted 1 bit resulting in the final Q formatted result. This allows user software to switch between reading both the shifted (fractional) and the un-shifted result. The fractional mode should only be enabled when required and disabled after use.

In fractional mode the SUMEXT register contains the sign extended bits 32 and 33 of the shifted result for 16×16-bit operations and bits 64 and 65 for 32×32-bit operations – not only bits 32 or 64, respectively.

The MPYC bit is not affected by the fractional mode. It always reads the carry of the non-fractional result.

```
; Example using
; Fractional 16x16 multiplication
BIS #MPYFRAC,&MPY32CTL0 ; Turn on fractional mode
MOV &FRACT1,&MPYS ; Load 1st operand as Q15
MOV &FRACT2,&OP2 ; Load 2nd operand as Q15
MOV &RES1,&PROD ; Save result as Q15
BIC #MPYFRAC,&MPY32CTL0 ; Back to normal mode
```


www.ti.com Saturation Mode

Table 10-5. Result Availability in Fractional Mode (MPYFRAC = 1, MPYSAT = 0)

Onenstien	Result ready in MCLK cycles					
Operation (OP1 × OP2)	RES0	RES1	RES2	RES3	MPYC Bit	After
8/16 × 8/16	3	3	4	4	3	OP2 written
$24/32 \times 8/16$	3	5	6	7	7	OP2 written
$8/16 \times 24/32$	3	5	6	7	7	OP2L written
	N/A	3	4	4	4	OP2H written
$24/32\times24/32$	3	8	10	11	11	OP2L written
	N/A	3	5	6	6	OP2H written

Saturation Mode

The multiplier prevents overflow and underflow of signed operations in saturation mode. The saturation mode is enabled with MPYSAT = 1 in register MPY32CTL0. If an overflow occurs the result is set to the most positive value available. If an underflow occurs the result is set to the most negative value available. This is useful to reduce mathematical artifacts in control systems on overflow and underflow conditions. The saturation mode should only be enabled when required and disabled after use.

The actual content of the result register(s) is not modified when MPYSAT = 1. When the result is accessed using software, the value is automatically adjusted providing the most positive or most negative result when an overflow or underflow has occurred. The adjusted result is also used for successive multiply-and-accumulate operations. This allows user software to switch between reading the saturated and the non-saturated result.

With 16×16 operations the saturation mode only applies to the least significant 32 bits, i.e. the result registers RES0 and RES1. Using the saturation mode in MAC or MACS operations that mix 16×16 operations with 32×32 , 16×32 or 32×16 operations will lead to unpredictable results.

With 32×32, 16×32, and 32×16 operations the saturated result can only be calculated when RES3 is ready. In non-5xx devices, reading RES0 to RES2 prior to the complete result being ready will deliver the non-saturated results independent of the MPYSAT bit setting.

Enabling the saturation mode does not affect the content of the SUMEXT register nor the content of the MPYC bit.

- ; Example using
- ; Fractional 16x16 multiply accumulate with Saturation
 - ; Turn on fractional and saturation mode: BIS #MPYSAT+MPYFRAC,&MPY32CTL0

MOV &A1,&MPYS ; Load A1 for 1st term
MOV &K1,&OP2 ; Load K1 to get A1*K1
MOV &A2,&MACS ; Load A2 for 2nd term
MOV &K2 &OP2 ; Load K2 to get A2*K2

MOV &A2,&MACS ; Load A2 for 2nd term
MOV &K2,&OP2 ; Load K2 to get A2*K2
MOV &RES1,&PROD ; Save A1*K1+A2*K2 as result
BIC #MPYSAT+MPYFRAC,&MPY32CTL0 ; turn back to normal

Table 10-6. Result Availability in Saturation Mode (MPYSAT = 1)

Operation (OP1 × OP2)	Result ready in MCLK cycles					
	RES0	RES1	RES2	RES3	MPYC Bit	After
8/16 × 8/16	3	3	N/A	N/A	3	OP2 written
24/32 × 8/16	7	7	7	7	7	OP2 written
8/16 × 24/32	7	7	7	7	7	OP2L written
	4	4	4	4	4	OP2H written
$24/32 \times 24/32$	11	11	11	11	11	OP2L written
	6	6	6	6	6	OP2H written

Saturation Mode www.ti.com

Figure 10-4 shows the flow for 32-bit saturation used for 16×16 bit multiplications and the flow for 64-bit saturation used in all other cases. Primarily, the saturated results depends on the carry bit MPYC and the most significant bit of the result. Secondly, if the fractional mode is enabled it depends also on the two most significant bits of the unshift result; i.e., the result that is read with fractional mode disabled.

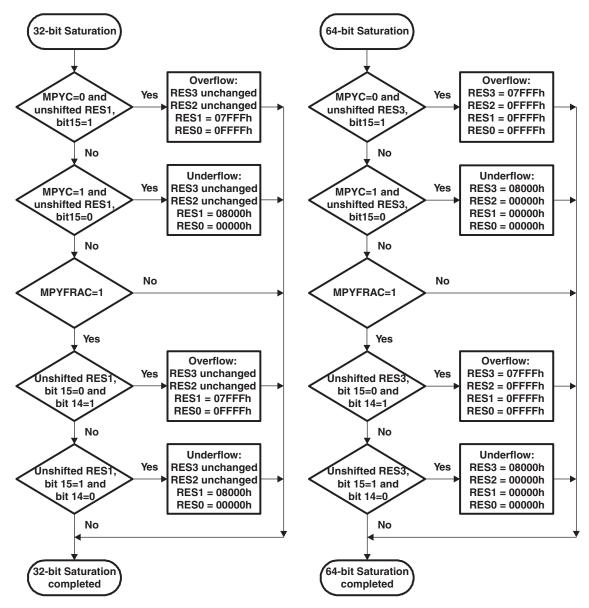


Figure 10-4. Saturation Flow Chart

Note: Saturation in Fractional Mode

In case of multiplying -1.0×-1.0 in fractional mode, the result of +1.0 is out of range, thus, the saturated result gives the most positive result.

When using multiply-and-accumulate operations the accumulated values are saturated as if MPYFRAC=0 - only during read accesses to the result registers the values are saturated taking the fractional mode into account. This provides additional dynamic range during the calculation and only the end-result is then saturated if needed.

www.ti.com Saturation Mode

The following example illustrates a special case showing the saturation function in fractional mode. It also uses the 8-bit functionality of the MPY32 module.

```
; Turn on fractional and saturation mode,
; clear all other bits in MPY32CTL0:
        #MPYSAT+MPYFRAC, &MPY32CTL0
;Pre-load result registers to demonstrate overflow
MOV
      #0,&RES3
VOM
        #0,&RES2
MOV
        #07FFFh,&RES1
MOV
        #0FA60h,&RES0
        #050h,&MACS_B ; 8-bit signed MAC operation
MOV.B
                        ; Start 16x16 bit operation
MOV.B
        #012h,&OP2_B
MOV
        &RES0,R6
                         ; R6 = 0FFFFh
MOV
        &RES1,R7
                         ; R7 = 07FFFh
```

The result is saturated because already the result not converted into a fractional number shows an overflow. The multiplication of the two positive numbers 00050h and 00012h gives 005A0h. 005A0h added to 07FFF FA60h results in 8000 059Fh without MPYC being set. Since the MSB of the unmodified result RES1 is 1 and MPYC = 0, the result is saturated according to the saturation flow chart in Figure 10-4.

Note: Validity of Saturated Result

The saturated result is only valid if the registers RES0 to RES3, the size of operands 1 and 2 and MPYC are not modified.

If the saturation mode is used with a preloaded result, user software must ensure that MPYC in the MPY32CTL0 register is loaded with the sign bit of the written result otherwise the saturation mode will erroneously saturate the result.

Saturation Mode www.ti.com

10.2.5 Putting It All Together

Figure 10-5 shows the complete multiplication flow, depending on the various selectable modes for the MPY32 module.

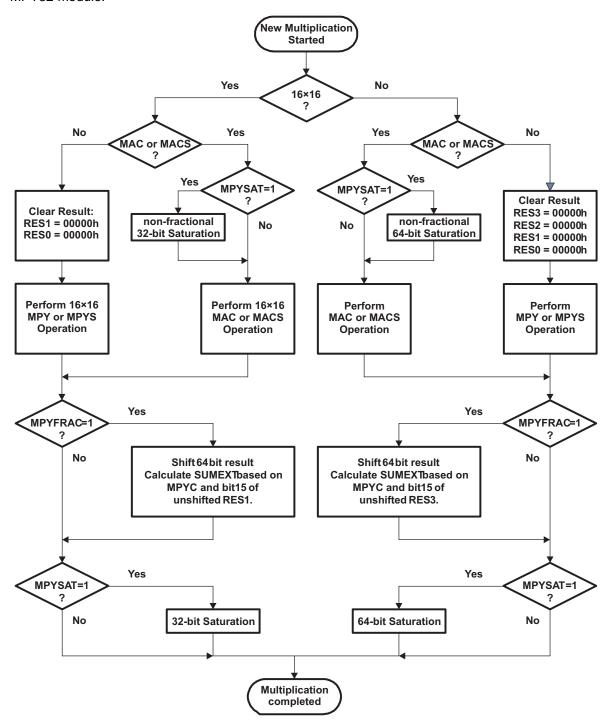


Figure 10-5. Multiplication Flow Chart

www.ti.com Saturation Mode

Given the separation in processing of 16-bit operations (32-bit results) and 32-bit operations (64-bit results) by the module, it is important to understand the implications when using MAC/MACS operations and mixing 16-bit operands/results with 32-bit operands/results. User software must address these points during usage when mixing these operations. The following code snippet illustrates the issue.

```
; Mixing 32x24 multiplication with 16x16 MACS operation
           #MPYSAT, &MPY32CTL0 ; Saturation mode
  VOM
  VOM
           #052C5h,&MPY32L ; Load low word of 1st operand
  VOM
           #06153h,&MPY32H
                             ; Load high word of 1st operand
           #001ABh,&OP2L
  MOV
                             ; Load low word of 2nd operand
  MOV.B
           #023h,&OP2H_B
                             ; Load high word of 2nd operand
                              ;... 5 NOPs required
  MOV
           &RES0,R6
                              ; R6 = 00E97h
  MOV
           &RES1,R7
                              ; R7 = 0A6EAh
  MOV
           &RES2,R8
                              ; R8 = 04F06h
           &RES3,R9
                              ; R9 = 0000Dh
  MOV
                              ; Note that MPYC = 0!
                             ; Signed MAC operation
  VOM
           #0CCC3h,&MACS
           #0FFB6h,&OP2
                             ; 16x16 bit operation
  VOM
  VOM
           &RESLO,R6
                             ; R6 = 0FFFFh
  MOV
           &RESHI,R7
                              ; R7 = 07FFFh
```

The second operation gives a saturated result because the 32-bit value used for the 16×16 bit MACS operation was already saturated when the operation was started: the carry bit MPYC was 0 from the previous operation but the most significant bit in result register RES1 is set. As one can see in the flow chart the content of the result registers are saturated for multiply-and-accumulate operations after starting a new operation based on the previous results but depending on the size of the result (32-bit or 64-bit) of the newly initiated operation.

The saturation before the multiplication can cause issues if the MPYC bit is not properly set as the following code example illustrates.

```
;Pre-load result registers to demonstrate overflow
        #0,&RES3
MOV
                         ;
        #0,&RES2
MOV
                         ;
        #0,&RES1
#0,&RES0
VOM
VOM
; Saturation mode and set MPYC:
        #MPYSAT+MPYC, &MPY32CTL0
        #082h,&MACS_B ; 8-bit signed MAC operation
MOV.B
        #04Fh,&OP2_B
MOV.B
                         ; Start 16x16 bit operation
        &RES0,R6
MOV
                         ; R6 = 00000h
        &RES1,R7
                         ; R7 = 08000h
MOV
```

Even though the result registers were loaded with all zeros the final result is saturated. This is because the MPYC bit was set causing the result used for the multiply-and-accumulate to be saturated to 08000 0000h. Adding a negative number to it would again cause an underflow thus the final result is also saturated to 08000 0000h.

Saturation Mode www.ti.com

10.2.6 Indirect Addressing of Result Registers

When using indirect or indirect autoincrement addressing mode to access the result registers and the multiplier requires 3 cycles until result availability according to Table 1-1, at least one instruction is needed between loading the second operand and accessing the result registers:

```
; Access multiplier 16x16 results with indirect addressing
                       ; RESO address in R5 for indirect
          #RES0,R5
           &OPER1,&MPY
  MOV
                          ; Load 1st operand
  MOV
           &OPER2,&OP2
                          ; Load 2nd operand
  NOP
                           ; Need one cycle
           @R5+,&xxx
  MOV
                           ; Move RESO
  MOV
           @R5,&xxx
                           ; Move RES1
```

In case of a 32×16 multiplication there is also one instruction required between reading the first result register RES0 and the second result register RES1:

```
; Access multiplier 32x16 results with indirect addressing
       #RES0,R5
                   ; RESO address in R5 for indirect
  MOV
  VOM
        &OPER1L,&MPY32L ; Load low word of 1st operand
  MOV
        &OPER1H,&MPY32H ; Load high word of 1st operand
        &OPER2,&OP2
  MOV
                        ; Load 2nd operand (16 bits)
  NOP
                         ; Need one cycle
  MOV
        @R5+,&xxx
                         ; Move RES0
  NOP
                         ; Need one additional cycle
  VOM
                         ; Move RES1
        @R5,&xxx
                         ; No additional cycles required!
        @R5,&xxx
  MOV
                         ; Move RES2
```

10.2.7 Using Interrupts

If an interrupt occurs after writing OP1, but before writing OP2, and the multiplier is used in servicing that interrupt, the original multiplier mode selection is lost and the results are unpredictable. To avoid this, disable interrupts before using the hardware multiplier, do not use the multiplier in interrupt service routines, or use the save and restore functionality of the 32-bit multiplier.

```
; Disable interrupts before using the hardware multiplier
  DINT
                       ; Disable interrupts
  NOP
                        ; Required for DINT
  VOM
          #xxh,&MPY
                       ; Load 1st operand
  MOV
          #xxh,&OP2
                       ; Load 2nd operand
  EINT
                        ; Interrupts may be enabled before
                        ; processing results if result
                        ; registers are stored and restored in
                        ; interrupt service routines
```


www.ti.com Save and Restore

Save and Restore

If the multiplier is used in interrupt service routines its state can be saved and restored using the MPY32CTL0 register. The following code example shows how the complete multiplier status can be saved and restored to allow interruptible multiplications together with the usage of the multiplier in interrupt service routines. Since the state of the MPYSAT and MPYFRAC bits are unknown they should be cleared before the registers are saved as shown in the code example.

```
; Interrupt service routine using multiplier
MPY_USING_ISR
  PUSH &MPY32CTL0
                      ; Save multiplier mode, etc.
  BIC
         #MPYSAT+MPYFRAC, &MPY32CTL0
                       ; Clear MPYSAT+MPYFRAC
                      ; Save result 3
  PUSH
       &RES3
                      ; Save result 2
  PUSH &RES2
  PUSH &RES1
                      ; Save result 1
  PUSH &RESO
                      ; Save result 0
  PUSH &MPY32H
                      ; Save operand 1, high word
                      ; Save operand 1, low word
  PUSH &MPY32L
  PUSH &OP2H
                      ; Save operand 2, high word
                      ; Save operand 2, low word
  PUSH &OP2L
                       ; Main part of ISR
                       ; Using standard MPY routines
         &OP2L
  POP
                      ; Restore operand 2, low word
         &OP2H
  POP
                      ; Restore operand 2, high word
                      ; Starts dummy multiplication but
                      ; result is overwritten by
                      ; following restore operations:
  POP
         &MPY32L
                      ; Restore operand 1, low word
         &MPY32H
                      ; Restore operand 1, high word
  POP
                      ; Restore result 0
  POP
         &RESO
                      ; Restore result 1
         &RES1
  POP
                      ; Restore result 2
  POP
         &RES2
                      ; Restore result 3
  POP
         &RES3
                      ; Restore multiplier mode, etc.
         &MPY32CTL0
  POP
  reti
                       ; End of interrupt service routine
```

10.2.8 Using DMA

In devices with a DMA controller the multiplier can trigger a transfer when the complete result is available. The DMA controller needs to start reading the result with MPY32RES0 successively up to MPY32RES3. Not all registers need to be read. The trigger timing is such that the DMA controller starts reading MPY32RES0 when its ready and that the MPY32RES3 can be read exactly in the clock cycle when it is available to allow fastest access via DMA. The signal into the DMA controller is 'Multiplier ready'. Please refer to the DMA user's guide chapter for details.

10.3 32-Bit Hardware Multiplier Registers

The 32-bit hardware multiplier registers are listed in Table 10-7.

Table 10-7. 32-Bit Hardware Multiplier Registers

Register	Short Form	Register Type	Address	Initial State
16-bit operand one – multiply	MPY	Read/write	0130h	Unchanged
8-bit operand one – multiply	MPY_B	Read/write	0130h	Unchanged
16-bit operand one – signed multiply	MPYS	Read/write	0132h	Unchanged
8-bit operand one – signed multiply	MPYS_B	Read/write	0132h	Unchanged
16-bit operand one – multiply accumulate	MAC	Read/write	0134h	Unchanged
8-bit operand one - multiply accumulate	MAC_B	Read/write	0134h	Unchanged
16-bit operand one – signed multiply accumulate	MACS	Read/write	0136h	Unchanged
8-bit operand one – signed multiply accumulate	MACS_B	Read/write	0136h	Unchanged
16-bit operand two	OP2	Read/write	0138h	Unchanged
8-bit operand two	OP2_B	Read/write	0138h	Unchanged
16x16-bit result low word	RESLO	Read/write	013Ah	Undefined
16x16-bit result high word	RESHI	Read/write	013Ch	Undefined
16x16-bit sum extension register	SUMEXT	Read	013Eh	Undefined
32-bit operand 1 – multiply – low word	MPY32L	Read/write	0140h	Unchanged
32-bit operand 1 – multiply – high word	MPY32H	Read/write	0142h	Unchanged
24-bit operand 1 – multiply – high byte	MPY32H_B	Read/write	0142h	Unchanged
32-bit operand 1 – signed multiply – low word	MPYS32L	Read/write	0144h	Unchanged
32-bit operand 1 – signed multiply – high word	MPYS32H	Read/write	0146h	Unchanged
24-bit operand 1 – signed multiply – high byte	MPYS32H_B	Read/write	0146h	Unchanged
32-bit operand 1 – multiply accumulate – low word	MAC32L	Read/write	0148h	Unchanged
32-bit operand 1 – multiply accumulate – high word	MAC32H	Read/write	014Ah	Unchanged
24-bit operand 1 – multiply accumulate – high byte	MAC32H_B	Read/write	014Ah	Unchanged
32-bit operand 1 – signed multiply accumulate – low word	MACS32L	Read/write	014Ch	Unchanged
32-bit operand 1 – signed multiply accumulate – high word	MACS32H	Read/write	014Eh	Unchanged
24-bit operand 1 – signed multiply accumulate – high byte	MACS32H_B	Read/write	014Eh	Unchanged
32-bit operand 2 – low word	OP2L	Read/write	0150h	Unchanged
32-bit operand 2 – high word	OP2H	Read/write	0152h	Unchanged
24-bit operand 2 – high byte	OP2H_B	Read/write	0152h	Unchanged
32x32-bit result 0 – least significant word	RES0	Read/write	0154h	Undefined
32x32-bit result 1	RES1	Read/write	0156h	Undefined
32x32-bit result 2	RES2	Read/write	0158h	Undefined
32x32-bit result 3 – most significant word	RES3	Read/write	015Ah	Undefined
MPY32 control register 0	MPY32CTL0	Read/write	015Ch	Undefined

The registers listed in Table 10-8 are treated equally.

Table 10-8. Alternative Registers

Register	Alternative 1	Alternative 2	
16-bit operand one – multiply	MPY	MPY32L	
8-bit operand one – multiply	MPY_B	MPY32L_B	
16-bit operand one – signed multiply	MPYS	MPYS32L	
8-bit operand one – signed multiply	MPYS_B	MPYS32L_B	
16-bit operand one – multiply accumulate	MAC	MAC32L	
8-bit operand one - multiply accumulate	MAC_B	MAC32L_B	
16-bit operand one – signed multiply accumulate	MACS	MACS32L	
8-bit operand one – signed multiply accumulate	MACS_B	MACS32L_B	
16x16-bit result low word	RESLO	RES0	
16x16-bit result high word	RESHI	RES1	

MPY32CTL0, 32	-Bit Multiplie	r Control Regi	ster 0					
15	14	13	12	11	10	9	8	
		Re	served			MPYDLY32	MPYDLY WRTEN	
r-0	r-0	r-0	r-0	r-0	r-0	rw-0	rw-0	
7	6	5	4	3	2	1	0	
MPYOP2_32	MPYOP1_32	М	PYMx	MPYSAT	MPYFRAC	Reserved	MPYC	
rw	rw	rw	rw	rw-0	rw-0	rw-0	rw	
Reserved	Bits 15-10	Reserved						
MPYDLY32	Bit 9	Delayed write	mode					
		0 Writes a	are delayed until 6	64-bit result (RES0	to RES3) is availa	ble.		
		1 Writes a	are delayed until 3	32-bit result (RES0	to RES1) is availa	ble.		
MPYDLYWRTEN	Bit 8	Delayed write	enable					
		All writes to an result is ready.		are delayed until the	he 64-bit (MPYDL)	/32 = 0) or 32-bit (MPYDLY32 = 1)	
		0 Writes a	are not delayed.					
		1 Writes a	are delayed.					
MPYOP2_32	Bit 7	Multiplier bit wi	Multiplier bit width of operand 2					
		0 16 bits						
		1 32 bits						
MPYOP1_32	Bit 6	Multiplier bit wi	dth of operand 1					
		0 16 bits						
		1 32 bits						
MPYMx	Bits 5-4	Multiplier mode)					
		00 MPY -	Multiply					
		01 MPYS -	- Signed multiply					
		10 MAC -	Multiply accumula	ate				
		11 MACS -	- Signed multiply	accumulate				
MPYSAT	Bit 3	Saturation mod	de					
		0 Saturati	on mode disabled	t				
		1 Saturati	on mode enabled					
MPYFRAC	Bit 2	Fractional mod	e					
		0 Fraction	al mode disabled					
		1 Fraction	al mode enabled					
Reserved	Bit 1	Reserved						
MPYC	Bit 0			considered as 33rd ne MPYC bit does r				
		It is used to res	store the SUMEX	T content in MAC n	node.			
		0 No carr	y for result					

0 No carry for result

1 Result has a carry

CRC Module

The Cyclic Redundancy Check module provides a signature for a given data sequence.

1	Горіс		Page
	11.1	CRC Module Introduction	330
	11.2	CRC Checksum Generation	331
	11.3	CRC Module Registers	333

CRC Module Introduction www.ti.com

11.1 CRC Module Introduction

The CRC module produces a signature for a given sequence of memory data bus values. The signature is generated through a feedback path from data bus bits 0, 4, 11, and 15. See also Figure 11-1. The CRC signature is based on the polynomial given in the CRC-CCITT-BR polynomial (see Equation 11-1).

 $f(x) = x^{16} + x^{12} + x^5 + 1$ (11-1)

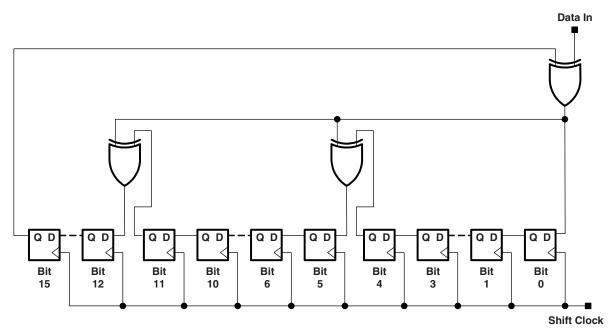


Figure 11-1. LFSR Implementation of the CRC-CCITT Standard, Bit 0 is the MSB of the result

Identical bus sequences result into identical signatures when the CRC is initialized with a fixed seed value, whereas different sequences of input data in general result in different signatures.

11.2 CRC Checksum Generation

The CRC generator is at first initialized by writing a 16-bit word (seed) to the CRC initialization and result register (CRCINIRES). Any data that should be included into the CRC calculation has to be written to the CRC data input register (CRCDI) in the same order as the CRC signature was calculated originally. The actual signature can be read from the initialization and result register (CRCINIRES) to compare the checksum with the expected checksum.

The signature generation (Check Sum) describes a method how the result of a signature operation can be calculated. The calculated signature is called Check Sum in the following text. This calculation is done by an external tool. The Check Sum is stored in the product's memory and is used to check the correctness of the result of the CRC operation.

11.2.1 CRC Implementation

To allow parallel processing of the CRC the linear-feedback-shift-register (LFSR) functionality is implemented with an XOR Tree. This implementation shows the identical behavior as the LFSR approach after 8-bits of data are shifted in when the LSB is 'shifted' in first. The generation of a signature calculation has to be started by writing a seed to the initialization and result register CRCINIRES to initialize the register. Software or hardware (e.g. DMA) can transfer data to the data in register (CRCDI) (e.g. from memory). The value in the data in register is then included into the signature and the result is available in the signature result register at the next read access (CRCINIRES). The signature can be generated using word or byte data. If a word is processed the lower byte at the even address is used at the first clock (MCLK) cycle. During the second clock cycle the higher byte is processed. Thus it takes two clock cycles to process word data while it takes only one clock (MCLK) cycle to process byte data. If the Check Sum itself (with reversed bit order) is included into the CRC operation (as data written to CRCDI) the result in CRCINIRES register must be zero.

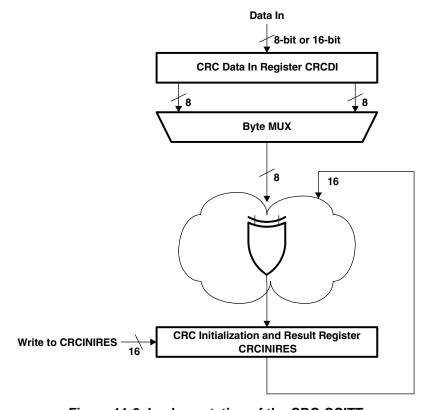


Figure 11-2. Implementation of the CRC-CCITT

11.2.2 Assembler Examples

General Assembler Example

An example demonstrates the operation of the on-chip CRC check:

```
PUSH
         R4
                            ; Save registers
  PUSH
         R5
  MOV
         #StartAddress,R4 ; StartAddress < EndAddress
         #EndAddress,R5
  VOM
  MOV
         &INIT, &CRCINIRES ; INIT to CRCINIRES
L1 MOV
         @R4+,&CRCDI ; Item to Data In register
  CMP
         R5,R4
                           ; End address reached?
  JLO
                           ; No
         &Check_Sum,&CRCDI ; Yes, Include checksum
  VOM
                           ; Result = 0?
  TST
         &CRCINIRES
         CRC_ERROR
                           ; No, CRCRES <> 0: error
  JNZ
                           ; Yes, CRCRES=0:
   . . .
                            ; information ok.
  POP
         R5
                           ; Restore registers
  POP
         R4
```

Reference Data Sequence

The details of the implemented CRC checking algorithm is shown by the data sequence below:

```
#0FFFFh,&CRC16RES
mov
                            ; initialize CRC16
                            ; "1"
       #00031h,&CRC16DI
mov.b
                            ; "2"
mov.b
       #00032h,&CRC16DI
                            ; "3"
mov.b
       #00033h,&CRC16DI
mov.b
       #00034h,&CRC16DI
                            ; "4"
                            ; "5"
mov.b
       #00035h,&CRC16DI
mov.b
      #00036h,&CRC16DI
                            ; "6"
      #00037h,&CRC16DI
                            ; "7"
mov.b
mov.b
       #00038h,CRC16DI
                            ; "8"
       #00039h,&CRC16DI
                            ; "9"
mov.b
       #089F6h,&CRC16RES ; compare result
cmp
jeq
       &Success
                            ; no error
                            ; to error handler
br
       &Error
```


www.ti.com CRC Module Registers

11.3 CRC Module Registers

The CRC module registers are listed in Table 11-1. The base address can be found in the device specific datasheet. The address offset is given in Table 11-1.

Table 11-1. CRC Module Registers

Register	Short Form	Register Type	Address	Initial State
CRC data in register	CRCDI	Read/write	0000h	0000h
CRC initialization and result register	CRCINIRES	Read/Write	0004h	FFFFh

CRCDI, Data In Register

 15	14	13	12	11	10	9	8	
CRCDI								
rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0								
7	6	5	4	3	2	1	0	
CRCDI								
 rw-0	rw-0							

CRCDI

Bits 15-0

CRC data in. Data written to the CRCDI register will be included to the present signature in the CRCINIRES register according to the CRC-CCITT standard.

CRCINIRES, Initialization and Result Register

15	14	13	12	11	10	9	8			
	CRCINIRES									
rw-1	rw-1 rw-1 rw-1 rw-1 rw-1 rw-1 rw-1									
7	6	5	4	3	2	1	0			
	CRCINIRES									
rw-1	rw-1	rw-1	rw-1	rw-1	rw-1	rw-1	rw-1			

CRCINIRES Bits 15-0

CRC initialization and result. This register holds the current CRC result (according to the CRC-CCITT standard). Writing to this register initializes the CRC calculation with the value written to it. The value just written can be read from CRCINIRES register.

Timer_A

Timer_A is a 16-bit timer/counter with multiple capture/compare registers. This chapter describes Timer_A is used on MSP430x5xx devices.

To	pic		Page
	12.1	Timer_A Introduction	336
	12.2	Timer_A Operation	337
	12.3	Timer_A Registers	349

Timer_A Introduction www.ti.com

12.1 Timer_A Introduction

Timer A is a 16-bit timer/counter with up to seven capture/compare registers. Timer A can support multiple capture/compares, PWM outputs, and interval timing. Timer_A also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

Timer_A features include:

- Asynchronous 16-bit timer/counter with four operating modes
- Selectable and configurable clock source
- Up to seven configurable capture/compare registers
- Configurable outputs with PWM capability
- Asynchronous input and output latching
- Interrupt vector register for fast decoding of all Timer A interrupts

The block diagram of Timer_A is shown in Figure 12-1.

Note: Use of the Word Count

Count is used throughout this chapter. It means the counter must be in the process of counting for the action to take place. If a particular value is directly written to the counter, then an associated action will not take place.

336

www.ti.com Timer_A Operation

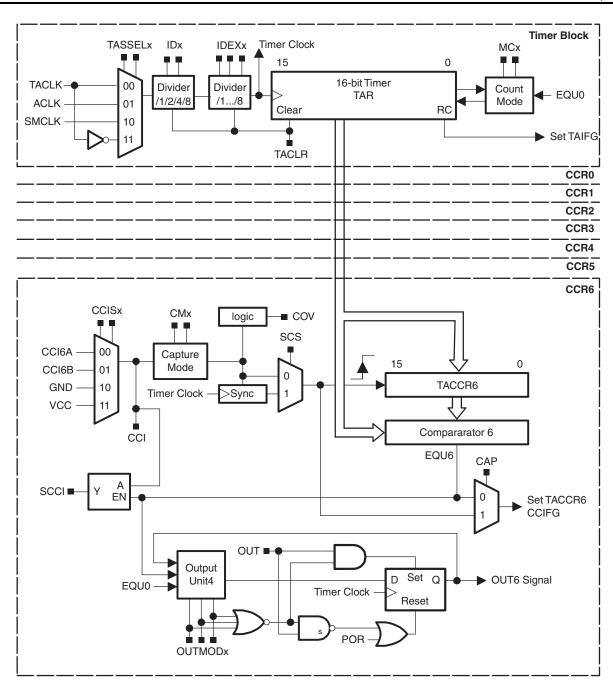


Figure 12-1. Timer_A Block Diagram

12.2 Timer_A Operation

The Timer_A module is configured with user software. The setup and operation of Timer_A is discussed in the following sections.

12.2.1 16-Bit Timer Counter

The 16-bit timer/counter register, TAR, increments or decrements (depending on mode of operation) with each rising edge of the clock signal. TAR can be read or written with software. Additionally, the timer can generate an interrupt when it overflows.

TAR may be cleared by setting the TACLR bit. Setting TACLR also clears the clock divider and count direction for up/down mode.

Note: Modifying Timer A Registers

It is recommended to stop the timer before modifying its operation (with exception of the interrupt enable, interrupt flag, and TACLR) to avoid errant operating conditions.

When the TACLK is asynchronous to the CPU clock, any read from TAR should occur while the timer is not operating or the results may be unpredictable. Alternatively, the timer may be read multiple times while operating, and a majority vote taken in software to determine the correct reading. Any write to TAR will take effect immediately.

Clock Source Select and Divider

The timer clock TACLK can be sourced from ACLK, SMCLK, or externally via TACLK. The clock source is selected with the TASSELx bits. The selected clock source may be passed directly to the timer or divided by 2, 4, or 8, using the IDx bits The selected clock source can be further divided by 2, 3, 4, 5, 6, 7, or 8 using the IDEXx bits. The TACLK dividers are reset when TACLR is set.

Note: Timer_A Dividers

Setting the TACLR bit will clear the contents of TAR, as well as, the dividers. When the TACLR bit is cleared, the Timer Clock will immediately begin clocking at the first rising edge of the Timer A clock source selected with the TASSELx bits, and will continue clocking at the divider settings set by the IDx and IDEXx bits.

12.2.2 Starting the Timer

The timer may be started, or restarted in the following ways:

- The timer counts when MCx > 0 and the clock source is active.
- When the timer mode is either up or up/down, the timer may be stopped by writing 0 to TACCR0. The timer may then be restarted by writing a nonzero value to TACCR0. In this scenario, the timer starts incrementing in the up direction from zero.

12.2.3 Timer Mode Control

The timer has four modes of operation as described in Table 12-1: stop, up, continuous, and up/down. The operating mode is selected with the MCx bits.

MCx Mode Description 00 Stop The timer is halted. 01 The timer repeatedly counts from zero to the value of TACCR0 Up The timer repeatedly counts from zero to 0FFFFh. 10 Continuous Up/down The timer repeatedly counts from zero up to the value of TACCR0 and backdown to zero. 11

Table 12-1. Timer Modes

Up Mode

The up mode is used if the timer period must be different from 0FFFFh counts. The timer repeatedly counts up to the value of compare register TACCR0, which defines the period, as shown in Figure 12-2. The number of timer counts in the period is TACCR0+1. When the timer value equals TACCR0 the timer restarts counting from zero. If up mode is selected when the timer value is greater than TACCR0, the timer immediately restarts counting from zero.

339

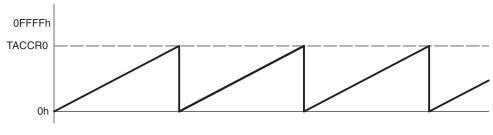


Figure 12-2. Up Mode

The TACCR0 CCIFG interrupt flag is set when the timer *counts* to the TACCR0 value. The TAIFG interrupt flag is set when the timer *counts* from TACCR0 to zero. Figure 12-3 shows the flag set cycle.

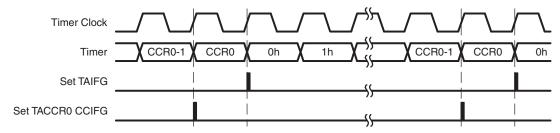


Figure 12-3. Up Mode Flag Setting

Changing the Period Register TACCR0

When changing TACCR0 while the timer is running, if the new period is greater than or equal to the old period, or greater than the current count value, the timer counts up to the new period. If the new period is less than the current count value, the timer rolls to zero. However, one additional count may occur before the counter rolls to zero.

Continuous Mode

In the continuous mode, the timer repeatedly counts up to 0FFFFh and restarts from zero as shown in Figure 12-4. The capture/compare register TACCR0 works the same way as the other capture/compare registers.

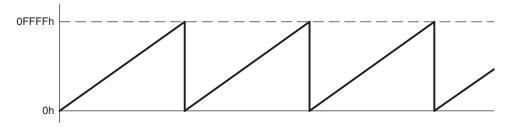


Figure 12-4. Continuous Mode

The TAIFG interrupt flag is set when the timer *counts* from 0FFFFh to zero. Figure 12-5 shows the flag set cycle.

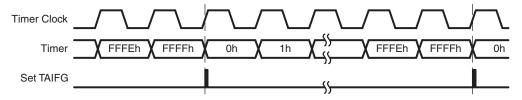


Figure 12-5. Continuous Mode Flag Setting

Use of the Continuous Mode

The continuous mode can be used to generate independent time intervals and output frequencies. Each time an interval is completed, an interrupt is generated. The next time interval is added to the TACCRx register in the interrupt service routine. Figure 12-6 shows two separate time intervals t_0 and t_1 being added to the capture/compare registers. In this usage, the time interval is controlled by hardware, not software, without impact from interrupt latency. Up to n (Timer_An), where n = 0 to 7, independent time intervals or output frequencies can be generated using capture/compare registers.

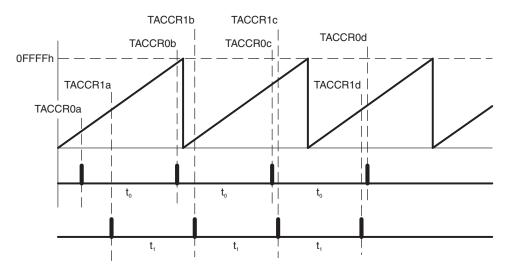


Figure 12-6. Continuous Mode Time Intervals

Time intervals can be produced with other modes as well, where TACCR0 is used as the period register. Their handling is more complex since the sum of the old TACCRx data and the new period can be higher than the TACCR0 value. When the previous TACCRx value plus x is greater than the TACCR0 data, the TACCR0 value must be subtracted to obtain the correct time interval.

Up/Down Mode

The up/down mode is used if the timer period must be different from 0FFFFh counts, and if symmetrical pulse generation is needed. The timer repeatedly counts up to the value of compare register TACCR0 and back down to zero, as shown in Figure 12-7. The period is twice the value in TACCR0.

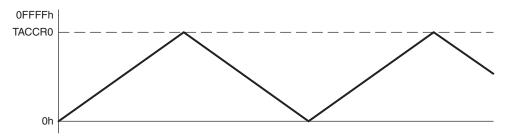


Figure 12-7. Up/Down Mode

The count direction is latched. This allows the timer to be stopped and then restarted in the same direction it was counting before it was stopped. If this is not desired, the TACLR bit must be set to clear the direction. The TACLR bit also clears the TAR value and the TACLK divider.

In up/down mode, the TACCR0 CCIFG interrupt flag and the TAIFG interrupt flag are set only once during a period, separated by 1/2 the timer period. The TACCR0 CCIFG interrupt flag is set when the timer *counts* from TACCR0-1 to TACCR0, and TAIFG is set when the timer completes *counting* down from 0001h to 0000h. Figure 12-8 shows the flag set cycle.

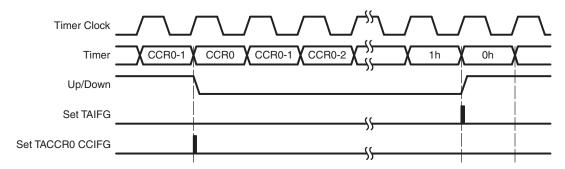


Figure 12-8. Up/Down Mode Flag Setting

Changing the Period Register TACCR0

When changing TACCR0 while the timer is running, and counting in the down direction, the timer continues its descent until it reaches zero. The new period takes affect after the counter counts down to zero.

When the timer is counting in the up direction, and the new period is greater than or equal to the old period, or greater than the current count value, the timer counts up to the new period before counting down. When the timer is counting in the up direction, and the new period is less than the current count value, the timer begins counting down. However, one additional count may occur before the counter begins counting down.

Use of the Up/Down Mode

The up/down mode supports applications that require dead times between output signals (see section *Timer_A Output Unit*). For example, to avoid overload conditions, two outputs driving an H-bridge must never be in a high state simultaneously. In the example shown in Figure 12-9 the t_{dead} is:

$$t_{dead} = t_{timer} \times (TACCR1 - TACCR2)$$

With:

t_{dead} = Time during which both outputs need to be inactive

 t_{timer} = Cycle time of the timer clock

TACCRx = Content of capture/compare register x

The TACCRx registers are not buffered. They update immediately when written to. Therefore, any required dead time will not be maintained automatically.

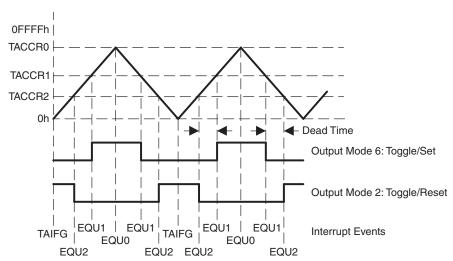


Figure 12-9. Output Unit in Up/Down Mode

SLAU208-June 2008 Timer_A 341

Capture Mode www.ti.com

12.2.4 Capture/Compare Blocks

Three or five identical capture/compare blocks, TACCRx, are present in Timer_A. Any of the blocks may be used to capture the timer data, or to generate time intervals.

Capture Mode

The capture mode is selected when CAP = 1. Capture mode is used to record time events. It can be used for speed computations or time measurements. The capture inputs CCIxA and CCIxB are connected to external pins or internal signals and are selected with the CCISx bits. The CMx bits select the capture edge of the input signal as rising, falling, or both. A capture occurs on the selected edge of the input signal. If a capture occurs:

- The timer value is copied into the TACCRx register
- The interrupt flag CCIFG is set

The input signal level can be read at any time via the CCI bit. MSP430x5xx family devices may have different signals connected to CCIxA and CCIxB. Refer to the device-specific data sheet for the connections of these signals.

The capture signal can be asynchronous to the timer clock and cause a race condition. Setting the SCS bit will synchronize the capture with the next timer clock. Setting the SCS bit to synchronize the capture signal with the timer clock is recommended. This is illustrated in Figure 12-10.

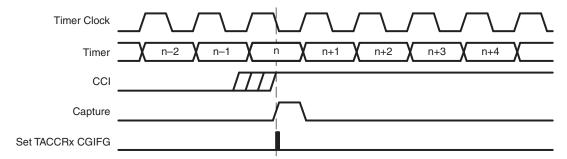


Figure 12-10. Capture Signal (SCS = 1)

Overflow logic is provided in each capture/compare register to indicate if a second capture was performed before the value from the first capture was read. Bit COV is set when this occurs as shown in Figure 12-11. COV must be reset with software.

www.ti.com Compare Mode

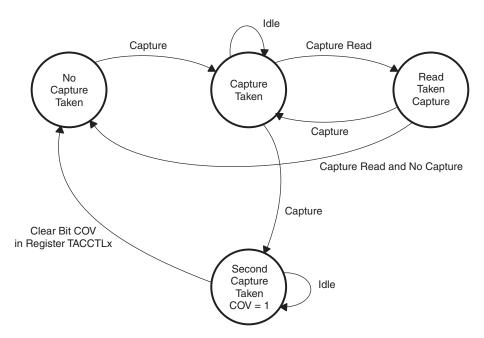


Figure 12-11. Capture Cycle

12.2.4.0.1 Capture Initiated by Software

Captures can be initiated by software. The CMx bits can be set for capture on both edges. Software then sets CCIS1 = 1 and toggles bit CCIS0 to switch the capture signal between V_{CC} and GND, initiating a capture each time CCIS0 changes state:

```
MOV #CAP+SCS+CCIS1+CM_3,&TACCTLx ; Setup TACCTLx XOR #CCIS0,&TACCTLx ; TACCTLx = TAR
```

Compare Mode

The compare mode is selected when CAP = 0. The compare mode is used to generate PWM output signals or interrupts at specific time intervals. When TAR *counts* to the value in a TACCRx:

- Interrupt flag CCIFG is set
- Internal signal EQUx = 1
- EQUx affects the output according to the output mode
- The input signal CCI is latched into SCCI

12.2.5 Output Unit

Each capture/compare block contains an output unit. The output unit is used to generate output signals such as PWM signals. Each output unit has eight operating modes that generate signals based on the EQU0 and EQUx signals.

Output Modes

The output modes are defined by the OUTMODx bits and are described in Table 12-2. The OUTx signal is changed with the rising edge of the timer clock for all modes except mode 0. Output modes 2, 3, 6, and 7 are not useful for output unit 0 because EQUx = EQU0.

Table 12-2.	Output	Modes
-------------	--------	-------

OUTMODx	Mode	Description
000	Output	The output signal OUTx is defined by the OUTx bit. The OUTx signal updates immediately when OUTx is updated.
001	Set	The output is set when the timer <i>counts</i> to the TACCRx value. It remains set until a reset of the timer, or until another output mode is selected and affects the output.
010	Toggle/Reset	The output is toggled when the timer <i>counts</i> to the TACCRx value. It is reset when the timer <i>counts</i> to the TACCR0 value.
011	Set/Reset	The output is set when the timer <i>counts</i> to the TACCRx value. It is reset when the timer <i>counts</i> to the TACCR0 value.
100	Toggle	The output is toggled when the timer <i>counts</i> to the TACCRx value. The output period is double the timer period.
101	Reset	The output is reset when the timer <i>counts</i> to the TACCRx value. It remains reset until another output mode is selected and affects the output.
110	Toggle/Set	The output is toggled when the timer <i>counts</i> to the TACCRx value. It is set when the timer <i>counts</i> to the TACCR0 value.
111	Reset/Set	The output is reset when the timer <i>counts</i> to the TACCRx value. It is set when the timer <i>counts</i> to the TACCR0 value.

Output Example—Timer in Up Mode

The OUTx signal is changed when the timer *counts* up to the TACCRx value, and rolls from TACCR0 to zero, depending on the output mode. An example is shown in Figure 12-12 using TACCR0 and TACCR1.

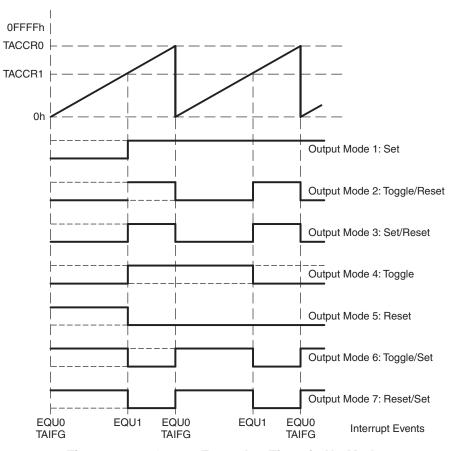


Figure 12-12. Output Example—Timer in Up Mode

Output Example—Timer in Continuous Mode

The OUTx signal is changed when the timer reaches the TACCRx and TACCR0 values, depending on the output mode. An example is shown in Figure 12-13 using TACCR0 and TACCR1.

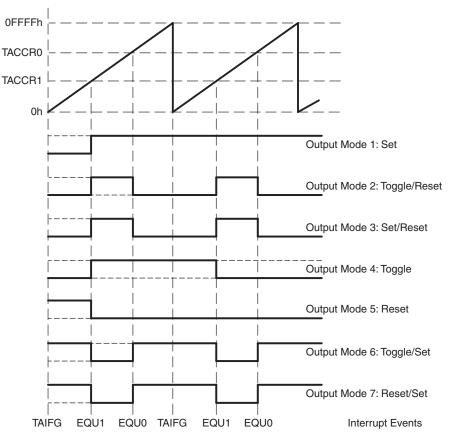


Figure 12-13. Output Example—Timer in Continuous Mode

Output Example—Timer in Up/Down Mode

The OUTx signal changes when the timer equals TACCRx in either count direction and when the timer equals TACCR0, depending on the output mode. An example is shown in Figure 12-14 using TACCR0 and TACCR2.

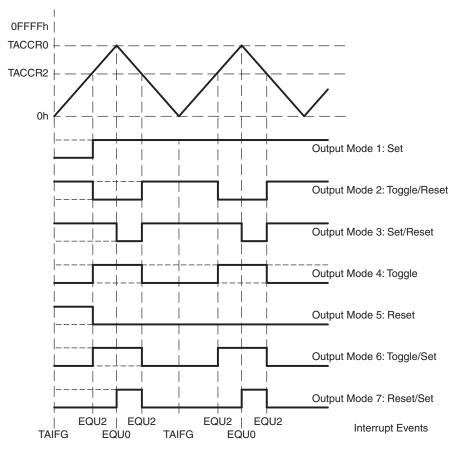


Figure 12-14. Output Example—Timer in Up/Down Mode

Note: Switching Between Output Modes

When switching between output modes, one of the OUTMODx bits should remain set during the transition, unless switching to mode 0. Otherwise, output glitching can occur because a NOR gate decodes output mode 0. A safe method for switching between output modes is to use output mode 7 as a transition state:

BIS #OUTMOD_7,&TACCTLx ; Set output mode=7
BIC #OUTMODx,&TACCTLx ; Clear unwanted bits

12.2.6 Timer_A Interrupts

Two interrupt vectors are associated with the 16-bit Timer_A module:

- TACCR0 interrupt vector for TACCR0 CCIFG
- TAIV interrupt vector for all other CCIFG flags and TAIFG

In capture mode any CCIFG flag is set when a timer value is captured in the associated TACCRx register. In compare mode, any CCIFG flag is set if TAR *counts* to the associated TACCRx value. Software may also set or clear any CCIFG flag. All CCIFG flags request an interrupt when their corresponding CCIE bit and the GIE bit are set.

www.ti.com TACCR0 Interrupt

TACCR0 Interrupt

The TACCR0 CCIFG flag has the highest Timer_A interrupt priority and has a dedicated interrupt vector as shown in Figure 12-15. The TACCR0 CCIFG flag is automatically reset when the TACCR0 interrupt request is serviced.

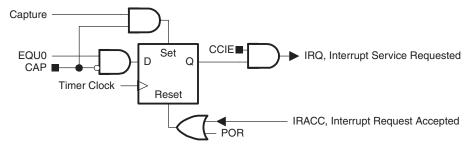


Figure 12-15. Capture/Compare TACCR0 Interrupt Flag

TAIV, Interrupt Vector Generator

The TACCR1 CCIFG, TACCR2 CCIFG, and TAIFG flags are prioritized and combined to source a single interrupt vector. The interrupt vector register TAIV is used to determine which flag requested an interrupt.

The highest priority enabled interrupt generates a number in the TAIV register (see register description). This number can be evaluated or added to the program counter to automatically enter the appropriate software routine. Disabled Timer_A interrupts do not affect the TAIV value.

Any access, read or write, of the TAIV register automatically resets the highest pending interrupt flag. If another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt. For example, if the TACCR1 and TACCR2 CCIFG flags are set when the interrupt service routine accesses the TAIV register, TACCR1 CCIFG is reset automatically. After the RETI instruction of the interrupt service routine is executed, the TACCR2 CCIFG flag will generate another interrupt.

TAIV Software Example

The following software example shows the recommended use of TAIV and the handling overhead. The TAIV value is added to the PC to automatically jump to the appropriate routine. The example assumes a Timer_A3 configuration.

The numbers at the right margin show the necessary CPU cycles for each instruction. The software overhead for different interrupt sources includes interrupt latency and return-from-interrupt cycles, but not the task handling itself. The latencies are:

- Capture/compare block TACCR0: 11 cycles
- Capture/compare blocks TACCR1, TACCR2: 16 cycles
- Timer overflow TAIFG: 14 cycles

```
; Interrupt handler for TACCRO CCIFG.
                                                             Cycles
CCIFG_0_HND
                      ; Start of handler Interrupt latency
                                                                6
         . . .
         RETI
                                                                5
; Interrupt handler for TAIFG, TACCR1 and TACCR2 CCIFG.
TA_HND
                                ; Interrupt latency
                                                                6
         ADD
                  &TAIV, PC
                                ; Add offset to Jump table
                                ; Vector 0: No interrupt
                                                                5
         RETT
         JMP
                  CCIFG_1_HND ; Vector
                                          2: TACCR1
                                                                2
         JMP
                  CCIFG_2_HND
                                ; Vector
                                          4: TACCR2
                                                                2
         RETI
                                ; Vector
                                          6: Reserved
                                                               5
         RETI
                                ; Vector
                                          8: Reserved
                                                               5
                                ; Vector 10: Reserved
                                                                5
         RETT
                                ; Vector 12: Reserved
                                                                5
         RETT
```

SLAU208-June 2008 Timer_A 347

TAIFG_HND	; Vector 14: TAIFG Flag	
RETI	; Task starts here	5
CCIFG_2_HND	<pre>; Vector 4: TACCR2 ; Task starts here</pre>	
RETI	; Back to main program	5
CCIFG_1_HND	; Vector 2: TACCR1	
	; Task starts here	
RETI	; Back to main program	5

348

www.ti.com Timer_A Registers

12.3 Timer_A Registers

The Timer_A registers are listed in Table 12-3 for Timer_A7, which is the largest configuration available. The base address can be found in the device specific data sheet. The address offsets are listed in Table 12-3.

Table 12-3. Timer_A7 Registers

Register	Short Form	Register Type	Register Access	Address Offset	Initial State
Timer_A7 control	TACTL	Read/write	Word	00h	0000h
	TACTL_L	Read/write	Byte	00h	00h
	TACTL_H	Read/write	Byte	01h	00h
Timer_A7 capture/compare control 0	TACCTL0	Read/write	Word	02h	0000h
	TACCTL0_L	Read/write	Byte	02h	00h
	TACCTL0_H	Read/write	Byte	03h	00h
Timer_A7 capture/compare control 1	TACCTL1	Read/write	Word	04h	0000h
	TACCTL1_L	Read/write	Byte	04h	00h
	TACCTL1_H	Read/write	Byte	05h	00h
Timer_A7 capture/compare control 2	TACCTL2	Read/write	Word	06h	0000h
	TACCTL2_L	Read/write	Byte	06h	00h
	TACCTL2_H	Read/write	Byte	07h	00h
Timer_A7 capture/compare control 3	TACCTL3	Read/write	Word	08h	0000h
	TACCTL3_L	Read/write	Byte	08h	00h
	TACCTL3_H	Read/write	Byte	09h	00h
Timer_A7 capture/compare control 4	TACCTL4	Read/write	Word	0Ah	0000h
	TACCTL4_L	Read/write	Byte	0Ah	00h
	TACCTL4_H	Read/write	Byte	0Bh	00h
Timer_A7 capture/compare control 5	TACCTL5	Read/write	Word	0Ch	0000h
	TACCTL5_L	Read/write	Byte	0Ch	00h
	TACCTL5_H	Read/write	Byte	0Dh	00h
Timer_A7 capture/compare control 6	TACCTL6	Read/write	Word	0Eh	0000h
	TACCTL6_L	Read/write	Byte	0Eh	00h
	TACCTL6_H	Read/write	Byte	0Fh	00h
Timer_A7 counter	TAR	Read/write	Word	10h	0000h
	TAR_L	Read/write	Byte	10h	00h
	TAR_H	Read/write	Byte	11h	00h
Timer_A7 capture/compare 0	TACCR0	Read/write	Word	12h	0000h
	TACCR0_L	Read/write	Byte	12h	00h
	TACCR0_H	Read/write	Byte	13h	00h
Timer_A7 capture/compare 1	TACCR1	Read/write	Word	14h	0000h
	TACCR1_L	Read/write	Byte	14h	00h
	TACCR1_H	Read/write	Byte	15h	00h
Timer_A7 capture/compare 2	TACCR2	Read/write	Word	16h	0000h
	TACCR2_L	Read/write	Byte	16h	00h
	TACCR2_H	Read/write	Byte	17h	00h
Timer_A7 capture/compare 3	TACCR3	Read/write	Word	18h	0000h
•	TACCR3_L	Read/write	Byte	18h	00h
	TACCR3_H	Read/write	Byte	19h	00h
Timer_A7 capture/compare 4	TACCR4	Read/write	Word	1Ah	0000h
•	TACCR4_L	Read/write	Byte	1Ah	00h

Timer_A Registers www.ti.com

Table 12-3. Timer_A7 Registers (continued)

Register	Short Form	Register Type	Register Access	Address Offset	Initial State
	TACCR4_H	Read/write	Byte	1Bh	00h
Timer_A7 capture/compare 5	TACCR5	Read/write	Word	1Ch	0000h
	TACCR5_L	Read/write	Byte	1Ch	00h
	TACCR5_H	Read/write	Byte	1Dh	00h
Timer_A7 capture/compare 6	TACCR6	Read/write	Word	1Eh	0000h
	TACCR6_L	Read/write	Byte	1Eh	00h
	TACCR6_H	Read/write	Byte	1Fh	00h
Timer_A7 Interrupt Vector	TAIV	Read only	Word	2Eh	0000h
	TAIV_L	Read only	Byte	2Eh	00h
	TAIV_H	Read only	Byte	2Fh	00h
Timer_A7 Extension	TAEX0	Read/write	Word	20h	0000h
	TAEX0_L	Read/write	Byte	20h	00h
	TAEX0_H	Read/write	Byte	21h	00h

www.ti.com Timer_A Registers

TACTL, Timer_A Control Register

15	14	13	12	11	10	9	8
	Unused						SELx
rw-(0)							
7	6	5	4	3	2	1	0
IC	Эx	M	Сх	Unused	TACLR	TAIE	TAIFG
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	w-(0)	rw-(0)	rw-(0)

Unused Bits 15-10 Unused

TASSELx Bits 9-8 Timer_A clock source select

00 TACLK 01 ACLK 10 SMCLK

11 Inverted TACLK

IDx Bits 7-6 Input divider. These bits along with the IDEXx bits select the divider for the input clock.

00 /1 01 /2 10 /4 11 /8

MCx Bits 5-4 Mode control. Setting MCx = 00h when Timer_A is not in use conserves power.

00 Stop mode: the timer is halted

01 Up mode: the timer counts up to TACCR0

10 Continuous mode: the timer counts up to 0FFFFh

11 Up/down mode: the timer counts up to TACCR0 then down to 0000h

Unused Bit 3 Unused

TACLR Bit 2 Timer_A clear. Setting this bit resets TAR, the TACLK divider, and the count direction. The TACLR bit is

automatically reset and is always read as zero.

TAIE Bit 1 Timer_A interrupt enable. This bit enables the TAIFG interrupt request.

0 Interrupt disabled1 Interrupt enabled

TAIFG Bit 0 Timer_A interrupt flag

0 No interrupt pending

1 Interrupt pending

TAR, Timer_A Register

15	14	13	12	11	10	9	8	
			TA	Rx				
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	
7	6	5	4	3	2	1	0	
			TA	Rx				
 rw-(0)	rw-(0)							

TARX Bits 15-0 Timer_A register. The TAR register is the count of Timer_A.

Timer_A Registers www.ti.com

15	14		13	12	11	10	9	8
C	Mx		cc	CISx	scs	SCCI	Unused	CAP
rw-(0)	rw-(0)	r	rw-(0)	rw-(0)	rw-(0)	r-(0)	r-(0)	rw-(0)
7	6		5	4	3	2	1	0
	OUTMODx			CCIE	CCI	OUT	cov	CCIFG
rw-(0)	rw-(0)	r	rw-(0)	rw-(0)	r	rw-(0)	rw-(0)	rw-(0)
СМх	Bit 15-14		re mode					
		00	No captu					
		01		on rising edge				
		10	•	on falling edge				
		11		on both rising and				
CCISx	Bit 13-12	Captui sheet	re/compare for specific	e input select. The signal connection	se bits select the ins.	TACCRx input sig	nal. See the devic	e-specific data
		00	CCIxA					
		01	CCIxB					
		10	GND					
		11	V_{CC}					
scs	Bit 11	Synch	ronize cap	ture source. This I	bit is used to sync	hronize the captu	re input signal with	the timer clos
		0	Asynchro	onous capture				
		1	Synchro	nous capture				
SCCI	Bit 10		Synchronized capture/compare input. The selected CCI input signal is latched with the EQUx signal and can be read via this bit.					
Unused	Bit 9	Unuse	d. Read or	nly. Always read a	ıs 0.			
CAP	Bit 8	Captu	re mode					
		0	Compare	e mode				
		1	Capture	mode				
OUTMODx	Bits 7-5	Outpu	t mode. Mo	odes 2, 3, 6, and 7	are not useful for	r TACCR0 becaus	se EQUx = EQU0.	
		000	OUT bit	value				
		001	Set					
		010	Toggle/r	eset				
		011	Set/rese	t				
		100	Toggle					
		101	Reset					
		110	Toggle/s	et				
		111	Reset/se	et				
CCIE	Bit 4		re/compare	e interrupt enable.	This bit enables t	he interrupt reque	est of the correspor	nding CCIFG
		0	Interrupt	disabled				
		1	Interrupt					
001	D'1 0	0						

Bit 3

CCI Capture/compare input. The selected input signal can be read by this bit.

OUT Bit 2 Output. For output mode 0, this bit directly controls the state of the output.

> 0 Output low

1 Output high

Capture overflow. This bit indicates a capture overflow occurred. COV must be reset with software. COV Bit 1

> 0 No capture overflow occurred

1 Capture overflow occurred

www.ti.com Timer_A Registers

CCIFG Bit 0 Capture/compare interrupt flag

0 No interrupt pending

1 Interrupt pending

TAIV, Timer_A Interrupt Vector Register

15	14	13	12	11	10	9	8
0	0	0	0	0	0	0	0
r0	r0	r0	r0	r0	r0	r0	r0
7	6	5	4	3	2	1	0
,			T	· ·		<u>'</u>	
0	0	0	0		TAIVx		0
r0	r0	r0	r0	r-(0)	r-(0)	r-(0)	r0

TAIVx Bits 15-0 Timer_A interrupt vector value

TAIV Contents	Interrupt Source	Interrupt Flag	Interrupt Priority
00h	No interrupt pending		
02h	Capture/compare 1	TACCR1 CCIFG	Highest
04h	Capture/compare 2	TACCR2 CCIFG	
06h	Capture/compare 3	TACCR3 CCIFG	
08h	Capture/compare 4	TACCR4 CCIFG	
0Ah	Capture/compare 5	TACCR5 CCIFG	
0Ch	Capture/compare 6	TACCR6 CCIFG	
0Eh	Timer overflow	TAIFG	Lowest

TAEX0, Timer_A Expansion Register 0

15	14	13	12	11	10	9	8
Unused							
rO	r0						
7	6	5	4	3	2	1	0
Unused	Unused	Unused	Unused	Unused		IDEX	
r0	r0	r0	r0	r0	rw-(0)	rw-(0)	rw-(0)

Unused Bits 15-3 Unused. Read only. Always read as 0.

IDEX Bits 2-0 Input divider expansion. These bits along with the IDx bits select the divider for the input clock.

000 /1 001 /2 010 /3 011 /4 100 /5 101 /6 110 /7 111 /8

354

Timer_B

Timer_B is a 16-bit timer/counter with multiple capture/compare registers. This chapter describes Timer_B is used in MSP430x5xx devices.

	Topic		Page
	13.1	Timer_B Introduction	356
	13.2	Timer_B Operation	358
	13.3	Timer_B Registers	370
П			

Timer_B Introduction www.ti.com

13.1 Timer_B Introduction

Timer_B is a 16-bit timer/counter with three or seven capture/compare registers. Timer_B can support multiple capture/compares, PWM outputs, and interval timing. Timer_B also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers.

Timer_B features include :

- Asynchronous 16-bit timer/counter with four operating modes and four selectable lengths
- Selectable and configurable clock source
- Up to seven configurable capture/compare registers
- Configurable outputs with PWM capability
- Double-buffered compare latches with synchronized loading
- Interrupt vector register for fast decoding of all Timer_B interrupts

The block diagram of Timer_B is shown in Figure 13-1.

Note: Use of the Word Count

Count is used throughout this chapter. It means the counter must be in the process of counting for the action to take place. If a particular value is directly written to the counter, then an associated action will not take place.

13.1.1 Similarities and Differences From Timer A

Timer B is identical to Timer A with the following exceptions:

- The length of Timer_B is programmable to be 8, 10, 12, or 16 bits.
- Timer B TBCCRx registers are double-buffered and can be grouped.
- All Timer_B outputs can be put into a high-impedance state.
- The SCCI bit function is not implemented in Timer_B.

www.ti.com Timer_B Introduction

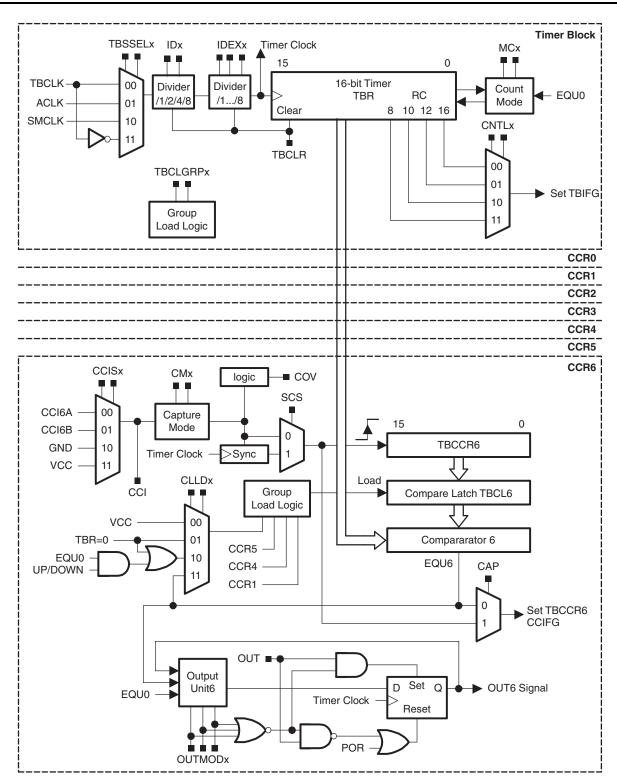


Figure 13-1. Timer_B Block Diagram

Timer B Operation www.ti.com

13.2 Timer B Operation

The Timer_B module is configured with user software. The setup and operation of Timer_B is discussed in the following sections.

13.2.1 16-Bit Timer Counter

The 16-bit timer/counter register, TBR, increments or decrements (depending on mode of operation) with each rising edge of the clock signal. TBR can be read or written with software. Additionally, the timer can generate an interrupt when it overflows.

TBR may be cleared by setting the TBCLR bit. Setting TBCLR also clears the clock divider and count direction for up/down mode.

Note: Modifying Timer_B Registers

It is recommended to stop the timer before modifying its operation (with exception of the interrupt enable, interrupt flag, and TBCLR) to avoid errant operating conditions.

When the TBCLK is asynchronous to the CPU clock, any read from TBR should occur while the timer is not operating or the results may be unpredictable. Alternatively, the timer may be read multiple times while operating, and a majority vote taken in software to determine the correct reading. Any write to TBR will take effect immediately.

TBR Length

Timer_B is configurable to operate as an 8-, 10-, 12-, or 16-bit timer with the CNTLx bits. The maximum count value, TBR_(max), for the selectable lengths is 0FFh, 03FFh, 0FFFh, and 0FFFFh, respectively. Data written to the TBR register in 8-, 10-, and 12-bit mode is right-justified with leading zeros.

Clock Source Select and Divider

The timer clock TBCLK can be sourced from ACLK, SMCLK, or externally via TBCLK. The clock source is selected with the TBSSELx bits. The selected clock source may be passed directly to the timer or divided by 2,4, or 8, using the IDx bits. The selected clock source can be further divided by 2, 3, 4, 5, 6, 7, or 8 using the IDEXx bits. The TBCLK dividers are reset when TBCLR is set.

Note: Timer_B Dividers

Setting the TBCLR bit will clear the contents of TBR, as well as, the dividers. When the TBCLR bit is cleared, the Timer Clock will immediately begin clocking at the first rising edge of the Timer_B clock source selected with the TBSSELx bits, and will continue clocking at the divider settings set by the IDx and IDEXx bits.

13.2.2 Starting the Timer

The timer may be started or restarted in the following ways:

- The timer counts when MCx > 0 and the clock source is active.
- When the timer mode is either up or up/down, the timer may be stopped by loading 0 to TBCL0. The
 timer may then be restarted by loading a nonzero value to TBCL0. In this scenario, the timer starts
 incrementing in the up direction from zero.

13.2.3 Timer Mode Control

The timer has four modes of operation as described in Table 13-1: stop, up, continuous, and up/down. The operating mode is selected with the MCx bits.

Table	12_1	Timer	Modes
IANIE	1.3-1	1 11111	WICKIES

MCx	Mode	Description
00	Stop	The timer is halted.
01	Up	The timer repeatedly counts from zero to the value of compare register TBCL0.
10	Continuous	The timer repeatedly counts from zero to the value selected by the TBCNTLx bits.
11	Up/down	The timer repeatedly counts from zero up to the value of TBCL0 and then back down to zero.

13.2.3.1 Up Mode

The up mode is used if the timer period must be different from $TBR_{(max)}$ counts. The timer repeatedly counts up to the value of compare latch TBCL0, which defines the period, as shown in Figure 13-2. The number of timer counts in the period is TBCL0+1. When the timer value equals TBCL0 the timer restarts counting from zero. If up mode is selected when the timer value is greater than TBCL0, the timer immediately restarts counting from zero.

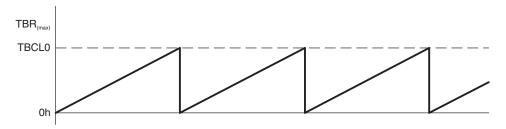


Figure 13-2. Up Mode

The TBCCR0 CCIFG interrupt flag is set when the timer *counts* to the TBCL0 value. The TBIFG interrupt flag is set when the timer *counts* from TBCL0 to zero. Figure 13-3 shows the flag set cycle.

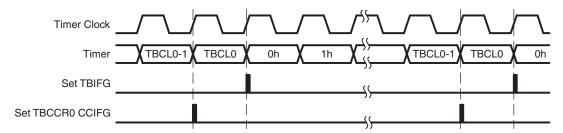


Figure 13-3. Up Mode Flag Setting

Changing the Period Register TBCL0

When changing TBCL0 while the timer is running and when the TBCL0 load mode is *immediate*, if the new period is greater than or equal to the old period, or greater than the current count value, the timer counts up to the new period. If the new period is less than the current count value, the timer rolls to zero. However, one additional count may occur before the counter rolls to zero.

Continuous Mode www.ti.com

Continuous Mode

In continuous mode the timer repeatedly counts up to TBR_(max) and restarts from zero as shown in Figure 13-4. The compare latch TBCL0 works the same way as the other capture/compare registers.

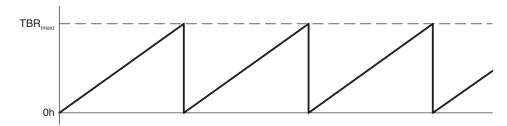


Figure 13-4. Continuous Mode

The TBIFG interrupt flag is set when the timer *counts* from TBR_(max) to zero. Figure 13-5 shows the flag set cycle.

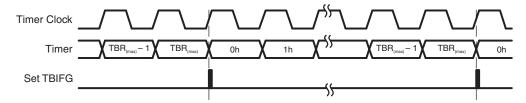


Figure 13-5. Continuous Mode Flag Setting

Use of the Continuous Mode

The continuous mode can be used to generate independent time intervals and output frequencies. Each time an interval is completed, an interrupt is generated. The next time interval is added to the TBCLx latch in the interrupt service routine. Figure 13-6 shows two separate time intervals t_0 and t_1 being added to the capture/compare registers. The time interval is controlled by hardware, not software, without impact from interrupt latency. Up to n (Timer_Bn), where n = 0 to 7, independent time intervals or output frequencies can be generated using capture/compare registers.

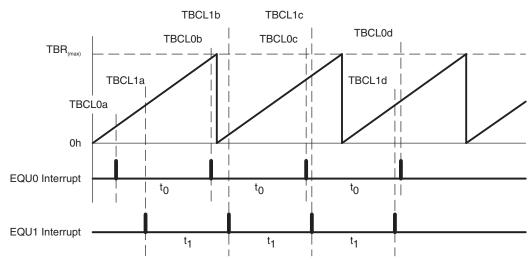


Figure 13-6. Continuous Mode Time Intervals

www.ti.com Up/Down Mode

Time intervals can be produced with other modes as well, where TBCL0 is used as the period register. Their handling is more complex since the sum of the old TBCLx data and the new period can be higher than the TBCL0 value. When the sum of the previous TBCLx value plus t_x is greater than the TBCL0 data, the old TBCL0 value must be subtracted to obtain the correct time interval.

Up/Down Mode

The up/down mode is used if the timer period must be different from $TBR_{(max)}$ counts, and if symmetrical pulse generation is needed. The timer repeatedly counts up to the value of compare latch TBCL0, and back down to zero, as shown in Figure 13-7. The period is twice the value in TBCL0.

Note: TBCL0 > TBR_(max)

If TBCL0 > TBR $_{(max)}$, the counter operates as if it were configured for continuous mode. It does not count down from TBR $_{(max)}$ to zero.

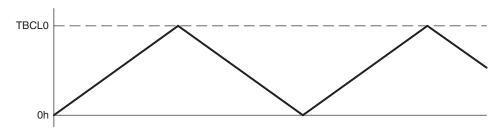


Figure 13-7. Up/Down Mode

The count direction is latched. This allows the timer to be stopped and then restarted in the same direction it was counting before it was stopped. If this is not desired, the TBCLR bit must be used to clear the direction. The TBCLR bit also clears the TBR value and the TBCLK divider.

In up/down mode, the TBCCR0 CCIFG interrupt flag and the TBIFG interrupt flag are set only once during the period, separated by 1/2 the timer period. The TBCCR0 CCIFG interrupt flag is set when the timer *counts* from TBCL0-1 to TBCL0, and TBIFG is set when the timer completes *counting* down from 0001h to 0000h. Figure 13-8 shows the flag set cycle.

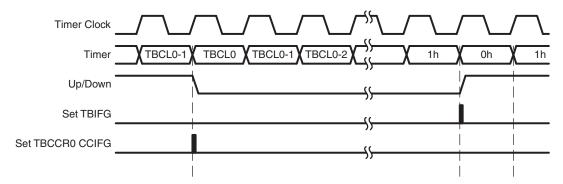


Figure 13-8. Up/Down Mode Flag Setting

Changing the Value of Period Register TBCL0

When changing TBCL0 while the timer is running, and counting in the down direction, and when the TBCL0 load mode is *immediate*, the timer continues its descent until it reaches zero. The new period takes effect after the counter counts down to zero.

If the timer is counting in the up direction when the new period is latched into TBCL0, and the new period is greater than or equal to the old period, or greater than the current count value, the timer counts up to the new period before counting down. When the timer is counting in the up direction, and the new period is less than the current count value when TBCL0 is loaded, the timer begins counting down. However, one additional count may occur before the counter begins counting down.

Use of the Up/Down Mode

The up/down mode supports applications that require dead times between output signals (see section *Timer_B Output Unit*). For example, to avoid overload conditions, two outputs driving an H-bridge must never be in a high state simultaneously. In the example shown in Figure 13-9 the t_{dead} is:

$$t_{dead} = t_{timer} \times (TBCL1 - TBCL3)$$

With:

t_{dead} = Time during which both outputs need to be inactive

 t_{timer} = Cycle time of the timer clock

TBCLx = Content of compare latch x

The ability to simultaneously load grouped compare latches assures the dead times.

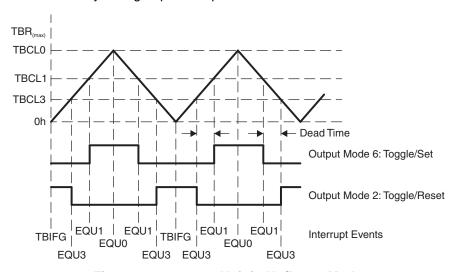


Figure 13-9. Output Unit in Up/Down Mode

13.2.4 Capture/Compare Blocks

Three or seven identical capture/compare blocks, TBCCRx, are present in Timer_B. Any of the blocks may be used to capture the timer data or to generate time intervals.

Capture Mode

The capture mode is selected when CAP = 1. Capture mode is used to record time events. It can be used for speed computations or time measurements. The capture inputs CCIxA and CCIxB are connected to external pins or internal signals and are selected with the CCISx bits. The CMx bits select the capture edge of the input signal as rising, falling, or both. A capture occurs on the selected edge of the input signal. If a capture is performed:

- · The timer value is copied into the TBCCRx register
- The interrupt flag CCIFG is set

The input signal level can be read at any time via the CCI bit. MSP430x5xx family devices may have different signals connected to CCIxA and CCIxB. Refer to the device-specific data sheet for the connections of these signals.

The capture signal can be asynchronous to the timer clock and cause a race condition. Setting the SCS bit will synchronize the capture with the next timer clock. Setting the SCS bit to synchronize the capture signal with the timer clock is recommended. This is illustrated in Figure 13-10.

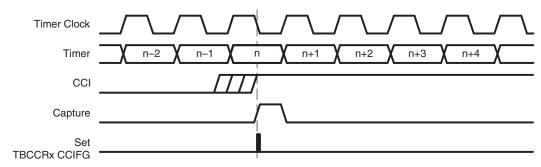


Figure 13-10. Capture Signal (SCS = 1)

Overflow logic is provided in each capture/compare register to indicate if a second capture was performed before the value from the first capture was read. Bit COV is set when this occurs as shown in Figure 13-11. COV must be reset with software.

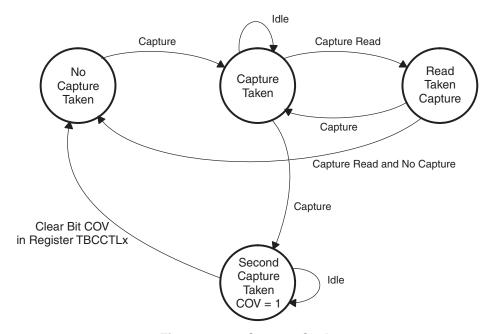


Figure 13-11. Capture Cycle

Capture Initiated by Software

Captures can be initiated by software. The CMx bits can be set for capture on both edges. Software then sets bit CCIS1=1 and toggles bit CCIS0 to switch the capture signal between V_{CC} and GND, initiating a capture each time CCIS0 changes state:

MOV #CAP+SCS+CCIS1+CM_3,&TBCCTLx ; Setup TBCCTLx XOR #CCIS0,&TBCCTLx ; TBCCTLx = TBR

Compare Mode

The compare mode is selected when CAP = 0. Compare mode is used to generate PWM output signals or interrupts at specific time intervals. When TBR *counts* to the value in a TBCLx:

- Interrupt flag CCIFG is set
- Internal signal EQUx = 1
- EQUx affects the output according to the output mode

SLAU208 – June 2008 Submit Documentation Feedback

Compare Latch TBCLx www.ti.com

Compare Latch TBCLx

The TBCCRx compare latch, TBCLx, holds the data for the comparison to the timer value in compare mode. TBCLx is buffered by TBCCRx. The buffered compare latch gives the user control over when a compare period updates. The user cannot directly access TBCLx. Compare data is written to each TBCCRx and automatically transferred to TBCLx. The timing of the transfer from TBCCRx to TBCLx is user-selectable with the CLLDx bits as described in Table 13-2.

Table 13-2. TBCLx Load Events

CLLDx	Description
00	New data is transferred from TBCCRx to TBCLx immediately when TBCCRx is written to.
01	New data is transferred from TBCCRx to TBCLx when TBR counts to 0
10	New data is transferred from TBCCRx to TBCLx when TBR <i>counts</i> to 0 for up and continuous modes. New data is transferred to from TBCCRx to TBCLx when TBR <i>counts</i> to the old TBCL0 value or to 0 for up/down mode
11	New data is transferred from TBCCRx to TBCLx when TBR counts to the old TBCLx value.

Grouping Compare Latches

Multiple compare latches may be grouped together for simultaneous updates with the TBCLGRPx bits. When using groups, the CLLDx bits of the lowest numbered TBCCRx in the group determine the load event for each compare latch of the group, except when TBCLGRP = 3, as shown in Table 13-3. The CLLDx bits of the controlling TBCCRx must not be set to zero. When the CLLDx bits of the controlling TBCCRx are set to zero, all compare latches update immediately when their corresponding TBCCRx is written - no compare latches are grouped.

Two conditions must exist for the compare latches to be loaded when grouped. First, all TBCCRx registers of the group must be updated, even when new TBCCRx data = old TBCCRx data. Second, the load event must occur.

Table 13-3. Compare Latch Operating Modes

TBCLGRPx	Grouping	Update Control
00	None	Individual
01	TBCL1+TBCL2TBCL3+TBCL4TBCL5+TBCL6	TBCCR1TBCCR3TBCCR5
10	TBCL1+TBCL2+TBCL3TBCL4+TBCL5+TBCL6	TBCCR1TBCCR4
11	TBCL0+TBCL1+TBCL2+ TBCL3+TBCL4+TBCL5+TBCL6	TBCCR1

13.2.5 Output Unit

Each capture/compare block contains an output unit. The output unit is used to generate output signals such as PWM signals. Each output unit has eight operating modes that generate signals based on the EQU0 and EQUx signals. The TBOUTH pin function can be used to put all Timer_B outputs into a high-impedance state. When the TBOUTH pin function is selected for the pin (corresponding PSEL bit is set, and port configured as input), and when the pin is pulled high, all Timer_B outputs are in a high-impedance state.

13.2.5.1 Output Modes

The output modes are defined by the OUTMODx bits and are described in Table 13-4. The OUTx signal is changed with the rising edge of the timer clock for all modes except mode 0. Output modes 2, 3, 6, and 7 are not useful for output unit 0 because EQUx = EQU0.

Table	13-4.	Output	Modes
--------------	-------	--------	-------

OUTMODx	Mode	Description
000	Output	The output signal OUTx is defined by the OUTx bit. The OUTx signal updates immediately when OUTx is updated.
001	Set	The output is set when the timer <i>counts</i> to the TBCLx value. It remains set until a reset of the timer, or until another output mode is selected and affects the output.
010	Toggle/Reset	The output is toggled when the timer <i>counts</i> to the TBCLx value. It is reset when the timer <i>counts</i> to the TBCL0 value.
011	Set/Reset	The output is set when the timer <i>counts</i> to the TBCLx value. It is reset when the timer <i>counts</i> to the TBCL0 value.
100	Toggle	The output is toggled when the timer <i>counts</i> to the TBCLx value. The output period is double the timer period.
101	Reset	The output is reset when the timer <i>counts</i> to the TBCLx value. It remains reset until another output mode is selected and affects the output.
110	Toggle/Set	The output is toggled when the timer <i>counts</i> to the TBCLx value. It is set when the timer <i>counts</i> to the TBCL0 value.
111	Reset/Set	The output is reset when the timer <i>counts</i> to the TBCLx value. It is set when the timer <i>counts</i> to the TBCL0 value.

Output Example—Timer in Up Mode

The OUTx signal is changed when the timer *counts* up to the TBCLx value, and rolls from TBCL0 to zero, depending on the output mode. An example is shown in Figure 13-12 using TBCL0 and TBCL1.

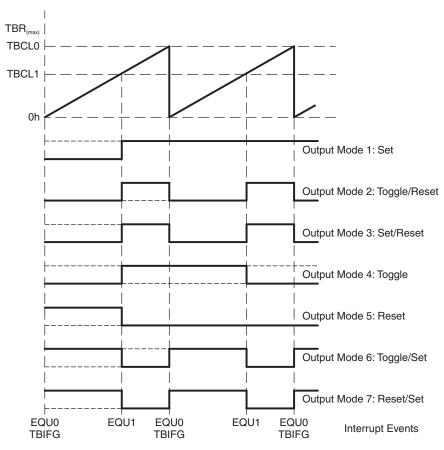


Figure 13-12. Output Example—Timer in Up Mode

Output Example—Timer in Continuous Mode

The OUTx signal is changed when the timer reaches the TBCLx and TBCL0 values, depending on the output mode, An example is shown in Figure 13-13 using TBCL0 and TBCL1.

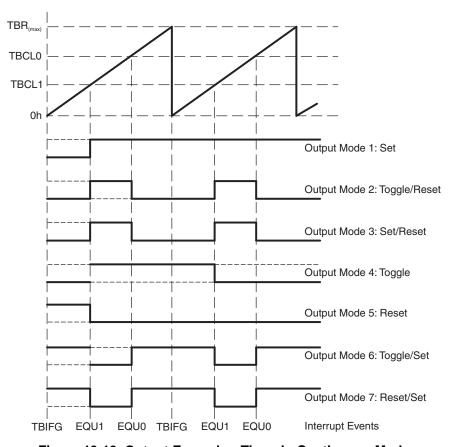


Figure 13-13. Output Example—Timer in Continuous Mode

Output Example—Timer in Up/Down Mode

The OUTx signal changes when the timer equals TBCLx in either count direction and when the timer equals TBCL0, depending on the output mode. An example is shown in Figure 13-14 using TBCL0 and TBCL3.

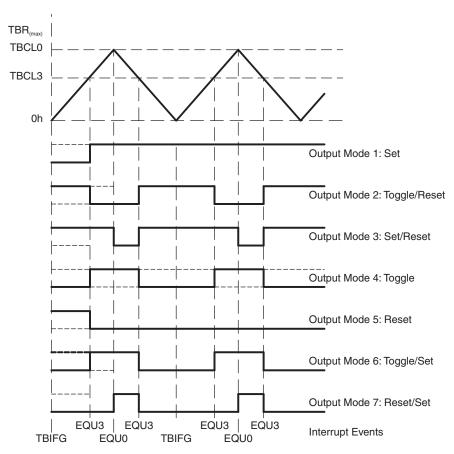


Figure 13-14. Output Example—Timer in Up/Down Mode

Note: Switching Between Output Modes

When switching between output modes, one of the OUTMODx bits should remain set during the transition, unless switching to mode 0. Otherwise, output glitching can occur because a NOR gate decodes output mode 0. A safe method for switching between output modes is to use output mode 7 as a transition state:

BIS #OUTMOD_7,&TBCCTLx ; Set output mode=7
BIC #OUTMODx,&TBCCTLx ; Clear unwanted bits

13.2.6 Timer_B Interrupts

Two interrupt vectors are associated with the 16-bit Timer_B module:

- TBCCR0 interrupt vector for TBCCR0 CCIFG
- TBIV interrupt vector for all other CCIFG flags and TBIFG

In capture mode, any CCIFG flag is set when a timer value is captured in the associated TBCCRx register. In compare mode, any CCIFG flag is set when TBR *counts* to the associated TBCLx value. Software may also set or clear any CCIFG flag. All CCIFG flags request an interrupt when their corresponding CCIE bit and the GIE bit are set.

SLAU208 – June 2008 *Timer_B* 367

TBCCR0 Interrupt Vector

The TBCCR0 CCIFG flag has the highest Timer_B interrupt priority and has a dedicated interrupt vector as shown in Figure 13-15. The TBCCR0 CCIFG flag is automatically reset when the TBCCR0 interrupt request is serviced.

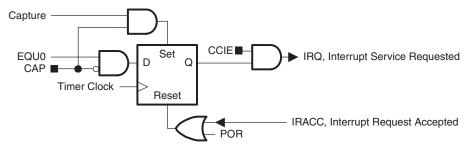


Figure 13-15. Capture/Compare TBCCR0 Interrupt Flag

TBIV, Interrupt Vector Generator

The TBIFG flag and TBCCRx CCIFG flags (excluding TBCCR0 CCIFG) are prioritized and combined to source a single interrupt vector. The interrupt vector register TBIV is used to determine which flag requested an interrupt.

The highest priority enabled interrupt (excluding TBCCR0 CCIFG) generates a number in the TBIV register (see register description). This number can be evaluated or added to the program counter to automatically enter the appropriate software routine. Disabled Timer_B interrupts do not affect the TBIV value.

Any access, read or write, of the TBIV register automatically resets the highest pending interrupt flag. If another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt. For example, if the TBCCR1 and TBCCR2 CCIFG flags are set when the interrupt service routine accesses the TBIV register, TBCCR1 CCIFG is reset automatically. After the RETI instruction of the interrupt service routine is executed, the TBCCR2 CCIFG flag will generate another interrupt.

TBIV, Interrupt Handler Examples

The following software example shows the recommended use of TBIV and the handling overhead. The TBIV value is added to the PC to automatically jump to the appropriate routine.

The numbers at the right margin show the necessary CPU clock cycles for each instruction. The software overhead for different interrupt sources includes interrupt latency and return-from-interrupt cycles, but not the task handling itself. The latencies are:

- Capture/compare block CCR0 11 cycles
- Capture/compare blocks CCR1 to CCR6 16 cycles
- Timer overflow TBIFG 14 cycles

368

The following software example shows the recommended use of TBIV for Timer_B3.

```
; Interrupt handler for TBCCR0 CCIFG.
                                                           Cycles
CCIFG_0_HND
                    ; Start of handler Interrupt latency
                                                             6
         . . .
                                                             5
        RETI
; Interrupt handler for TBIFG, TBCCR1 and TBCCR2 CCIFG.
TB_HND
                               ; Interrupt latency
                               ; Add offset to Jump table
                 &TBIV,PC
        ADD
                                                             3
                                ; Vector 0: No interrupt
        RETI
                                                             5
                 CCIFG_1_HND ; Vector 2: Module 1
        JMP
                                                             2
                               ; Vector 4: Module 2
        JMP
                 CCIFG_2_HND
                                                             2
        RETI
                                ; Vector 6
        RETI
                                ; Vector 8
                                ; Vector 10
        RETI
        RETI
                                ; Vector 12
TBIFG_HND
                                ; Vector 14: TBIFG Flag
                                ; Task starts here
        RETI
                                                             5
CCIFG_2_HND
                               ; Vector 4: Module 2
                                ; Task starts here
         . . .
        RETI
                                ; Back to main program
; The Module 1 handler shows a way to look if any other
; interrupt is pending: 5 cycles have to be spent, but
; 9 cycles may be saved if another interrupt is pending
CCIFG_1_HND
                               ; Vector 6: Module 3
                                ; Task starts here
         . . .
        JMP
                                ; Look for pending ints
                 TB_HND
```


Timer_B Registers www.ti.com

13.3 Timer_B Registers

The Timer_B registers are listed in Table 13-5. The base address can be found in the device specific data sheet. The address offset is listed in Table 13-5.

Table 13-5. Timer_B Registers

Register	Short Form	Register Type	Address Offset	Initial State
Timer_B control	TBCTL	Read/write	00h	0000h
Timer_B capture/compare control 0	TBCCTL0	Read/write	02h	0000h
Timer_B capture/compare control 1	TBCCTL1	Read/write	04h	0000h
Timer_B capture/compare control 2	TBCCTL2	Read/write	06h	0000h
Timer_B capture/compare control 3	TBCCTL3	Read/write	08h	0000h
Timer_B capture/compare control 4	TBCCTL4	Read/write	0Ah	0000h
Timer_B capture/compare control 5	TBCCTL5	Read/write	0Ch	0000h
Timer_B capture/compare control 6	TBCCTL6	Read/write	0Eh	0000h
Timer_B counter	TBR	Read/write	10h	0000h
Timer_B capture/compare 0	TBCCR0	Read/write	12h	0000h
Timer_B capture/compare 1	TBCCR1	Read/write	14h	0000h
Timer_B capture/compare 2	TBCCR2	Read/write	16h	0000h
Timer_B capture/compare 3	TBCCR3	Read/write	18h	0000h
Timer_B capture/compare 4	TBCCR4	Read/write	1Ah	0000h
Timer_B capture/compare 5	TBCCR5	Read/write	1Ch	0000h
Timer_B capture/compare 6	TBCCR6	Read/write	1Eh	0000h
Timer_B Interrupt Vector	TBIV	Read only	2Eh	0000h
Timer_B Extension	TBEX0	Read/write	20h	0000h

370

www.ti.com Timer_B Registers

Timer_B Control Register, TBCTL

15	14	13	12	11	10	9	8	
Unused	TBCLGRPx		used TBCLGRPx CNTLx		ITLx	Unused	TBS	SELx
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	
7	6	5	4	3	2	1	0	
IC	Эx	M	Сх	Unused	TBCLR	TBIE	TBIFG	
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	w-(0)	rw-(0)	rw-(0)	

Unused	Bit 15	Unused
TBCLGRP	Bit 14-13	TBCLx group
		00 Each TBCLx latch loads independently
		01 TBCL1+TBCL2 (TBCCR1 CLLDx bits control the update) TBCL3+TBCL4 (TBCCR3 CLLDx bits control the update) TBCL5+TBCL6 (TBCCR5 CLLDx bits control the update) TBCL0 independent
		TBCL1+TBCL2+TBCL3 (TBCCR1 CLLDx bits control the update) TBCL4+TBCL5+TBCL6 (TBCCR4 CLLDx bits control the update) TBCL0 independent
		TBCL0+TBCL1+TBCL2+TBCL3+TBCL4+TBCL5+TBCL6 (TBCCR1 CLLDx bits control the update)
CNTLx	Bits 12-11	Counter Length
		$00 16-bit, TBR_{(max)} = 0FFFFh$
		01 12-bit, $TBR_{(max)} = 0FFFh$
		10 10-bit, $TBR_{(max)} = 03FFh$
		11 8-bit, $TBR_{(max)} = 0FFh$
Unused	Bit 10	Unused
TBSSELx	Bits 9-8	Timer_B clock source select
		00 TBCLK
		01 ACLK
		10 SMCLK
		11 Inverted TBCLK
IDx	Bits 7-6	Input divider. These bits along with the IDEXx bits select the divider for the input clock.
		00 /1
		01 /2
		10 /4
		11 /8
MCx	Bits 5-4	Mode control. Setting $MCx = 00h$ when Timer_B is not in use conserves power.
		00 Stop mode: the timer is halted
		01 Up mode: the timer counts up to TBCL0
		10 Continuous mode: the timer counts up to the value set by TBCNTLx
		11 Up/down mode: the timer counts up to TBCL0 and down to 0000h
Unused	Bit 3	Unused
TBCLR	Bit 2	Timer_B clear. Setting this bit resets TBR, the TBCLK divider, and the count direction. The TBCLR bit is automatically reset and is always read as zero.
TBIE	Bit 1	Timer_B interrupt enable. This bit enables the TBIFG interrupt request.
		0 Interrupt disabled
		1 Interrupt enabled
TBIFG	Bit 0	Timer_B interrupt flag.
		0 No interrupt pending

1

Interrupt pending

Timer_B Registers www.ti.com

TBR, Timer_B Register

15	14	13	12	11	10	9	8			
	TBRx									
rw-(0)										
7	6	5	4	3	2	1	0			
	TBRx									
rw-(0)										

TBRx Bits 15-0 Timer_B register. The TBR register is the count of Timer_B.

www.ti.com Timer_B Registers

	Capture/Compa	are CO	_		1 .		_			
15	14		13	12	11	10	9	8		
	CMx			ISx	SCS	CLI		CAP		
rw-(0)	rw-(0)		rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)		
7	6		5	4	3	2	1	0		
	OUTMOD	x		CCIE	CCI	OUT	COV	CCIFG		
rw-(0)	rw-(0)		rw-(0)	rw-(0)	r	rw-(0)	rw-(0)	rw-(0)		
CMx	Bit 15-14	Captı	ure mode							
		00	No capture							
		01	Capture on ri	sing edge						
		10	Capture on fa	alling edge						
		11	Capture on b	oth rising and fall	ling edges					
CCISx	Bit 13-12	Captu	ure/compare in	_		CCRx input signal	. See the device-s	specific data		
		00	CCIxA							
		01	CCIxB							
		10	GND							
		11	V_{CC}							
scs	Bit 11	Sync		source. This bit	is used to synchro	onize the capture in	nput signal with th	e timer clock		
		0	Synchronize capture source. This bit is used to synchronize the capture input signal with the timer clock. O Asynchronous capture							
		1	Synchronous	capture						
CLLDx	Bit 10-9	Compare latch load. These bits select the compare latch load event.								
		00 TBCLx loads on write to TBCCRx								
		01		when TBR count						
		10								
		11		when TBR count		(
CAP	Bit 8		ure mode							
	2.1. 0	0 Compare mode								
		1	Capture mod							
OUTMODX	Bits 7-5		•		re not useful for T	BCL0 because EC	Ux = EQU0.			
		000	OUT bit value							
		001	Set							
		010	Toggle/reset							
		011	Set/reset							
		100	Toggle							
		101	Reset							
		110	Toggle/set							
		111	Reset/set							
CCIE	Bit 4			terrunt enable. Th	nis hit enables the	interrupt request of	of the correspondi	na COIFG fla		
JUIL	Dit 4	0 0	Interrupt disa		no bit chables the	miorrupi request (and corresponding	ng oon o na		
		1	Interrupt disa							
CI	Bit 3	'			alacted input sign	al can be read by t	hic hit			
OUT	Bit 2	Outo			-	al can be read by t				
JU 1	טונ ב		-	noue o, uns bu al	reduy controls the	state of the output	•			
		0	Output low							
COV	D:+ 4	1 Contr	Output high	hio hit indicates -	conture overfler	occurred COV	iot ha ragat ···!th -	offwore		
cov	Bit 1				capture overnow	occurred. COV mu	isi de l'eset with s	onware.		
		0		verflow occurred						
		1	Capture over	flow occurred						

Timer_B Registers www.ti.com

CCIFG

Bit 0

Capture/compare interrupt flag

0 No interrupt pending

1 Interrupt pending

TBIV, Timer_B Interrupt Vector Register

15	14	13	12	11	10	9	8
0	0	0	0	0	0	0	0
r0	r0	r0	r0	r0	r0	r0	r0
7	6	5	4	3	2	1	0
,			T	0		<u>'</u>	
0	0	0	0		TBIVx		0
r0	r0	rO	r0	r-(0)	r-(0)	r-(0)	r0

TBIVx Bits 15-0

Timer_B interrupt vector value

TBIV Contents	Interrupt Source	Interrupt Flag	Interrupt Priority
00h	No interrupt pending		
02h	Capture/compare 1	TBCCR1 CCIFG	Highest
04h	Capture/compare 2	TBCCR2 CCIFG	
06h	Capture/compare 3	TBCCR3 CCIFG	
08h	Capture/compare 4	TBCCR4 CCIFG	
0Ah	Capture/compare 5	TBCCR5 CCIFG	
0Ch	Capture/compare 6	TBCCR6 CCIFG	
0Eh	Timer overflow	TBIFG	Lowest

TBEX0, Timer_B Expansion Register 0

15	14	13	12	11	10	9	8
Unused							
r0							
7	6	5	4	3	2	1	0
Unused	Unused	Unused	Unused	Unused		IDEX	
rO	rO	rO	rO	rO	rw-(0)	rw-(0)	rw-(0)

Unused

Bits 15-3

Unused. Read only. Always read as 0.

IDEX

Bits 2-0

Input divider expansion. These bits along with the IDx bits select the divider for the input clock.

000 /1 001 /2 010 /3

011 /4

100 /5101 /6

110 /7

111 /8

Real-Time Clock (RTC_A)

The Real-Time Clock module provides clock counters with calendar mode, a flexible programmable alarm, and calibration. This chapter describes the Real-Time Clock (RTC_A) module. The RTC_A is implemented in the MSP430x5xx devices.

•	Topic		Page
	14.1	Real-Time Clock Introduction	376
	14.2	Real-Time Clock Operation	378
	14.3	Real-Time Clock Registers	383

14.1 Real-Time Clock Introduction

The Real-Time Clock module provides a clock with calendar that can also be configured as a general purpose counter.

Real-Time Clock features include:

- Configurable for Real-Time Clock mode or general purpose counter
- Provides seconds, minutes, hours, day of week, day of month, month and year in calender mode.
- Interrupt capability.
- Selectable BCD or binary format in Real-Time Clock mode
- Programmable alarms in Real-Time Clock mode
- Calibration logic for time offset correction in Real-Time clock mode

The Real-Time Clock block diagram is shown in Figure 14-1.

Note: Real-Time Clock Initialization

Most Real-Time Clock module registers have no initial condition. These registers must be configured by user software before use.

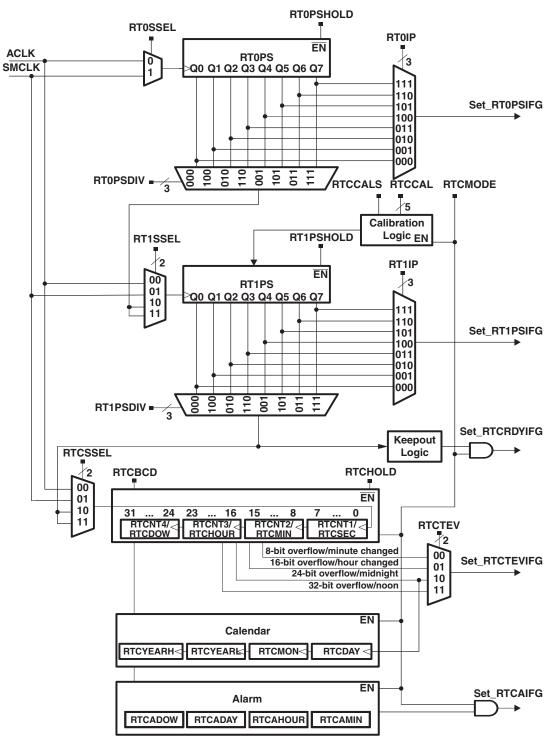


Figure 14-1. Real-Time Clock

14.2 Real-Time Clock Operation

The Real-Time Clock module can be configured as a real-time clock with calendar function or as a 32-bit general purpose counter with the RTCMODE bit

14.2.1 Counter Mode

Counter mode is selected when RTCMODE is reset. In this mode, a 32-bit counter is provided that is directly accessible by software. Switching from calendar mode to counter mode resets the count value (RTCNT1, RTCNT2, RTCNT3, RTCNT4), as well as, the prescale counters (RT0PS, RT1PS).

The clock to increment the counter can be sourced from ACLK, SMCLK, or prescaled versions of ACLK or SMCLK. Prescaled versions of ACLK or SMCLK are sourced from the prescale dividers, RT0PS and RT1PS. RT0PS and RT1PS output /2, /4, /8, 16, /32, /64, /128, /256 versions of ACLK and SMCLK, respectively. The output of RT0PS can be cascaded with RT1PS. The cascaded output can be used as a clock source input to the 32-bit counter.

Four individual 8-bit counters are cascaded to provide the 32-bit counter. This provides 8-bit, 16-bit, 24-bit, or 32-bit overflow intervals of the counter clock. The RTCTEV bits select the respective trigger event. An RTCTEV event can trigger an interrupt by setting the RTCTEVIE bit. Each counter RTCNT1 through RTCNT4 is individually accessible and may be written to.

RT0PS and RT1PS can be configured as two 8-bit counters or cascaded into a single 16-bit counter. RT0PS and RT1PS can be halted on an individual basis by setting their respective RT0PSHOLD and RT1PSHOLD bits. When RT0PS is cascaded with RT1PS, setting RT0PSHOLD will cause both RT0PS and RT1PS to be halted. The 32-bit counter can be halted several ways depending on the configuration. If the 32-bit counter is sourced directly from ACLK or SMCLK, it can be halted by setting RTCHOLD. If it is sourced from the output of RT1PS, it can be halted by setting RT1PSHOLD or RTCHOLD. Finally, if it is sourced from the cascaded outputs of RT0PS and RT1PS, it can be halted by setting RT0PSHOLD, RT1PSHOLD, or RTCHOLD.

Note: Accessing the RTCNTx registers

When the counter clock is asynchronous to the CPU clock, any read from any RTCNTx, RT0PS, or RT1PS registers should occur while the counter is not operating. Otherwise, the results may be unpredictable. Alternatively, the counter may be read multiple times while operating, and a majority vote taken in software to determine the correct reading. Anywrite to any RTCNTx, RT0PS, or RT1PS registers takes effect immediately.

14.2.2 Calendar Mode

Calendar mode is selected when RTCMODE is set. In calendar mode, the Real-Time Clock module provides seconds, minutes, hours, day of week, day of month, month, and year in selectable BCD or hexadecimal format. The calendar includes a leap year algorithm that considers all years evenly divisible by 4 as leap years. This algorithm is accurate from the year 1901 through 2099.

14.2.2.1 Real-Time Clock and Prescale Dividers

The prescale dividers, RT0PS and RT1PS are automatically configured to provide a one second clock interval for the Real-Time Clock. RT0PS is sourced from ACLK. ACLK must be set to 32768 Hz, nominal for proper Real-Time Clock calendar operation. RT1PS is cascaded with the output ACLK/256 of RT0PS. The Real-Time Clock is sourced with the /128 output of RT1PS, thereby providing the required one second interval. Switching from counter to calendar mode clears the seconds, minutes, hours, day-of-week, and year counts and sets day-of-month and month counts to 1. In addition, the RT0PS and RT1PS are cleared.

When RTCBCD = 1, BCD format is selected for the calendar registers. The format must be selected before the time is set. Changing the state of RTCBCD clears the seconds, minutes, hours, day-of-week, and year counts and sets day-of-month and month counts to 1. In addition, RT0PS and RT1PS are cleared.

In calendar mode, the RT0SSEL, RT1SSEL, RT0PSDIV, RT1PSDIV, RT0PSHOLD, RT1PSHOLD, and RTCSSEL bits are do not care. Setting RTCHOLD halts the real-time counters and prescale counters, RT0PS and RT1PS.

14.2.2.2 Real-Time Clock Alarm Function

The Real-Time Clock module provides for a flexible alarm system. There is a single, user programmable alarm that can be programmed based on the settings contained in the alarm registers for minutes, hours, day of week, and day of month. The user programmable alarm function is only available in calendar mode of operation.

Each alarm register contains an alarm enable bit, AE that can be used to enable the respective alarm register. By setting AE bits of the various alarm registers, a variety of alarm events can be generated.

For example, a user wishes to set an alarm every hour at 15 minutes past the hour i.e. 00:15:00, 01:15:00, 02:15:00, etc. This is possible by setting RTCAMIN to 15. By setting the AE bit of the RTCAMIN, and clearing all other AE bits of the alarm registers, the alarm will be enabled. When enabled, the AF will be set when the count transitions from 00:14:59 to 00:15:00, 01:14:59 to 01:15:00, 02:14:59 to 02:15:00, etc.

For example, a user wishes to set an alarm every day at 04:00:00. This is possible by setting RTCAHOUR to 4. By setting the AE bit of the RTCHOUR, and clearing all other AE bits of the alarm registers, the alarm will be enabled. When enabled, the AF will be set when the count transitions from 03:59:59 to 04:00:00.

For example, a user wishes to set an alarm for 06:30:00. RTCAHOUR would be set to 6 and RTCAMIN would be set to 30. By setting the AE bits of RTCAHOUR and RTCAMIN, the alarm will be enabled. Once enabled, the AF will be set when the time count transitions from 06:29:59 to 06:30:00. In this case, the alarm event will occur every day at 06:30:00.

For example, a user wishes to set an alarm every Tuesday at 06:30:00. RTCADOW would be set to 2, RTCAHOUR would be set to 6 and RTCAMIN would be set to 30. By setting the AE bits of RTCADOW, RTCAHOUR and RTCAMIN, the alarm will be enabled. Once enabled, the AF will be set when the time count transitions from 06:29:59 to 06:30:00 and the RTCDOW transitions from 1 to 2.

For example, a user wishes to set an alarm the fifth day of each month at 06:30:00. RTCADAY would be set to 5, RTCAHOUR would be set to 6 and RTCAMIN would be set to 30. By setting the AE bits of RTCADAY, RTCAHOUR and RTCAMIN, the alarm will be enabled. Once enabled, the AF will be set when the time count transitions from 06:29:59 to 06:30:00 and the RTCDAY equals 5.

Note: Invalid Alarm Settings

Invalid alarm settings are not checked via hardware. It is the user responsibility that valid alarm settings are entered.

Note: Invalid Time and Date Values

Writing of invalid date and/or time information or data values outside the legal ranges specified in the RTCSEC, RTCMIN, RTCHOUR, RTCDAY, RTCDOW, RTCYEARH, RTCYEARL, RTCAMIN, RTCAHOUR, RTCADAY, and RTCADOW registers can result in unpredictable behavior.

Note: Setting the Alarm

In order to prevent potential erroneous alarm conditions from occurring, the alarms should be disabled be clearing the RTCAIE, RTCAIFG, and AE bits prior to writing new time values to the RTC time registers.

14.2.2.3 Reading or Writing Real-Time Clock Registers in Calendar Mode

Since the system clock may in fact be asynchronous to the Real-Time Clock clock source, special care must be used when accessing the Real-Time Clock registers.

In calendar mode, the real-time clock registers are updated once per second. In order to prevent reading any real-time clock register at the time of an update that could result in an invalid time being read, a keepout window is provided. The keepout window is centered approximately - 128/32768 seconds around the update transition. The read only RTCRDY bit is reset during the keepout window period and set outside the keepout the window period. Any read of the clock registers while RTCRDY is reset, is considered to be potentially invalid, and the time read should be ignored.

An easy way to safely read the real-time clock registers is to utilize the RTCRDYIFG interrupt flag. Setting RTCRDYIE enables the RTCRDYIFG interrupt. Once enabled, an interrupt will be generated based on the rising edge of the RTCRDY bit, causing the RTCRDYIFG to be set. At this point, the application has nearly a complete second to safely read any or all of the real-time clock registers. This synchronization process prevents reading the time value during transition. The RTCRDYIFG flag is reset automatically when the interrupt is serviced, or can be reset with software.

In counter mode, the RTCRDY bit remains reset. The RTCRDYIE is a do not care and the RTCRDYIFG remains reset.

Note: Reading or Writing Real-Time Clock Registers

When the counter clock is asynchronous to the CPUclock, any read from any RTCSEC, RTCMIN, RTCHOUR, RTCDOW, RTCDAY, RTCMON, RTCYEARL, RTCYEARH registers while the RTCRDY is resetmay result in invalid data being read. To safely read the counting registers, either polling of the RTCRDY bit or the synchronization procedure described above can be used. Alternatively, the counter register can be read multiple times while operating, and a majority vote taken in software to determine the correct reading. Reading theRT0PS andRT1PS can only be handled by reading the registers multiple times and a majority vote taken in software to determine the correct reading or by halting the counters.

Any write to any counting register takes effect immediately. However, the clock is stopped during the write. In addition, RT0PS and RT1PS registers are reset. This could result in losing up to one second during a write. Writing of data outside the legal ranges or invalid time stamp combinations results in unpredictable behavior.

14.2.3 Real-Time Clock Interrupts

The Real-Time Clock module has five interrupt sources available, each with independent enables and flags.

14.2.3.1 Real-Time Clock Interrupts in Calendar Mode

In calendar mode, five sources for interrupts are available, namely RT0PSIFG, RT1PSIFG, RTCRDYIFG, RTCTEVIFG, and RTCAIFG. These flags are prioritized and combined to source a single interrupt vector. The interrupt vector register RTCIV is used to determine which flag requested an interrupt.

The highest priority enabled interrupt generates a number in the RTCIV register (see register description). This number can be evaluated or added to the program counter to automatically enter the appropriate software routine. Disabled RTC interrupts do not affect the RTCIV value.

Any access, read or write, of the RTCIV register automatically resets the highest pending interrupt flag. If another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt. In addition, all flags can be cleared via software.

The user programmable alarm event sources the real-time clock interrupt, RTCAIFG. Setting the RTCAIE enables the interrupt. In addition to the user programmable alarm, The Real-Time Clock Module provides for an interval alarm that sources real-time clock interrupt, RTCTEVIFG. The interval alarm can be selected to cause an alarm event when RTCMIN changed, RTCHOUR changed, every day at midnight (00:00:00), or every day at noon (12:00:00). The event is selectable with the RTCTEV bits Setting the RTCTEVIE bit enables the interrupt.

www.ti.com RTCIV Software Example

The RTCRDY bit sources the real-time clock interrupt, RTCRDYIFG and is useful in synchronizing the read of time registers with the system clock. Setting the RTCRDYIE bit enables the interrupt.

The RT0PSIFG can be used to generate interrupt intervals selectable by the RT0IP bits. In calendar mode, RT0PS is sourced with ACLK at 32768 Hz, so intervals of 16384 Hz, 8192 Hz, 4096 Hz, 2048 Hz, 1024 Hz, 512 Hz, 256 Hz, or 128 Hz are possible. Setting the RT0PSIE bit enables the interrupt.

The RT1PSIFG can be used to generate interrupt intervals selectable by the RT1IP bits. In calendar mode, RT1PS is sourced with the output of RT0PS, which is 128Hz (32768/256 Hz). Therefore, intervals of 64 Hz, 32 Hz, 16 Hz, 8 Hz, 4 Hz, 2 Hz, 1 Hz, or 0.5 Hz are possible. Setting the RT1PSIE bit enables the interrupt.

14.2.3.2 Real-Time Clock Interrupts in Counter Mode

In counter mode, a three interrupt sources are available, namely RT0PSIFG, RT1PSIFG, and RTCTEVIFG. The RTCAIFG and RTCRDYIFG are cleared. RTCRDYIE and RTCAIE are do not care.

The RT0PSIFG can be used to generate interrupt intervals selectable by the RT0IP bits. In counter mode, RT0PS is sourced with ACLK or SMCLK so divide ratios of /2, /4, /8, /16, /32, /64, /128, /256 of the respective clock source are possible. Setting the RT0PSIE bit enables the interrupt.

The RT1PSIFG can be used to generate interrupt intervals selectable by the RT1IP bits. In counter mode, RT1PS is sourced with ACLK, SMCLK, or the output of RT0PS so divide ratios of /2, /4, /8, /16, /32, /64, /128, /256 of the respective clock source are possible. Setting the RT1PSIE bit enables the interrupt.

The Real-Time Clock Module provides for an interval timer that sources real-time clock interrupt, RTCTEVIFG. The interval timer can be selected to cause an interrupt event when an 8-bit, 16-bit, 24-bit, or 32-bit overflow occurs within the 32-bit counter. The event is selectable with the RTCTEV bits Setting the RTCTEVIE bit enables the interrupt.

RTCIV Software Example

The following software example shows the recommended use of RTCIV and the handling overhead. The RTCIV value is added to the PC to automatically jump to the appropriate routine.

The numbers at the right margin show the necessary CPU cycles for each instruction. The software overhead for different interrupt sources includes interrupt latency and return-from-interrupt cycles, but not the task handling itself.

; Interrupt handler for RTC interrupt flags.

```
RTC_HND
                            ; Interrupt latency
        ADD &RTCIV,PC
                            ; Add offset to Jump table
        RETI
                             ; Vector 0: No interrupt
                                                         5
        JMP
             RTCRDYIFG_HND ; Vector 2: RTCRDYIFG
        JMP
             RTCTEVIFG_HND ; Vector 4: RTCTEVIFG
             RTCAIFG
                            ; Vector 6: RTCAIFG
                                                         5
        TMP
             RT0PSIFG
                            ; Vector 8: RTOPSIFG
                                                         5
        JMP
             RT1PSIFG
                                                         5
                            ; Vector A: RT1PSIFG
        JMP
        RETI
                             ; Vector C: Reserved
RTCRDYIFG_HND
                             ; Vector 2: RTCRDYIFG Flag
                              ; Task starts here
         t.o
                                                          5
        RETI
RTCTEVIFG_HND
                             ; Vector 4: RTCTEVIFG
         t.o
                              ; Task starts here
        RETI
                             ; Back to main program
RTCAIFG_HND
                             ; Vector 6: RTCAIFG
                              ; Task starts here
                             ; Vector 8: RTOPSIFG
RT0PSIFG_HND
```


to	; Task starts here
RT1PSIFG_HND	; Vector A: RT1PSIFG
to	; Task starts here

14.2.4 Real-Time Clock Calibration

The Real-Time Clock module has calibration logic that allows for adjusting the crystal frequency in +4 ppm or -2 ppm steps allowing for higher time keeping accuracy from standard crystals.

The RTCCALx bits are used to adjust the frequency. When RTCCALS is set, each RTCCALx LSB will cause a +4 ppm adjustment. When RTCCALS is cleared, each RTCCALx LSB will cause a -2 ppm adjustment.

To calibrate the frequency, the RTCCLK output signal is available at a pin. The RTCCALF bits can be used to select the frequency rate of the output signal. During calibration, the RTCCLK can be measured. The result of this measurement can be applied to the RTCCALS and RTCCALx bits to effectively reduce the initial offset of the clock. For example, say the RTCCLK is output at a frequency of 512 Hz. The measured RTCCLK is 511.9658 Hz. This frequency error is approximately 67 ppm too low. In order to increase the frequency by 67 ppm, RTCCALS would be set, and RTCCALx would be set to 17 (67/4).

In counter mode (RTCMODE = 0), the calibration logic is disabled.

Note: Calibration Output Frequency

The 512-Hz and 256-Hz output frequencies observed at the RTCCLK pin are not effected by changes in the calibration settings. The 1-Hz output frequency is affected by changes in the calibration settings.

14.3 Real-Time Clock Registers

The Real-Time Clock module registers are listed in and Table 14-1. Some of the registers can be accessed word-wise as shown in Table 14-2. The base register for the Real-Time Clock module registers can be found in the device specific data sheet. The address offsets are given in Table 14-1 and Table 14-2.

Table 14-1. Real-Time Clock Registers

Register	Short Form	Register Type	Address Offset	Initial State
Real-Time Clock control register 0	RTCCTL0	Read/write	00h	00h
Real-Time Clock control register 1	RTCCTL1	Read/write	01h	40h
Real-Time Clock control register 2	RTCCTL2	Read/write	02h	00h
Real-Time Clock control register 3	RTCCTL3	Read/write	03h	00h
Real-Time Prescale Timer 0 control register	RTCPS0CTL	Read/write	08h	10h
Real-Time Prescale Timer 1 control register	RTCPS1CTL	Read/write	0Ah	10h
Real-Time Prescale Timer 0	RTCPS0	Read/write	0Ch	Unchanged
Real-Time Prescale Timer 1	RTCPS1	Read/write	0Dh	Unchanged
Real Time Clock Interrupt vector	RTCIV	Read	0Eh	00h
Real-Time Clock Second Real-Time Counter register 1	RTCSEC/RTCNT1	Read/write	10h	Unchanged
Real-Time Clock Minute Real-Time Counter register 2	RTCMIN/RTCNT2	Read/write	11h	Unchanged
Real-Time Clock Hour Real-Time Counter register 3	RTCHOUR/RTCNT3	Read/write	12h	Unchanged
Real-Time Clock Day of Week Real-Time Counter register 4	RTCDOW/RTCNT4	Read/write	13h	Unchanged
Real-Time Clock Day of Month	RTCDAY	Read/write	14h	Unchanged
Real-Time Clock Month	RTCMON	Read/write	15h	Unchanged
Real-Time Clock Year (Low Byte)	RTCYEARL	Read/write	16h	Unchanged
Real-Time Clock Year (High Byte)	RTCYEARH	Read/write	17h	Unchanged
Real-Time Clock Minute Alarm	RTCAMIN	Read/write	18h	Unchanged
Real-Time Clock Hour Alarm	RTCAHOUR	Read/write	19h	Unchanged
Real-Time Clock Day of Week Alarm	RTCADOW	Read/write	1Ah	Unchanged
Real-Time Clock Day of Month Alarm	RTCADAY	Read/write	1Bh	Unchanged

Table 14-2. Word Access to Registers in Counter Mode

Word Register	Short Form	High-Byte Register	Low-Byte Register	Address Offset
Real-Time control registers 0, 1	RTCCTL01	RTCCTL1	RTCCTL0	00h
Real-Time control registers 2, 3	RTCCTL23	RTCCTL3	RTCCTL2	02h
Real-Time Prescale Timer 0 control	RTCPS0CTL	RTCPS0CTLH	RTCPS0CTLL	08h
Real-Time Prescale Timer 1 control	RTCPS1CTL	RTCPS1CTLH	RTCPS1CTLL	0Ah
Real-Time Prescale Timer	RTCPS	RTCPS1	RTCPS0	0Ch
Real Time Clock Interrupt vector	RTCIV			0Eh
Real-Time Clock Time 0 Real-Time Counter registers 1, 2	RTCTIM0/RTCNT12	RTCMIN/ RTCNT2	RTCSEC/ RTCNT1	10h
Real-Timer Clock Time 1 Real-Time Counter registers 3, 4	RTCTIM1/RTCNT34	RTCDOW/ RTCNT4	RTCHOUR/ RTCNT3	12h
Real-Timer Clock Date	RTCDATE	RTCMON	RTCDAY	14h
Real-Timer Clock Year	RTCYEAR	RTCYEARH	RTCYEARL	16h
Real-Timer Clock Alarm min/hour	RTCAMINHR	RTCAHOUR	RTCAMIN	18h
Real-Timer Clock Alarm day of week/day	RTCADOWDAY	RTCADAY	RTCADOW	1Ah

RTCCTL0, Real-Time Clock Control Register 0

7	6	į	5	4	3	2	1	0		
Reserved	RTCTEVIE	RTC	CAIE	RTCRDYIE	Reserved	RTCTEVIFG	RTCAIFG	RTCRDYIFG		
rO	rw-0	rw	/- 0	rw-0	r0	rw-(0)	rw-(0)	rw-(0)		
	D.: -									
Reserved	Bit 7		eserved. Always read as 0.							
RTCTEVIE	Bit 6	Real-tim	eal-time clock time event interrupt enable							
		0	Interrupt not enabled							
		1	Interrupt	enabled						
RTCAIE	Bit 5	Real-time	e clock a	larm interrupt ena	ble. This bit rema	ins cleared when i	n counter mode (RTCMODE = 0).		
		0	Interrupt	not enabled						
		1	Interrupt	enabled						
RTCRDYIE	Bit 4	Real-time	e clock a	larm interrupt ena	ble					
		0	Interrupt	not enabled						
		1	Interrupt	enabled						
Reserved	Bit 3	Reserve	d. Always	s read as 0.						
RTCTEVIFG	Bit 2	Real-time	e clock ti	me event flag						
		0	No time e	event occurred.						
		1	Time eve	nt occurred.						
RTCAIFG	Bit 1	Real-time	e clock a	larm flag. This bit	remains cleared	when in counter me	ode (RTCMODE	= 0).		
		0	No time e	event occurred.						
		1	Time eve	nt occurred.						
RTCRDYIFG	Bit 0	Real-time	e clock a	larm flag						
		0	RTC can	not be read safel	у					
		1	RTC can	be read safely						

RTCCTL1, Real-Time Clock Control Register 1

7	6		5	4	3	2	1	0		
RTCBCD	RTCHOLD	RT	CMODE	RTCRDY	RT	RTCSSEL		CTEV		
rw-(0)	rw-(1)		rw-(0)	r-(0)	rw-0	rw-0	rw-(0)	rw-(0)		
RTCBCD	Bit 7	Real-time clock BCD select. Selects BCD counting for real-time clock. Applies to calendar mode (RTCMODE = 1) only - setting will be ignored in counter mode. Changing this bit will clear seconds, minutes, hours, day of week, and year are to 0 and sets day of month and month to 1. The real-time clock registers need to be set by software afterwards.								
		0	Binary/hexadecimal code selected							
		1	BCD (Bir	ary Coded Decim	nal) code selecte	ed				
RTCHOLD	Bit 6	Real-t	time clock h	old						
		0	Real-Tim	e Clock (32-bit co	unter or calend	ar mode) is operatio	nal			
		1	(RTCMO		dar is stopped a	e 32-bit counter is sto as well as the Presco ot care.				
RTCMODE	Bit 5	Real-t	time clock m	node						
		0	32-bit cou	unter mode						
		1	clock/cou week, an	nter registers. Sw d year are to 0 ar e set by software	vitching to calen nd sets day of m	r and calendar mode dar mode clears sec onth and month to 1 e Basic Timer count	conds, minutes, he cal-time cl	ours, day of lock registers		
RTCRDY	Bit 4	Real-t	time clock re	eady						
		0	RTC time	values in transiti	on (calendar mo	ode only).				
		1				r mode only)This bit e only). In counter m				
RTCSSEL	Bits 3-2					source to the RTC/3 ock input is automatic				
		00	ACLK							
		01	SMCLK							
		10	Output fro	om RT1PS						
		11	Output fro	om RT1PS						
RTCTEV	Bits 1-0	Real-t	time clock ti	me event						
			RTC N	lode	RTCTEVx	Interrupt	Interval	- -		
		Count	ter Mode (R	TCMODE = 0)	00	8-bit overflow				
					01	16-bit overflow				
					10	24-bit overflow				
					11	32-bit overflow		_		

RTC Mode	RTCTEVx	Interrupt Interval
Counter Mode (RTCMODE = 0)	00	8-bit overflow
	01	16-bit overflow
	10	24-bit overflow
	11	32-bit overflow
Calendar Mode (RTCMODE = 1)	00	Minute changed
	01	Hour changed
	10	Every day at midnight (00:00)
	11	Every day at noon (12:00)

RTCCTL2,	Real-Time	Clock	Control	Register 2)
----------	-----------	-------	---------	------------	---

7	6	5	4	3	2	1	0			
RTCCALS	Reserved		RTCCAL							
rw-(0)	r0	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)			
RTCCALS	Bit 7	Real-time clock of	eal-time clock calibration sign							
		0 Frequenc	cy adjusted down							
		1 Frequenc	cy adjusted up							
Reserved	Bit 6	Reserved. Alway	s read as 0.							
RTCCAL	Bits 5-0		Real-time clock calibration bits Each LSB represents approximately +4 ppm (RTCCALS = 1) or a -2 ppm (RTCCALS = 0) adjustment in frequency.							

RTCCTL3, Real-Time Clock Control Register 3

7	6		5 4	3	2	1	0		
	Reserved								
rO	rO		r0 r0	r0	r0	rw-0	rw-0		
Reserved	Bits 7-2	Reserved. Always read as 0.							
RTCCALF	Bits 1-0	Selects configu	me clock calibration freque s frequency output to RTCC ured for the peripheral mod is low and the RTCCALF bi	CLK pin for calibrati ule function. The R					
		00	No frequency output to R	TCCLK pin					
		01	512 Hz						
		10	256 Hz						

RTCNT1, RTC Counter Register 1, Counter Mode

7	6	5	4	3	2	1	0			
	RTCNT1x									
rw	rw	rw	rw	rw	rw	rw	rw			
RTCNT1x	Bits 7-0	The RTCNT1 reg	f RTCNT1							

RTCNT2, RTC Counter Register 2, Counter Mode

7	6	5	4	3	2	1	0		
	RTCNT2x								
rw	rw	rw	rw	rw	rw	rw	rw		

RTCNT2x Bits 7-0 The RTCNT2 register is the count of RTCNT2

RTCNT3, RTC Counter Register 3, Counter Mode

7	6	5	4	3	2	1	0	
	RTCNT3x							
rw	rw	rw	rw	rw	rw	rw	rw	

RTCNT3x Bits 7-0 The RTCNT3 register is the count of RTCNT3

CNT4 DTC	Country Bosis	otor 4 Countor	Mada				
		ster 4, Counter	1	2	0	4	0
7	6	5	4 RTCN	3 JT4x	2	1	0
rw	rw	rw	rw	rw	rw	rw	rw
CNT4x	Bits 7-0	The RTCNT4 reg	gister is the count o	f RTCNT4			
0050 DT0	0	: O-l	Mada with Have	d			
•	_	•	Mode with Hexa				
7	6 0	5	4	3	2	1	0
0 r-0	r-0	rw	rw	rw	ds (0 to 59)	rw	rw
. 0	. •					•••	
CSEC, RTC	Seconds Reg	ister, Calendar	Mode with BCD	Format			
7	6	5	4	3	2	1	0
0	•	onds – high digit				w digit (0 to 9)	
r-0	rw	rw	rw	rw	rw	rw	rw
CMIN, RTC	Minutes Regis	ster, Calendar N	lode with Hexad	ecimal Form	at		
7	6	5	4	3	2	1	0
0	0		11.	Minute	es (0 to 59)		
r-0	r-0	rw	rw	rw	rw	rw	rw
7 0	6	5	Mode with BCD F	ormat 3	2 Minutes lev	1	0
r-0	rw	utes – high digit (rw	rw	rw	rw	v digit (0 to 9)	rw
7	6	5	Mode with Hexad	decimal Form	2	1	0
0	0	0			Hours (0 to 24)		
r-0 CHOUR, R1	r-0 「C Hours Regi	r-0 ster, Calendar I	rw Mode with BCD I	rw Format	rw	rw	rw
7	6	5	4	3	2	1	0
0	0	Hours – hig	h digit (0 to 2)		Hours – low	digit (0 to 9)	
r-0	r-0	rw	rw	rw	rw	rw	rw
CDOW, RT	C Day of Week	Register, Cale	ndar Mode				
7	6	5	4	3	2	1	0
0	0	0	0	0	D	ay of week (0 to	6)
r-0	r-0	r-0	r-0	r-0	rw	rw	rw
CDAY, RTC	Day of Month	Register, Cale	ndar Mode with	Hexadecimal	Format		
7	6	5	4	3	2	1	0
0	0	0	I		month (1 to 28, 29	9, 30, 31)	
r-0	r-0	r-0	rw	rw	rw	rw	rw

•	6	5	4	3	2	1	0
0	0		nth – high digit 0 to 3)		Day of month –	low digit (0 to 9)	
r-0	r-0	rw	rw	rw	rw	rw	rw
ION, RTC	Month Regis	ter, Calendar	Mode with Hexaded	imal Form	at		
7	6	5	4	3	2	1	0
0	0	0	0		Month (1 to 12)	
r-0	r-0	r-0	r-0	rw	rw	rw	rw
ION, RTC	Month Regis	ter, Calendar	Mode with BCD For	rmat			
7	6	5	4	3	2	1	0
0	0	0	Month – high digit (0 to 3)		Month – low	digit (0 to 9)	
r-0	r-0	r-0	rw	rw	rw	rw	rw
EARL, RT	C Year Low-	Byte Register,	Calendar Mode wit	th Hexadeo	imal Format		
7	6	5	4	3	2	1	0
			Year – low byte	of 0 to 4095			
rw	rw	rw	rw	rw	rw	rw	rw
7	6	5	4	3	2 Voor lower	1 t digit (0 to 9)	0
rw	rw	de (0 to 9) rw	rw	rw	rw	rw	rw
						1 44	1 44
EARH, RT	C Year High	-Byte Register	, Calendar Mode w	ith Hexade	cimal Format		
	_						
7	6	5	4	3	2	1	0
0	0	0	0		Year – high by	te of 0 to 4095	
				rw			
o r-0 EARH, RT	0 r-0 C Year High	o r-0 -Byte Register	r-0 , Calendar Mode w	rw ith BCD Fo	Year – high by rw ormat	rte of 0 to 4095	rw
0 r-0 EARH, RT 7	o r-0 C Year High	o r-0 -Byte Register	r-0 , Calendar Mode w	rw	Year – high by rw ormat 2	rte of 0 to 4095 rw	rw
0 r-0 EARH, RT 7 0	0 r-0 C Year High- 6 Cen	r-0 -Byte Register 5 ntury – high digit	n-0 r-0 C Calendar Mode with the total of t	rw ith BCD Fo	Year – high by rw ormat 2 Century – lov	rw 1 v digit (0 to 9)	rw
o r-0 EARH, RT	o r-0 C Year High	o r-0 -Byte Register	r-0 , Calendar Mode w	rw ith BCD Fo	Year – high by rw ormat 2	rte of 0 to 4095 rw	rw 0
r-0 TEARH, RT TO r-0 AMIN, RTC	0 r-0 C Year High- 6 Cen rw	n-0 r-0 -Byte Register 5 tury – high digit	n-0 r-0 Calendar Mode with	rw ith BCD Fo 3 rw Hexadecir	Year – high by rw ormat 2 Century – lov rw nal Format	1 v digit (0 to 9)	rw 0
0 r-0 FEARH, RT 7 0 r-0	0 r-0 C Year High- 6 Cen rw Minutes Alar	r-0 -Byte Register 5 tury – high digit	r-0 , Calendar Mode w 4 a (0 to 4)	rw 3 rw Hexadecir	Year – high by rw ormat 2 Century – lov rw nal Format 2	rw 1 v digit (0 to 9)	0
0 r-0 EARH, RT 7 0 r-0	0 r-0 C Year High- 6 Cen rw Minutes Alar 6 0	o r-0 -Byte Register 5 ntury – high digit rw rm Register, C	n-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0 r	rw ith BCD Fo 3 rw Hexadecir 3 Minut	Year – high by rw rmat 2 Century – lov rw nal Format 2 es (0 to 59)	1 v digit (0 to 9)	rw 0 rw
0 r-0 EARH, RT 7 0 r-0	0 r-0 C Year High- 6 Cen rw Minutes Alar	n-0 r-0 -Byte Register 5 tury – high digit	n-0 r-0 Calendar Mode with	rw 3 rw Hexadecir	Year – high by rw ormat 2 Century – lov rw nal Format 2	1 v digit (0 to 9)	rw 0 rw
0 r-0 YEARH, RT 7 0 r-0 AMIN, RTC 7 AE rw-0	O r-0 CYear High- 6 Cen rw Minutes Alar 6 0 r-0	r-0 -Byte Register 5 tury – high digit rw rm Register, C	n-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0 r	rw ith BCD Fo 3 rw Hexadecir 3 Minut	Year – high by rw rmat 2 Century – lov rw nal Format 2 es (0 to 59)	1 v digit (0 to 9)	rw 0 rw

7	6	5	4	3	2	1	0
AE	0	0			Hours (0 to 24)		
rw-0	r-0	r-0	rw	rw	rw	rw	rw

RTCAHOUR, RTC Hours Alarm Register, Calendar Mode with BCD Format

7	6	5	4	3	2	1	0
AE	0	Hours – high	digit (0 to 2)		Hours - low	digit (0 to 9)	
rw-0	r-0	rw	rw	rw	rw	rw	rw

RTCADOW, RTC Day of Week Alarm Register, Calendar Mode

7	6	5	4	3	2	1	0
AE	0	0	0	0	D	ay of week (0 to	6)
rw-0	r-0	r-0	r-0	r-0	rw	rw	rw

RTCADAY, RTC Day of Month Alarm Register, Calendar Mode with Hexadecimal Format

7	6	5	4	3	2	1	0
AE	0	0	Day of month (1 to 28, 29, 30, 31)				
rw-0	r-0	r-0	rw	rw	rw	rw	rw

RTCADAY, RTC Day of Month Alarm Register, Calendar Mode with BCD Format

7	6	5	4	3	2	1	0
AE	0		h – high digit :o 3)		Day of month –	ow digit (0 to 9)	
rw-0	r-0	rw	rw	rw	rw	rw	rw

RTCPS0CTL, Prescale Timer 0 Control Registe	RTCPS0CTL,	Prescale	Timer 0	Control	Register
---	------------	----------	---------	---------	----------

15	14	13	12	11	10	9	8		
Reserved	RT0SSEL		RT0PSDIV		Reserved	Reserved	RT0PSHOLD		
r0	rw-0	rw-0	rw-0	rw-0	r0	rO	rw-1		
7	6	5	4	3	2	1	0		
Reserved	Reserved	Reserved		RT0IP		RT0PSIE	RT0PSIFG		
r0	r0	r0	rw-0	rw-0	rw-0	rw-0	rw-(0)		
Reserved	Bits 15	Reserved. Alwa	ys read as 0.						
RT0SSEL	Bits 14	Prescale Timer 0 clock source select. Selects clock input source to the RT0PS counter. In Real-T Clock calendar mode, these bits are do not care. RT0PS clock input is automatically set to ACLK RT1PS clock input is automatically set to the output of RT0PS.							
		0 ACLK							
		1 SMCLK							
RT0PSDIV	Bits 13-11	Clock calendar	mode, these bits a	re do not care for	e divide ratio of the RT0PS and RT1P tomatically set to /1	S. RT0PS clock of			
		000 /2							
		001 /4							
		010 /8							
		011 /16							
		100 /32							
		101 /64							
		110 /128							
		111 /256							
Reserved	Bits 10-9	Reserved. Alwa	ys read as 0.						
RT0PSHOLD	Bit 8	Prescale Timer 0 Hold. In Real-Time Clock calendar mode, this bit is do not care. RT0PS is the RTCHOLD bit.							
		0 RT0PS	is operational						
		1 RT0PS	is held						
Reserved	Bits 7-5	Reserved. Alwa	ys read as 0.						
RT0IP	Bits 4-2	Prescale Timer	0 interrupt interval						
		000 /2							
		001 /4							
		010 /8							
		011 /16							
		100 /32							
		101 /64							
		110 /128							
		111 /256							
RT0IE	Bit 1	Prescale Timer	0 interrupt enable						
		0 Interrup	t not enabled						
		1 Interrup	t enabled						
RT0IFG	Bit 0	Prescale Timer	0 interrupt flag						
		0 No time	event occurred						
		1 Time ev	ent occurred						

DTODO4OTI	D	T! 4	0	D!- (
RTCPS1CTL.	Prescale	ı imer i	Control	Redister

RTCPS1CTL, P	Prescale Time	r 1 Cor	trol Regi	ster	T				
15	14		13	12	11	10	9	8	
RT1SSEL		RT1PSDIV			Reserved	Reserved	RT1PSHOLD		
rw-0	rw-0		rw-0	rw-0	rw-0	r0	r0	rw-1	
7	6		5	4	3	2	1	0	
Reserved	Reserved	Re	served		RT1IP		RT1PSIE	RT1PSIFG	
r0	r0		r0	rw-0	rw-0	rw-0	rw-0	rw-(0)	
RT1SSEL	Bits 15-14	Clock calendar mode, these bits are do not care. RT1PS clock input is automatically set to the output of RT0PS.							
		00	ACLK						
		01	SMCLK						
		10	Output fr	om RT0PS					
		11	Output fr	om RT0PS					
RT1PSDIV	Bits 13-11	Bits 13-11 Prescale Timer 1 clock divide. These bits control the divide ratio of the RT0PS counter Clock calendar mode, these bits are do not care for RT0PS and RT1PS. RT0PS clock automatically set to /256. RT1PS clock output is automatically set to /128.							
		000	/2						
		001	/4						
		010	/8						
		011	/16						
		100	/32						
		101	/64						
		110	/128						
		111	/256						
Reserved	Bits 10-9	Reser	ved. Always	s read as 0.					
RT1PSHOLD	Bit 8	Prescale Timer 1 hold. In Real-Time Clock calendar mode, this bit is do the RTCHOLD bit.					o not care. RT1P	S is stopped via	
		0	RT1PS is	s operational					
		1	RT1PS is	s held					
Reserved	Bits 7-5	Reser	ved. Always	s read as 0.					
RT1IP	Bits 4-2	Prescale Timer 1 interrupt interval							
		000	/2						
		001	/4						
		010	/8						
		011	/16						
		100	/32						
		101	/64						
		110	/128						
		111	/256						
RT1PSIE	Bit 1	Presca	ale Timer 1	interrupt enable					
		0		not enabled					
		1	Interrupt						
RT1PSIFG	Bit 0		Prescale Timer 1 interrupt flag						
	•	0		event occurred					
		1		ent occurred					
		'	THILE EVE	an occurred					

7

0

r0

7	6	5	4	3	2	1	0
			RTO	PS			
rw	rw	rw	rw	rw	rw	rw	rw
RT0PS	Bits 7-0	Bits 7-0 Prescale Timer 0 counter value					
RTCPS1, Pres	scale Timer 1	Counter Register					
7	6	5	4	3	2	1	0
			RT1	IPS			-
rw	rw	rw	rw	rw	rw	rw	rw
RT1PS	Bits 7-0	Prescale Timer 1 counter value					
RTCIV, RTC II	nterrupt Vecto	r Register					
15	14	13	12	11	10	9	8
			0	0	0	0	0
0	0	0	0	U	U	U	U

RTCIVx Bits 15-0 RTC interrupt vector value

5

r0

r-(0)

6

0

r0

RTCIV Contents	Interrupt Source	Interrupt Flag	Interrupt Priority
00h	No interrupt pending		
02h	RTC ready	RTCRDYIFG	Highest
04h	RTC interval timer	RTCTEVIFG	
06h	RTC user alarm	RTCAIFG	
08h	RTC prescaler 0	RT0PSIFG	
0Ah	RTC prescaler 1	RT1PSIFG	
0Ch	Reserved		
0Eh	Reserved		
10h	Reserved		Lowest

3

r-(0)

RTCIVx

2

r-(0)

1

r-(0)

0

0

r0

Universal Serial Communication Interface, UART Mode

The 5xx universal serial communication interface (USCI) supports multiple serial communication modes with one hardware module. This chapter discusses the operation of the asynchronous UART mode.

Topic		Page
15.1	USCI Overview	396
15.2	USCI Introduction: UART Mode	397
15.3	USCI Operation: UART Mode	399
15.4	USCI Registers: UART Mode	416

USCI Overview www.ti.com

15.1 USCI Overview

The universal serial communication interface (USCI) modules support multiple serial communication modes. Different USCI modules support different modes. Each different USCI module is named with a different letter. For example, USCI_A is different from USCI_B, etc. If more than one identical USCI module is implemented on one device, those modules are named with incrementing numbers. For example, if one device has two USCI_A modules, they are named USCI_A0 and USCI_A1. See the device-specific datasheet to determine which USCI modules, if any, are implemented on which devices.

The USCI_Ax modules support:

- UART mode
- Pulse shaping for IrDA communications
- Automatic baud rate detection for LIN communications
- SPI mode

The USCI_Bx modules support:

- I²C mode
- SPI mode

15.2 USCI Introduction: UART Mode

In asynchronous mode, the USCI_Ax modules connect the MSP430 to an external system via two external pins, UCAxRXD and UCAxTXD. UART mode is selected when the UCSYNC bit is cleared.

UART mode features include:

- 7- or 8-bit data with odd, even, or non-parity
- Independent transmit and receive shift registers
- Separate transmit and receive buffer registers
- LSB-first or MSB-first data transmit and receive
- Built-in idle-line and address-bit communication protocols for multiprocessor systems
- Receiver start-edge detection for auto-wake up from LPMx modes
- Programmable baud rate with modulation for fractional baud rate support
- Status flags for error detection and suppression
- · Status flags for address detection
- Independent interrupt capability for receive and transmit

Figure 15-1 shows the USCI_Ax when configured for UART mode.

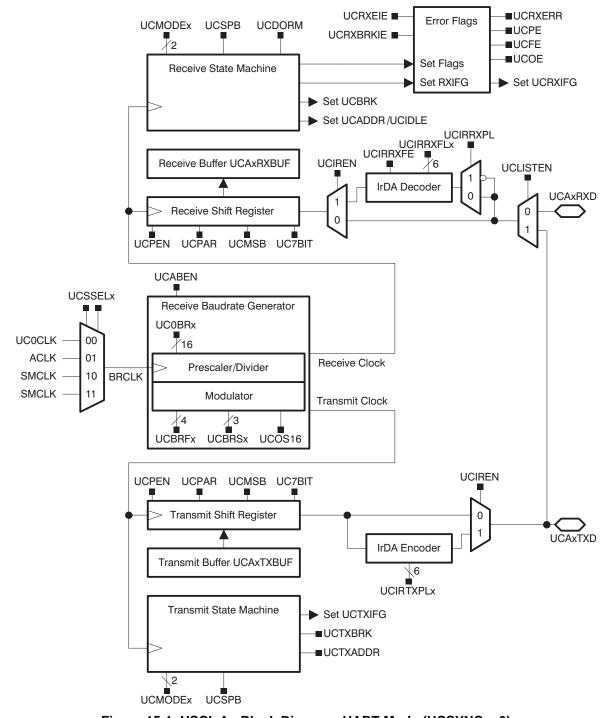


Figure 15-1. USCI_Ax Block Diagram: UART Mode (UCSYNC = 0)

15.3 USCI Operation: UART Mode

In UART mode, the USCI transmits and receives characters at a bit rate asynchronous to another device. Timing for each character is based on the selected baud rate of the USCI. The transmit and receive functions use the same baud rate frequency.

15.3.1 USCI Initialization and Reset

The USCI is reset by a PUC or by setting the UCSWRST bit. After a PUC, the UCSWRST bit is automatically set, keeping the USCI in a reset condition. When set, the UCSWRST bit resets the UCRXIE, UCTXIE, UCRXIFG, UCRXERR, UCBRK, UCPE, UCOE, UCFE, UCSTOE and UCBTOE bits and sets the UCTXIFG bit. Clearing UCSWRST releases the USCI for operation.

Note: Initializing or Re-Configuring the USCI Module

The recommended USCI initialization/re-configuration process is:

- 1. Set UCSWRST (BIS.B #UCSWRST, &UCAxCTL1)
- 2. Initialize all USCI registers with UCSWRST = 1 (including UCAxCTL1)
- 3. Configure ports.
- 4. Clear UCSWRST via software (BIC.B #UCSWRST, &UCAXCTL1)
- 5. Enable interrupts (optional) via UCRXIE and/or UCTXIE

15.3.2 Character Format

The UART character format, shown in Figure 15-2, consists of a start bit, seven or eight data bits, an even/odd/no parity bit, an address bit (address-bit mode), and one or two stop bits. The UCMSB bit controls the direction of the transfer and selects LSB or MSB first. LSB-first is typically required for UART communication.

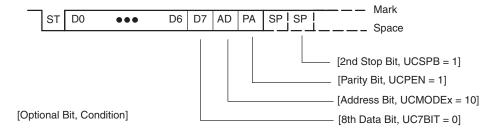


Figure 15-2. Character Format

15.3.3 Asynchronous Communication Formats

When two devices communicate asynchronously, no multiprocessor format is required for the protocol. When three or more devices communicate, the USCI supports the idle-line and address-bit multiprocessor communication formats.

Idle-Line Multiprocessor Format

When UCMODEx = 01, the idle-line multiprocessor format is selected. Blocks of data are separated by an idle time on the transmit or receive lines as shown in Figure 15-3. An idle receive line is detected when 10 or more continuous ones (marks) are received after the one or two stop bits of a character. The baud rate generator is switched off after reception of an idle line until the next start edge is detected. When an idle line is detected the UCIDLE bit is set.

The first character received after an idle period is an address character. The UCIDLE bit is used as an address tag for each block of characters. In idle-line multiprocessor format, this bit is set when a received character is an address

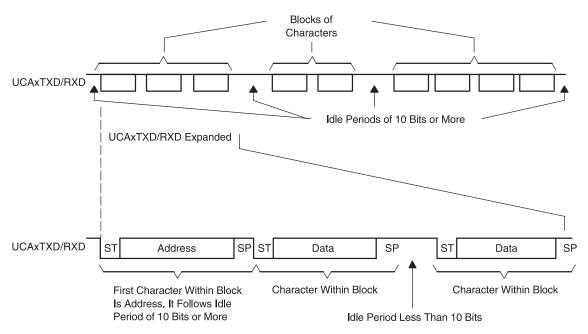


Figure 15-3. Idle-Line Format

The UCDORM bit is used to control data reception in the idle-line multiprocessor format. When UCDORM = 1, all non-address characters are assembled but not transferred into the UCAxRXBUF, and interrupts are not generated. When an address character is received, the character is transferred into UCAxRXBUF, UCRXIFG is set, and any applicable error flag is set when UCRXEIE = 1. When UCRXEIE = 0 and an address character is received but has a framing error or parity error, the character is not transferred into UCAxRXBUF and UCRXIFG is not set.

If an address is received, user software can validate the address and must reset UCDORM to continue receiving data. If UCDORM remains set, only address characters will be received. When UCDORM is cleared during the reception of a character the receive interrupt flag will be set after the reception completed. The UCDORM bit is not modified by the USCI hardware automatically.

For address transmission in idle-line multiprocessor format, a precise idle period can be generated by the USCI to generate address character identifiers on UCAxTXD. The double-buffered UCTXADDR flag indicates if the next character loaded into UCAxTXBUF is preceded by an idle line of 11 bits. UCTXADDR is automatically cleared when the start bit is generated.

Transmitting an Idle Frame

The following procedure sends out an idle frame to indicate an address character followed by associated data:

- 1. Set UCTXADDR, then write the address character to UCAxTXBUF. UCAxTXBUF must be ready for new data (UCTXIFG = 1).
 - This generates an idle period of exactly 11 bits followed by the address character. UCTXADDR is reset automatically when the address character is transferred from UCAxTXBUF into the shift register.
- 2. Write desired data characters to UCAxTXBUF. UCAxTXBUF must be ready for new data (UCTXIFG = 1).

The data written to UCAxTXBUF is transferred to the shift register and transmitted as soon as the shift register is ready for new data.

The idle-line time must not be exceeded between address and data transmission or between data transmissions. Otherwise, the transmitted data will be misinterpreted as an address.

Address-Bit Multiprocessor Format

When UCMODEx = 10, the address-bit multiprocessor format is selected. Each processed character contains an extra bit used as an address indicator shown in Figure 15-4. The first character in a block of characters carries a set address bit which indicates that the character is an address. The USCI UCADDR bit is set when a received character has its address bit set and is transferred to UCAxRXBUF.

The UCDORM bit is used to control data reception in the address-bit multiprocessor format. When UCDORM is set, data characters with address bit = 0 are assembled by the receiver but are not transferred to UCAxRXBUF and no interrupts are generated. When a character containing a set address bit is received, the character is transferred into UCAxRXBUF, UCRXIFG is set, and any applicable error flag is set when UCRXEIE = 1. When UCRXEIE = 0 and a character containing a set address bit is received, but has a framing error or parity error, the character is not transferred into UCAxRXBUF and UCRXIFG is not set.

If an address is received, user software can validate the address and must reset UCDORM to continue receiving data. If UCDORM remains set, only address characters with address bit = 1 will be received. The UCDORM bit is not modified by the USCI hardware automatically.

When UCDORM = 0 all received characters will set the receive interrupt flag UCRXIFG. If UCDORM is cleared during the reception of a character the receive interrupt flag will be set after the reception is completed.

For address transmission in address-bit multiprocessor mode, the address bit of a character is controlled by the UCTXADDR bit. The value of the UCTXADDR bit is loaded into the address bit of the character transferred from UCAXTXBUF to the transmit shift register. UCTXADDR is automatically cleared when the start bit is generated.

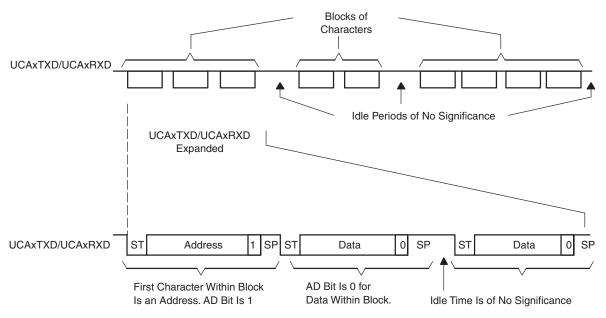


Figure 15-4. Address-Bit Multiprocessor Format

Break Reception and Generation

When UCMODEx = 00, 01, or 10 the receiver detects a break when all data, parity, and stop bits are low, regardless of the parity, address mode, or other character settings. When a break is detected, the UCBRK bit is set. If the break interrupt enable bit, UCBRKIE, is set, the receive interrupt flag UCRXIFG will also be set. In this case, the value in UCAxRXBUF is 0h since all data bits were zero.

To transmit a break set the UCTXBRK bit, then write 0h to UCAxTXBUF. UCAxTXBUF must be ready for new data (UCTXIFG = 1). This generates a break with all bits low. UCTXBRK is automatically cleared when the start bit is generated.

15.3.4 Automatic Baud Rate Detection

When UCMODEx = 11 UART mode with automatic baud rate detection is selected. For automatic baud rate detection, a data frame is preceded by a synchronization sequence that consists of a break and a synch field. A break is detected when 11 or more continuous zeros (spaces) are received. If the length of the break exceeds 21 bit times the break timeout error flag UCBTOE is set. The USCI can not transmit data while receiving the break/sync field. The synch field follows the break as shown in Figure 15-5.

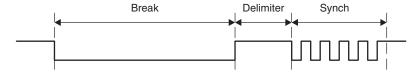


Figure 15-5. Auto Baud Rate Detection - Break/Synch Sequence

For LIN conformance the character format should be set to 8 data bits, LSB first, no parity and one stop bit. No address bit is available.

The synch field consists of the data 055h inside a byte field as shown in Figure 15-6. The synchronization is based on the time measurement between the first falling edge and the last falling edge of the pattern. The transmit baud rate generator is used for the measurement if automatic baud rate detection is enabled by setting UCABDEN. Otherwise, the pattern is received but not measured. The result of the measurement is transferred into the baud rate control registers UCAxBR0, UCAxBR1, and UCAxMCTL. If the length of the synch field exceeds the measurable time the synch timeout error flag UCSTOE is set.

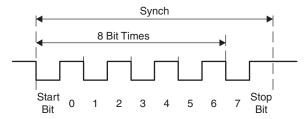


Figure 15-6. Auto Baud Rate Detection – Synch Field

The UCDORM bit is used to control data reception in this mode. When UCDORM is set, all characters are received but not transferred into the UCAxRXBUF, and interrupts are not generated. When a break/synch field is detected the UCBRK flag is set. The character following the break/synch field is transferred into UCAxRXBUF and the UCRXIFG interrupt flag is set. Any applicable error flag is also set. If the UCBRKIE bit is set, reception of the break/synch sets the UCRXIFG. The UCBRK bit is reset by user software or by reading the receive buffer UCAxRXBUF.

When a break/synch field is received, user software must reset UCDORM to continue receiving data. If UCDORM remains set, only the character after the next reception of a break/synch field will be received. The UCDORM bit is not modified by the USCI hardware automatically.

When UCDORM = 0 all received characters will set the receive interrupt flag UCRXIFG. If UCDORM is cleared during the reception of a character the receive interrupt flag will be set after the reception is complete.

The counter used to detect the baud rate is limited to 07FFFh (32767) counts. This means the minimum baud rate detectable is 488 Baud in oversampling mode and 30 Baud in low-frequency mode.

The automatic baud rate detection mode can be used in a full-duplex communication system with some restrictions. The USCI can not transmit data while receiving the break/sync field and if a 0h byte with framing error is received any data transmitted during this time gets corrupted. The latter case can be discovered by checking the received data and the UCFE bit.

Transmitting a Break/Synch Field

The following procedure transmits a break/synch field:

- 1. Set UCTXBRK with UMODEx = 11.
- 2. Write 055h to UCAxTXBUF. UCAxTXBUF must be ready for new data (UCTXIFG = 1). This generates a break field of 13 bits followed by a break delimiter and the synch character. The length of the break delimiter is controlled with the UCDELIMx bits. UCTXBRK is reset automatically when the synch character is transferred from UCAxTXBUF into the shift register.
- Write desired data characters to UCAxTXBUF. UCAxTXBUF must be ready for new data (UCTXIFG = 1).

The data written to UCAxTXBUF is transferred to the shift register and transmitted as soon as the shift register is ready for new data.

IrDA Decoding www.ti.com

15.3.5 IrDA Encoding and Decoding

When UCIREN is set the IrDA encoder and decoder are enabled and provide hardware bit shaping for IrDA communication.

15.3.5.1 IrDA Encoding

The encoder sends a pulse for every zero bit in the transmit bit stream coming from the UART as shown in Figure 15-7. The pulse duration is defined by UCIRTXPLx bits specifying the number of half clock periods of the clock selected by UCIRTXCLK.

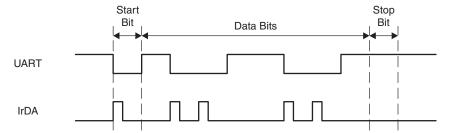


Figure 15-7. UART vs IrDA Data Format

To set the pulse time of 3/16 bit period required by the IrDA standard the BITCLK16 clock is selected with UCIRTXCLK = 1 and the pulse length is set to 6 half clock cycles with UCIRTXPLx = 6 - 1 = 5.

When UCIRTXCLK = 0, the pulse length t_{PULSE} is based on BRCLK and is calculated as follows:

$$UCIRTXPLx = t_{PULSE} \times 2 \times f_{BRCLK} - 1$$

When UCIRTXCLK = 0 the prescaler UCBRx must to be set to a value greater or equal to 5.

IrDA Decoding

The decoder detects high pulses when UCIRRXPL = 0. Otherwise it detects low pulses. In addition to the analog deglitch filter an additional programmable digital filter stage can be enabled by setting UCIRRXFE. When UCIRRXFE is set, only pulses longer than the programmed filter length are passed. Shorter pulses are discarded. The equation to program the filter length UCIRRXFLx is:

$$UCIRRXFLx = (t_{PULSE} - t_{WAKE}) \times 2 \times f_{BRCLK} - 4$$

where:

t_{PULSE} = Minimum receive pulse width

t_{WAKF} = Wake time from any low power mode. Zero when MSP430 is in active mode.

www.ti.com IrDA Decoding

15.3.6 Automatic Error Detection

Glitch suppression prevents the USCI from being accidentally started. Any pulse on UCAxRXD shorter than the deglitch time t_t (approximately 150 ns) will be ignored. See the device-specific datasheet for parameters.

When a low period on UCAxRXD exceeds t_t a majority vote is taken for the start bit. If the majority vote fails to detect a valid start bit the USCI halts character reception and waits for the next low period on UCAxRXD. The majority vote is also used for each bit in a character to prevent bit errors.

The USCI module automatically detects framing errors, parity errors, overrun errors, and break conditions when receiving characters. The bits UCFE, UCPE, UCOE, and UCBRK are set when their respective condition is detected. When the error flags UCFE, UCPE or UCOE are set, UCRXERR is also set. The error conditions are described in Table 15-1.

Error Condition	Error Flag	Description
Framing error	UCFE	A framing error occurs when a low stop bit is detected. When two stop bits are used, both stop bits are checked for framing error. When a framing error is detected, the UCFE bit is set.
Parity error	UCPE	A parity error is a mismatch between the number of 1s in a character and the value of the parity bit. When an address bit is included in the character, it is included in the parity calculation. When a parity error is detected, the UCPE bit is set.
Receive overrun	UCOE	An overrun error occurs when a character is loaded into UCAxRXBUF before the prior character has been read. When an overrun occurs, the UCOE bit is set.
Break condition	UCBRK	When not using automatic baud rate detection, a break is detected when all data, parity, and stop bits are low. When a break condition is detected, the UCBRK bit is set. A break condition can also set the interrupt flag UCRXIFG if the break interrupt enable UCBRKIE bit is set.

Table 15-1. Receive Error Conditions

When UCRXEIE = 0 and a framing error, or parity error is detected, no character is received into UCAxRXBUF. When UCRXEIE = 1, characters are received into UCAxRXBUF and any applicable error bit is set.

When any of the UCFE, UCPE, UCOE, UCBRK, or UCRXERR bit is set, the bit remains set until user software resets it or UCAxRXBUF is read. UCOE must be reset by reading UCAxRXBUF. Otherwise it will not function properly. To detect overflows reliably the following flow is recommended. After a character was received and UCAxRXIFG is set, first read UCAxSTAT to check the error flags including the overflow flag UCOE. Read UCAxRXBUF next. This will clear all error flags except UCOE if UCAxRXBUF was overwritten between the read access to UCAxSTAT and to UCAxRXBUF. So the UCOE flag should be checked after reading UCAxRXBUF to detect this condition. Note, in this case the UCRXERR flag is not set

15.3.7 USCI Receive Enable

The USCI module is enabled by clearing the UCSWRST bit and the receiver is ready and in an idle state. The receive baud rate generator is in a ready state but is not clocked nor producing any clocks.

The falling edge of the start bit enables the baud rate generator and the UART state machine checks for a valid start bit. If no valid start bit is detected the UART state machine returns to its idle state and the baud rate generator is turned off again. If a valid start bit is detected a character will be received.

When the idle-line multiprocessor mode is selected with UCMODEx = 01 the UART state machine checks for an idle line after receiving a character. If a start bit is detected another character is received. Otherwise the UCIDLE flag is set after 10 ones are received and the UART state machine returns to its idle state and the baud rate generator is turned off.

Receive Data Glitch Suppression

Glitch suppression prevents the USCI from being accidentally started. Any glitch on UCAxRXD shorter than the deglitch time t_t (approximately 150 ns) will be ignored by the USCI and further action will be initiated as shown in Figure 15-8. See the device-specific datasheet for parameters.

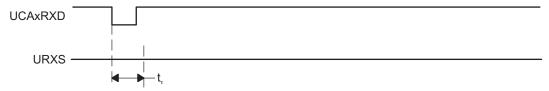


Figure 15-8. Glitch Suppression, USCI Receive Not Started

When a glitch is longer than t_{t_i} or a valid start bit occurs on UCAxRXD, the USCI receive operation is started and a majority vote is taken as shown in Figure 15-9. If the majority vote fails to detect a start bit the USCI halts character reception.

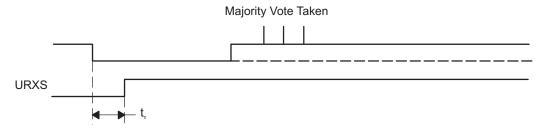


Figure 15-9. Glitch Suppression, USCI Activated

15.3.8 USCI Transmit Enable

The USCI module is enabled by clearing the UCSWRST bit and the transmitter is ready and in an idle state. The transmit baud rate generator is ready but is not clocked nor producing any clocks.

A transmission is initiated by writing data to UCAxTXBUF. When this occurs, the baud rate generator is enabled and the data in UCAxTXBUF is moved to the transmit shift register on the next BITCLK after the transmit shift register is empty. UCTXIFG is set when new data can be written into UCAxTXBUF.

Transmission continues as long as new data is available in UCAxTXBUF at the end of the previous byte transmission. If new data is not in UCAxTXBUF when the previous byte has transmitted, the transmitter returns to its idle state and the baud rate generator is turned off.

15.3.9 UART Baud Rate Generation

The USCI baud rate generator is capable of producing standard baud rates from non-standard source frequencies. It provides two modes of operation selected by the UCOS16 bit.

Low-Frequency Baud Rate Generation

The low-frequency mode is selected when UCOS16 = 0. This mode allows generation of baud rates from low frequency clock sources (e.g. 9600 baud from a 32768Hz crystal). By using a lower input frequency the power consumption of the module is reduced. Using this mode with higher frequencies and higher prescaler settings will cause the majority votes to be taken in an increasingly smaller window and thus decrease the benefit of the majority vote.

In low-frequency mode the baud rate generator uses one prescaler and one modulator to generate bit clock timing. This combination supports fractional divisors for baud rate generation. In this mode, the maximum USCI baud rate is one-third the UART source clock frequency BRCLK.

Timing for each bit is shown in Figure 15-10. For each bit received, a majority vote is taken to determine the bit value. These samples occur at the N/2 - 1/2, N/2, and N/2 + 1/2 BRCLK periods, where N is the number of BRCLKs per BITCLK.

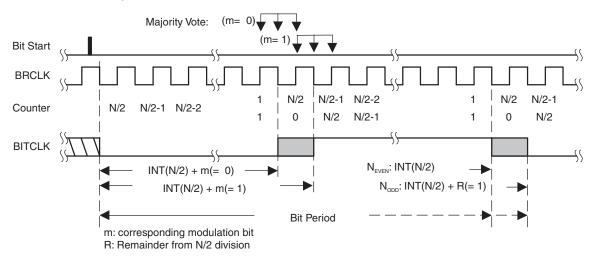


Figure 15-10. BITCLK Baud Rate Timing with UCOS16 = 0

Modulation is based on the UCBRSx setting as shown in Table 15-2. A 1 in the table indicates that m = 1 and the corresponding BITCLK period is one BRCLK period longer than a BITCLK period with m = 0. The modulation wraps around after 8 bits but restarts with each new start bit.

UCBRSx	Bit 0 (Start Bit)	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
0	0	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0
2	0	1	0	0	0	1	0	0
3	0	1	0	1	0	1	0	0
4	0	1	0	1	0	1	0	1
5	0	1	1	1	0	1	0	1
6	0	1	1	1	0	1	1	1
7	0	1	1	1	1	1	1	1

Table 15-2. BITCLK Modulation Pattern

Oversampling Baud Rate Generation

The oversampling mode is selected when UCOS16 = 1. This mode supports sampling a UART bit stream with higher input clock frequencies. This results in majority votes that are always 1/16 of a bit clock period apart. This mode also easily supports IrDA pulses with a 3/16 bit-time when the IrDA encoder and decoder are enabled.

This mode uses one prescaler and one modulator to generate the BITCLK16 clock that is 16 times faster than the BITCLK. An additional divider and modulator stage generates BITCLK from BITCLK16. This combination supports fractional divisions of both BITCLK16 and BITCLK for baud rate generation. In this mode, the maximum USCI baud rate is 1/16 the UART source clock frequency BRCLK. When UCBRx is set to 0 or 1 the first prescaler and modulator stage is bypassed and BRCLK is equal to BITCLK16 - in this case no modulation for the BITCLK16 is possible and thus the UCBRFx bits are ignored.

Modulation for BITCLK16 is based on the UCBRFx setting as shown in Table 15-3. A 1 in the table indicates that the corresponding BITCLK16 period is one BRCLK period longer than the periods m=0. The modulation restarts with each new bit timing.

Modulation for BITCLK is based on the UCBRSx setting as shown in Table 15-2 as previously described.

No. of BITCLK16 Clocks after last falling BITCLK edge **UCBRFx** 00h 01h 02h 03h 04h n 05h 06h 07h 08h 09h O n 0Ah 0Bh 0Ch 0Dh 0Eh 0Fh

Table 15-3. BITCLK16 Modulation Pattern

15.3.10 Setting a Baud Rate

For a given BRCLK clock source, the baud rate used determines the required division factor N:

$$N = f_{BRCLK}/Baudrate$$

The division factor N is often a non-integer value thus at least one divider and one modulator stage is used to meet the factor as closely as possible.

If N is equal or greater than 16 the oversampling baud rate generation mode can be chosen by setting UCOS16.

Low-Frequency Baud Rate Mode Setting

In the low-frequency mode, the integer portion of the divisor is realized by the prescaler:

$$UCBRx = INT(N)$$

and the fractional portion is realized by the modulator with the following nominal formula:

UCBRSx = round((
$$N - INT(N)$$
) × 8)

Incrementing or decrementing the UCBRSx setting by one count may give a lower maximum bit error for any given bit. To determine if this is the case, a detailed error calculation must be performed for each bit for each UCBRSx setting.

Oversampling Baud Rate Mode Setting

In the oversampling mode the prescaler is set to:

$$UCBRx = INT(N/16)$$

and the first stage modulator is set to:

UCBRFx = round(
$$((N/16) - INT(N/16)) \times 16)$$

When greater accuracy is required, the UCBRSx modulator can also be implemented with values from 0 to 7. To find the setting that gives the lowest maximum bit error rate for any given bit, a detailed error calculation must be performed for all settings of UCBRSx from 0 to 7 with the initial UCBRFx setting and with the UCBRFx setting incremented and decremented by one.

15.3.11 Transmit Bit Timing

The timing for each character is the sum of the individual bit timings. Using the modulation features of the baud rate generator reduces the cumulative bit error. The individual bit error can be calculated using the following steps.

Low-Frequency Baud Rate Mode Bit Timing

In low-frequency mode, calculate the length of bit i T_{bit.TX}[i] based on the UCBRx and UCBRSx settings:

$$T_{bit,TX}[i] = (1/f_{BRCLK})(UCBRx + m_{UCBRSx}[i])$$

where:

 $m_{UCBRSx}[i] = Modulation of bit i from Table 15-2$

Oversampling Baud Rate Mode Bit Timing

In oversampling baud rate mode calculate the length of bit i $T_{bit,TX}[i]$ based on the baud rate generator UCBRx, UCBRFx and UCBRSx settings:

$$T_{\text{bit,TX}}[i] = \frac{1}{f_{\text{BRCLK}}} \left((16 + m_{\text{UCBRSx}}[i]) \times \text{UCBRx} + \sum_{j=0}^{15} m_{\text{UCBRFx}}[j] \right)$$

where:

$$\sum_{j=0}^{15} m_{\text{UCBRFx}}[j] = \text{Sum of ones from the corresponding row in Table 15-3}$$

$$m_{\text{UCBRSx}}[i] = \text{Modulation of bit i from Table 15-2}$$

m_{UCBRSx}[i] = Modulation of bit i from Table 15-2

This results in an end-of-bit time $t_{bit,TX}[i]$ equal to the sum of all previous and the current bit times:

$$\mathsf{T}_{\mathsf{bit},\mathsf{TX}}[i] = \sum_{j=0}^{i} \mathsf{T}_{\mathsf{bit},\mathsf{TX}}[j]$$

To calculate bit error, this time is compared to the ideal bit time t_{bit,ideal,TX}[i]:

$$t_{bit,ideal,TX}[i] = (1/Baudrate)(i + 1)$$

This results in an error normalized to one ideal bit time (1/baudrate):

$$Error_{TX}[i] = (t_{bit,TX}[i] - t_{bit,ideal,TX}[i]) \times Baudrate \times 100\%$$

15.3.12 Receive Bit Timing

Receive timing error consists of two error sources. The first is the bit-to-bit timing error similar to the transmit bit timing error. The second is the error between a start edge occurring and the start edge being accepted by the USCI module. Figure 15-11 shows the asynchronous timing errors between data on the UCAxRXD pin and the internal baud-rate clock. This results in an additional synchronization error. The synchronization error t_{SYNC} is between -0.5 BRCLKs and +0.5 RCLKs, independent of the selected baud rate generation mode.

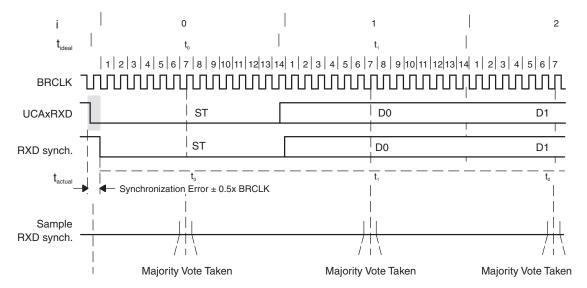


Figure 15-11. Receive Error

The ideal sampling time t_{bit,ideal,RX}[i] is in the middle of a bit period:

$$t_{\text{bit ideal RX}}[i] = (1/\text{Baudrate})(i + 0.5)$$

The real sampling time $t_{bit,RX}[i]$ is equal to the sum of all previous bits according to the formulas shown in the transmit timing section, plus one half BITCLK for the current bit i, plus the synchronization error t_{SYNC} .

This results in the following $t_{bit,RX}[i]$ for the low-frequency baud rate mode:

$$t_{\text{bit,RX}}[i] = t_{\text{SYNC}} + \sum_{j=0}^{i-1} T_{\text{bit,RX}}[j] + \frac{1}{f_{\text{BRCLK}}} \bigg(\text{INT}(\frac{1}{2}\text{UCBRx}) + m_{\text{UCBRSx}}[i] \bigg)$$

where:

$$T_{bit,RX}[i] = (1/f_{BRCLK})(UCBRx + m_{UCBRSx}[i])$$

 $m_{\text{IJCBRSx}}[i] = \text{Modulation of bit i from Table 15-2}$

For the oversampling baud rate mode, the sampling time $t_{bit,RX}[i]$ of bit i is calculated by:

$$t_{\text{bit,RX}}[i] = t_{\text{SYNC}} + \sum_{j=0}^{i-1} T_{\text{bit,RX}}[j] + \frac{1}{f_{\text{BRCLK}}} \Big((8 + m_{\text{UCBRSx}}[i]) \times \text{UCBRx} \\ + \sum_{j=0}^{7 + m_{\text{UCBRSx}}[j]} m_{\text{UCBRFx}}[j] \Big)$$

where:

$$T_{\text{bit,RX}}[i] = \frac{1}{f_{\text{BRCLK}}} \Big((16 + m_{\text{UCBRSx}}[i]) \times \text{UCBRx} + \sum_{j=0}^{15} m_{\text{UCBRFx}}[j] \Big)$$

$$\sum_{i=0}^{7+m_{UCBRSx}[i]} m_{UCBRFx}[j]$$

 $\sum_{j=0}^{7+m_{\text{\tiny UCBRFx}}[j]} m_{\text{\tiny UCBRFx}}[j] = \text{Sum of ones from columns 0 to (7 + m_{\text{\tiny UCBRSx}}[i]) from the corresponding row in}$

 $m_{UCBRSx}[i] = Modulation of bit i from Table 15-2$

This results in an error normalized to one ideal bit time (1/baudrate) according to the following formula: $Error_{RX}[i] = (t_{bit,RX}[i] - t_{bit,ideal,RX}[i]) \times Baudrate \times 100\%$

15.3.13 Typical Baud Rates and Errors

Standard baud rate data for UCBRx, UCBRSx, and UCBRFx are listed in Table 15-4 and Table 15-5 for a 32,768-Hz crystal sourcing ACLK and typical SMCLK frequencies. Please ensure that the selected BRCLK frequency does not exceed the device specific maximum USCI input frequency. Please refer to the device-specific datasheet.

The receive error is the accumulated time versus the ideal scanning time in the middle of each bit. The worst case error is given for the reception of an 8-bit character with parity and one stop bit including synchronization error.

The transmit error is the accumulated timing error versus the ideal time of the bit period. The worst case error is given for the transmission of an 8-bit character with parity and stop bit.

Table 15-4. Commonly Used Baud Rates, Settings, and Errors, UCOS16 = 0

BRCLK Frequency (Hz)	Baud Rate (Baud)	UCBRx	UCBRSx	UCBRFx		n TX Error %)		RX Error %)
32,768	1200	27	2	0	-2.8	1.4	-5.9	2.0
32,768	2400	13	6	0	-4.8	6.0	-9.7	8.3
32,768	4800	6	7	0	-12.1	5.7	-13.4	19.0
32,768	9600	3	3	0	-21.1	15.2	-44.3	21.3
1,000,000	9600	104	1	0	-0.5	0.6	-0.9	1.2
1,000,000	19200	52	0	0	-1.8	0	-2.6	0.9
1,000,000	38400	26	0	0	-1.8	0	-3.6	1.8
1,000,000	57600	17	3	0	-2.1	4.8	-6.8	5.8
1,000,000	115200	8	6	0	-7.8	6.4	-9.7	16.1
1,048,576	9600	109	2	0	-0.2	0.7	-1.0	0.8
1,048,576	19200	54	5	0	-1.1	1.0	-1.5	2.5
1,048,576	38400	27	2	0	-2.8	1.4	-5.9	2.0
1,048,576	57600	18	1	0	-4.6	3.3	-6.8	6.6
1,048,576	115200	9	1	0	-1.1	10.7	-11.5	11.3
4,000,000	9600	416	6	0	-0.2	0.2	-0.2	0.4
4,000,000	19200	208	3	0	-0.2	0.5	-0.3	0.8
4,000,000	38400	104	1	0	-0.5	0.6	-0.9	1.2
4,000,000	57600	69	4	0	-0.6	0.8	-1.8	1.1
4,000,000	115200	34	6	0	-2.1	0.6	-2.5	3.1
4,000,000	230400	17	3	0	-2.1	4.8	-6.8	5.8
4,194,304	9600	436	7	0	-0.3	0	-0.3	0.2
4,194,304	19200	218	4	0	-0.2	0.2	-0.3	0.6
4,194,304	57600	72	7	0	-1.1	0.6	-1.3	1.9
4,194,304	115200	36	3	0	-1.9	1.5	-2.7	3.4
8,000,000	9600	833	2	0	-0.1	0	-0.2	0.1
8,000,000	19200	416	6	0	-0.2	0.2	-0.2	0.4
8,000,000	38400	208	3	0	-0.2	0.5	-0.3	0.8
8,000,000	57600	138	7	0	-0.7	0	-0.8	0.6
8,000,000	115200	69	4	0	-0.6	0.8	-1.8	1.1
8,000,000	230400	34	6	0	-2.1	0.6	-2.5	3.1
8,000,000	460800	17	3	0	-2.1	4.8	-6.8	5.8
8,388,608	9600	873	7	0	-0.1	0.06	-0.2	0,1
8,388,608	19200	436	7	0	-0.3	0	-0.3	0.2
8,388,608	57600	145	5	0	-0.5	0.3	-1.0	0.5
8,388,608	115200	72	7	0	-1.1	0.6	-1.3	1.9

Table 15-4. Commonly Used Baud Rates, Settings, and Errors, UCOS16 = 0 (continued)

BRCLK Frequency (Hz)	Baud Rate (Baud)	UCBRx	UCBRSx	UCBRFx	Maximum (%		Maximum (%	
12,000,000	9600	1250	0	0	0	0	-0.05	0.05
12,000,000	19200	625	0	0	0	0	-0.2	0
12,000,000	38400	312	4	0	-0.2	0	-0.2	0.2
12,000,000	57600	208	2	0	-0.5	0.2	-0.6	0.5
12,000,000	115200	104	1	0	-0.5	0.6	-0.9	1.2
12,000,000	230400	52	0	0	-1.8	0	-2.6	0.9
12,000,000	460800	26	0	0	-1.8	0	-3.6	1.8
16,000,000	9600	1666	6	0	-0.05	0.05	-0.05	0.1
16,000,000	19200	833	2	0	-0.1	0.05	-0.2	0.1
16,000,000	38400	416	6	0	-0.2	0.2	-0.2	0.4
16,000,000	57600	277	7	0	-0.3	0.3	-0.5	0.4
16,000,000	115200	138	7	0	-0.7	0	-0.8	0.6
16,000,000	230400	69	4	0	-0.6	0.8	-1.8	1.1
16,000,000	460800	34	6	0	-2.1	0.6	-2.5	3.1
16,777,216	9600	1747	5	0	-0.04	0.03	-0.08	0.05
16,777,216	19200	873	7	0	-0.09	0.06	-0.2	0.1
16,777,216	57600	291	2	0	-0.2	0.2	-0.5	0.2
16,777,216	115200	145	5	0	-0.5	0.3	-1.0	0.5
20,000,000	9600	2083	2	0	-0.05	0.02	-0.09	0.02
20,000,000	19200	1041	6	0	-0.06	0.06	-0.1	0.1
20,000,000	38400	520	7	0	-0.2	0.06	-0.2	0.2
20,000,000	57600	347	2	0	-0.06	0.2	-0.3	0.3
20,000,000	115200	173	5	0	-0.4	0.3	-0.8	0.5
20,000,000	230400	86	7	0	-1.0	0.6	-1.0	1.7
20,000,000	460800	43	3	0	-1.4	1.3	-3.3	1.8

Table 15-5. Commonly Used Baud Rates, Settings, and Errors, UCOS16 = 1

BRCLK Frequency (Hz)	Baud Rate (Baud)	UCBRx	UCBRSx	UCBRFx	Maximum TX Error (%)		Maximum RX Error (%)		
1,000,000	9600	6	0	8	-1.8	0	-2.2	0.4	
1,000,000	19200	3	0	4	-1.8	0	-2.6	0.9	
1,048,576	9600	6	0	13	-2.3	0	-2.2	8.0	
1,048,576	19200	3	1	6	-4.6	3.2	-5.0	4.7	
4,000,000	9600	26	0	1	0	0.9	0	1.1	
4,000,000	19200	13	0	0	-1.8	0	-1.9	0.2	
4,000,000	38400	6	0	8	-1.8	0	-2.2	0.4	
4,000,000	57600	4	5	3	-3.5	3.2	-1.8	6.4	
4,000,000	115200	2	3	2	-2.1	4.8	-2.5	7.3	
4,194,304	9600	27	0	5	0	0.2	0	0.5	
4,194,304	19200	13	0	10	-2.3	0	-2.4	0.1	
4,194,304	57600	4	4	7	-2.5	2.5	-1.3	5.1	
4,194,304	115200	2	6	3	-3.9	2.0	-1.9	6.7	
8,000,000	9600	52	0	1	-0.4	0	-0.4	0.1	
8,000,000	19200	26	0	1	0	0.9	0	1.1	

Table 15-5. Commonly Used Baud Rates, Settings, and Errors, UCOS16 = 1 (continued)

BRCLK Frequency (Hz)	Baud Rate (Baud)	UCBRx	UCBRSx	UCBRFx		n TX Error %)		RX Error 6)
8,000,000	38400	13	0	0	-1.8	0	-1.9	0.2
8,000,000	57600	8	0	11	0	0.88	0	1.6
8,000,000	115200	4	5	3	-3.5	3.2	-1.8	6.4
8,000,000	230400	2	3	2	-2.1	4.8	-2.5	7.3
8,388,608	9600	54	0	10	0	0.2	-0.05	0.3
8,388,608	19200	27	0	5	0	0.2	0	0.5
8,388,608	57600	9	0	2	0	2.8	-0.2	3.0
8,388,608	115200	4	4	7	-2.5	2.5	-1.3	5.1
12,000,000	9600	78	0	2	0	0	-0.05	0.05
12,000,000	19200	39	0	1	0	0	0	0.2
12,000,000	38400	19	0	8	-1.8	0	-1.8	0.1
12,000,000	57600	13	0	0	-1.8	0	-1.9	0.2
12,000,000	115200	6	0	8	-1.8	0	-2.2	0.4
12,000,000	230400	3	0	4	-1.8	0	-2.6	0.9
16,000,000	9600	104	0	3	0	0.2	0	0.3
16,000,000	19200	52	0	1	-0.4	0	-0.4	0.1
16,000,000	38400	26	0	1	0	0.9	0	1.1
16,000,000	57600	17	0	6	0	0.9	-0.1	1.0
16,000,000	115200	8	0	11	0	0.9	0	1.6
16,000,000	230400	4	5	3	-3.5	3.2	-1.8	6.4
16,000,000	460800	2	3	2	-2.1	4.8	-2.5	7.3
16,777,216	9600	109	0	4	0	0.2	-0.02	0.3
16,777,216	19200	54	0	10	0	0.2	-0.05	0.3
16,777,216	57600	18	0	3	-1.0	0	-1.0	0.3
16,777,216	115200	9	0	2	0	2.8	-0.2	3.0
20,000,000	9600	130	0	3	-0.2	0	-0.2	0.04
20,000,000	19200	65	0	2	0	0.4	-0.03	0.4
20,000,000	38400	32	0	9	0	0.4	0	0.5
20,000,000	57600	21	0	11	-0.7	0	-0.7	0.3
20,000,000	115200	10	0	14	0	2.5	-0.2	2.6
20,000,000	230400	5	0	7	0	2.5	0	3.5
20,000,000	460800	2	6	10	-3.2	1.8	-2.8	4.6

15.3.14 Using the USCI Module in UART Mode with Low Power Modes

The USCI module provides automatic clock activation for use with low-power modes. When the USCI clock source is inactive because the device is in a low-power mode, the USCI module automatically activates it when needed, regardless of the control-bit settings for the clock source. The clock remains active until the USCI module returns to its idle condition. After the USCI module returns to the idle condition, control of the clock source reverts to the settings of its control bits.

15.3.15 USCI Interrupts

The USCI has only one interrupt vector that is shared for transmission and for reception. USCI_Ax and USC_Bx do not share the same interrupt vector.

USCI Transmit Interrupt Operation

The UCTXIFG interrupt flag is set by the transmitter to indicate that UCAxTXBUF is ready to accept another character. An interrupt request is generated if UCTXIE and GIE are also set. UCTXIFG is automatically reset if a character is written to UCAxTXBUF.

UCTXIFG is set after a PUC or when UCSWRST = 1. UCTXIE is reset after a PUC or when UCSWRST = 1.

USCI Receive Interrupt Operation

The UCRXIFG interrupt flag is set each time a character is received and loaded into UCAxRXBUF. An interrupt request is generated if UCRXIE and GIE are also set. UCRXIFG and UCRXIE are reset by a system reset PUC signal or when UCSWRST = 1. UCRXIFG is automatically reset when UCAxRXBUF is read.

Additional interrupt control features include:

- When UCAxRXEIE = 0 erroneous characters will not set UCRXIFG.
- When UCDORM = 1, non-address characters will not set UCRXIFG in multiprocessor modes.
- When UCBRKIE = 1 a break condition will set the UCBRK bit and the UCRXIFG flag.

UCAxIV, Interrupt Vector Generator

The USCI interrupt flags are prioritized and combined to source a single interrupt vector. The interrupt vector register UCAxIV is used to determine which flag requested an interrupt. The highest priority enabled interrupt generates a number in the UCAxIV register that can be evaluated or added to the program counter to automatically enter the appropriate software routine. Disabled interrupts do not affect the UCAxIV value.

Any access, read or write, of the UCAxIV register automatically resets the highest pending interrupt flag. If another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt.

UCAxIV Software Example

The following software example shows the recommended use of UCAxIV. The UCAxIV value is added to the PC to automatically jump to the appropriate routine. The following example is given for USCI_A0.

```
USCI_UART_ISR
               &UCAOIV, PC
        ADD
                             ; Add offset to jump table
        RETI
                             ; Vector 0: No interrupt
        JMP
               RXIFG_ISR
                             ; Vector 2: RXIFG
TXIFG ISR
                             ; Vector 4: TXIFG
                             ; Task starts here
        RETT
                             ; Return
RXIFG_ISR
                             ; Vector 2
                             ; Task starts here
        RETT
                             ; Return
```


15.4 USCI Registers: UART Mode

The USCI registers applicable in UART mode listed in Table 15-6. The word accessible registers are listed in Table 15-7.

Table 15-6. USCI_Ax Registers

Register	Short Form	Register Type	Address Offset	Initial State
USCI_Ax control register 0	UCAxCTL0	Byte - R/W	+01h	Reset with PUC
USCI_Ax control register 1	UCAxCTL1	Byte - R/W	+00h	001h with PUC
USCI_Ax Baud rate control register 0	UCAxBR0	Byte - R/W	+06h	Reset with PUC
USCI_Ax Baud rate control register 1	UCAxBR1	Byte - R/W	+07h	Reset with PUC
USCI_Ax modulation control register	UCAxMCTL	Byte - R/W	+08h	Reset with PUC
Reserved - reads zero		Byte - R only	+09h	000h
USCI_Ax status register	UCAxSTAT	Byte - R/W	+0Ah	Reset with PUC
Reserved - reads zero		Byte - R only	+0Bh	000h
USCI_Ax Receive buffer register	UCAxRXBUF	Byte - R/W	+0Ch	Reset with PUC
Reserved - reads zero		Byte - R only	+0Dh	000h
USCI_Ax Transmit buffer register	UCAxTXBUF	Byte - R/W	+0Eh	Reset with PUC
Reserved - reads zero		Byte - R only	+0Fh	000h
USCI_Ax Auto Baud control register	UCAxABCTL	Byte - R/W	+10h	Reset with PUC
Reserved - reads zero		Byte - R only	+11h	000h
USCI_Ax IrDA Transmit control register	UCAxIRTCTL	Byte - R/W	+12h	Reset with PUC
USCI_Ax IrDA Receive control register	UCAxIRRCTL	Byte - R/W	+13h	Reset with PUC
USCI_Ax interrupt enable register	UCAxIE	Byte - R/W	+1Ch	Reset with PUC
USCI_Ax interrupt flag register	UCAxIFG	Byte - R/W	+1Dh	Reset with PUC
USCI_Ax interrupt vector register	UCAxIV	Word - R	+1Eh	Reset with PUC

Table 15-7. Word Access to USCI_Ax Registers

Word Register	Short Form	High-Byte Register	Low-Byte Register	Address Offset
USCI_Ax control word register 0	UCAxCTLW0	UCAxCTL0	UCAxCTL1	+00h
USCI_Ax Baud rate control word register	UCAxBRW	UCAxBR1	UCAxBR0	+06h
USCI_Ax IrDA control register	UCAxIRCTL	UCAxIRRCTL	UCAxIRTCTL	+12h
USCI_Ax interrupt control register	UCAxICTL	UCAxIFG	UCAxIE	+1Ch

www.ti.com

UCAxCTL0, USCI_Ax Control Register 0

7	6		5	4	3	2	1	0
UCPEN	UCP	AR	UCMSB	UC7BIT	UCSPB	UC	MODEx	UCSYNC=0
rw-0	rw-0	0	rw-0 rw-0 rw-0 rw-0				rw-0	
UCPEN	Bit 7	Parit	y enable					
		0	Parity disabled					
		1	Parity enabled. multiprocessor i	Parity bit is gener mode, the address	ated (UCAxTXD) s bit is included in	and expected (L the parity calcu	ICAxRXD). In addre	ess-bit
UCPAR	Bit 6	Parit	y select. UCPAR i	s not used when p	parity is disabled.			
		0	Odd parity					
		1	Even parity					
UCMSB	Bit 5	MSB	first select. Contr	ols the direction o	f the receive and	transmit shift reg	jister.	
		0	LSB first					
		1	MSB first					
UC7BIT	Bit 4	Char	acter length. Sele	cts 7-bit or 8-bit cl	naracter length.			
		0	8-bit data					
		1	7-bit data					
UCSPB	Bit 3	Stop	bit select. Numbe	r of stop bits.				
		0	One stop bit					
		1	Two stop bits					
UCMODEx	Bits 2-1	USC	I mode. The UCM	ODEx bits select	the asynchronous	mode when UC	SYNC = 0.	
		00	UART mode					
		01	Idle-line multipro	ocessor mode				
		10	Address-bit mul	tiprocessor mode				
		11	UART mode wit	h automatic baud	rate detection			
UCSYNC	Bit 0	Sync	hronous mode en	able				
		0	Asynchronous r	node				
		1	Synchronous m	ode				

UCAxCTL1, USCI_Ax Control Register 1

7	6		5	4	3	2	1	0			
UCS	SELx		UCRXEIE	UCBRKIE	UCDORM	UCTXADDR	UCTXBRK	UCSWRST			
rw-0	rw-C)	rw-0	rw-0	rw-0	rw-0	rw-0	rw-1			
UCSSELx	Bits 7-6	USC	I clock source sele	ect. These bits sel	ect the BRCLK so	ource clock.					
		00	UCLK								
		01	ACLK								
		10	SMCLK								
		11	SMCLK								
UCRXEIE	Bit 5	Rece	eive erroneous-cha	aracter interrupt-ei	nable						
		0	Erroneous char	acters rejected an	d UCRXIFG is no	ot set					
		1	Erroneous char	acters received wi	II set UCRXIFG						
UCBRKIE	Bit 4	Rece	eive break charact	er interrupt-enable)						
		0	Received break	characters do no	t set UCRXIFG.						
		1	Received break	characters set U0	CRXIFG.						
UCDORM	Bit 3	Dorm	nant. Puts USCI ir	to sleep mode.							
		0	Not dormant. A	I received charact	ers will set UCRX	(IFG.					
		1				idle-line or with ad ly the combination					
UCTXADDR	Bit 2		smit address. Nex processor mode.	t frame to be trans	smitted will be ma	arked as address d	epending on the s	selected			
		0	Next frame tran	smitted is data							
		1	Next frame tran	smitted is an addr	ess						
UCTXBRK	Bit 1	baud	rate detection 05	mit break. Transmits a break with the next write to the transmit buffer.In UART mode with automatic rate detection 055h must be written into UCAXTXBUF to generate the required break/synch fields. wise 0h must be written into the transmit buffer.							
		0	Next frame tran	smitted is not a br	eak						
		1	Next frame tran	smitted is a break	or a break/synch						
UCSWRST	Bit 0	Softv	vare reset enable								
		0	Disabled. USCI	reset released for	operation.						
		1	Enabled. USCI	logic held in reset	state.						

www.ti.com USCI Registers: UAF							
UCAxBR0, US	CI_Ax Baud Ra	te Control Reg	ister 0				
7	6	5	4	3	2	1	0
			UC	BRx			
rw	rw	rw	rw	rw	rw	rw	rw
UCAxBR1, US	CI_Ax Baud Ra	te Control Reg	ister 1				
7	6	5	4	3	2	1	0
			UC	BRx			
rw	rw	rw	rw	rw	rw	rw	rw

UCBRx Clock prescaler setting of the Baud rate generator.

UCAxMCTL, USCI_Ax Modulation Control Register

7	6	5	4	3	2	1	0		
		UCBRFx			UCBRSx				
rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0		
UCBRFx	Bits 7-4	First modulation stage Ignored with UCOS16				or BITCLK16 whe	en UCOS16 = 1.		
UCBRSx	Bits 3-1	Second modulation state the modulation pattern		bits determine the	e modulation patter	n for BITCLK. Ta	able 15-2 shows		
UCOS16	Bit 0	Oversampling mode en	nabled						

0 Disabled

Enabled

UCAxSTAT, USCI_Ax Status Register

7	6	5	4	3	2	1	0
UCLISTEN	UCFE	UCOE	UCPE	UCBRK	UCRXERR	UCADDR UCIDLE	UCBUSY
rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	r-0

UCLISTEN Bit 7 Listen enable. The UCLISTEN bit selects loopback mode.

0 Disabled

1 Enabled. UCAxTXD is internally fed back to the receiver.

UCFE Bit 6 Framing error flag

0 No error

1 Character received with low stop bit

UCOE Bit 5 Overrun error flag. This bit is set when a character is transferred into UCAxRXBUF before the previous

character was read. UCOE is cleared automatically when UCxRXBUF is read, and must not be cleared by

software. Otherwise, it will not function correctly.

No error

1 Overrun error occurred

UCPE Bit 4 Parity error flag. When UCPEN = 0, UCPE is read as 0.

0 No error

1 Character received with parity error

UCBRK Bit 3 Break detect flag

0 No break condition

Break condition occurred

UCRXERR Bit 2 Receive error flag. This bit indicates a character was received with error(s). When UCRXERR = 1, on or more

error flags (UCFE, UCPE, UCOE) is also set. UCRXERR is cleared when UCAxRXBUF is read.

0 No receive errors detected

1 Receive error detected

UCADDR Bit 1 Address received in address-bit multiprocessor mode.

0 Received character is data

1 Received character is an address

UCIDLE Idle line detected in idle-line multiprocessor mode.

0 No idle line detected

1 Idle line detected

UCBUSY Bit 0 USCI busy. This bit indicates if a transmit or receive operation is in progress.

0 USCI inactive

1 USCI transmitting or receiving

UCAxRXBUF, USCI_Ax Receive Buffer Register

UCRXBUFx

Bits 7-0

The receive-data buffer is user accessible and contains the last received character from the receive shift register. Reading UCAxRXBUF resets the receive-error bits, the UCADDR or UCIDLE bit, and UCRXIFG. In 7-bit data mode, UCAxRXBUF is LSB justified and the MSB is always reset.

USCI Registers: UART Mode www.ti.com

UCAxTXBUF, USCI_Ax Transmit Buffer Register

	7	6	5	4	3	2	1	0
	UCTXBUFx							
rw rw rw rw rw rw rw								rw

UCTXBUFx Bits 7-0 The transmit data buffer is user accessible and holds the data waiting to be moved into the transmit shift register and transmitted on UCAxTXD. Writing to the transmit data buffer clears UCTXIFG. The MSB of UCAxTXBUF is not used for 7-bit data and is reset.

UCAxIRTCTL, USCI_Ax IrDA Transmit Control Register

7	6	5	4	3	2	1	0
		UCIR	ΓΧΡLx			UCIRTXCLK	UCIREN
rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0

UCIRTXPLx Bits 7-2 Transmit pulse length

Pulse Length $t_{PULSE} = (UCIRTXPLx + 1) / (2 \times f_{IRTXCLK})$

UCIRTXCLK Bit 1 IrDA transmit pulse clock select

> 0 **BRCLK**

1 BITCLK16 when UCOS16 = 1. Otherwise, BRCLK.

UCIREN Bit 0 IrDA encoder/decoder enable.

> 0 IrDA encoder/decoder disabled 1 IrDA encoder/decoder enabled

UCAxIRRCTL, USCI_Ax IrDA Receive Control Register

7	6	5	4	3	2	1	0
			UCIRRXPL	UCIRRXFE			
rw-∩	rw-∩	rw-∩	rw-∩	rw-0	rw-O	rw-∩	rw-0

UCIRRXFLx Bits 7-2 Receive filter length. The minimum pulse length for receive is given by:

 $t_{MIN} = (UCIRRXFLx + 4) / (2 \times f_{IRTXCLK})$

UCIRRXPL IrDA receive input UCAxRXD polarity Bit 1

> 0 IrDA transceiver delivers a high pulse when a light pulse is seen.

1 IrDA transceiver delivers a low pulse when a light pulse is seen.

UCIRRXFE Bit 0 IrDA receive filter enabled

> 0 Receive filter disabled

Receive filter enabled 1

UCAxABCTL, USCI_Ax Auto Baud Rate Control Register

7	6	5	4	3	2	1	0
Reserved		UCDI	ELIMx	UCSTOE	UCBTOE	Reserved	UCABDEN
r-0	r-0	rw-0	rw-0	rw-0	rw-0	r-0	rw-0

Reserved Bits 7-6 Reserved

UCDELIMx Bits 5-4 Break/synch delimiter length

1 bit time2 bit times3 bit times4 bit times

UCSTOE Bit 3 Synch field time out error

0 No error

1 Length of synch field exceeded measurable time.

UCBTOE Bit 2 Break time out error

0 No error

1 Length of break field exceeded 22 bit times.

Reserved Bit 1 Reserved

UCABDEN Bit 0 Automatic baud rate detect enable

- 0 Baud rate detection disabled. Length of break and synch field is not measured.
- Baud rate detection enabled. Length of break and synch field is measured and baud rate settings are changed accordingly.

UCAxIE, USCI_Ax Interrupt Enable Register

7	6	5	4	3	2	1	0
	Reserved						UCRXIE
r-0	r-0	r-0	r-0	r-0	r-0	rw-0	rw-0
Reserved	Reserved Bits 7-2 Reserved						
UCTXIE	Bit 1	Transmit interrupt enabl	е				
		0 Interrupt disable	d				
		1 Interrupt enabled	I				

UCRXIE Bit 0 Receive interrupt enable
0 Interrupt disabled
1 Interrupt enabled

UCAxIFG, USCI_Ax Interrupt Flag Register

7	6	5	4	3	2	1	0
	Reserved						
r-0	r-0	r-0	r-0	r-0	r-0	rw-1	rw-0

Reserved Bits 7-2 Reserved

UCTXIFG Bit 1 Transmit interrupt flag. UCTXIFG is set when UCAxTXBUF empty.

No interrupt pendingInterrupt pending

UCRXIFG Bit 0 Receive interrupt flag. UCRXIFG is set when UCAxRXBUF has received a complete character.

0 No interrupt pending

1 Interrupt pending

UCAxIV, USCI_Ax Interrupt Vector Register

15	14	13	12	11	10	9	8
0	0	0	0	0	0	0	0
r0	r0	rO	rO	r0	r0	rO	r0
7	6	5	4	3	2	1	0
					_	•	
0	0	0	0	0	UC	IVx	0
r0	r0	r0	r-0	r-0	r-0	r-0	r0

UCIVx

Bits 15-0 USCI interrupt vector value

UCAxIV Contents	Interrupt Source	Interrupt Flag	Interrupt Priority
000h	No interrupt pending		
002h	Data received	UCRXIFG	Highest
004h	Transmit buffer empty	UCTXIFG	Lowest

Universal Serial Communication Interface, SPI Mode

The 5xx universal serial communication interface (USCI) supports multiple serial communication modes with one hardware module. This chapter discusses the operation of the synchronous peripheral interface or SPI mode.

Topic		Page
16.1	USCI Overview	426
16.2	USCI Introduction: SPI Mode	427
16.3	USCI Operation: SPI Mode	429
16.4	USCI Registers: SPI Mode	434

USCI Overview www.ti.com

16.1 USCI Overview

The universal serial communication interface (USCI) modules support multiple serial communication modes. Different USCI modules support different modes. Each different USCI module is named with a different letter. For example, USCI_A is different from USCI_B, etc. If more than one identical USCI module is implemented on one device, those modules are named with incrementing numbers. For example, if one device has two USCI_A modules, they are named USCI_A0 and USCI_A1. See the device-specific datasheet to determine which USCI modules, if any, are implemented on which devices.

The USCI_Ax modules support:

- UART mode
- Pulse shaping for IrDA communications
- Automatic baud rate detection for LIN communications
- SPI mode

The USCI_Bx modules support:

- I²C mode
- SPI mode

www.ti.com USCI Introduction: SPI Mode

16.2 USCI Introduction: SPI Mode

In synchronous mode, the USCI connects the MSP430 to an external system via three or four pins: UCxSIMO, UCxSOMI, UCxCLK, and UCxSTE. SPI mode is selected when the UCSYNC bit is set and SPI mode (3-pin or 4-pin) is selected with the UCMODEx bits.

SPI mode features include:

- 7- or 8-bit data length
- LSB-first or MSB-first data transmit and receive
- 3-pin and 4-pin SPI operation
- Master or slave modes
- Independent transmit and receive shift registers
- Separate transmit and receive buffer registers
- Continuous transmit and receive operation
- Selectable clock polarity and phase control
- Programmable clock frequency in master mode
- Independent interrupt capability for receive and transmit
- Slave operation in LPM4

Figure 16-1 shows the USCI when configured for SPI mode.

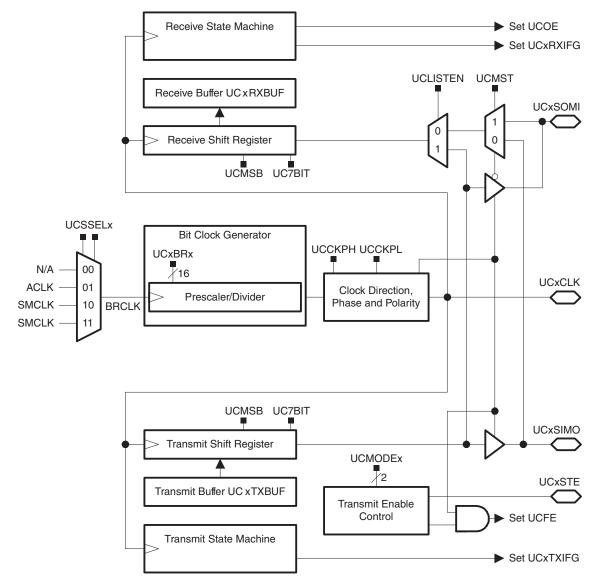


Figure 16-1. USCI Block Diagram: SPI Mode

16.3 USCI Operation: SPI Mode

In SPI mode, serial data is transmitted and received by multiple devices using a shared clock provided by the master. An additional pin, UCxSTE, is provided to enable a device to receive and transmit data and is controlled by the master.

Three or four signals are used for SPI data exchange:

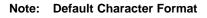
- UCxSIMO Slave in, master out Master mode: UCxSIMO is the data output line. Slave mode: UCxSIMO is the data input line.
- UCxSOMI Slave out, master in Master mode: UCxSOMI is the data input line. Slave mode: UCxSOMI is the data output line.
- UCxCLK USCI SPI clock Master mode: UCxCLK is an output. Slave mode: UCxCLK is an input.
- UCxSTE Slave transmit enable. Used in 4-pin mode to allow multiple masters on a single bus. Not used in 3-pin mode. Table 16-1 describes the UCxSTE operation.

_	UCMODEx	UCxSTE Active State	UCxSTE	Slave	Master	
	04	I II ala	0	Inactive	Active	
	01	High	1	Active	Inactive	
	40	Law	0	Active	Inactive	
	10	Low	1	Inactive	Active	

Table 16-1. UCxSTE Operation

16.3.1 USCI Initialization and Reset

The USCI is reset by a PUC or by the UCSWRST bit. After a PUC, the UCSWRST bit is automatically set, keeping the USCI in a reset condition. When set, the UCSWRST bit resets the UCRXIE, UCTXIE, UCRXIFG, UCOE, and UCFE bits and sets the UCTXIFG flag. Clearing UCSWRST releases the USCI for operation.


Note: Initializing or Re-Configuring the USCI Module

The recommended USCI initialization/re-configuration process is:

- 1. Set UCSWRST (BIS.B #UCSWRST, &UCXCTL1).
- 2. Initialize all USCI registers with UCSWRST=1 (including UCxCTL1).
- 3. Configure ports.
- 4. Clear UCSWRST via software (BIC.B #UCSWRST, &UCxCTL1).
- 5. Enable interrupts (optional) via UCRXIE and/or UCTXIE.

16.3.2 Character Format

The USCI module in SPI mode supports 7- and 8-bit character lengths selected by the UC7BIT bit. In 7-bit data mode, UCxRXBUF is LSB justified and the MSB is always reset. The UCMSB bit controls the direction of the transfer and selects LSB or MSB first.

The default SPI character transmission is LSB first. For communication with other SPI interfaces it MSB-first mode may be required.

Note: Character Format for Figures

Figures throughout this chapter use MSB first format.

Four-Pin SPI Master Mode www.ti.com

16.3.3 Master Mode

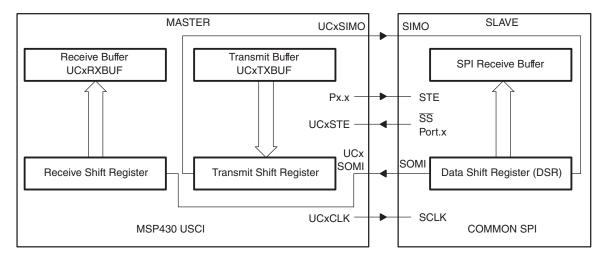


Figure 16-2. USCI Master and External Slave

Figure 16-2 shows the USCI as a master in both 3-pin and 4-pin configurations. The USCI initiates data transfer when data is moved to the transmit data buffer UCxTXBUF. The UCxTXBUF data is moved to the TX shift register when the TX shift register is empty, initiating data transfer on UCxSIMO starting with either the most-significant or least-significant bit depending on the UCMSB setting. Data on UCxSOMI is shifted into the receive shift register on the opposite clock edge. When the character is received, the receive data is moved from the RX shift register to the received data buffer UCxRXBUF and the receive interrupt flag, UCRXIFG, is set, indicating the RX/TX operation is complete.

A set transmit interrupt flag, UCTXIFG, indicates that data has moved from UCxTXBUF to the TX shift register and UCxTXBUF is ready for new data. It does not indicate RX/TX completion.

To receive data into the USCI in master mode, data must be written to UCxTXBUF because receive and transmit operations operate concurrently.

Four-Pin SPI Master Mode

In 4-pin master mode, UCxSTE is used to prevent conflicts with another master and controls the master as described in Table 16-1. When UCxSTE is in the master-inactive state:

- UCxSIMO and UCxCLK are set to inputs and no longer drive the bus
- The error bit UCFE is set indicating a communication integrity violation to be handled by the user.
- The internal state machines are reset and the shift operation is aborted.

If data is written into UCxTXBUF while the master is held inactive by UCxSTE, it will be transmit as soon as UCxSTE transitions to the master-active state. If an active transfer is aborted by UCxSTE transitioning to the master-inactive state, the data must be re-written into UCxTXBUF to be transferred when UCxSTE transitions back to the master-active state. The UCxSTE input signal is not used in 3-pin master mode.

www.ti.com Four-Pin SPI Slave Mode

16.3.4 Slave Mode

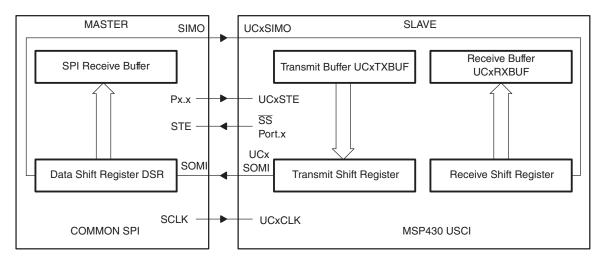


Figure 16-3. USCI Slave and External Master

Figure 16-3 shows the USCI as a slave in both 3-pin and 4-pin configurations. UCxCLK is used as the inputfor the SPI clock and must be supplied by the external master. The data-transfer rate is determined by this clock and not by the internal bit clock generator. Data written to UCxTXBUF and moved to the TX shift register before the start of UCxCLK is transmitted on UCxSOMI. Data on UCxSIMO is shifted into the receive shift register on the opposite edge of UCxCLK and moved to UCxRXBUF when the set number of bits are received. When data is moved from the RX shift register to UCxRXBUF, the UCRXIFG interrupt flag is set, indicating that data has been received. The overrun error bit, UCOE, is set when the previously received data is not read from UCxRXBUF before new data is moved to UCxRXBUF.

Four-Pin SPI Slave Mode

In 4-pin slave mode, UCxSTE is used by the slave to enable the transmit and receive operations and is provided by the SPI master. When UCxSTE is in the slave-active state, the slave operates normally. When UCxSTE is in the slave- inactive state:

- Any receive operation in progress on UCxSIMO is halted
- UCxSOMI is set to the input direction
- The shift operation is halted until the UCxSTE line transitions into the slave transmit active state.

The UCxSTE input signal is not used in 3-pin slave mode.

16.3.5 SPI Enable

When the USCI module is enabled by clearing the UCSWRST bit it is ready to receive and transmit. In master mode the bit clock generator is ready, but is not clocked nor producing any clocks. In slave mode the bit clock generator is disabled and the clock is provided by the master.

A transmit or receive operation is indicated by UCBUSY = 1.

A PUC or set UCSWRST bit disables the USCI immediately and any active transfer is terminated.

Transmit Enable

In master mode, writing to UCxTXBUF activates the bit clock generator and the data will begin to transmit.

In slave mode, transmission begins when a master provides a clock and, in 4-pin mode, when the UCxSTE is in the slave-active state.

Receive Enable

The SPI receives data when a transmission is active. Receive and transmit operations operate concurrently.

Receive Enable www.ti.com

16.3.6 Serial Clock Control

UCxCLK is provided by the master on the SPI bus. When UCMST = 1, the bit clock is provided by the USCI bit clock generator on the UCxCLK pin. The clock used to generate the bit clock is selected with the UCSSELx bits. When UCMST = 0, the USCI clock is provided on the UCxCLK pin by the master, the bit clock generator is not used, and the UCSSELx bits are don't care. The SPI receiver and transmitter operate in parallel and use the same clock source for data transfer.

The 16-bit value of UCBRx in the bit rate control registers UCxxBR1 and UCxxBR0 is the division factor of the USCI clock source, BRCLK. The maximum bit clock that can be generated in master mode is BRCLK. Modulation is not used in SPI mode and UCAxMCTL should be cleared when using SPI mode for USCI_A. The UCAxCLK/UCBxCLK frequency is given by:

 $f_{BitClock} = f_{BRCLK}/UCBRx$

16.3.6.1 Serial Clock Polarity and Phase

The polarity and phase of UCxCLK are independently configured via the UCCKPL and UCCKPH control bits of the USCI. Timing for each case is shown in Figure 16-4.

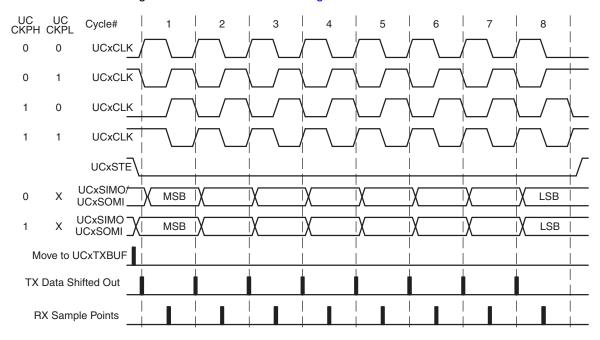


Figure 16-4. USCI SPI Timing with UCMSB = 1

16.3.7 Using the SPI Mode with Low Power Modes

The USCI module provides automatic clock activation for use with low-power modes. When the USCI clock source is inactive because the device is in a low-power mode, the USCI module automatically activates it when needed, regardless of the control-bit settings for the clock source. The clock remains active until the USCI module returns to its idle condition. After the USCI module returns to the idle condition, control of the clock source reverts to the settings of its control bits.

In SPI slave mode no internal clock source is required because the clock is provided by the external master. It is possible to operate the USCI in SPI slave mode while the device is in LPM4 and all clock sources are disabled. The receive or transmit interrupt can wake up the CPU from any low power mode.

16.3.8 SPI Interrupts

The USCI has only one interrupt vector that is shared for transmission and for reception. USCI_Ax and USC_Bx do not share the same interrupt vector.

SPI Transmit Interrupt Operation

The UCTXIFG interrupt flag is set by the transmitter to indicate that UCxTXBUF is ready to accept another character. An interrupt request is generated if UCTXIE and GIE are also set. UCTXIFG is automatically reset if a character is written to UCxTXBUF. UCTXIFG is set after a PUC or when UCSWRST = 1. UCTXIE is reset after a PUC or when UCSWRST = 1.

Note: Writing to UCxTXBUF in SPI Mode

Data written to UCxTXBUFwhen UCTXIFG = 0 may result in erroneous data transmission.

SPI Receive Interrupt Operation

The UCRXIFG interrupt flag is set each time a character is received and loaded into UCxRXBUF. An interrupt request is generated if UCRXIE and GIE are also set. UCRXIFG and UCRXIE are reset by a system reset PUC signal or when UCSWRST = 1. UCRXIFG is automatically reset when UCxRXBUF is read.

UCxIV, Interrupt Vector Generator

The USCI interrupt flags are prioritized and combined to source a single interrupt vector. The interrupt vector register UCxIV is used to determine which flag requested an interrupt. The highest priority enabled interrupt generates a number in the UCxIV register that can be evaluated or added to the program counter to automatically enter the appropriate software routine. Disabled interrupts do not affect the UCxIV value.

Any access, read or write, of the UCxIV register automatically resets the highest pending interrupt flag. If another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt.

UCxIV Software Example

The following software example shows the recommended use of UCxIV. The UCxIV value is added to the PC to automatically jump to the appropriate routine. The following example is given for USCI_B0.

```
USCI_SPI_ISR
                  &UCB0IV, PC ; Add offset to jump table
        ADD
        RETI
                               ; Vector 0: No interrupt
        JMP
                  RXIFG_ISR ; Vector 2: RXIFG
TXIFG ISR
                              ; Vector 4: TXIFG
                               ; Task starts here
                              ; Return
        RETI
RXIFG_ISR
                              ; Vector 2
                              ; Task starts here
        RETI
                              ; Return
```


16.4 USCI Registers: SPI Mode

The USCI registers applicable in SPI mode listed in Table 16-2. The word accessible registers are listed in Table 16-3.

Table 16-2. USCI_xx Registers

Register	Short Form	Register Type	Address Offset	Initial State
USCI_Ax control register 0	UCAxCTL0	Byte - R/W	+01h	Reset with PUC
USCI_Bx control register 0	UCBxCTL0	Byte - R/W	+01h	001h with PUC
USCI_xx control register 1	UCxxCTL1	Byte - R/W	+00h	001h with PUC
USCI_xx Bit rate control register 0	UCxxBR0	Byte - R/W	+06h	Reset with PUC
USCI_xx Bit rate control register 1	UCxxBR1	Byte - R/W	+07h	Reset with PUC
USCI_Ax modulation control register	UCAxMCTL	Byte - R/W	+08h	Reset with PUC
USCI_xx status register	UCxxSTAT	Byte - R/W	+0Ah	Reset with PUC
Reserved - reads zero		Byte - R only	+0Bh	000h
USCI_xx Receive buffer register	UCxxRXBUF	Byte - R/W	+0Ch	Reset with PUC
Reserved - reads zero		Byte - R only	+0Dh	000h
USCI_xx Transmit buffer register	UCxxTXBUF	Byte - R/W	+0Eh	Reset with PUC
Reserved - reads zero		Byte - R only	+0Fh	000h
USCI_xx interrupt enable register	UCxxIE	Byte - R/W	+1Ch	Reset with PUC
USCI_xx interrupt flag register	UCxxIFG	Byte - R/W	+1Dh	002h with PUC
USCI_xx interrupt vector register	UCxxIV	Word - R	+1Eh	Reset with PUC

Table 16-3. Word Access to USCI_xx Registers

Word Register	Short Form	High-Byte Register	Low-Byte Register	Address Offset
USCI_xx control word register 0	UCxxCTLW0	UCxxCTL0	UCxxCTL1	+00h
USCI_xx bit rate control word register	UCxxBRW	UCxxBR1	UCxxBR0	+06h
USCI_xx interrupt control register	UCxxICTL	UCxxIFG	UCxxIE	+1Ch

www.ti.com USCI Registers: SPI Mode

UCAxCTL0, USCI_Ax Control Register 0 UCBxCTL0, USCI_Bx Control Register 0

7	6	5	4	3	2	1	0	
UCCKPH	UCCKPL	UCMSB	UC7BIT	UCMST	UCMO	DDEx	UCSYNC=1	
rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0 ⁽¹⁾ rw-1 ⁽²⁾	
UCCKPH	Bit 7	Clock phase sel	ect.					
		0 Data is cl	nanged on the firs	t UCLK edge and	captured on the fo	llowing edge.		
		1 Data is ca	aptured on the firs	t UCLK edge and	changed on the fo	llowing edge.		
UCCKPL	Bit 6	Clock polarity se	lect.					
		0 The inact	ive state is low.					
		1 The inact	The inactive state is high.					
UCMSB	Bit 5	MSB first select.	ASB first select. Controls the direction of the receive and transmit shift register.					
		0 LSB first						
		1 MSB first						
UC7BIT	Bit 4	Character length	. Selects 7-bit or	8-bit character len	gth.			
		0 8-bit data						
		1 7-bit data						
UCMST	Bit 3	Master mode se	ect					
		0 Slave mo	de					
		1 Master m	ode					
UCMODEx	Bits 2-1	USCI Mode. The	UCMODEx bits	select the synchror	nous mode when l	JCSYNC = 1.		
		00 3-pin SPI						
		01 4-pin SPI	with UCxSTE act	ive high: slave ena	abled when UCxS	ΓE = 1		
		10 4-pin SPI	with UCxSTE act	ive low: slave ena	bled when UCxST	E = 0		
		11 I ² C mode						
UCSYNC	Bit 0	Synchronous mo	ode enable					
		0 Asynchro	nous mode					
		1 Synchron	ous mode					
(1) LICAYCTI O	(LICCL Av)							

⁽¹⁾ UCAxCTL0 (USCI_Ax)

UCAxCTL1, USCI_Ax Control Register 1 UCBxCTL1, USCI_Bx Control Register 1

002x0:2:, 0	001_2x 0011ti	or regions.					
7	6	5	4	3	2	1	0
UCS	SSELx			Unused			UCSWRST
rw-0	rw-0	rw-0 ⁽¹⁾ r0 ⁽²⁾	rw-0	rw-0	rw-0	rw-0	rw-1
UCSSELx	Bits 7-6	USCI clock sour always used in s		bits select the BRC	CLK source clock	in master mode.	UCxCLK is
		00 NA					
		01 ACLK					

01 ACLK 10 SMCLK

11 SMCLK

UnusedBits 5-1UnusedUCSWRSTBit 0Software reset enable

0 Disabled. USCI reset released for operation.

1 Enabled. USCI logic held in reset state.

(1) UCAxCTL1 (USCI_Ax)

(2) UCBxCTL1 (USCI_Bx)

Submit Documentation Feedback

⁽²⁾ UCBxCTL0 (USCI_Bx)

UCAxBR0, USCI	_Ax Bit Rate	Control	Register 0
UCBxBR1, USCI	Bx Bit Rate	Control	Register 0

7	6	5	4	3	2	1	0		
	UCBRx								
rw	rw	rw	rw	rw	rw	rw	rw		

UCAxBR1, USCI_Ax Bit Rate Control Register 1 UCBxBR1, USCI_Bx Bit Rate Control Register 1

7	6	5	4	3	2	1	0
			UCI	BRx			
rw	rw	rw	rw	rw	rw	rw	rw

UCBRx

Bit clock prescaler. The 16-bit value of {UCxxBR0 + UCxxBR1} forms the prescaler value.

UCAxMCTL, USCI_Ax Modulation Control Register

7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0
rw-0							

Bits 7-0 Write as 0.

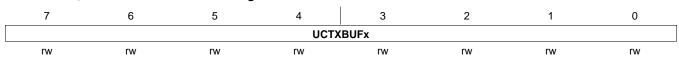
www.ti.com USCI Registers: SPI Mode

UCAxSTAT, USCI_Ax Status Register UCBxSTAT, USCI_Bx Status Register

7	6	5	4	3	2	1	0		
UCLISTEN	UCFE	UCOE		Unused					
rw-0	rw-0	rw-0	rw-0 ⁽¹⁾ r0 ⁽²⁾	rw-0 ⁽¹⁾ r0 ⁽²⁾	rw-0 ⁽¹⁾ r0 ⁽²⁾	rw-0 ⁽¹⁾ r0 ⁽²⁾	r-0		
UCLISTEN	Bit 7	Listen enable. T	Listen enable. The UCLISTEN bit selects loopback mode.						
		0 Disabled							
		1 Enabled.	Enabled. The transmitter output is internally fed back to the receiver.						
UCFE	Bit 6		Framing error flag. This bit indicates a bus conflict in 4-wire master mode. UCFE is not used in 3-wire master or any slave mode.						
		0 No error							
		1 Bus confl	ict occurred						
UCOE	Bit 5	character was re	ad. UCOE is clea		s transferred into l when UCxRXBUF				
		0 No error							
		1 Overrun	error occurred						
Unused	Bits 4-1	Unused							
UCBUSY	Bit 0	USCI busy. This	bit indicates if a t	ransmit or receive	operation is in pro	ogress.			
		0 USCI ina	ctive						
		 USCI trar 	nsmitting or receiv	ring					

⁽¹⁾ UCAxSTAT (USCI_Ax)

(2) UCBxSTAT (USCI_Bx)


UCAxRXBUF, USCI_Ax Receive Buffer Register UCBxRXBUF, USCI_Bx Receive Buffer Register

7	6	5	4	3	2	1	0
	UCRXBUFx						
r	r	r	r	r	r	r	r

UCRXBUFx Bits 7-0

The receive-data buffer is user accessible and contains the last received character from the receive shift register. Reading UCxRXBUF resets the receive-error bits, and UCRXIFG. In 7-bit data mode, UCxRXBUF is LSB justified and the MSB is always reset.

UCAXTXBUF, USCI_Ax Transmit Buffer Register UCBxTXBUF, USCI_Bx Transmit Buffer Register

UCTXBUFx Bits 7-0

The transmit data buffer is user accessible and holds the data waiting to be moved into the transmit shift register and transmitted. Writing to the transmit data buffer clears UCTXIFG. The MSB of UCxTXBUF is not used for 7-bit data and is reset.

UCAxIE, USCI_	Ax Interrupt	Enable	Register
UCBxIE. USCI			

7	6	5	4	3	2	1	0
		Rese	erved			UCTXIE	UCRXIE
r-0	r-0	r-0	r-0	r-0	r-0	rw-0	rw-0

Reserved Bits 7-2 Reserved

UCTXIE Bit 1 Transmit interrupt enable

0 Interrupt disabled

1 Interrupt enabled

UCRXIE Bit 0 Receive interrupt enable

0 Interrupt disabled

1 Interrupt enabled

UCAxIFG, USCI_Ax Interrupt Flag Register UCBxIFG, USCI_Bx Interrupt Flag Register

7	6	5	4	3	2	1	0
	Reserved						
r-0	r-0	r-0	r-0	r-0	r-0	rw-1	rw-0

Reserved Bits 7-2 Reserved

UCTXIFG Bit 1 Transmit interrupt flag. UCTXIFG is set when UCxxTXBUF empty.

No interrupt pendingInterrupt pending

UCRXIFG Bit 0 Receive interrupt flag. UCRXIFG is set when UCxxRXBUF has received a complete character.

No interrupt pendingInterrupt pending

UCAxIV, USCI_Ax Interrupt Vector Register UCBxIV, USCI_Bx Interrupt Vector Register

15	14	13	12	11	10	9	8
0	0	0	0	0	0	0	0
rO	r0	r0	r0	rO	r0	r0	r0
7	6	5	4	3	2	1	0
0	0	0	0	0	UC	IVx	0
r0	r0	r0	r-0	r-0	r-0	r-0	r0

UCIVx Bits 15-0 USCI interrupt vector value

UCAxIV/ UCBxIV Contents	Interrupt Source	Interrupt Flag	Interrupt Priority
000h	No interrupt pending	_	
002h	Data received	UCRXIFG	Highest
004h	Transmit buffer empty	UCTXIFG	Lowest

Universal Serial Communication Interface, I2C Mode

The 5xx universal serial communication interface (USCI) supports multiple serial communication modes with one hardware module. This chapter discusses the operation of the I^2C mode.

Topic		Page
17.1	USCI Overview	440
17.2	USCI Introduction: I ² C Mode	441
17.3	USCI Operation: I ² C Mode	443
17.4	USCI Registers: I ² C Mode	458

USCI Overview www.ti.com

17.1 USCI Overview

The universal serial communication interface (USCI) modules support multiple serial communication modes. Different USCI modules support different modes. Each different USCI module is named with a different letter. For example, USCI_A is different from USCI_B, etc. If more than one identical USCI module is implemented on one device, those modules are named with incrementing numbers. For example, if one device has two USCI_A modules, they are named USCI_A0 and USCI_A1. See the device-specific datasheet to determine which USCI modules, if any, are implemented on which devices.

The USCI_Ax modules support:

- UART mode
- Pulse shaping for IrDA communications
- Automatic baud rate detection for LIN communications
- SPI mode

The USCI_Bx modules support:

- I²C mode
- SPI mode

17.2 USCI Introduction: I²C Mode

In I^2C mode, the USCI module provides an interface between the MSP430 and I^2C -compatible devices connected by way of the two-wire I^2C serial bus. External components attached to the I^2C bus serially transmit and/or receive serial data to/from the USCI module through the 2-wire I^2C interface.

The I²C mode features include:

- Compliance to the Philips Semiconductor I²C specification v2.1
- J 7-bit and 10-bit device addressing modes
- J General call
- J START/RESTART/STOP
- J Multi-master transmitter/receiver mode
- J Slave receiver/transmitter mode
- J Standard mode up to 100 kbps and fast mode up to 400 kbps support
- Programmable UCxCLK frequency in master mode
- Designed for low power
- Slave receiver START detection for auto-wake up from LPMx modes
- Slave operation in LPM4

Figure 17-1 shows the USCI when configured in I²C mode.

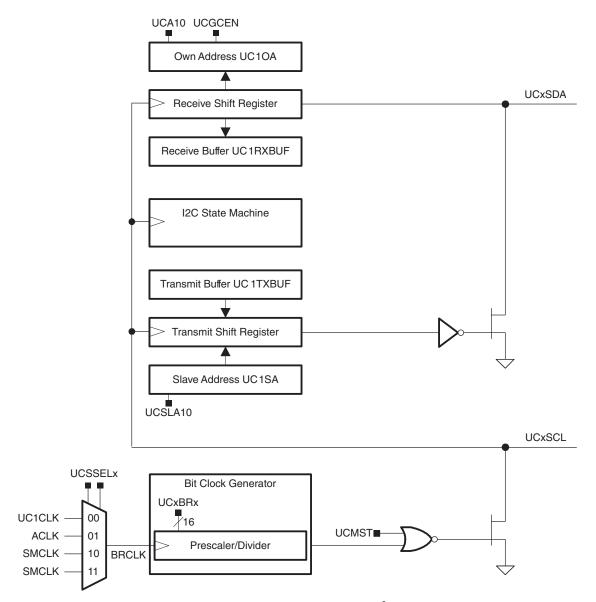


Figure 17-1. USCI Block Diagram: I²C Mode

17.3 USCI Operation: I²C Mode

The I²C mode supports any slave or master I²C-compatible device. Figure 17-2 shows an example of an I²C bus. Each I²C device is recognized by a unique address and can operate as either a transmitter or a receiver. A device connected to the I²C bus can be considered as the master or the slave when performing data transfers. A master initiates a data transfer and generates the clock signal SCL. Any device addressed by a master is considered a slave.

I²C data is communicated using the serial data pin (SDA) and the serial clock pin (SCL). Both SDA and SCL are bidirectional, and must be connected to a positive supply voltage using a pull-up resistor.

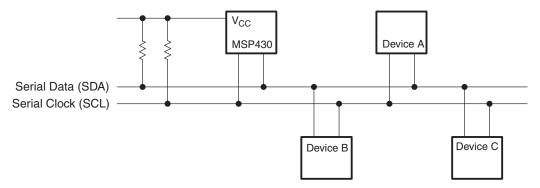


Figure 17-2. I²C Bus Connection Diagram

Note: SDA and SCL Levels

The MSP430 SDA and SCL pins must not be pulled up above the MSP430 VCC level.

17.3.1 USCI Initialization and Reset

The USCI is reset by a PUC or by setting the UCSWRST bit. After a PUC, the UCSWRST bit is automatically set, keeping the USCI in a reset condition. To select I²C operation the UCMODEx bits must be set to 11. After module initialization, it is ready for transmit or receive operation. Clearing UCSWRST releases the USCI for operation.

Configuring and re-configuring the USCI module should be done when UCSWRST is set to avoid unpredictable behavior. Setting UCSWRST in I²C mode has the following effects:

- I²C communication stops
- SDA and SCL are high impedance
- UCBxI2CSTAT, bits 6-0 are cleared
- UCTXIE and UCRXIE are cleared
- UCTXIFG and UCRXIFG are cleared
- All other bits and register remain unchanged.

Note: Initializing or Re-Configuring the USCI Module

The recommended USCI initialization/re-configuration process is:

- 1. Set UCSWRST (BIS.B #UCSWRST, &UCxCTL1)
- 2. Initialize all USCI registers with UCSWRST=1 (including UCxCTL1)
- 3. Configure ports.
- 4. Clear UCSWRST via software (BIC.B #UCSWRST, &UCxCTL1)
- 5. Enable interrupts (optional) via UCxRXIE and/or UCxTXIE

17.3.2 PC Serial Data

One clock pulse is generated by the master device for each data bit transferred. The I²C mode operates with byte data. Data is transferred most significant bit first as shown in Figure 17-3.

The first byte after a START condition consists of a 7-bit slave address and the R/\overline{W} bit. When $R/\overline{W} = 0$, the master transmits data to a slave. When $R/\overline{W} = 1$, the master receives data from a slave. The ACK bit is sent from the receiver after each byte on the 9th SCL clock.

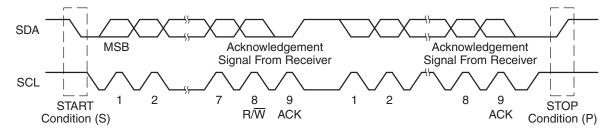


Figure 17-3. I²C Module Data Transfer

START and STOP conditions are generated by the master and are shown in Figure 17-3. A START condition is a high-to-low transition on the SDA line while SCL is high. A STOP condition is a low-to-high transition on the SDA line while SCL is high. The bus busy bit, UCBBUSY, is set after a START and cleared after a STOP.

Data on SDA must be stable during the high period of SCL as shown in Figure 17-4. The high and low state of SDA can only change when SCL is low, otherwise START or STOP conditions will be generated.

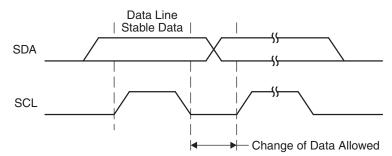


Figure 17-4. Bit Transfer on the I²C Bus

www.ti.com 7-Bit Addressing

17.3.3 FC Addressing Modes

The I²C mode supports 7-bit and 10-bit addressing modes.

7-Bit Addressing

In the 7-bit addressing format, shown in Figure 17-5, the first byte is the 7-bit slave address and the R/W bit. The ACK bit is sent from the receiver after each byte.

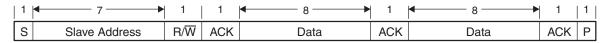


Figure 17-5. I²C Module 7-Bit Addressing Format

10-Bit Addressing

In the 10-bit addressing format, shown in Figure 17-6, the first byte is made up of 11110b plus the two MSBs of the 10-bit slave address and the R/W bit. The ACK bit is sent from the receiver after each byte. The next byte is the remaining 8 bits of the 10-bit slave address, followed by the ACK bit and the 8-bit data.

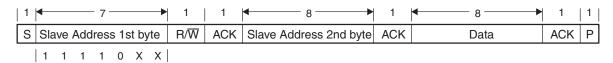


Figure 17-6. I²C Module 10-Bit Addressing Format

Repeated Start Conditions

The direction of data flow on SDA can be changed by the master, without first stopping a transfer, by issuing a repeated START condition. This is called a RESTART. After a RESTART is issued, the slave address is again sent out with the new data direction specified by the R/W bit. The RESTART condition is shown in Figure 17-7.

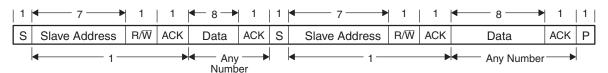


Figure 17-7. I²C Module Addressing Format with Repeated START Condition

Slave Mode www.ti.com

17.3.4 PC Module Operating Modes

In I²C mode the USCI module can operate in master transmitter, master receiver, slave transmitter, or slave receiver mode. The modes are discussed in the following sections. Time lines are used to illustrate the modes.

Figure 17-8 shows how to interpret the time line figures. Data transmitted by the master is represented by grey rectangles, data transmitted by the slave by white rectangles. Data transmitted by the USCI module, either as master or slave, is shown by rectangles that are taller than the others.

Actions taken by the USCI module are shown in grey rectangles with an arrow indicating where in the the data stream the action occurs. Actions that must be handled with software are indicated with white rectangles with an arrow pointing to where in the data stream the action must take place.

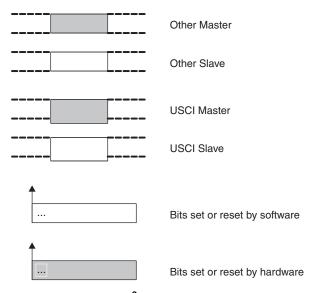


Figure 17-8. I²C Time Line Legend

Slave Mode

The USCI module is configured as an I^2C slave by selecting the I^2C mode with UCMODEx = 11 and UCSYNC = 1 and clearing the UCMST bit.

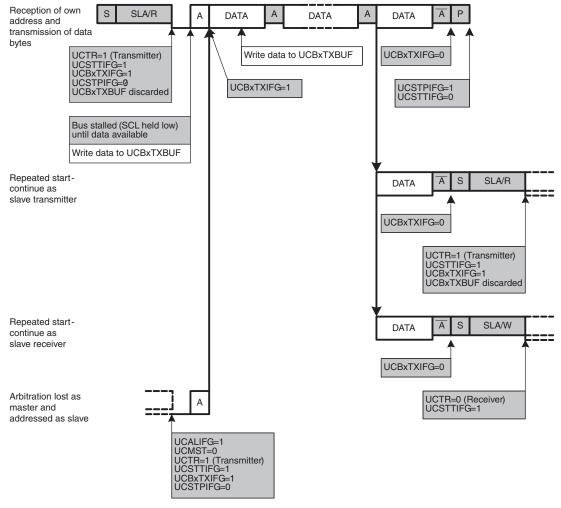
Initially the USCI module must to be configured in receiver mode by clearing the UCTR bit to receive the I²C address. Afterwards, transmit and receive operations are controlled automatically depending on the R/W bit received together with the slave address.

The USCI slave address is programmed with the UCBxI2COA register. When UCA10 = 0, 7-bit addressing is selected. When UCA10 = 1, 10-bit addressing is selected. The UCGCEN bit selects if the slave responds to a general call.

When a START condition is detected on the bus, the USCI module will receive the transmitted address and compare it against its own address stored in UCBxI2COA. The UCSTTIFG flag is set when address received matches the USCI slave address.

I²C Slave Transmitter Mode

Slave transmitter mode is entered when the slave address transmitted by the master is identical to its own address with a set R/W bit. The slave transmitter shifts the serial data out on SDA with the clock pulses that are generated by the master device. The slave device does not generate the clock, but it will hold SCL low while intervention of the CPU is required after a byte has been transmitted.


If the master requests data from the slave the USCI module is automatically configured as a transmitter and UCTR and UCTXIFG become set. The SCL line is held low until the first data to be sent is written into the transmit buffer UCBxTXBUF. Then the address is acknowledged, the UCSTTIFG flag is cleared, and the data is transmitted. As soon as the data is transferred into the shift register the UCTXIFG is set again.

www.ti.com PC Slave Receiver Mode

After the data is acknowledged by the master the next data byte written into UCBxTXBUF is transmitted or if the buffer is empty the bus is stalled during the acknowledge cycle by holding SCL low until new data is written into UCBxTXBUF. If the master sends a NACK succeeded by a STOP condition the UCSTPIFG flag is set. If the NACK is succeeded by a repeated START condition the USCI I²C state machine returns to its address-reception state.

Figure 17-9 illustrates the slave transmitter operation.

A 5xx: Replace UCBxTXIFG with UCTXIFG. Replace UCBxRXIFG with UCRXIFG.

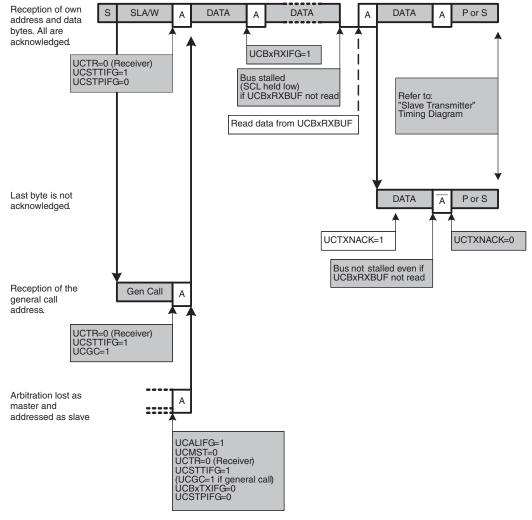
Figure 17-9. I²C Slave Transmitter Mode

I²C Slave Receiver Mode

Slave receiver mode is entered when the slave address transmitted by the master is identical to its own address and a cleared R/W bit is received. In slave receiver mode, serial data bits received on SDA are shifted in with the clock pulses that are generated by the master device. The slave device does not generate the clock, but it can hold SCL low if intervention of the CPU is required after a byte has been received.

If the slave should receive data from the master the USCI module is automatically configured as a receiver and UCTR is cleared. After the first data byte is received the receive interrupt flag UCRXIFG is set. The USCI module automatically acknowledges the received data and can receive the next data byte.

If the previous data wasn not read from the receive buffer UCBxRXBUF at the end of a reception, the bus is stalled by holding SCL low. As soon as UCBxRXBUF is read the new data is transferred into UCBxRXBUF, an acknowledge is sent to the master, and the next data can be received.



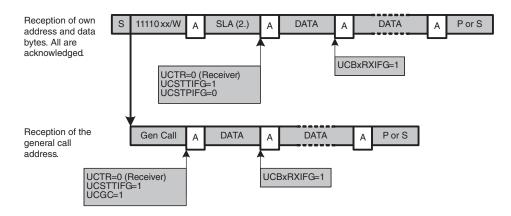
Setting the UCTXNACK bit causes a NACK to be transmitted to the master during the next acknowledgment cycle. A NACK is sent even if UCBxRXBUF is not ready to receive the latest data. If the UCTXNACK bit is set while SCL is held low the bus will be released, a NACK is transmitted immediately, and UCBxRXBUF is loaded with the last received data. Since the previous data was not read that data will be lost. To avoid loss of data the UCBxRXBUF needs to be read before UCTXNACK is set.

When the master generates a STOP condition the UCSTPIFG flag is set.

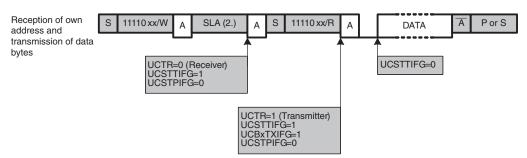
If the master generates a repeated START condition the USCI I²C state machine returns to its address reception state.

Figure 17-10 illustrates the the I²C slave receiver operation.

A 5xx: Replace UCBxTXIFG with UCTXIFG. Replace UCBxRXIFG with UCRXIFG.


Figure 17-10. I²C Slave Receiver Mode

I²C Slave 10-bit Addressing Mode


The 10-bit addressing mode is selected when UCA10 = 1 and is as shown in Figure 17-11. In 10-bit addressing mode, the slave is in receive mode after the full address is received. The USCI module indicates this by setting the UCSTTIFG flag while the UCTR bit is cleared. To switch the slave into transmitter mode the master sends a repeated START condition together with the first byte of the address but with the R/\overline{W} bit set. This will set the UCSTTIFG flag if it was previously cleared by software and the USCI modules switches to transmitter mode with UCTR = 1.

Slave Receiver

Slave Transmitter

A 5xx: Replace UCBxTXIFG with UCTXIFG. Replace UCBxRXIFG with UCRXIFG.

Figure 17-11. I²C Slave 10-bit Addressing Mode

Master Mode www.ti.com

Master Mode

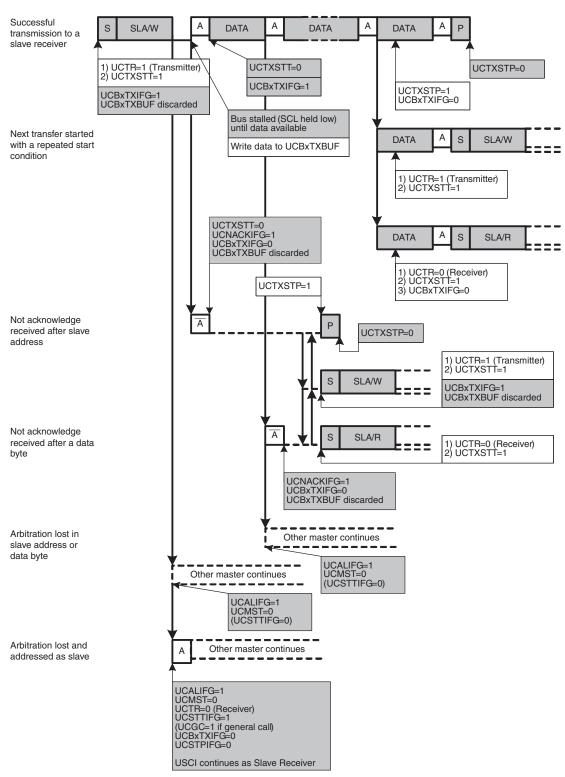
The USCI module is configured as an I^2C master by selecting the I^2C mode with UCMODEx = 11 and UCSYNC = 1 and setting the UCMST bit. When the master is part of a multi-master system, UCMM must be set and its own address must be programmed into the UCBxI2COA register. When UCA10 = 0, 7-bit addressing is selected. When UCA10 = 1, 10-bit addressing is selected. The UCGCEN bit selects if the USCI module responds to a general call.

I²C Master Transmitter Mode

After initialization, master transmitter mode is initiated by writing the desired slave address to the UCBxI2CSA register, selecting the size of the slave address with the UCSLA10 bit, setting UCTR for transmitter mode, and setting UCTXSTT to generate a START condition.

The USCI module checks if the bus is available, generates the START condition, and transmits the slave address. The UCTXIFG bit is set when the START condition is generated and the first data to be transmitted can be written into UCBxTXBUF. As soon as the slave acknowledges the address the UCTXSTT bit is cleared.

The data written into UCBxTXBUF is transmitted if arbitration is not lost during transmission of the slave address. UCTXIFG is set again as soon as the data is transferred from the buffer into the shift register. If there is no data loaded to UCBxTXBUF before the acknowledge cycle, the bus is held during the acknowledge cycle with SCL low until data is written into UCBxTXBUF. Data is transmitted or the bus is held as long as the UCTXSTP bit or UCTXSTT bit is not set.


Setting UCTXSTP will generate a STOP condition after the next acknowledge from the slave. If UCTXSTP is set during the transmission of the slave's address or while the USCI module waits for data to be written into UCBxTXBUF, a STOP condition is generated even if no data was transmitted to the slave. When transmitting a single byte of data, the UCTXSTP bit must be set while the byte is being transmitted, or anytime after transmission begins, without writing new data into UCBxTXBUF. Otherwise, only the address will be transmitted. When the data is transferred from the buffer to the shift register, UCTXIFG will become set indicating data transmission has begun and the UCTXSTP bit may be set.

Setting UCTXSTT will generate a repeated START condition. In this case, UCTR may be set or cleared to configure transmitter or receiver, and a different slave address may be written into UCBxI2CSA if desired.

If the slave does not acknowledge the transmitted data the not-acknowledge interrupt flag UCNACKIFG is set. The master must react with either a STOP condition or a repeated START condition. If data was already written into UCBxTXBUF it will be discarded. If this data should be transmitted after a repeated START it must be written into UCBxTXBUF again. Any set UCTXSTT is discarded, too. To trigger a repeated start, UCTXSTT needs to be set again.

Figure 17-12 illustrates the I²C master transmitter operation.

A 5xx: Replace UCBxTXIFG with UCTXIFG. Replace UCBxRXIFG with UCRXIFG.

Figure 17-12. I²C Master Transmitter Mode

FC Master Receiver Mode www.ti.com

I²C Master Receiver Mode

After initialization, master receiver mode is initiated by writing the desired slave address to the UCBxI2CSA register, selecting the size of the slave address with the UCSLA10 bit, clearing UCTR for receiver mode, and setting UCTXSTT to generate a START condition.

The USCI module checks if the bus is available, generates the START condition, and transmits the slave address. As soon as the slave acknowledges the address the UCTXSTT bit is cleared.

After the acknowledge of the address from the slave the first data byte from the slave is received and acknowledged and the UCRXIFG flag is set. Data is received from the slave ss long as UCTXSTP or UCTXSTT is not set. If UCBxRXBUF is not read the master holds the bus during reception of the last data bit and until the UCBxRXBUF is read.

If the slave does not acknowledge the transmitted address the not-acknowledge interrupt flag UCNACKIFG is set. The master must react with either a STOP condition or a repeated START condition.

Setting the UCTXSTP bit will generate a STOP condition. After setting UCTXSTP, a NACK followed by a STOP condition is generated after reception of the data from the slave, or immediately if the USCI module is currently waiting for UCBxRXBUF to be read.

If a master wants to receive a single byte only, the UCTXSTP bit must be set while the byte is being received. For this case, the UCTXSTT may be polled to determine when it is cleared:

```
BIS.B #UCTXSTT, &UCBOCTL1 ;Transmit START cond.

POLL_STT BIT.B #UCTXSTT, &UCBOCTL1 ;Poll UCTXSTT bit

JC POLL_STT ;When cleared,

BIS.B #UCTXSTP, &UCBOCTL1 ;transmit STOP cond.
```

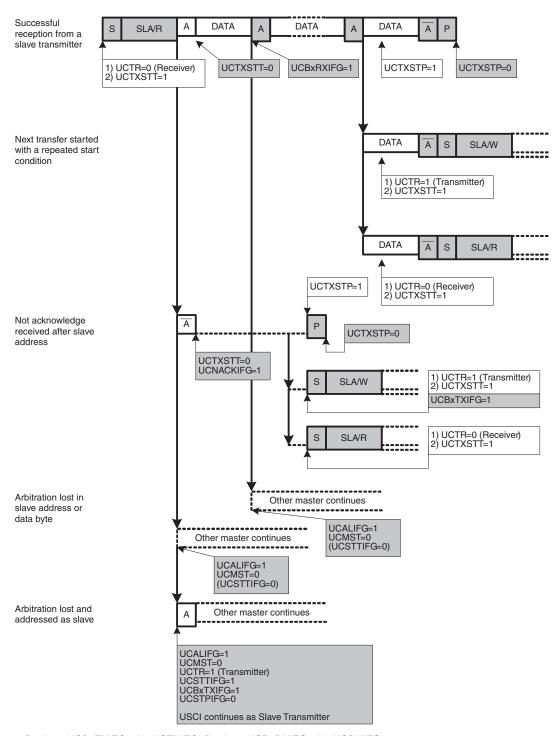

Setting UCTXSTT will generate a repeated START condition. In this case, UCTR may be set or cleared to configure transmitter or receiver, and a different slave address may be written into UCBxl2CSA if desired.

Figure 17-13 illustrates the I²C master receiver operation.

Note: Consecutive Master Transactions Without Repeated Start

When performing multiple consecutive I^2C master transactions without the repeated start feature, the current transaction must be completed before the next one is initiated. This can be done by ensuring that the transmit stop condition flag UCTXSTP is cleared before the next I^2C transaction is initiated with setting UCTXSTT = 1. Otherwise, the current transaction might be affected.

www.ti.com PC Master Receiver Mode

A 5xx: Replace UCBxTXIFG with UCTXIFG. Replace UCBxRXIFG with UCRXIFG.

Figure 17-13. I²C Master Receiver Mode

I²C Master 10-bit Addressing Mode

The 10-bit addressing mode is selected when UCSLA10 = 1 and is shown in Figure 17-14.

Master Transmitter Successful 11110xx/W SLA(2.) DATA DATA transmission to a slave receiver 1) UCTR=1(Transmitter) 2) UCTXSTT=1 UCTXSTT=0 UCTXSTP=0 UCBxTXIFG=1 UCTXSTP=1 UCBxTXIFG=1 Master Receiver Successful DATA DATA 11110xx/W SLA(2.) S 11110xx/R Α Р reception from a slave transmitter UCTXSTT=0 UCBxRXIFG=1 UCTXSTP=0 1) UCTR=0(Receiver) 2) UCTXSTT=1 UCTXSTP=1

A 5xx: Replace UCBxTXIFG with UCTXIFG. Replace UCBxRXIFG with UCRXIFG.

Figure 17-14. I²C Master 10-bit Addressing Mode

Arbitration

If two or more master transmitters simultaneously start a transmission on the bus, an arbitration procedure is invoked. Figure 17-15 illustrates the arbitration procedure between two devices. The arbitration procedure uses the data presented on SDA by the competing transmitters. The first master transmitter that generates a logic high is overruled by the opposing master generating a logic low. The arbitration procedure gives priority to the device that transmits the serial data stream with the lowest binary value. The master transmitter that lost arbitration switches to the slave receiver mode, and sets the arbitration lost flag UCALIFG. If two or more devices send identical first bytes, arbitration continues on the subsequent bytes.

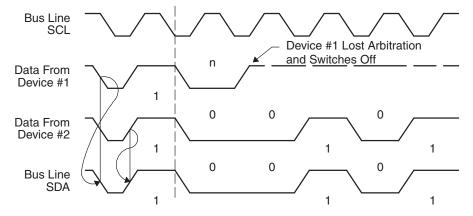


Figure 17-15. Arbitration Procedure Between Two Master Transmitters

If the arbitration procedure is in progress when a repeated START condition or STOP condition is transmitted on SDA, the master transmitters involved in arbitration must send the repeated START condition or STOP condition at the same position in the format frame. Arbitration is not allowed between:

www.ti.com Clock Stretching

- A repeated START condition and a data bit
- · A STOP condition and a data bit
- A repeated START condition and a STOP condition

17.3.5 FC Clock Generation and Synchronization

The I²C clock SCL is provided by the master on the I²C bus. When the USCI is in master mode, BITCLK is provided by the USCI bit clock generator and the clock source is selected with the UCSSELx bits. In slave mode the bit clock generator is not used and the UCSSELx bits are don't care.

The 16-bit value of UCBRx in registers UCBxBR1 and UCBxBR0 is the division factor of the USCI clock source, BRCLK. The maximum bit clock that can be used in single master mode is $f_{BRCLK}/4$. In multi-master mode the maximum bit clock is $f_{BRCLK}/8$. The BITCLK frequency is given by:

```
f_{BitClock} = f_{BRCLK}/UCBRx
```

The minimum high and low periods of the generated SCL are:

 $t_{LOW,MIN} = t_{HIGH,MIN} = (UCBRx/2)/f_{BRCLK}$ when UCBRx is even $t_{LOW,MIN} = t_{HIGH,MIN} = (UCBRx - 1/2)/f_{BRCLK}$ when UCBRx is odd

The USCI clock source frequency and the prescaler setting UCBRx must to be chosen such that the minimum low and high period times of the I²C specification are met.

During the arbitration procedure the clocks from the different masters must be synchronized. A device that first generates a low period on SCL overrules the other devices forcing them to start their own low periods. SCL is then held low by the device with the longest low period. The other devices must wait for SCL to be released before starting their high periods. Figure 17-16 illustrates the clock synchronization. This allows a slow slave to slow down a fast master.

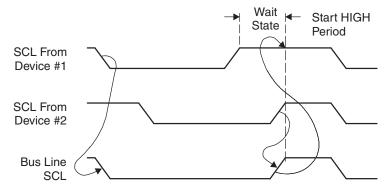


Figure 17-16. Synchronization of Two I²C Clock Generators During Arbitration

Clock Stretching

The USCI module supports clock stretching and also makes use of this feature as described in the operation mode sections.

The UCSCLLOW bit can be used to observe if another device pulls SCL low while the USCI module already released SCL due to the following conditions:

- USCI is acting as master and a connected slave drives SCL low.
- USCI is acting as master and another master drives SCL low during arbitration.

The UCSCLLOW bit is also active if the USCI holds SCL low because it is waiting as transmitter for data being written into UCBxTXBUF or as receiver for the data being read from UCBxRXBUF.

The UCSCLLOW bit might get set for a short time with each rising SCL edge because the logic observes the external SCL and compares it to the internally generated SCL.

17.3.6 Using the USCI Module in FC Mode with Low Power Modes

The USCI module provides automatic clock activation for use with low-power modes. When the USCI clock source is inactive because the device is in a low-power mode, the USCI module automatically activates it when needed, regardless of the control-bit settings for the clock source. The clock remains active until the USCI module returns to its idle condition. After the USCI module returns to the idle condition, control of the clock source reverts to the settings of its control bits.

In I²C slave mode no internal clock source is required because the clock is provided by the external master. It is possible to operate the USCI in I²C slave mode while the device is in LPM4 and all internal clock sources are disabled. The receive or transmit interrupts can wake up the CPU from any low power mode.

17.3.7 USCI Interrupts in PC Mode

The USCI has only one interrupt vector that is shared for transmission, for reception, and for the state change. USCI_Ax and USC_Bx do not share the same interrupt vector.

Each interrupt flag has its own interrupt enable bit. When an interrupt is enabled, and the GIE bit is set, the interrupt flag will generate an interrupt request. DMA transfers are controlled by the UCTXIFG and UCRXIFG flags on devices with a DMA controller.

I²C Transmit Interrupt Operation

The UCTXIFG interrupt flag is set by the transmitter to indicate that UCBxTXBUF is ready to accept another character. An interrupt request is generated if UCTXIE and GIE are also set. UCTXIFG is automatically reset if a character is written to UCBxTXBUF or if a NACK is received. UCTXIFG is set when UCSWRST = 1 and the I²C mode is selected. UCTXIE is reset after a PUC or when UCSWRST = 1.

I²C Receive Interrupt Operation

The UCRXIFG interrupt flag is set when a character is received and loaded into UCBxRXBUF. An interrupt request is generated if UCRXIE and GIE are also set. UCRXIFG and UCRXIE are reset after a PUC signal or when UCSWRST = 1. UCRXIFG is automatically reset when UCxRXBUF is read.

I²C State Change Interrupt Operation

Table 17-1 describes the I²C state change interrupt flags.

Table 17-1. I²C State Change Interrupt Flags

Interrupt Flag	Interrupt Condition
UCALIFG	Arbitration-lost. Arbitration can be lost when two or more transmitters start a transmission simultaneously, or when the USCI operates as master but is addressed as a slave by another master in the system. The UCALIFG flag is set when arbitration is lost. When UCALIFG is set the UCMST bit is cleared and the I ² C controller becomes a slave.
UCNACKIFG	Not-acknowledge interrupt. This flag is set when an acknowledge is expected but is not received. UCNACKIFG is automatically cleared when a START condition is received.
UCSTTIFG	Start condition detected interrupt. This flag is set when the I ² C module detects a START condition together with its own address while in slave mode. UCSTTIFG is used in slave mode only and is automatically cleared when a STOP condition is received.
UCSTPIFG	Stop condition detected interrupt. This flag is set when the I^2C module detects a STOP condition while in slave mode. UCSTPIFG is used in slave mode only and is automatically cleared when a START condition is received.

UCBxIV, Interrupt Vector Generator

The USCI interrupt flags are prioritized and combined to source a single interrupt vector. The interrupt vector register UCBxIV is used to determine which flag requested an interrupt. The highest priority enabled interrupt generates a number in the UCBxIV register that can be evaluated or added to the program counter to automatically enter the appropriate software routine. Disabled interrupts do not affect the UCBxIV value.

Any access, read or write, of the UCBxIV register automatically resets the highest pending interrupt flag. If another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt.

UCBxIV Software Example

The following software example shows the recommended use of UCBxIV. The UCBxIV value is added to the PC to automatically jump to the appropriate routine. The example is given for USCI_B0.

```
USCI_I2C_ISR
        ADD
                 &UCBOIV, PC ; Add offset to jump table
        RETI
                              ; Vector 0: No interrupt
                             ; Vector 2: ALIFG
        JMP
                ALIFG_ISR
                 NACKIFG_ISR ; Vector 4: NACKIFG
        JMP
        JMP
                 STTIFG_ISR ; Vector 6: STTIFG
        JMP
                 STPIFG_ISR ; Vector 8: STPIFG
                 RXIFG_ISR
        JMP
                              ; Vector 10: RXIFG
                              ; Vector 12
TXIFG_ISR
                              ; Task starts here
        RETI
                              ; Return
ALIFG_ISR
                              ; Vector 2
                              ; Task starts here
        RETI
                              ; Return
                              ; Vector 4
NACKIFG_ISR
                              ; Task starts here
        . . .
        RETI
                              ; Return
STTIFG_ISR
                              ; Vector 6
                              ; Task starts here
        . . .
        RETI
                              ; Return
STPIFG_ISR
                              ; Vector 8
                              ; Task starts here
        RETI
                              ; Return
RXIFG_ISR
                              ; Vector 10
                              ; Task starts here
        RETI
                              ; Return
```


17.4 USCI Registers: I²C Mode

The USCI registers applicable in I^2C mode listed in Table 17-2. The word accessible registers are listed in Table 17-3.

Table 17-2. USCI_Bx Registers

Register	Short Form	Register Type	Address Offset	Initial State
USCI_Bx control register 0	UCBxCTL0	Byte - R/W	+01h	001h with PUC
USCI_Bx control register 1	UCBxCTL1	Byte - R/W	+00h	001h with PUC
USCI_Bx Bit rate control register 0	UCBxBR0	Byte - R/W	+06h	Reset with PUC
USCI_Bx Bit rate control register 1	UCBxBR1	Byte - R/W	+07h	Reset with PUC
USCI_Bx status register	UCBxSTAT	Byte - R/W	+0Ah	Reset with PUC
Reserved - reads zero		Byte - R only	+0Bh	000h
USCI_Bx Receive buffer register	UCBxRXBUF	Byte - R/W	+0Ch	Reset with PUC
Reserved - reads zero		Byte - R only	+0Dh	000h
USCI_Bx Transmit buffer register	UCBxTXBUF	Byte - R/W	+0Eh	Reset with PUC
Reserved - reads zero		Byte - R only	+0Fh	000h
USCI_Bx I2C Own Address register	UCBxI2COA	Word - R/W	+10h	Reset with PUC
USCI_Bx I2C Slave Address register	UCBxI2CSA	Word - R/W	+12h	Reset with PUC
USCI_Bx interrupt enable register	UCBxIE	Byte - R/W	+1Ch	Reset with PUC
USCI_Bx interrupt flag register	UCBxIFG	Byte - R/W	+1Dh	002h with PUC
USCI_Bx interrupt vector register	UCBxIV	Word - R	+1Eh	Reset with PUC

Table 17-3. Word Access to USCI_Bx Registers

Word Register	Short Form	High-Byte Register	Low-Byte Register	Address Offset
USCI_Bx control word register 0	UCBxCTLW0	UCBxCTL0	UCBxCTL1	+00h
USCI_Bx bit rate control word register	UCBxBRW	UCBxBR1	UCBxBR0	+06h
USCI_Bx interrupt control register	UCBxICTL	UCBxIFG	UCBxIE	+1Ch

www.ti.com

UCBxCTL0, USCI_Bx Control Register 0

7	6	5	4	3	2	1	0
UCA10	UCSLA10	UCI	MM Unused	UCMST	UCMO	DEx=11	UCSYNC=1
R/W-0							
rw-0	rw-0	rw	-0 rw-0	rw-0	rw-0	rw-0	r-1
UCA10	Bit 7	Own add	dressing mode select				
		0 C	wn address is a 7-bit add	dress			
		1 C	wn address is a 10-bit a	ddress			
UCSLA10	Bit 6	Slave ac	dressing mode select				
		0 A	ddress slave with 7-bit a	ddress			
		1 A	ddress slave with 10-bit	address			
UCMM	Bit 5	Multi-ma	ster environment select				
			ingle master environmen isabled.	t. There is no othe	r master in the sy	stem. The address	compare unit is
		1 M	lulti master environment				
Unused	Bit 4	Unused					
UCMST	Bit 3		node select. When a mas bit is automatically cleare			ter environment (U	CMM = 1) the
		0 S	lave mode				
		1 M	laster mode				
UCMODEx	Bits 2-1	USCI Mo	ode. The UCMODEx bits	select the synchro	nous mode when	UCSYNC = 1.	
		00 3	-pin SPI				
		01 4	-pin SPI (master/slave er	nabled if STE = 1)			
		10 4	-pin SPI (master/slave er	nabled if STE = 0)			
		11 l ²	C mode				
UCSYNC	Bit 0	Synchro	nous mode enable				
		0 A	synchronous mode				
		1 S	ynchronous Mode				

UCBxCTL1, USCI_Bx Control Register 1

7	6		5	4	3	2	1	0
UCS	SELx	Ur	nused	UCTR	UCTXNACK	UCTXSTP	UCTXSTT	UCSWRST
rw-0	rw-0		r0	rw-0	rw-0	rw-0	rw-0	rw-1
UCSSELx	Bits 7-6	USCI 00 01	clock sourc UCLKI ACLK	e select. These b	its select the BRC	LK source clock.		
		10	SMCLK					
		11	SMCLK					
Unused	Bit 5	Unuse	ed					
UCTR	Bit 4	Transr	mitter/Rece	iver				
		0	Receiver					
		1	Transmitte	er				
UCTXNACK	Bit 3	Transr	mit a NACh	C. UCTXNACK is	automatically clea	red after a NACK	is transmitted.	
		0	Acknowle	dge normally				
		1	Generate	NACK				
UCTXSTP	Bit 2				r mode. Ignored ir UCTXSTP is auto			
		0	No STOP	generated				
		1	Generate	STOP				
UCTXSTT	Bit 1	STAR'	T condition	is preceded by a	er mode. Ignored NACK. UCTXSTT Ignored in slave m	is automatically		
		0	Do not ge	nerate START co	ndition			
		1	Generate	START condition				
UCSWRST	Bit 0	Softwa	are reset er	nable				
		0	Disabled.	USCI reset releas	sed for operation.			

UCBxBR0, USCI_Bx Baud Rate Control Register 0

7	6	5	4	3	2	1	0
			UCI	BRx			
rw	rw	rw	rw	rw	rw	rw	rw
UCBxBR1, US	CI_Bx Baud Ra	te Control Reg	ister 1				
7	6	5	4	3	2	1	0
			UCI	BRx			
rw	rw	rw	rw	rw	rw	rw	rw

Enabled. USCI logic held in reset state.

UCBRx

Bit clock prescaler. The 16-bit value of {UCxxBR0 + UCxxBR1} forms the prescaler value.

www.ti.com

Unused

UCBxSTAT, USCI_Bx Status Register

•		•					
7	6	5	4	3	2	1	0
Unused	UCSCLLOW	UCGC	UCBBUSY		Unu	sed	
rw-0	r-0	rw-0	r-0	rO	rO	r0	rO
Unused	Bit 7	Unused					
UCSCLLOW	Bit 6	SCL low					
		0 SCL is n	ot held low				
		1 SCL is h	eld low				
UCGC	Bit 5	General call add	dress received. UC	GC is automatica	lly cleared when a	START condition	is received.
		0 No gene	ral call address red	ceived			
		1 General	call address receiv	red			
UCBBUSY	Bit 4	Bus busy					
		0 Bus inac	tive				
		1 Bus bus	/				

UCBxRXBUF, USCI_Bx Receive Buffer Register

Unused

Bits 3-0

7	6	5	4	3	2	1	0		
	UCRXBUFx								
r	r	r	r	r	r	r	r		

UCRXBUFx Bits 7-0 The receive-data buffer is user accessible and contains the last received character from the receive shift register. Reading UCBxRXBUF resets UCRXIFG.

UCBxTXBUF, USCI_Bx Transmit Buffer Register

7	6	5	4	3	2	1	0		
UCTXBUFx									
rw	rw	rw	rw	rw	rw	rw	rw		

UCTXBUFx

Bits 7-0

The transmit data buffer is user accessible and holds the data waiting to be moved into the transmit shift register and transmitted. Writing to the transmit data buffer clears UCTXIFG.

UCBxI2COA, USCIBx I2C Own Address Registe	UCByl2COA	USCIBY	I ² C. Own	Address	Registe
---	-----------	--------	-----------------------	---------	---------

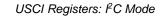
15	14	13	12	11	10	9	8			
UCGCEN	0	0	0	0	0	1200	OAx			
rw-0	rO	r0	r0	rO	r0	rw-0	rw-0			
7	6	5	4	3	2	1	0			
I2COAx										
rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0			

UCGCEN Bit 15 General call response enable

0 Do not respond to a general call

1 Respond to a general call

I2COAx Bits 9-0


I²C own address. The I2COAx bits contain the local address of the USCI_Bx I²C controller. The address is right-justified. In 7-bit addressing mode, Bit 6 is the MSB and Bits 9-7 are ignored. In 10-bit addressing mode, Bit 9 is the MSB.

UCBxI2CSA, USCI_Bx I2C Slave Address Register

15	14	13	12	11	10	9	8		
0	0	0	0	0	0	I2C	SAx		
rO	r0	r0	r0	r0	r0	rw-0	rw-0		
7	6	5	4	3	2	1	0		
I2CSAx									
rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0		

I2CSAx Bits 9-0

I²C slave address. The I2CSAx bits contain the slave address of the external device to be addressed by the USCI_Bx module. It is only used in master mode. The address is right-justified. In 7-bit slave addressing mode Bit 6 is the MSB, Bits 9-7 are ignored. In 10-bit slave addressing mode Bit 9 is the MSB.

www.ti.com

UCBxIE, USCI_Bx I²C Interrupt Enable Register

7	6	5	4	3	2	1	0
Rese	erved	UCNACKIE	UCALIE	UCSTPIE	UCSTTIE	UCTXIE	UCRXIE
r-0	r-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0

Reserved	Bits 7-6	Reserved				
UCNACKIE	Bit 5	Not-ac	knowledge interrupt enable			
		0	Interrupt disabled			
		1	Interrupt enabled			
UCALIE	Bit 4	Arbitra	tion lost interrupt enable			
		0	Interrupt disabled			
		1	Interrupt enabled			
UCSTPIE	Bit 3	Stop c	ondition interrupt enable			
		0	Interrupt disabled			
		1	Interrupt enabled			
UCSTTIE	Bit 2	Start o	condition interrupt enable			
		0	Interrupt disabled			
		1	Interrupt enabled			
UCTXIE	Bit 1	Transr	mit interrupt enable			
		0	Interrupt disabled			
		1	Interrupt enabled			
UCRXIE	Bit 0	Receiv	ve interrupt enable			
		0	Interrupt disabled			
		1	Interrupt enabled			

UCBxIFG, USCI_Bx I²C Interrupt Flag Register

7	6	5	4	3	2	1	0
Rese	erved	UCNACKIFG	UCALIFG	UCSTPIFG	UCSTTIFG	UCTXIFG	UCRXIFG
r-0	r-0	rw-0	rw-0	rw-0	rw-0	rw-1	rw-0

r-0	r-0	rw-0	rw-0	rw-0	rw-0	rw-1	rw-0
Reserved	Bits 7-6	Reserved					
UCNACKIFG	Bit 5	Not-acknowle is received.	edge received interrup	ot flag. UCNACKIF	G is automatically	cleared when a	START condition
		0 No int	errupt pending				
		1 Interru	pt pending				
UCALIFG	Bit 4	Arbitration los	st interrupt flag				
		0 No int	errupt pending				
		1 Interru	pt pending				
UCSTPIFG	Bit 3	Stop conditio	n interrupt flag. UCS	ΓΡΙFG is automation	cally cleared when	a START conditi	on is received.
		0 No int	errupt pending				
		1 Interru	pt pending				
UCSTTIFG	Bit 2	Start conditio	n interrupt flag. UCS	TTIFG is automation	cally cleared if a S	TOP condition is	received.
		0 No int	errupt pending				
		1 Interru	pt pending				
UCTXIFG	Bit 1	USCI transm	t interrupt flag. UCTX	(IFG is set when L	JCBxTXBUF is em	pty.	
		0 No int	errupt pending				
		1 Interru	pt pending				
UCRXIFG	Bit 0	USCI receive	interrupt flag. UCRX	IFG is set when U	CBxRXBUF has re	eceived a comple	te character.
		0 No int	errupt pending				
		1 Interru	pt pending				

UCBxIV, USCI_Bx Interrupt Vector Register

15	14	13	12	11	10	9	8
0	0	0	0	0	0	0	0
r0	rO	rO	rO	rO	rO	rO	rO
7	6	5	4	3	2	1	0
0	0	0	0		UCIVx		0
rO	rO	rO	rO	r-0	r-0	r-0	r0

UCIVx Bits 15-0 USCI interrupt vector value

UCBxIV Contents	Interrupt Source	Interrupt Flag	Interrupt Priority
000h	No interrupt pending	_	
002h	Arbitration lost	UCALIFG	Highest
004h	Not acknowledgement	UCNACKIFG	
006h	Start condition received	UCSTTIFG	
008h	Stop condition received	UCSTPIFG	
00Ah	Data received	UCRXIFG	
00Ch	Transmit buffer empty	UCTXIFG	Lowest

ADC12_A

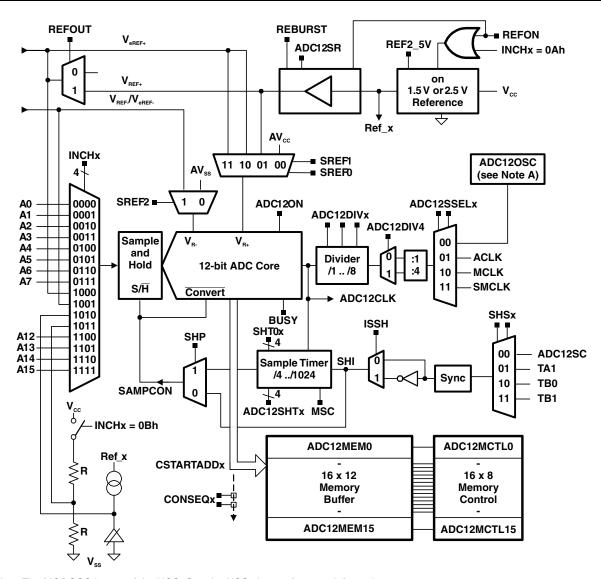
The ADC12_A module is a high-performance 12-bit analog-to-digital converter (ADC). This chapter describes the ADC12_A of the MSP430 5xx devices.

T	opic		Page
	18.1	ADC12_A Introduction	466
	18.2	ADC12_A Operation	468
	18.3	ADC12_A Registers	481

ADC12_A Introduction www.ti.com

18.1 ADC12 A Introduction

The ADC12_A module supports fast, 12-bit analog-to-digital conversions. The module implements a 12-bit SAR core, sample select control, reference generator (MSP430F54xx only in other devices separate REF module) and a 16 word conversion-and-control buffer. The conversion-and-control buffer allows up to 16 independent ADC samples to be converted and stored without any CPU intervention.


ADC12 A features include:

- Greater than 200-ksps maximum conversion rate
- Monotonic 12-bit converter with no missing codes
- Sample-and-hold with programmable sampling periods controlled by software or timers.
- Conversion initiation by software, Timer_A, or Timer_B
- Software selectable on-chip reference voltage generation (MSP430F54xx: 1.5 V or 2.5 V, other devices: 1.5 V, 2.0 V or 2.5 V)
- Software selectable internal or external reference
- Twelve individually configurable external input channels
- Conversion channels for internal temperature sensor, AV_{CC}, and external references
- Independent channel-selectable reference sources for both positive and negative references
- Selectable conversion clock source
- Single-channel, repeat-single-channel, sequence, and repeat-sequence conversion modes
- ADC core and reference voltage can be powered down separately (MSP430F54xx only. Other devices see REF module specification for details)
- Interrupt vector register for fast decoding of 18 ADC interrupts
- 16 conversion-result storage registers

The block diagram of ADC12_A is shown in Figure 18-1. The reference generation is in the MSP430F54xx devices located in the ADC12_A module. In other devices the reference generator is located in the reference module. See also the device specific datasheet.

www.ti.com ADC12_A Introduction

A The MODOSC is part of the UCS. See the UCS chapter for more information.

Figure 18-1. ADC12_A Block Diagram

ADC12_A Operation www.ti.com

18.2 ADC12 A Operation

The ADC12 A module is configured with user software. The setup and operation of the ADC12 A is discussed in the following sections.

18.2.1 12-Bit ADC Core

The ADC core converts an analog input to its 12-bit digital representation and stores the result in conversion memory. The core uses two programmable/selectable voltage levels (V_{R+} and V_{R-}) to define the upper and lower limits of the conversion. The digital output (N_{ADC}) is full scale (OFFFh) when the input signal is equal to or higher than V_{R+} , and zero when the input signal is equal to or lower than V_{R-} . The input channel and the reference voltage levels (V_{R+} and V_R.) are defined in the conversion-control memory. The conversion formula for the ADC result N_{ADC} is: $N_{ADC} = 4095 \times \frac{Vin - V_{R-}}{V_{R+} - V_{R-}}$

$$N_{ADC} = 4095 \times \frac{Vin - V_{B-}}{V_{B+} - V_{B-}}$$

The ADC12_A core is configured by two control registers, ADC12CTL0 and ADC12CTL1. The core is enabled with the ADC12ON bit. The ADC12 A can be turned off when not in use to save power. With few exceptions the ADC12_A control bits can only be modified when ADC12ENC = 0. ADC12ENC must be set to 1 before any conversion can take place.

Conversion Clock Selection

The ADC12CLK is used both as the conversion clock and to generate the sampling period when the pulse sampling mode is selected. The ADC12_A source clock is selected using the pre-divider controlled by the ADC12DIV4 bit and the divider using the ADC12SSELx bits. The input clock can be divided from 1-32 using both the ADC12DIVx bits and the ADC12DIV4 bit. Possible ADC12CLK sources are SMCLK, MCLK, ACLK, and the MODOSC.

The ADC12OSC, generated internally, is in the 5-MHz range, but varies with individual devices, supply voltage, and temperature. See the device-specific datasheet for the ADC12OSC specification.

The user must ensure that the clock chosen for ADC12CLK remains active until the end of a conversion. If the clock is removed during a conversion, the operation will not complete and any result will be invalid.

18.2.2 ADC12 A Inputs and Multiplexer

The twelve external and four internal analog signals are selected as the channel for conversion by the analog input multiplexer. The input multiplexer is a break-before-make type to reduce input-to-input noise injection resulting from channel switching as shown in Figure 18-2. The input multiplexer is also a T-switch to minimize the coupling between channels. Channels that are not selected are isolated from the A/D and the intermediate node is connected to analog ground (AV_{SS}) so that the stray capacitance is grounded to help eliminate crosstalk.

The ADC12_A uses the charge redistribution method. When the inputs are internally switched, the switching action may cause transients on the input signal. These transients decay and settle before causing errant conversion.

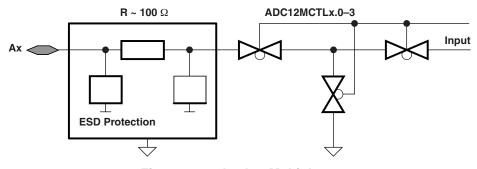


Figure 18-2. Analog Multiplexer

www.ti.com Analog Port Selection

Analog Port Selection

The ADC12_A inputs are multiplexed with digital port pins. When analog signals are applied to digital gates, parasitic current can flow from V_{CC} to GND. This parasitic current occurs if the input voltage is near the transition level of the gate. Disabling the digital pat of the port pin eliminates the parasitic current flow and therefore reduces overall current consumption. The PySELx bits provide the ability to disable the port pin input and output buffers.

```
; Py.0 and Py.1 configured for analog input
BIS.B #3h,&PySEL ; Py.1 and Py.0 ADC12_A function
```

18.2.3 Voltage Reference Generator

The ADC12_A module of the MSP430F54xx contains a built-in voltage reference with two selectable voltage levels, 1.5 V and 2.5 V. Either of these reference voltages may be used internally and externally on pin V_{RFF+}.

The ADC12_A modules of other devices have a separate reference module which supplies three selectable voltage levels, 1.5V, 2.0V and 2.5V to the ADC12_A. Either of these voltages may be used internally and externally on pin $V_{\text{REF+}}$.

Setting ADC12REFON = 1 enables the reference voltage of the ADC12_A module. When ADC12REF2_5V = 1, the internal reference is 2.5 V; when ADC12REF2_5V = 0, the reference is 1.5 V. The reference can be turned off to save power when not in use. Devices with the REF module can use the control bits located in the ADC12_A module or the control registers located in the REF module to control the reference voltage supplied to the ADC. Per default the register settings of the REF module define the reference voltage settings. The control bit REFMSTR in the REF module is used to hand over control to the ADC12_A reference control register settings. If the register bit REFMSTR is set to 1 (default) then the REF module registers control the reference settings. If REFMSTR is set to 0 then the ADC12_A reference setting define the reference voltage of the ADC12_A module.

External references may be supplied for V_{R+} and V_{R-} through pins V_{REF+}/V_{REF+} and V_{REF-}/V_{REF-} respectively.

External storage capacitors are only requied if REFOUT = 1 and the reference voltage is made available at the pins.

Internal Reference Low-Power Features

The ADC12_A internal reference generator is designed for low power applications. The reference generator includes a band-gap voltage source and a separate buffer. The current consumption of each is specified separately in the device-specific datasheet. When ADC12REFON = 1, both are enabled and if ADC12REFON = 0 both are disabled. The total settling time when ADC12REFON gets set is \leq 30 μ s.

When ADC12REFON = 1 and REFBURST = 1, but no conversion is active, the buffer is automatically disabled and automatically re-enabled when needed. When the buffer is disabled, it consumes no current. In this case, the band-gap voltage source remains enabled.

The REFBURST bit controls the operation of the reference buffer. When REFBURST = 1, the buffer is automatically disabled when the ADC12_A is not actively converting, and automatically re-enabled when needed. When REFBURST = 0, the buffer will be on continuously this allows the reference voltage to be present outside the device continuously if REFOUT = 1.

The internal reference buffer also has selectable speed vs. power settings. When the maximum conversion rate is below 50 ksps, setting ADC12SR = 1 reduces the current consumption of the buffer approximately 50%.

18.2.4 Auto Power-Down

The ADC12_A is designed for low power applications. When the ADC12_A is not actively converting, the core is automatically disabled and automatically re-enabled when needed The MODOSC is also automatically enabled when needed and disabled when not needed.

SLAU208-June 2008 ADC12 A 469

18.2.5 Sample and Conversion Timing

An analog-to-digital conversion is initiated with a rising edge of the sample input signal SHI. The source for SHI is selected with the SHSx bits and includes the following:

- The ADC12SC bit
- The Timer_A Output Unit 1
- The Timer_B Output Unit 0
- The Timer B Output Unit 1

The polarity of the SHI signal source can be inverted with the ADC12ISSH bit. The SAMPCON signal controls the sample period and start of conversion. When SAMPCON is high, sampling is active. The high-to-low SAMPCON transition starts the analog-to-digital conversion, which requires 13 ADC12CLK cycles in 12-bit resolution mode. Two different sample-timing methods are defined by control bit ADC12SHP, extended sample mode and pulse mode.

Extended Sample Mode

The extended sample mode is selected when ADC12SHP = 0. The SHI signal directly controls SAMPCON and defines the length of the sample period t_{sample} . When SAMPCON is high, sampling is active. The high-to-low SAMPCON transition starts the conversion after synchronization with ADC12CLK (see Figure 18-3).

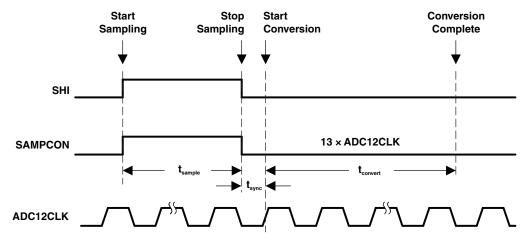


Figure 18-3. Extended Sample Mode

Pulse Sample Mode

The pulse sample mode is selected when ADC12SHP = 1. The SHI signal is used to trigger the sampling timer. The ADC12SHT0x and ADC12SHT1x bits in ADC12CTL0 control the interval of the sampling timer that defines the SAMPCON sample period t_{sample} . The sampling timer keeps SAMPCON high after synchronization with AD12CLK for a programmed interval t_{sample} . The total sampling time is t_{sample} plus t_{sync} (see Figure 18-4).

The ADC12SHTx bits select the sampling time in $4\times$ multiples of ADC12CLK. ADC12SHT0x selects the sampling time for ADC12MCTL0 to 7, and ADC12SHT1x selects the sampling time for ADC12MCTL8 to 15.

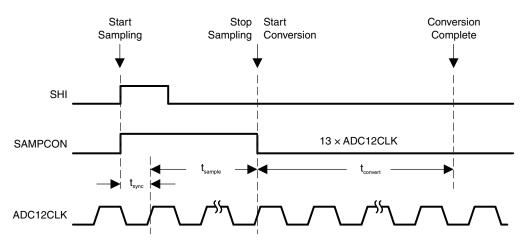


Figure 18-4. Pulse Sample Mode

Sample Timing Considerations

When SAMPCON = 0 all Ax inputs are high impedance. When SAMPCON = 1, the selected Ax input can be modeled as an RC low-pass filter during the sampling time t_{sample} , as shown below in Figure 18-5. An internal MUX-on input resistance R_{I} (maximum 2 k Ω) in series with capacitor C_{I} (40 pF maximum) is seen by the source. The capacitor C_{I} voltage V_{C} must be charged to within 1/2 LSB of the source voltage V_{S} for an accurate 12-bit conversion.

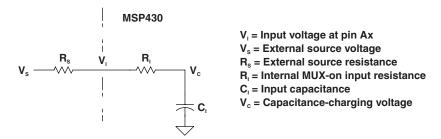


Figure 18-5. Analog Input Equivalent Circuit

The resistance of the source R_S and R_I affect t_{sample} . The following equation can be used to calculate the minimum sampling time t_{sample} for a 12-bit conversion:

$$t_{sample} > (R_S + R_I) \times ln(2^{13}) \times C_I + 800ns$$

Substituting the values for R_I and C_I given above, the equation becomes:

$$t_{sample} > (R_S + 2k\Omega) \times 9.011 \times 40pF + 800ns$$

For example, if R_S is 10 k Ω , t_{sample} must be greater than 5.13 μs .

18.2.6 Conversion Memory

There are 16 ADC12MEMx conversion memory registers to store conversion results. Each ADC12MEMx is configured with an associated ADC12MCTLx control register. The SREFx bits define the voltage reference and the INCHx bits select the input channel. The ADC12EOS bit defines the end of sequence when a sequential conversion mode is used. A sequence rolls over from ADC12MEM15 to ADC12MEM0 when the ADC12EOS bit in ADC12MCTL15 is not set.

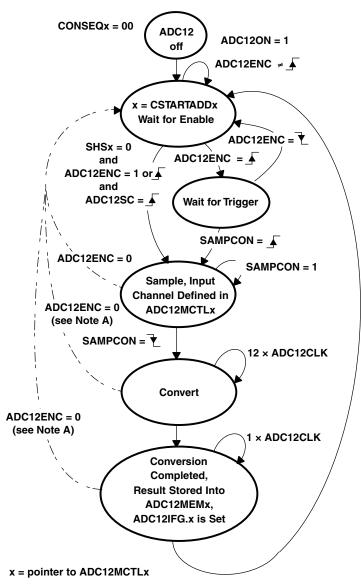
The CSTARTADDx bits define the first ADC12MCTLx used for any conversion. If the conversion mode is single-channel or repeat-single-channel the CSTARTADDx points to the single ADC12MCTLx to be used.

If the conversion mode selected is either sequence-of-channels or repeat-sequence-of-channels, CSTARTADDx points to the first ADC12MCTLx location to be used in a sequence. A pointer, not visible to software, is incremented automatically to the next ADC12MCTLx in a sequence when each conversion completes. The sequence continues until an ADC12EOS bit in ADC12MCTLx is processed - this is the last control byte processed.

When conversion results are written to a selected ADC12MEMx, the corresponding flag in the ADC12IFGx register is set.

18.2.7 ADC12_A Conversion Modes

The ADC12 A has four operating modes selected by the CONSEQx bits as discussed in Table 18-1.


Table 18-1. Conversion Mode Summary

ADC12CONSEQx	Mode	Operation
00	Single channel single-conversion	A single channel is converted once.
01	Sequence-of-channels	A sequence of channels is converted once.
10	Repeat-single-channel	A single channel is converted repeatedly.
11	Repeat-sequence-of-channels	A sequence of channels is converted repeatedly.

Single-Channel Single-Conversion Mode

A single channel is sampled and converted once. The ADC result is written to the ADC12MEMx defined by the CSTARTADDx bits. Figure 18-6 shows the flow of the Single-Channel, Single-Conversion mode. When ADC12SC triggers a conversion, successive conversions can be triggered by the ADC12SC bit. When any other trigger source is used, ADC12ENC must be toggled between each conversion.

A Conversion result is unpredictable.

Figure 18-6. Single-Channel, Single-Conversion Mode

Sequence-of-Channels Mode

A sequence of channels is sampled and converted once. The ADC results are written to the conversion memories starting with the ADCMEMx defined by the CSTARTADDx bits. The sequence stops after the measurement of the channel with a set ADC12EOS bit. Figure 18-7 shows the sequence-of-channels mode. When ADC12SC triggers a sequence, successive sequences can be triggered by the ADC12SC bit. When any other trigger source is used, ADC12ENC must be toggled between each sequence.

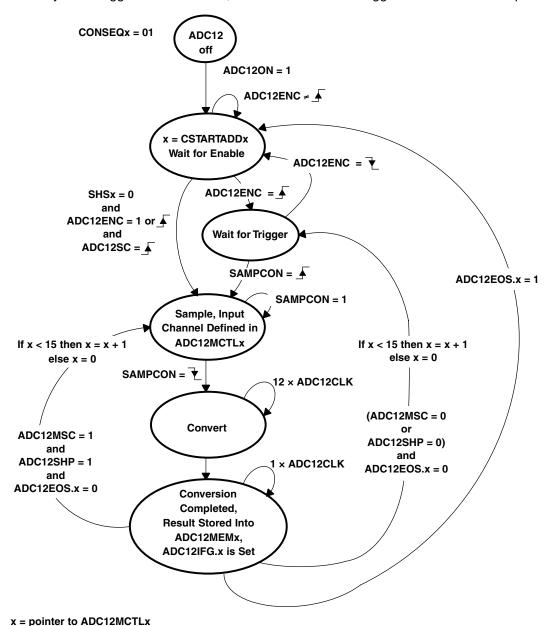


Figure 18-7. Sequence-of-Channels Mode

Repeat-Single-Channel Mode

A single channel is sampled and converted continuously. The ADC results are written to the ADC12MEMx defined by the CSTARTADDx bits. It is necessary to read the result after the completed conversion because only one ADC12MEMx memory is used and is overwritten by the next conversion. Figure 18-8 shows repeat-single-channel mode

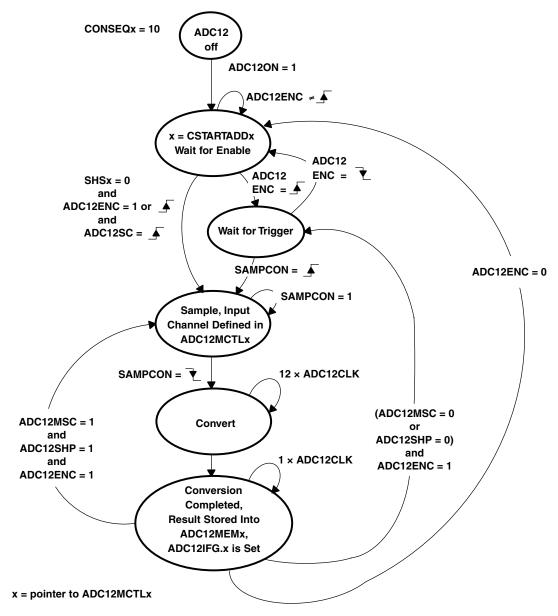


Figure 18-8. Repeat-Single-Channel Mode

475

Repeat-Sequence-of-Channels Mode

A sequence of channels is sampled and converted repeatedly. The ADC results are written to the conversion memories starting with the ADC12MEMx defined by the CSTARTADDx bits. The sequence ends after the measurement of the channel with a set ADC12EOS bit and the next trigger signal re-starts the sequence. Figure 18-9 shows the repeat-sequence-of-channels mode.

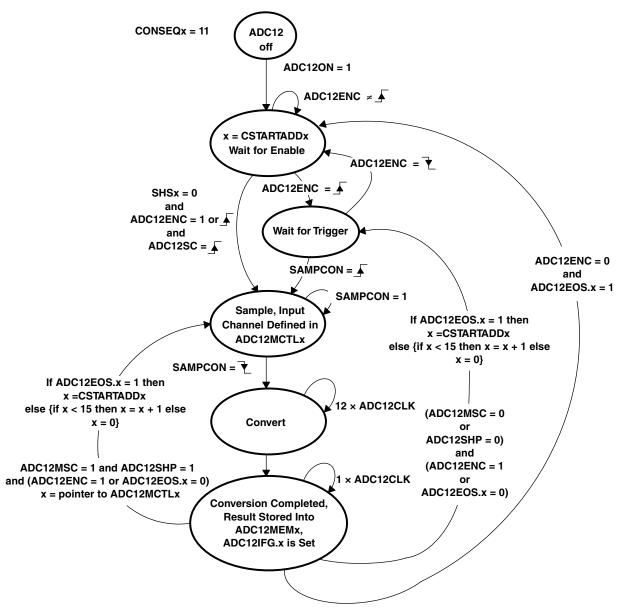


Figure 18-9. Repeat-Sequence-of-Channels Mode

477

Using the Multiple Sample and Convert (ADC12MSC) Bit

To configure the converter to perform successive conversions automatically and as quickly as possible, a multiple sample and convert function is available. When ADC12MSC = 1, CONSEQx > 0, and the sample timer is used, the first rising edge of the SHI signal triggers the first conversion. Successive conversions are triggered automatically as soon as the prior conversion is completed. Additional rising edges on SHI are ignored until the sequence is completed in the single-sequence mode or until the ADC12ENC bit is toggled in repeat-single-channel, or repeated-sequence modes. The function of the ADC12ENC bit is unchanged when using the ADC12MSC bit.

Stopping Conversions

Submit Documentation Feedback

Stopping ADC12_A activity depends on the mode of operation. The recommended ways to stop an active conversion or conversion sequence are:

- Resetting ADC12ENC in single-channel single-conversion mode stops a conversion immediately and the results are unpredictable. For correct results, poll the busy bit until reset before clearing ADC12ENC.
- Resetting ADC12ENC during repeat-single-channel operation stops the converter at the end of the current conversion.
- Resetting ADC12ENC during a sequence or repeat-sequence mode stops the converter at the end of the sequence.
- Any conversion mode may be stopped immediately by setting the CONSEQx = 0 and resetting ADC12ENC bit. Conversion data are unreliable.

Note: No ADC12EOS Bit Set For Sequence

If no ADC12EOS bit is set and a sequence mode is selected, resetting the ADC12ENC bit does not stop the sequence. To stop the sequence, first select a single-channel mode and then reset ADC12ENC.

18.2.8 Using the Integrated Temperature Sensor

To use the on-chip temperature sensor, the user selects the analog input channel INCHx = 1010. Any other configuration is done as if an external channel was selected, including reference selection, conversion-memory selection, etc. The temperature sensor is in the ADC12_A in the MSP430F54xx devices while it is part of the REF module in other devices.

The typical temperature sensor transfer function is shown in Figure 18-10. When using the temperature sensor, the sample period must be greater than 30 = s. The temperature sensor offset error can be large, and may need to be calibrated for most applications. See device-specific datasheet for parameters.

Selecting the temperature sensor automatically turns on the on-chip reference generator as a voltage source for the temperature sensor. However, it does not enable the V_{REF+} output or affect the reference selections for the conversion. The reference choices for converting the temperature sensor are the same as with any other channel.

Stopping Conversions www.ti.com

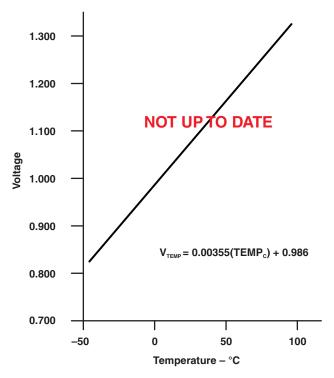


Figure 18-10. Typical Temperature Sensor Transfer Function

18.2.9 ADC12_A Grounding and Noise Considerations

As with any high-resolution ADC, appropriate printed-circuit-board layout and grounding techniques should be followed to eliminate ground loops, unwanted parasitic effects, and noise.

Ground loops are formed when return current from the A/D flows through paths that are common with other analog or digital circuitry. If care is not taken, this current can generate small, unwanted offset voltages that can add to or subtract from the reference or input voltages of the A/D converter. The connections shown in Figure 18-11 help avoid this.

In addition to grounding, ripple and noise spikes on the power supply lines due to digital switching or switching power supplies can corrupt the conversion result. A noise-free design using separate analog and digital ground planes with a single-point connection is recommend to achieve high accuracy.

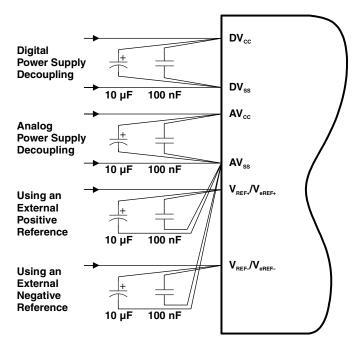


Figure 18-11. ADC12_A Grounding and Noise Considerations

18.2.10 ADC12_A Interrupts

The ADC12 A has 18 interrupt sources:

- ADC12IFG0-ADC12IFG15
- ADC12OV, ADC12MEMx overflow
- ADC12TOV, ADC12_A conversion time overflow

The ADC12IFGx bits are set when their corresponding ADC12MEMx memory register is loaded with a conversion result. An interrupt request is generated if the corresponding ADC12IEx bit and the GIE bit are set. The ADC12OV condition occurs when a conversion result is written to any ADC12MEMx before its previous conversion result was read. The ADC12TOV condition is generated when another sample-and-conversion is requested before the current conversion is completed. The DMA is triggered after the conversion in single channel conversion mode or after the completion of a sequence of channel conversions in sequence of channels conversion mode.

ADC12IV, Interrupt Vector Generator

All ADC12_A interrupt sources are prioritized and combined to source a single interrupt vector. The interrupt vector register ADC12IV is used to determine which enabled ADC12_A interrupt source requested an interrupt.

The highest priority enabled ADC12_A interrupt generates a number in the ADC12IV register (see register description). This number can be evaluated or added to the program counter to automatically enter the appropriate software routine. Disabled ADC12_A interrupts do not affect the ADC12IV value.

Any access, read or write, of the ADC12IV register automatically resets the ADC12OV condition or the ADC12TOV condition if either was the highest pending interrupt. Neither interrupt condition has an accessible interrupt flag. The ADC12IFGx flags are not reset by an ADC12IV access. ADC12IFGx bits are reset automatically by accessing their associated ADC12MEMx register or may be reset with software.

If another interrupt is pending after servicing of an interrupt, another interrupt is generated. For example, if the ADC12OV and ADC12IFG3 interrupts are pending when the interrupt service routine accesses the ADC12IV register, the ADC12OV interrupt condition is reset automatically. After the RETI instruction of the interrupt service routine is executed, the ADC12IFG3 generates another interrupt.

ADC12 A Interrupt Handling Software Example

The following software example shows the recommended use of ADC12IV and the handling overhead. The ADC12IV value is added to the PC to automatically jump to the appropriate routine.

The numbers at the right margin show the necessary CPU cycles for each instruction. The software overhead for different interrupt sources includes interrupt latency and return-from-interrupt cycles, but not the task handling itself. The latencies are:

- ADC12IFG0-ADC12IFG14, ADC12TOV, and ADC12OV: 16 cycles
- ADC12IFG15: 14 cycles

The interrupt handler for ADC12IFG15 shows a way to check immediately if a higher prioritized interrupt occurred during the processing of ADC12IFG15. This saves nine cycles if another ADC12_A interrupt is pending.

```
; Interrupt handler for ADC12.
INT_ADC12
                        ; Enter Interrupt Service Routine
  ADD
           &ADC12IV,PC ; Add offset to PC
  RETI
                        ; Vector 0: No interrupt
  JMP
           ADOV
                        ; Vector 2: ADC overflow
  JMP
           ADTOV
                        ; Vector 4: ADC timing overflow
  JMP
           ADM0
                        ; Vector 6: ADC12IFG0
                        ; Vectors 8-32
           ADM14
                        ; Vector 34: ADC12IFG14
  JMP
; Handler for ADC12IFG15 starts here. No JMP required.
ADM15
         MOV
                &ADC12MEM15,xxx
                                   ; Move result, flag is reset
                                    ; Other instruction needed?
                INT_ADC12
                                    ; Check other int pending
         JMP
; ADC12IFG14-ADC12IFG1 handlers go here
         MOV
                &ADC12MEM0,xxx
                                    ; Move result, flag is reset
ADMO
                                    ; Other instruction needed?
                                    ; Return
RETI
ADTOV
                                    ; Handle Conv. time overflow
         RETI
                                    ; Return
                                    ; Handle ADCMEMx overflow
ADOV
         RETT
                                    ; Return
```


www.ti.com ADC12_A Registers

18.3 ADC12_A Registers

The ADC12_A registers are listed in Table 18-2. The base address of the ADC12_A can be found in the devices specific datasheet. The address offset of each ADC12_A register is given in Table 18-2.

Table 18-2. ADC12_A Registers

Register	Short Form	Register Type	Address	Initial State
ADC12 control register 0	ADC12CTL0	Read/write	00h	Reset with POR
ADC12 control register 1	ADC12CTL1	Read/write	02h	Reset with POR
ADC12 control register 2	ADC12CTL2	Read/write	04h	Reset with POR
ADC12 interrupt flag register	ADC12IFG	Read/write	0Ah	Reset with POR
ADC12 interrupt enable register	ADC12IE	Read/write	0Ch	Reset with POR
ADC12 interrupt vector word	ADC12IV	Read	0Eh	Reset with POR
ADC12 memory 0	ADC12MEM0	Read/write	20h	Reset with POR
ADC12 memory 1	ADC12MEM1	Read/write	22h	Reset with POR
ADC12 memory 2	ADC12MEM2	Read/write	24h	Reset with POR
ADC12 memory 3	ADC12MEM3	Read/write	26h	Reset with POR
ADC12 memory 4	ADC12MEM4	Read/write	28h	Reset with POR
ADC12 memory 5	ADC12MEM5	Read/write	2Ah	Reset with POR
ADC12 memory 6	ADC12MEM6	Read/write	2Ch	Reset with POR
ADC12 memory 7	ADC12MEM7	Read/write	2Eh	Reset with POR
ADC12 memory 8	ADC12MEM8	Read/write	30h	Reset with POR
ADC12 memory 9	ADC12MEM9	Read/write	32h	Reset with POR
ADC12 memory 10	ADC12MEM10	Read/write	34h	Reset with POR
ADC12 memory 11	ADC12MEM11	Read/write	36h	Reset with POR
ADC12 memory 12	ADC12MEM12	Read/write	38h	Reset with POR
ADC12 memory 13	ADC12MEM13	Read/write	3Ah	Reset with POR
ADC12 memory 14	ADC12MEM14	Read/write	3Ch	Reset with POR
ADC12 memory 15	ADC12MEM15	Read/write	3Eh	Reset with POR
ADC12 memory control 0	ADC12MCTL0	Read/write	10h	Reset with POR
ADC12 memory control 1	ADC12MCTL1	Read/write	11h	Reset with POR
ADC12 memory control 2	ADC12MCTL2	Read/write	12h	Reset with POR
ADC12 memory control 3	ADC12MCTL3	Read/write	13h	Reset with POR
ADC12 memory control 4	ADC12MCTL4	Read/write	14h	Reset with POR
ADC12 memory control 5	ADC12MCTL5	Read/write	15h	Reset with POR
ADC12 memory control 6	ADC12MCTL6	Read/write	16h	Reset with POR
ADC12 memory control 7	ADC12MCTL7	Read/write	17h	Reset with POR
ADC12 memory control 8	ADC12MCTL8	Read/write	18h	Reset with POR
ADC12 memory control 9	ADC12MCTL9	Read/write	19h	Reset with POR
ADC12 memory control 10	ADC12MCTL10	Read/write	1Ah	Reset with POR
ADC12 memory control 11	ADC12MCTL11	Read/write	1Bh	Reset with POR
ADC12 memory control 12	ADC12MCTL12	Read/write	1Ch	Reset with POR
ADC12 memory control 13	ADC12MCTL13	Read/write	1Dh	Reset with POR
ADC12 memory control 14	ADC12MCTL14	Read/write	1Eh	Reset with POR
ADC12 memory control 15	ADC12MCTL15	Read/write	1Fh	Reset with POR

ADC12_A Registers www.ti.com

ADC12CTL0, ADC12_A Control Register 0

		•						
15	14	13	12	11	10	9	8	
	ADC1	2SHT1x		ADC12SHT0x				
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	
7	6	5	4	3	2	1	0	
ADC12MSC	ADC12	ADC12 REFON	ADC120N	ADC120VIE	ADC12TOVIE	ADC12ENC	ADC12SC	
ADC 121VISC	REF2_5V	ADC12 REFOR	ADC 120N	ADC120VIE	ADCIZIONE	ADCIZENC	ADC 123C	
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	

Modifiable only when ADC12ENC = 0

ADC12SHT1x

Bits 15-12 ADC12_A sample-and-hold time. These bits define the number of ADC12CLK cycles in the sampling period for registers ADC12MEM8 to ADC12MEM15.

ADC12SHT0x

Bits 11-8 ADC12_A sample-and-hold time. These bits define the number of ADC12CLK cycles in the sampling period for registers ADC12MEM0 to ADC12MEM7.

sampling timer requires a rising first rising edge of the SHI signale-and-conversions are perforableted. In the second of the shift of	ADC12	2SHTx its	ADC12CLK Cycles
16 32 64 96 128 192 256 384 512 768 1024 1024 1024 1024 1024 104 1054 1056 1056 1056 1056 1056 1056 1056 1056	000	00	4
32 64 96 128 192 256 384 512 768 1024 1024 1024 1024 1024 Interpretation of the SHI signs apple-and-conversions are performable of the series of	000	01	8
64 96 128 192 256 384 512 768 1024 1024 1024 1024 1024 104 104 105 Institute and conversion. V sampling timer requires a rising first rising edge of the SHI signal apple-and-conversions are performable and conversions are performable and conversions. In devices are module is set to 0. In the F54x derence off conversions are performable and conversions. In devices are module is set to 0. In the F54x derence off conversions are performable and conversions. In devices are module is set to 0. In the F54x derence on the conversions are performanced and conversions. In devices are module in the first performanced and conversions. In devices are module in the first performanced and conversions. In the F54x derence off conversions are performanced and conversions. In the F54x derence off conversions are performanced and conversions. In the F54x derence off conversions are performanced and conversions. In the F54x derence off conversions are performanced and conversions. In the F54x derence off conversions are performanced and conversions.	00	10	16
96 128 192 256 384 512 768 1024 1024 1024 1024 1024 104 1091 sampling timer requires a rising effirst rising edge of the SHI signal apple-and-conversions are performed appleted. Seference generator voltage. ADC13 V V Seference generator on. In devices of the SHI signal appleted. For example, and conversions are performed appleted. Seference generator on. In devices of the serence of the serence of the serence on the serence of the ser	00	11	32
128 192 256 384 512 768 1024 1024 1024 1024 1024 dultiple sample and conversion. Valuations are performed and conversions are performed apple-and-conversions are performed a	010	00	64
192 256 384 512 768 1024 1024 1024 1024 1024 1019 Inultiple sample and conversion. Valid sampling timer requires a rising edge of the SHI signal triple-and-conversions are performed inpleted. In the sample and conversion. Valid sampling timer requires a rising edge of the SHI signal triple-and-conversions are performed inpleted. In the sample and conversion. Valid sampling edge of the SHI signal triple-and-conversions are performed in the sample of the sample	010	01	96
256 384 512 768 1024 1024 1024 1024 1024 1010 fulltiple sample and conversion. Valid sampling timer requires a rising edge of the SHI signal trigople-and-conversions are performed appleted. In the sample and conversion. Valid sampling timer requires a rising edge of the SHI signal trigople-and-conversions are performed appleted. In the sample and conversion. Valid sampling edge of the SHI signal trigople-and-conversions are performed appleted. In the sample and conversion. Valid sampling edge of the SHI signal trigople-and-conversions are performed appleted. In the sample and conversion. Valid sampling edge of the SHI signal trigople-and-conversions are performed appleted. In the sample and conversion. Valid sampling edge of the SHI signal trigople-and-conversions are performed appleted. In the sample and conversion. Valid sampling edge of the SHI signal trigople-and-conversions are performed appleted. In the sample and conversion. Valid sampling edge of the SHI signal trigople-and-conversions are performed appleted. In the sample and conversion. Valid sampling edge of the SHI signal trigople-and-conversions are performed appleted. In the sample and conversion. Valid sampleted appleted app	01	10	128
384 512 768 1024 1024 1024 1024 1024 sultiple sample and conversion. Valid sampling timer requires a rising edge first rising edge of the SHI signal trig apple-and-conversions are performed appleted. Seference generator voltage. ADC12REV V V Seference generator on. In devices with F module is set to 0. In the F54xx deserence off serence on a C12_A off C12_A on lx overflow-interrupt enable. The GIE	01	11	192
512 768 1024 1024 1024 1024	100	00	256
768 1024 1024 1024 1024 1024 1024 multiple sample and conversion. Valid of sampling timer requires a rising edge first rising edge of the SHI signal triggiple-and-conversions are performed a appleted. eference generator voltage. ADC12REV Verence generator on. In devices with Ference off erence off erence on an C12_A off C12_A on lx overflow-interrupt enable. The GIE	100	01	384
1024 1024 1024 1024 1024 1024 1024 ultiple sample and conversion. Valid of sampling timer requires a rising edge first rising edge of the SHI signal trigg apple-and-conversions are performed at appleted. eference generator voltage. ADC12RE V V eference generator on. In devices with a remodule is set to 0. In the F54xx development of the remodule is set to 0. In the	10	10	512
1024 1024 1024 nultiple sample and conversion. Valid of sampling timer requires a rising edge first rising edge of the SHI signal trigg apple-and-conversions are performed autipleted. Interest of the service of the	10	11	768
1024 1024 nultiple sample and conversion. Valid of sampling timer requires a rising edge first rising edge of the SHI signal trigg aple-and-conversions are performed autipleted. Deference generator voltage. ADC12REIV V V Deference generator on. In devices with the series of th	110	00	1024
aultiple sample and conversion. Valid of sampling timer requires a rising edge first rising edge of the SHI signal trigg apple-and-conversions are performed aupleted. Seference generator voltage. ADC12REIV V Seference generator on. In devices with SF module is set to 0. In the F54xx development on the control of the	110	01	1024
pultiple sample and conversion. Valid of sampling timer requires a rising edge first rising edge of the SHI signal trigg apple-and-conversions are performed autipleted. If the sample and conversion are performed autipleted. If the sample and conversion. Valid of the sample are performed autipleted. If the sample and conversion. Valid of the sample are performed autipleted. If the sample and conversion. Valid of the sample are performed autipleted. If the sample and conversion. Valid of the sample are performed autipleted. If the sample and conversion. Valid of the sample are performed autipleted. If the sample and conversion. Valid of the sample are performed autipleted. If the sample and conversion are performed autipleted. If the sample and conversion. Valid of the sample are performed autipleted. If the sample and conversion. Valid of the sample are performed autipleted. If the sample and conversion. Valid of the sample are performed autipleted. If the sample and conversion are performed autipleted. If the	11	10	1024
sampling timer requires a rising edge first rising edge of the SHI signal trigg apple-and-conversions are performed at appleted. In the service generator voltage. ADC12REI V V V Service generator on. In devices with the module is set to 0. In the F54xx development on the service of the service of the service on the service of the service on the service of the service on the service of the service of the service of the service of the service on the service of the ser	11	11	1024
aple-and-conversions are performed autopleted. eference generator voltage. ADC12REF V vererence generator on. In devices with the foliation of the foliation	DC12	_A multip	ole sample and co
ofference generator voltage. ADC12REFORV V eference generator on. In devices with the EF module is set to 0. In the F54xx device erence off erence on a C12_A off C12_A on lx overflow-interrupt enable. The GIE bit meters.)	The sar	npling timer requir
oference generator on. In devices with the RIF module is set to 0. In the F54xx device the erence off erence on an C12_A off C12_A on lx overflow-interrupt enable. The GIE bit must			and-conversions
oference generator on. In devices with the REF of module is set to 0. In the F54xx device the learner off derence on the control of the contr	DC12	_A refere	ence generator vol
eference generator on. In devices with the REF FF module is set to 0. In the F54xx device the Ference off erence on n C12_A off C12_A on lx overflow-interrupt enable. The GIE bit must a)	1.5 V	
F module is set to 0. In the F54xx device the Ference off erence on C12_A off C12_A on lx overflow-interrupt enable. The GIE bit must a		2.5 V	
erence on n C12_A off C12_A on lx overflow-interrupt enable. The GIE bit must a			
n C12_A off C12_A on Ix overflow-interrupt enable. The GIE bit must a)	Referen	ce off
C12_A off C12_A on lx overflow-interrupt enable. The GIE bit must a		Referen	ce on
C12_A on Ix overflow-interrupt enable. The GIE bit must	ADC12_	_A on	
x overflow-interrupt enable. The GIE bit must)	ADC12	_A off
		ADC12	_A on
after a factor and a factor f	DC12	MEMx ov	erflow-interrupt er
rtiow interrupt disabled)	Overflov	w interrupt disable

ADC12MSC

ADC12REF2_5V

ADC12REFON

ADC120N

ADC120VIE

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

1

Overflow interrupt enabled

ADC12TOVIE

Bit 2

ADC12_A conversion-time-overflow interrupt enable. The GIE bit must also be set to enable the interrupt.

0

Conversion time overflow interrupt disabled
1

Conversion time overflow interrupt enabled

ADC12ENC

Bit 1

ADC12_A enable conversion

0 ADC12_A disabled
1 ADC12_A enabled

ADC12SC Bit 0 ADC12_A start conversion. Software-controlled sample-and-conversion start. ADC12SC and ADC12ENC may be set together with one instruction. ADC12SC is reset automatically.

No sample-and-conversion-startStart sample-and-conversion

SLAU208-June 2008 *ADC12_A* 483

ADC12_A Registers www.ti.com

ADC12CTL1, ADC12_A Control Register 1

15	14	13	12	11	10	9	8
	ADC12CS1	TARTADDx		ADC1:	2SHSx	ADC12SHP	ADC12ISSH
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)
7	6	5	4	3	2	1	0
	ADC12DIVx			ADC12SSELx		ONSEQx	ADC12BUSY
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	r-(0)

rw-(u)	rw-(0)	LM	/-(U)	rw-(0)	rw-(0)	rw-(U)	rw-(U)	r-(u)
	Modifiable only	/ when A[OC12ENC	C = 0				
ADC12 CSTARTADDx	Bits 15-12	used fo	r a single		the first conversi	on in a sequence.	A conversion-memorate the value of CSTA	
ADC12SHSx	Bits 11-10	ADC12	_A sample	e-and-hold source	eselect			
		00	ADC12S	C bit				
		01	Timer_A	.OUT1				
		10	Timer_B	.OUT0				
		11	Timer_B	.OUT1				
ADC12SHP	Bit 9						urce of the samplir ble-input signal dire	
		0	SAMPCO	ON signal is sourc	ed from the sam	ple-input signal.		
		1	SAMPC	ON signal is sourc	ed from the sam	pling timer.		
ADC12ISSH	Bit 8	ADC12	_A invert	signal sample-and	d-hold			
		0	The sam	ple-input signal is	not inverted.			
		1	The sam	ple-input signal is	inverted.			
ADC12DIVx	Bits 7-5	ADC12	_A clock of	divider				
		000	/1					
		001	/2					
		010	/3					
		011	/4					
		100	/5					
		101	/6					
		110	/7					
		111	/8					
ADC12SSELx	Bits 4-3	ADC12	_A clock s	source select				
		00	MODCL	<				
		01	ACLK					
		10	MCLK					
		11	SMCLK					
ADC12CONSEQx	Bits 2-1	ADC12	_A Conve	rsion sequence m	node select			
		00	Single-ch	nannel, single-con	version			
		01	Segueno	e-of-channels				

01 Sequence-of-channels

10 Repeat-single-channel

11 Repeat-sequence-of-channels

ADC12BUSY Bit 0 ADC12_A busy. This bit indicates an active sample or conversion operation.

0 No operation is active.

1 A sequence, sample, or conversion is active.

www.ti.com ADC12_A Registers

ADC12CTL2, ADC12_A Control Register 2

15	14	13	12	11	10	9	8			
Reserved										
r-0	r-0	r-0	r-0	r-0	r-0	r-0	rw-0			
7	6	5	4	3	2	1	0			
ADC12TCOFF	Reserved	ADC12RES		ADC12DF	ADC12SR	ADC12 REFOUT	ADC12 REFBURST			
rw-(0)	r-0	rw-(1)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)			

Modifiable only when ADC12ENC = 0

Reserved Bits 15-9 Reserved. Read back as 0.

ADC12PDIV Bit 8 ADC12_A pre-divider. This bit pre-divides the selected ADC12_A clock source.

0 Pre-divide by 11 Pre-divide by 4

ADC12TCOFF Bit 7 ADC12_A temperature sensor off. If the bit is set the temperature sensor turned off. This is used to save

power.

Reserved Bit 6 Reserved. Read back as 0.

ADC12RES Bits 5-4 ADC12_A resolution. This bit defines the conversion result resolution.

8-bit (9 clock cycle conversion time)
10-bit (11 clock cycle conversion time)
12-bit (13 clock cycle conversion time)

11 Reserved

ADC12DF Bit 3 ADC12_A data read-back format. Data is always stored in the binary unsigned format.

Binary unsigned. Theoretically the analog input voltage $-V_{REF}$ results in 0000h, the analog input

voltage + V_{REF} results in 0FFFh.

1 Signed binary (2's complement), left aligned. Theoretically the analog input voltage – V_{REF}

results in 8000h, the analog input voltage + V_{REF} results in 7FF0h.

ADC12SR Bit 2 ADC12_A sampling rate. This bit selects the reference buffer drive capability for the maximum sampling

rate. Setting ADC12SR reduces the current consumption of the reference buffer.

0 Reference buffer supports up to ~200 ksps

1 Reference buffer supports up to ~50 ksps

ADC12REFOUT Bit 1 Reference output

0 Reference output off

1 Reference output on

ADC12REFBURST Bit 0 Reference burst. ADC12REFOUT must also be set.

0 Reference buffer on continuously

1 Reference buffer on only during sample-and-conversion

ADC12MEMx, ADC12_A Conversion Memory Registers

15	14	13	12	11	10	9	8			
0	0	0	0		Conversion	n Results				
r0	r0	r0	r0	rw	rw	rw	rw			
7	6	5	4	3	2	1	0			
	Conversion Results									
rw	rw	rw	rw	rw	rw	rw	rw			

Conversion Results Bits 15-0

The 12-bit conversion results are right-justified. Bit 11 is the MSB. Bits 15-12 are 0 in 12-bit mode, bits 15-10 are 0 in 10-bit mode and bits 15-8 are 0 in 8-bit mode. Writing to the conversion memory registers will corrupt the results. This data format is used if ADC12DF = 0.

ADC12_A Registers www.ti.com

ADC12MEMx, ADC12_A Conversion-Memory Register, 2's Complement Format

15	14	13	12	11	10	9	8				
	Conversion Results										
rw	rw	rw	rw	rw	rw	rw	rw				
7	6	5	4	3	2	1	0				
	Conversion Results				0	0	0				
rw	rw	rw	rw	r0	r0	r0	r0				

Conversion Results

Bits 15-0 The 12-bit conversion results are left-justified, 2's complement format. Bit 15 is the MSB. Bits 3-0 are 0 in 12-bit mode, bits 5-0 are 0 in 10-bit mode and bits 7-0 are 0 in 8-bit mode. This data format is used if

ADC12DF = 1. The data is stored in the right justified format and is converted to the left-justified 2's

complement during read-back.

ADC12MCTLx, ADC12_A Conversion Memory Control Registers

7	6	5	4	3	2	1	0
ADC12EOS ADC12SREFx				ADC12INCHx			
rw	rw	rw	rw	rw	rw	rw	rw

Modifiable only when ADC12ENC = 0

ADC12EOS Bit 7 End of sequence. Indicates the last conversion in a sequence.

> 0 Not end of sequence

End of sequence

ADC12SREFx Bits 6-4 Select reference

> 000 $V_{R+} = AV_{CC}$ and $V_{R-} = AV_{SS}$

001 $V_{R+} = V_{REF+}$ and $V_{R-} = AV_{SS}$

 $V_{R+} = Ve_{REF+}$ and $V_{R-} = AV_{SS}$ 010

 $V_{R+} = Ve_{REF+}$ and $V_{R-} = AV_{SS}$ 011

 $V_{R+} = AV_{CC}$ and $V_{R-} = V_{REF-} / Ve_{REF-}$ 100

 $V_{R+} = V_{REF+}$ and $V_{R-} = V_{REF-} / V_{REF-}$ 101

 $V_{R+} = Ve_{REF+}$ and $V_{R-} = V_{REF-} / Ve_{REF-}$ 110

 $V_{R+} = Ve_{REF+}$ and $V_{R-} = V_{REF-} / Ve_{REF-}$ 111

ADC12INCHx Bits 3-0 Input channel select

> 0000 A0

0001 Α1

0010 A2

0011 АЗ

0100 A4

0101 Α5

0110 A6

0111 Α7

1000 Ve_{REF+}

V_{REF}_/Ve_{REF}-1001

1010 Temperature diode

1011 $(AV_{CC} - AV_{SS}) / 2$

1100 A12

1101 A13

1110 A14

1111 A15

www.ti.com ADC12_A Registers

ADC12IE, ADC12_A Interrupt Enable Register

15	14	13	12	11	10	9	8
ADC12IE15	ADC12IE14	ADC12IE13	ADC12IE12	ADC12IE11	ADC12IE10	ADC12IFG9	ADC12IE8
rw-(0)	rw-(0)						
				ı			
7	6	5	4	3	2	1	0
ADC12IE7	ADC12IE6	ADC12IE5	ADC12IE4	ADC12IE3	ADC12IE2	ADC12IE1	ADC12IE0
rw-(0)	rw-(0)						

ADC12IEx

Bits 15-0 Interrupt enable. These bits enable or disable the interrupt request for the ADC12IFGx bits.

0 Interrupt disabled

1 Interrupt enabled

ADC12IFG, ADC12_A Interrupt Flag Register

Bits 15-0

15	14	13	12	11	10	9	8
ADC12IFG15	ADC12IFG14	ADC12IFG13	ADC12IFG12	ADC12IFG11	ADC12IFG10	ADC12IFG9	ADC12IFG8
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)
7	6	5	4	3	2	1	0
ADC12IFG7	ADC12IFG6	ADC12IFG5	ADC12IFG4	ADC12IFG3	ADC12IFG2	ADC12IFG1	ADC12IFG0
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)

ADC12IFGx

ADC12MEMx Interrupt flag. These bits are set when corresponding ADC12MEMx is loaded with a conversion result. The ADC12IFGx bits are reset if the corresponding ADC12MEMx is accessed, or may be reset with software.

0 No interrupt pending

1 Interrupt pending

ADC12_A Registers www.ti.com

<u> </u>							
ADC12IV, ADC12_A Interrupt Vector Register							
15	14	13	12	11	10	9	8
0	0	0	0	0	0	0	0
r0	r0	rO	rO	r0	rO	rO	rO
7	6	5	4	3	2	1	0
0	0			ADC12IVx			0
rO	r0	r-(0)	r-(0)	r-(0)	r-(0)	r-(0)	r0

Bits 15-0 ADC12_A interrupt vector value. ADC12IVx

ADC12IV Contents	Interrupt Source	Interrupt Flag	Interrupt Priority
000h	No interrupt pending	-	
002h	ADC12MEMx overflow	-	Highest
004h	Conversion time overflow	-	
006h	ADC12MEM0 interrupt flag	ADC12IFG0	
008h	ADC12MEM1 interrupt flag	ADC12IFG1	
00Ah	ADC12MEM2 interrupt flag	ADC12IFG2	
00Ch	ADC12MEM3 interrupt flag	ADC12IFG3	
00Eh	ADC12MEM4 interrupt flag	ADC12IFG4	
010h	ADC12MEM5 interrupt flag	ADC12IFG5	
012h	ADC12MEM6 interrupt flag	ADC12IFG6	
014h	ADC12MEM7 interrupt flag	ADC12IFG7	
016h	ADC12MEM8 interrupt flag	ADC12IFG8	
018h	ADC12MEM9 interrupt flag	ADC12IFG9	
01Ah	ADC12MEM10 interrupt flag	ADC12IFG10	
01Ch	ADC12MEM11 interrupt flag	ADC12IFG11	
01Eh	ADC12MEM12 interrupt flag	ADC12IFG12	
020h	ADC12MEM13 interrupt flag	ADC12IFG13	
022h	ADC12MEM14 interrupt flag	ADC12IFG14	
024h	ADC12MEM15 interrupt flag	ADC12IFG15	Lowest

Embedded Emulation Module (EEM)

This chapter describes the Embedded Emulation Module (EEM) that is implemented in all MSP430 flash devices.

То	pic		Page
	19.1	EEM Introduction	490
	19.2	EEM Building Blocks	492
	19.3	EEM Configurations	494

EEM Introduction www.ti.com

19.1 EEM Introduction

Every MSP430 flash-based microcontroller implements an embedded emulation module (EEM). It is accessed and controlled through either 4-wire JTAG mode or Spy-Bi-Wire mode. Each implementation is device dependent and is described in Section 19.3 EEM Configurations and the device data sheet.

In general, the following features are available:

- Nonintrusive code execution with real-time breakpoint control
- Single step, step into, and step over functionality
- Full support of all low-power modes
- Support for all system frequencies, for all clock sources
- Up to eight (device dependent) hardware triggers/breakpoints on memory address bus (MAB) or memory data bus (MDB)
- Up to two (device dependent) hardware triggers/breakpoints on CPU register write accesses
- MAB, MDB, and CPU register access triggers can be combined to form up to ten (device dependent) complex triggers/breakpoints
- Up to two (device dependent) cycle counters
- Trigger sequencing (device dependent)
- Storage of internal bus and control signals using an integrated trace buffer (device dependent)
- Clock control for timers, communication peripherals, and other modules on a global device level or on a per-module basis during an emulation stop

Figure 19-1 shows a simplified block diagram of the largest currently available 5xx EEM implementation.

For more details on how the features of the EEM can be used together with the IAR Embedded Workbench™ debugger see the application report *Advanced Debugging Using the Enhanced Emulation Module* (SLAA263) at www.msp430.com. Code Composer Essentials (CCE) and most other debuggers supporting MSP430 have the same or a similar feature set. For details see the user's guide of the applicable debugger.

www.ti.com EEM Introduction

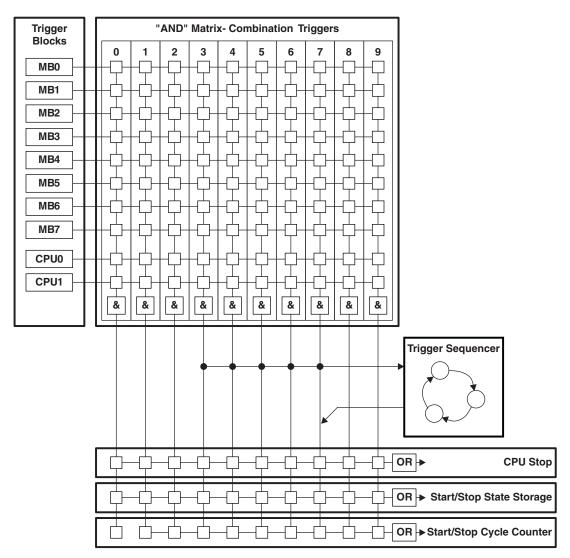


Figure 19-1. Large Implementation of the Embedded Emulation Module (EEM)

EEM Building Blocks www.ti.com

19.2 EEM Building Blocks

19.2.1 Triggers

The event control in the EEM of the MSP430 system consists of triggers, which are internal signals indicating that a certain event has happened. These triggers may be used as simple breakpoints, but it is also possible to combine two or more triggers to allow detection of complex events and trigger various reactions besides stopping the CPU.

In general, the triggers can be used to control the following functional blocks of the EEM:

- Breakpoints (CPU stop)
- State storage
- Sequencer
- Cycle counter

There are two different types of triggers: the memory trigger and the CPU register write trigger.

Each memory trigger block can be independently selected to compare either the MAB or the MDB with a given value. Depending on the implemented EEM the comparison can be =, \neq , \geq , or \leq . The comparison can also be limited to certain bits with the use of a mask. The mask is either bit-wise or byte-wise, depending upon the device. In addition to selecting the bus and the comparison, the condition under which the trigger is active can be selected. The conditions include read access, write access, DMA access, and instruction fetch.

Each CPU register write trigger block can be independently selected to compare what is written into a selected register with a given value. The observed register can be selected for each trigger independently. The comparison can be =, \neq , \geq , or \leq . The comparison can also be limited to certain bits with the use of a bit mask.

Both types of triggers can be combined to form more complex triggers. For example, a complex trigger can signal when a particular value is written into a user-specified address.

19.2.2 Trigger Sequencer

The trigger sequencer allows the definition of a certain sequence of trigger signals before an event is accepted for a break or state storage event. Within the trigger sequencer, it is possible to use the following features:

- Four states (State 0 to State 3)
- Two transitions per state to any other state
- Reset trigger that resets the sequencer to State 0.

The trigger sequencer always starts at State 0 and must execute to State 3 to generate an action. If State 1 or State 2 are not required, they can be bypassed.

19.2.3 State Storage (Internal Trace Buffer)

The state storage function uses a built-in buffer to store MAB, MDB, and CPU control signal information (i.e., read, write, or instruction fetch) in a nonintrusive manner. The built-in buffer can hold up to eight entries. The flexible configuration allows the user to record the information of interest very efficiently.

19.2.4 Cycle Counter

The cycle counter provides one or two 40-bit counters to measure the cycles used by the CPU to execute certain tasks. On some devices, the cycle counter operation can be controlled using triggers. This allows, for example, conditional profiling, such as profiling a specific section of code.

www.ti.com EEM Building Blocks

19.2.5 Clock Control

The EEM provides device dependent flexible clock control. This is useful in applications where a running clock is needed for peripherals after the CPU is stopped (e.g., to allow a UART module to complete its transfer of a character or to allow a timer to continue generating a PWM signal).

The clock control is flexible and supports both modules that need a running clock and modules that must be stopped when the CPU is stopped due to a breakpoint.

EEM Configurations www.ti.com

19.3 EEM Configurations

Table 19-1 gives an overview of the EEM configurations in the MSP430 5xx family. The implemented configuration is device dependent (see the device-specific data sheet for details).

Table 19-1. 5xx EEM Configurations

Feature	XS	S	M	L
Memory bus triggers	2 (=, ≠ only)	3	5	8
Memory bus trigger mask for	 Low byte High byte Four upper addr bits 	 Low byte High byte Four upper addr bits 	 Low byte High byte Four upper addr bits 	All 16 or 20 bits
CPU register write triggers	0	1	1	2
Combination triggers	2	4	6	10
Sequencer	No	No	Yes	Yes
State storage	No	No	No	Yes
Cycle counter	1	1	1	2 (including triggered start/stop)

In general the following features can be found on any 5xx device:

- At least two MAB/MDB triggers supporting:
 - Distinction between CPU, DMA, read, and write accesses
 - =, \neq , \geq , or \leq comparison (in XS, only =, \neq)
- At least two trigger combination registers
- Hardware breakpoints using the CPU stop reaction
- At least one 40-bit cycle counter
- Enhanced clock control with individual control of module clocks

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Amplifiers amplifier.ti.com Data Converters dataconverter.ti.com DSP dsp.ti.com Clocks and Timers www.ti.com/clocks Interface interface.ti.com Logic logic.ti.com Power Mgmt power.ti.com Microcontrollers microcontroller.ti.com www.ti-rfid.com RF/IF and ZigBee® Solutions www.ti.com/lprf

Applications	
Audio	www.ti.com/audio
Automotive	www.ti.com/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Medical	www.ti.com/medical
Military	www.ti.com/military
Optical Networking	www.ti.com/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video & Imaging	www.ti.com/video
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated