

Overview

LA2000 is an IC for detecting interprogram spaces to pick out the starting point of a program immediately preceding or following a musical program recorded on tape, and to detect end of tape.

Used in

- Radio-cassette recorders
- Cassette decks
- Car stereos

Applications

- Detection of spaces between programs recorded on tape
- Detection of end of tape
- Other

Features

- Has transistors capable of driving plungers with maximum 600 mA , and a protective diode to prevent induced reverse voltages.
- Can provide designated time delays by externally connected capacitors and resistors.
- Has a comparator with stable hysteresis to handle variations in power supply voltage.
- Detects unrecorded portions of tape.

Specifications

Maximum Ratings at $\mathbf{T a}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	$\mathrm{V}_{\mathrm{CC}} \max$		15	V
Allowable power dissipation	$\mathrm{Pd} \max$		540	mW
Flow-in current	$\mathrm{I}_{6} \max$		mA	
Operating temperature	Topr		-20 to +75	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-40 to +125	${ }^{\circ} \mathrm{C}$

Note: 1. The voltage at pin 8 must not exceed the supply voltage at pin 9 .
2. The maximum current flowing into pin 8 should be no greater than 0.5 mA .

LA2000

Operating Conditions at $\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Operating voltage range	V_{CC} op		3.5 to 14	V

Electrical Characteristics at $\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=9.0 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}$

Parameter	Symbol	Conditions	\min	typ	max
Unit					
Circuit current	I_{CC}	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{IN}}=-45 \mathrm{~dB}$		6	12
Output transistor saturating voltage	$\mathrm{V}_{\mathrm{CE} \text { (sat) }}$	$\mathrm{I}_{6}=600 \mathrm{~mA}$	mA		
Output diode forward voltage	V_{F}	$\mathrm{I}_{\mathrm{F}}=600 \mathrm{~mA}$	1.5	2.5	V
Output-off level in input equivalent	V_{IN}	$\mathrm{f}=1 \mathrm{kHz}$	-43	-50	-54
Comparator-on level	$\mathrm{V}_{\mathrm{TH}-\mathrm{H}}$		dBm		
Comparator-off level	$\mathrm{V}_{\mathrm{TH}-\mathrm{L}}$		3.5	2.0	V
Pin 8 high level	$\mathrm{V}_{8} \mathrm{pin}$		0.45	0.55	3.5
Output transistor leakage current	$\mathrm{I}_{\mathrm{L}-\mathrm{TR}}$		4.0	V	
Output diode leakage current	$\mathrm{I}_{\mathrm{L}-\mathrm{Di}}$			V	

1. Description of external parts

C1	Input coupling capacitor	0.47 to $2.2 \mu \mathrm{~F}$ recommended.
C2	NF capacitor	Capacitance is reduced, so the off level in input equivalent becomes lower in the bass frequency range. We recommend 1 to $10 \mu \mathrm{~F}$.
C3, R1	For designation of time delays	Any time delay can be obtained by adequate choice of C3 and R1. We recommend 150 k to $500 \mathrm{k} \Omega$ for R1.
C4, R3	Power supply ripple filter	For diode when pin 8 is used to drive external transistors. A $1 \mathrm{k} \Omega$ resistor is recommended.
R2	Bias resistor	

2. Individual pins and their operations

As shown above, when input level is raised and the pin 2 voltage reaches the $\mathrm{V}_{\text {TH-H }}$ level of the comparator, pins 6 and 8 turn over. $\left(\mathrm{V}_{\mathrm{IN}}=-45 \mathrm{dBm}\right)$.

- Pin 6 is for driving plungers, When it is on the "L" side, pin 6 turns on and can draw current up to 600 mA maximum (restricted by duty-cycle chart). It is not to be on continuously for more than 3 seconds.
- Pin 7 is a diode that prevents reverse voltages induced when the plunger is turned off from on.
- Pin 8 functions in phase with pin 6 and can drive external transistors (such as for MUTE).

3. Time delays and obtaining CRs

When input signals that have been applied at a level not less than -45 dBm are removed, discharging occurs through the CR connected at pin 2, lowering pin 2 potential. A time delay is provided before the hysteresis comparator turns over.

$$
\frac{\mathrm{E} 1}{\mathrm{E} 0}=-\frac{\mathrm{t}}{\mathrm{e}^{\tau}}
$$

E0 : Initial voltage
E1 : Threshold voltage
τ : Time constant
Accordingly,

$$
\mathrm{t}=-\tau \operatorname{In} \frac{\mathrm{E} 1}{\mathrm{E} 0}
$$

E1/E0, within the IC, is 0.26 . A desired time is obtained by an appropriate choice of $\tau(\tau=\mathrm{C} 3 \mathrm{R} 1)$. Therefore, the time delay is obtained by the following formula:

$$
\mathrm{t}=1.34 \times \mathrm{C} 3 \mathrm{R} 1(\mathrm{sec})
$$

We recommend 150 k to $500 \mathrm{k} \Omega$ for R when determining CR.
4. IC usage notes

- Maximum ratings

When maximum ratings are surpassed, destruction or deterioration may result. Use the IC in the range where the maximum rating is not exceeded.

- Interpin short circuits and reverse insertions

These cause destruction or deterioration of the IC: be careful when mounting on circuit board.

- Voltage applied to pin 8 should never exceed pin 9 voltage.
- The current flowing into pin 8 is to be 0.5 mA maximum.
- Pin 4 is unconnected, but is not to be used for GND or an interconnecting terminal.

Note: $\mathrm{I}_{\mathrm{C}}=600 \mathrm{~mA}$ continuous is within 3 seconds
$\mathrm{I}_{\mathrm{C}}=300 \mathrm{~mA}$ continuous is within 30 seconds
$\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}$ or less can be left on at all times.

Test Circuit

Unit (resistance: Ω, capacitance: F)

Test Conditions

Test items	Symbol	SW-1	SW-2	SW-3	SW-4	Conditions
Circuit current	I_{CC}	1	1	1	3	Measure current flowing into pin 9 at $\mathrm{V}_{\text {IN }}=-45 \mathrm{~dB}$
Output transistor saturation voltage	V_{CE} (sat)	2	2	2	3	Measure $\mathrm{V}_{\text {IN }}$ at pin 6
Output diode forward voltage	V_{F}	2	4	2	1	Measure $\mathrm{V}_{\text {IN }}$ at pin 6
Output-off level in input equivalent	V_{IN}	1	1	1	3	Input level (V.V) when pin 6 turns over
Comparator-on level	V_{H}	2	3	1	3	Measure V3 When pin 6 turns over
Comparator-off level	V_{L}	2	3	1	3	Measure V3 When pin 6 turns over
Pin 8 high level	Vpp	2	4	1	3	Measure V2 at pin 8
Output transistor leakage current	I_{TL}	2	4	3	3	Measure M3
Output diode leakage current	I_{DL}	2	4	4	2	Measure M2

Equivalent Circuit Block Diagram

Sample Application Circuit 1

Unit (resistance: Ω, capacitance: F)
Pin 4 is unconnected but is not be used for GND or an interconnection terminal.

Sample Printed Pattern (copper foil side)

Unit (resistance: Ω, capacitance: F)

Sample Application Circuit 2

Unit (resistance: Ω, capacitance: F)

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
(1) Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
(2) Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
\square Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of May, 1996. Specifications and information herein are subject to change without notice.

