
August 2000

LM6142 and LM6144 17 MHz Rail-to-Rail Input-Output Operational Amplifiers

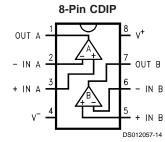
General Description

Connection Diagrams

Using patent pending new circuit topologies, the LM6142/44 provides new levels of performance in applications where low voltage supplies or power limitations previously made compromise necessary. Operating on supplies of 1.8V to over 24V, the LM6142/44 is an excellent choice for battery operated systems, portable instrumentation and others.

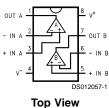
The greater than rail-to-rail input voltage range eliminates concern over exceeding the common-mode voltage range. The rail-to-rail output swing provides the maximum possible dynamic range at the output. This is particularly important when operating on low supply voltages.

High gain-bandwidth with 650 µA/Amplifier supply current opens new battery powered applications where previous higher power consumption reduced battery life to unacceptable levels. The ability to drive large capacitive loads without oscillating functionally removes this common problem.

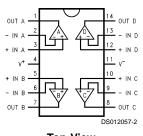

Features

At $V_{S} = 5V$. Typ unless noted.

- Rail-to-rail input CMVR –0.25V to 5.25V
- Rail-to-rail output swing 0.005V to 4.995V
- Wide gain-bandwidth: 17 MHz at 50 kHz (typ)
- Slew rate: Small signal, 5V/µs
 - Large signal, 30V/µs
- Low supply current 650 µA/Amplifier
- Wide supply range 1.8V to 24V
- CMRR 107 dB
- Gain 108 dB with $R_L = 10k$
- PSRR 87 dB


Applications

- Battery operated instrumentation
- Depth sounders/fish finders
- Barcode scanners
- Wireless communications
- Rail-to-rail in-out instrumentation amps



Top View

14-Pin DIP/SO

Top View

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

ESD Tolerance (Note 2)	2500V
Differential Input Voltage	15V
Voltage at Input/Output Pin	(V+) + 0.3V, (V–) – 0.3V
Supply Voltage (V+ - V-)	35V
Current at Input Pin	±10 mA
Current at Output Pin (Note 3)	±25 mA
Current at Power Supply Pin	50 mA
Lead Temperature	
(soldering, 10 sec)	260°C

Storage Temp. Range	-65°C to +150°C
Junction Temperature (Note 4)	150°C

Operating Ratings (Note 1)

Supply Voltage	$1.8V \le V + \le 24V$
Junction Temperature Range	
LM6142, LM6144	$-40^{\circ}C \le T_{J} \le +85^{\circ}C$
Thermal Resistance (θ_{JA})	
N Package, 8-Pin Molded DIP	115°C/W
M Package, 8-Pin Surface Mount	193°C/W
N Package, 14-Pin Molded DIP	81°C/W
M Package, 14-Pin Surface Mount	126°C/W

5.0V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}C$, V+ = 5.0V, V- = 0V, $V_{CM} = V_O = V+/2$ and $R_L > 1 M\Omega$ to V+/2. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 5)	LM6144AI LM6142AI Limit (Note 6)	LM6144BI LM6142BI Limit (Note 6)	Units
V _{os}	Input Offset Voltage		0.3	1.0 2.2	2.5 3.3	mV max
TCV _{OS}	Input Offset Voltage Average Drift		3			µV/°C
Ι _Β	Input Bias Current	$0V \le V_{CM} \le 5V$	170 180	250 280 526	300 526	nA max
I _{os}	Input Offset Current		3	30 80	30 80	nA max
R _{IN}	Input Resistance, C _M		126			MΩ
CMRR	Common Mode Rejection Ratio	$0V \le V_{CM} \le 4V$	107	84 78	84 78	
		$0V \le V_{CM} \le 5V$	82 79	66 64	66 64	dB min
PSRR	Power Supply Rejection Ratio	$5V \le V^+ \le 24V$	87	80 78	80 78	
V _{CM}	Input Common-Mode Voltage Range		-0.25 5.25	0 5.0	0 5.0	V
A _V	Large Signal Voltage Gain	R _L = 10k	270 70	100 33	80 25	V/mV min
Vo	Output Swing	R _L = 100k	0.005	0.01 0.013	0.01 0.013	V max
			4.995	4.98 4.93	4.98 4.93	V min
		R _L = 10k	0.02			V max V min
		$R_L = 2k$	0.06	0.1 0.133	0.1 0.133	V
			4.90	4.86 4.80	4.86 4.80	V

5.0V DC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}C$, V+ = 5.0V, V- = 0V, $V_{CM} = V_O = V_{+/2}$ and $R_L > 1 M\Omega$ to V+/2. **Boldface limits** apply at the temperature extremes.

				LM6144AI	LM6144BI	
Symbol	Parameter	Conditions	Тур	LM6142AI	LM6142BI	Units
			(Note 5)	Limit	Limit	
				(Note 6)	(Note 6)	
I _{sc}	Output Short	Sourcing	13	10	8	mA
	Circuit Current			4.9	4	min
	LM6142			35	35	mA
						max
		Sinking	24	10	10	mA
				5.3	5.3	min
				35	35	mA
						max
I _{SC}	Output Short	Sourcing	8	6	6	mA
	Circuit Current			3	3	min
	LM6144			35	35	mA
						max
		Sinking	22	8	8	mA
				4	4	min
				35	35	mA
						max
ls	Supply Current	Per Amplifier	650	800	800	μA
				880	880	max

5.0V AC Electrical Characteristics

Unless Otherwise Specified, All Limits Guaranteed for $T_J = 25^{\circ}C$, V+ = 5.0V, V- = 0V, $V_{CM} = V_O = V+/2$ and $R_L > 1 M\Omega$ to $V_S/2$. **Boldface limits** apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 5)	LM6144AI LM6142AI Limit	LM6144BI LM6142BI Limit	Units
				(Note 6)	(Note 6)	
SR	Slew Rate	8 V _{p-p} @ V _{CC} 12V	25	15	13	V/µs
		R _S > 1 kΩ		13	11	min
GBW	Gain-Bandwidth Product	f = 50 kHz	17	10	10	MHz
				6	6	min
φ _m	Phase Margin		38			Deg
	Amp-to-Amp Isolation		130			dB
e _n	Input-Referred Voltage Noise	f = 1 kHz	16			$\frac{nV}{\sqrt{Hz}}$
i _n	Input-Referred Current Noise	f = 1 kHz	0.22			$\frac{pA}{\sqrt{Hz}}$
T.H.D.	Total Harmonic Distortion	$f = 10 \text{ kHz}, R_{L} = 10 \text{ k}\Omega,$	0.003			%

2.7V DC Electrical Characteristics

Unless Otherwise Specified, All Limits Guaranteed for $T_J = 25^{\circ}C$, V+ = 2.7V, V- = 0V, $V_{CM} = V_O = V+/2$ and $R_L > 1 M\Omega$ to V⁺/2. **Boldface** limits apply at the temperature extreme

Symbol Paramo	Parameter	Conditions	Тур	LM6144AI LM6142AI	LM6144BI LM6142BI	Units
-			(Note 5)	Limit	Limit	
				(Note 6)	(Note 6)	
Vos	Input Offset Voltage		0.4	1.8	2.5	mV
				4.3	5	max
I _B	Input Bias Current		150	250	300	nA
				526	526	max
l _{os}	Input Offset Current		4	30	30	nA
				80	80	max
R _{IN}	Input Resistance		128			MΩ
CMRR	Common Mode	$0V \le V_{CM} \le 1.8V$	90			dB
	Rejection Ratio	$0V \le V_{CM} \le 2.7V$	76			min
PSRR	Power Supply	$3V \le V + \le 5V$	79			1
	Rejection Ratio					
V _{CM}	Input Common-Mode		-0.25	0	0	V min
	Voltage Range		2.95	2.7	2.7	V max
A _V	Large Signal	R _L = 10k	55			V/mV
	Voltage Gain					min
Vo	Output Swing	$R_L = 100k\Omega$	0.019	0.08	0.08	V
				0.112	0.112	max
			2.67	2.66	2.66	V
				2.25	2.25	min
I _S	Supply Current	Per Amplifier	510	800	800	μA
				880	880	max

2.7V AC Electrical Characteristics

Unless Otherwise Specified, All Limits Guaranteed for $T_J = 25^{\circ}C$, V+ = 2.7V, V- = 0V, $V_{CM} = V_O = V+/2$ and $R_L > 1 M\Omega$ to V⁺/2. **Boldface** limits apply at the temperature extreme

				LM6144AI	LM6144BI	
Symbol	Parameter	Conditions	Тур	LM6142AI	LM6142BI	Units
			(Note 5)	Limit	Limit	
				(Note 6)	(Note 6)	
GBW	Gain-Bandwidth Product	f = 50 kHz	9			MHz
φ _m	Phase Margin		36			Deg
G _m	Gain Margin		6			dB

24V Electrical Characteristics

Unless Otherwise Specified, All Limits Guaranteed for $T_J = 25^{\circ}C$, V+ = 24V, V- = 0V, $V_{CM} = V_O = V+/2$ and $R_L > 1 M\Omega$ to $V_S/2$. **Boldface** limits apply at the temperature extreme

Parameter	Conditions	Typ (Note 5)	LM6144AI LM6142AI Limit	LM6144BI LM6142BI Limit	Units
			(Note 6)	(Note 6)	
Input Offset Voltage		1.3	2	3.8	mV
			4.8	4.8	max
Input Bias Current		174			nA
					max
Input Offset Current		5			nA
					max
Input Resistance		288			MΩ
Common Mode	$0V \le V_{CM} \le 23V$	114			dB
Rejection Ratio	$0V \le V_{CM} \le 24V$	100			min
Power Supply	$0V \le V_{CM} \le 24V$	87			
Rejection Ratio					
Input Common-Mode		-0.25	0	0	V min
Voltage Range		24.25	24	24	V max
Large Signal	$R_{L} = 10k$	500			V/mV
Voltage Gain					min
Output Swing	$R_L = 10 \ k\Omega$	0.07	0.15	0.15	V
			0.185	0.185	max
		23.85	23.81	23.81	V
			23.62	23.62	min
Supply Current	Per Amplifier	750	1100	1100	μA
			1150	1150	max
Gain-Bandwidth Product	f = 50 kHz	18			MHz
	Input Offset Voltage Input Bias Current Input Offset Current Input Resistance Common Mode Rejection Ratio Power Supply Rejection Ratio Input Common-Mode Voltage Range Large Signal Voltage Gain Output Swing	$\begin{tabular}{ c c c c } \hline Input Offset Voltage & & & & \\ \hline Input Bias Current & & & & \\ \hline Input Offset Current & & & & \\ \hline Input Resistance & & & & \\ \hline Common Mode & & & & & \\ \hline Common Mode & & & & & \\ \hline Common Mode & & & & & \\ \hline Rejection Ratio & & & & & \\ \hline Power Supply & & & & & & \\ \hline Rejection Ratio & & & & & \\ \hline Power Supply & & & & & & \\ \hline Rejection Ratio & & & & & \\ \hline Input Common-Mode & & & & & \\ \hline Voltage Range & & & & & \\ \hline Large Signal & & & & & \\ \hline Voltage Gain & & & & \\ \hline Output Swing & & & & \\ \hline Supply Current & & & & \\ \hline Per Amplifier & & \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c } \hline \end{tabular} & \end{tabular}$	$\begin{array}{ c c c c } \mbox{Parameter} & \mbox{Conditions} & \mbox{Typ} & \mbox{LM6142Al} \\ \mbox{(Note 5)} & \mbox{limit} & \mbox{(Note 6)} \\ \mbox{Input Offset Voltage} & \mbox{1.3} & \mbox{2} & \mbox{4.8} \\ \mbox{Input Bias Current} & \mbox{174} & 17$	$\begin{array}{ c c c c } \mbox{Parameter} & \begin{tabular}{ c c c c } \mbox{Conditions} & \begin{tabular}{ c c c c } \mbox{Limit} \\ (Note 5) & \begin{tabular}{ c c c c c } \mbox{Limit} \\ (Note 6) & \begin{tabular}{ c c c c c } \mbox{Limit} \\ (Note 6) & \begin{tabular}{ c c c c c c c } \mbox{Limit} \\ (Note 6) & \begin{tabular}{ c c c c c c c c c c c } \mbox{Limit} \\ (Note 6) & \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Charactenstics. Note 2: Human body model, 1.5 kΩ in series with 100 pF.

Note 3: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C.

Note 4: The maximum power dissipation is a function of $T_{J(max)}$, θ_{JA} , and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{j(max)} - T_A)/\theta_{JA}$. All numbers apply for packages soldered directly into a PC board.

Note 5: Typical values represent the most likely parametric norm.

Note 6: All limits are guaranteed by testing or statistical analysis.

Note 7: For guaranteed military specifications see military datasheet MNLM6142AM-X.

Typical Performance Characteristics T_A = 25°C, R_L = 10 kΩ Unless Otherwise Specified Supply Current vs Offset Voltage vs **Bias Current vs Supply Voltage** Supply Voltage Supply Voltage 1.0 3.0 AMPLIFIER 2.7 +125°C -50 0.8 2.4 VOLTAGE (mV) +25°C +8500 SUPPLY CURRENT (mA) PER 2.1 CURRENT (nA) -1000.6 1.8 +25°C -150 1.5 +25% -55°C 0.4 -200 1.2 OFFSET 40% 0.9 BIAS -250 -55°C 0.2 -40°(0.6 -300 0.3 0.0 0.0 -350 12 16 20 24 32 0 4 8 28 36 0 4 8 12 16 20 24 28 32 36 5 15 30 10 20 25 35 0 SUPPLY VOLTAGE (V) SUPPLY VOLTAGE (V) DS012057-16 SUPPLY VOLTAGE (V) DS012057-15 DS012057-17 Offset Voltage vs V_{CM} Offset Voltage vs V_{CM} Offset Voltage vs V_{CM} 1.0 1.0 1.0 $V_{S} = \pm 2.5 V$ $V_{S} = \pm 1.5V$ $V_{S} = \pm 5V$ 0.8 0.8 0.6 0.6 (m< (mV) 0.5 0.4 0.4 40°C OFFSET VOLTAGE DFFSET VOLTAGE 0.2 0.2 (mV) 0.0 ٥ C -85°C Vos -0.2 +25°C +85°0 -0.2 -40°C -0.4 -0.4 850 +25°C -0.5 -0.6 -0.6 -40°C -40°0 +25°0 -0.8 -0.8 +85°C +25°C -1.0 -1.0 -1.0 -2 -1.5 -1 -0.5 0 0.5 1.5 -2 1 2 -3 -1 0 1 2 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 COMMON MODE VOLTAGE (V) COMMON MODE VOLTAGE (V) COMMON MODE VOLTAGE (V) DS012057-18 DS012057-20 DS012057-19 Bias Current vs V_{CM} Bias Current vs V_{CM} Bias Current vs V_{CM} 500 500 500 $V_{S} = \pm 2.5V$ ٧_S = ±1.5V 400 400 400 300 300 300 (An) (NA) (NA) 200 200 200 100 100 100 **BIAS CURRENT BIAS CURRENT** CURRENT 0 0 0 +85°C +85°C +85°0 -100 -100 -100 BIAS -200 -200 -200 +25°C +25°C +25 -300 -300 -300 -40°C -40°C -40°C -400 -400 -400 -500 -500 -500 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -3 -2 - 1 0 1 2 3 COMMON MODE VOLTAGE (V) COMMON MODE VOLTAGE (V) COMMON MODE VOLTAGE (V) DS012057-21 DS012057-22 DS012057-23 **Open-Loop Transfer Open-Loop Transfer Open-Loop Transfer** Function Function Function 100 100 250 ٧_S = 3V $V_{\rm S} = 5V$ = 10V80 ٧٩ 80 200 60 60 150 INPUT VOLTAGE (µV) INPUT VOLTAGE (μV) 40 VOLTAGE (µV) 40 100 20 20 50 100k 100k 100 0 0 0 -20 101 -20 10 101 -50 -40 INPUT -40 -100 21 2k -60 -60 -150 -80 -80 -200 -100 -100-250 0.5 1.5 2 2.5 0 1 3 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 1 2 3 4 5 6 7 8 9 10 OUTPUT VOLTAGE (V) DS012057-25 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) DS012057-26 DS012057-24

Typical Performance Characteristics $T_A = 25^{\circ}C$, $R_L = 10 \text{ k}\Omega$ Unless Otherwise Specified (Continued)

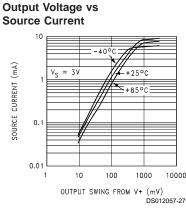
Output Voltage vs

 $V_{\rm S} = 3V$

Sink Current

100

10


0.1

0.01

0.001

0.1

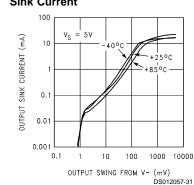
OUTPUT SINK CURRENT (mA)

+85°C

١¥

T A

+25°0


-40°C

1000 10000

DS012057-30

Output Voltage vs Source Current 100 $V_{S} = 5V$ (mA) 10 SOURCE CURRENT 0.1 0.01 10 100 1000 10000 OUTPUT SWING FROM V+ (mV)

Output Voltage vs Sink Current

Output Voltage vs Sink Current

Output Voltage vs

 $V_{\rm S} = 10V$

-

1000

(mV)

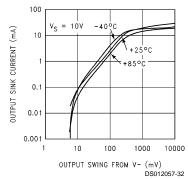
DS012057-29

10000

Source Current

100

10

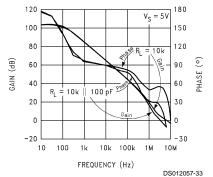

0.1

0.01

10

SOURCE CURRENT (mA)

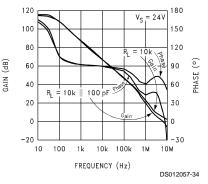
DS012057-28

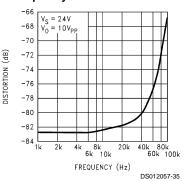


100

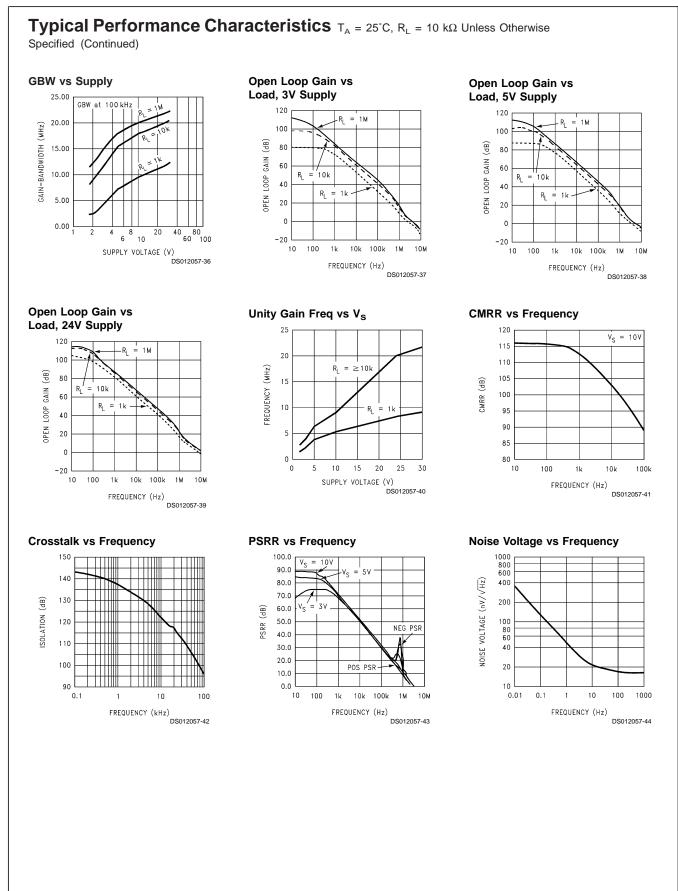
OUTPUT SWING FROM V+

Gain and Phase vs Load

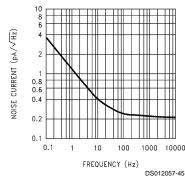

1


10 100

OUTPUT SWING FROM V- (mV)


Gain and Phase vs Load

Distortion + Noise vs Frequency


LM6142 and LM6144

Typical Performance Characteristics $T_A = 25^{\circ}C$, $R_L = 10 \text{ k}\Omega$ Unless Otherwise

Specified (Continued)

Noise Current vs Frequency

LM6142/44 Application Ideas

The LM6142 brings a new level of ease of use to opamp system design.

With greater than rail-to-rail input voltage range concern over exceeding the common-mode voltage range is eliminated.

Rail-to-rail output swing provides the maximum possible dynamic range at the output. This is particularly important when operating on low supply voltages.

The high gain-bandwidth with low supply current opens new battery powered applications, where high power consumption, previously reduced battery life to unacceptable levels.

To take advantage of these features, some ideas should be kept in mind.

ENHANCED SLEW RATE

Unlike most bipolar opamps, the unique phase reversal prevention/speed-up circuit in the input stage causes the slew rate to be very much a function of the input signal amplitude.

Figure 2 shows how excess input signal, is routed around the input collector-base junctions, directly to the current mirrors.


The LM6142/44 input stage converts the input voltage change to a current change. This current change drives the current mirrors through the collectors of Q1–Q2, Q3–Q4 when the input levels are normal.

If the input signal exceeds the slew rate of the input stage, the differential input voltage rises above two diode drops. This excess signal bypasses the normal input transistors, (Q1-Q4), and is routed in correct phase through the two additional transistors, (Q5, Q6), directly into the current mirrors.

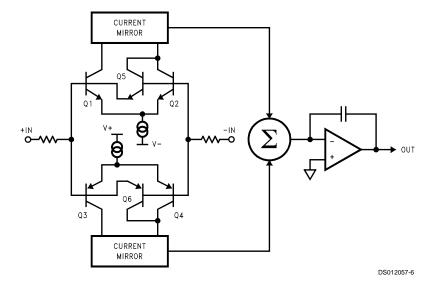
This rerouting of excess signal allows the slew-rate to increase by a factor of 10 to 1 or more. (See *Figure 1.*)

As the overdrive increases, the opamp reacts better than a conventional opamp. Large fast pulses will raise the slew-rate to around 30V to $60V/\mu s$.

NE vs R Source

DIFFERENTIAL INPUT VOLTAGE, (V) DS012057-7

FIGURE 1.


This effect is most noticeable at higher supply voltages and lower gains where incoming signals are likely to be large. This new input circuit also eliminates the phase reversal seen in many opamps when they are overdriven.

This speed-up action adds stability to the system when driving large capacitive loads.

DRIVING CAPACITIVE LOADS

Capacitive loads decrease the phase margin of all opamps. This is caused by the output resistance of the amplifier and the load capacitance forming an R-C phase lag network. This can lead to overshoot, ringing and oscillation. Slew rate limiting can also cause additional lag. Most opamps with a fixed maximum slew-rate will lag further and further behind when driving capacitive loads even though the differential input voltage raises. With the LM6142, the lag causes the slew rate to raise. The increased slew-rate keeps the output following the input much better. This effectively reduces phase lag. After the output has caught up with the input, the differential input voltage drops down and the amplifier settles rapidly.

LM6142/44 Application Ideas (Continued)

These features allow the LM6142 to drive capacitive loads as large as 1000 pF at unity gain and not oscillate. The scope photos (*Figure 3* and *Figure 4*) above show the LM6142 driving a 1000 pF load. In *Figure 3*, the upper trace is with no capacitive load and the lower trace is with a 1000 pF load. Here we are operating on ±12V supplies with a 20 Vp-p pulse. Excellent response is obtained with a C_f of I0 pF. In *Figure 4*, the supplies have been reduced to ±2.5V, the pulse is 4 Vp-p and C_f is 39 pF. The best value for the compensation capacitor is best established after the board layout is finished because the value is dependent on board stray capacity, the value of the feedback resistor, the closed loop gain and, to some extent, the supply voltage.

Another effect that is common to all opamps is the phase shift caused by the feedback resistor and the input capacitance. This phase shift also reduces phase margin. This effect is taken care of at the same time as the effect of the capacitive load when the capacitor is placed across the feedback resistor.

The circuit shown in Figure 5 was used for these scope

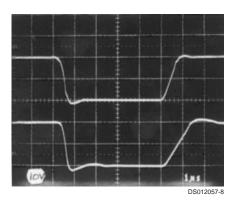


FIGURE 3.

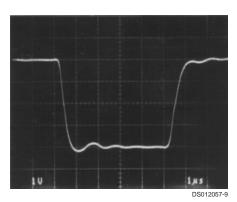
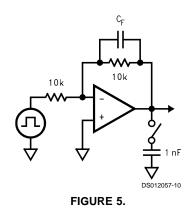



FIGURE 4.

Typical Applications

FISH FINDER/ DEPTH SOUNDER.

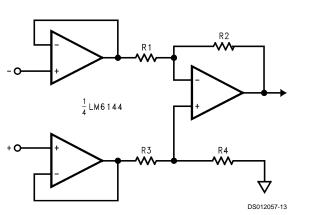
The LM6142/44 is an excellent choice for battery operated fish finders. The low supply current, high gain-bandwidth and full rail to rail output swing of the LM6142 provides an ideal combination for use in this and similar applications.

LM6142 and LM6144

photos.

Typical Applications (Continued)

ANALOG TO DIGITAL CONVERTER BUFFER


The high capacitive load driving ability, rail-to-rail input and output range with the excellent CMR of 82 dB, make the LM6142/44 a good choice for buffering the inputs of A to D converters.

3 OPAMP INSTRUMENTATION AMP WITH RAIL-TO-RAIL INPUT AND OUTPUT

Using the LM6144, a 3 opamp instrumentation amplifier with rail-to-rail inputs and rail to rail output can be made. These features make these instrumentation amplifiers ideal for single supply systems.

Some manufacturers use a precision voltage divider array of 5 resistors to divide the common-mode voltage to get an input range of rail-to-rail or greater. The problem with this method is that it also divides the signal, so to even get unity gain, the amplifier must be run at high closed loop gains. This raises the noise and drift by the internal gain factor and lowers the input impedance. Any mismatch in these precision resistors reduces the CMR as well. Using the LM6144, all of these problems are eliminated.

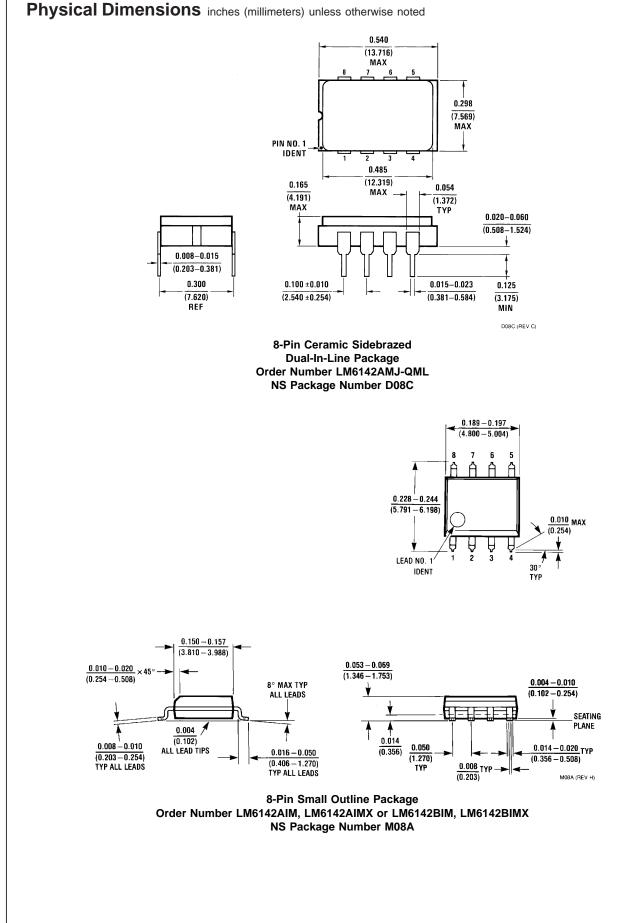
In this example, amplifiers A and B act as buffers to the differential stage (*Figure 6*). These buffers assure that the input impedance is over 100 M Ω and they eliminate the requirement for precision matched resistors in the input stage. They also assure that the difference amp is driven from a voltage source. This is necessary to maintain the CMR set by the matching of R1–R2 with R3–R4.

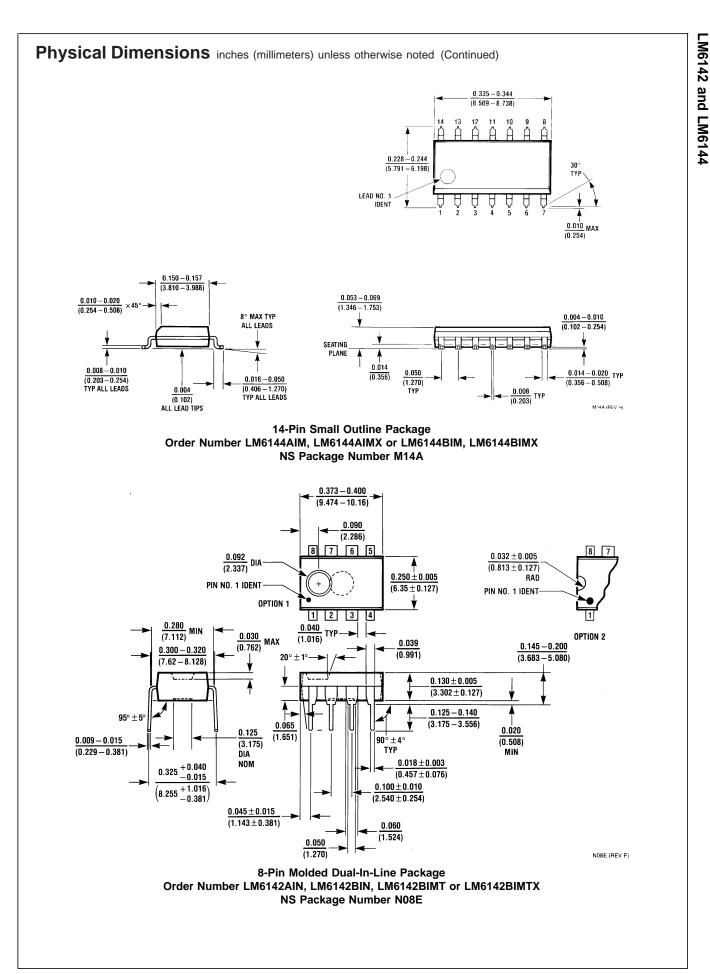
FIGURE 6.

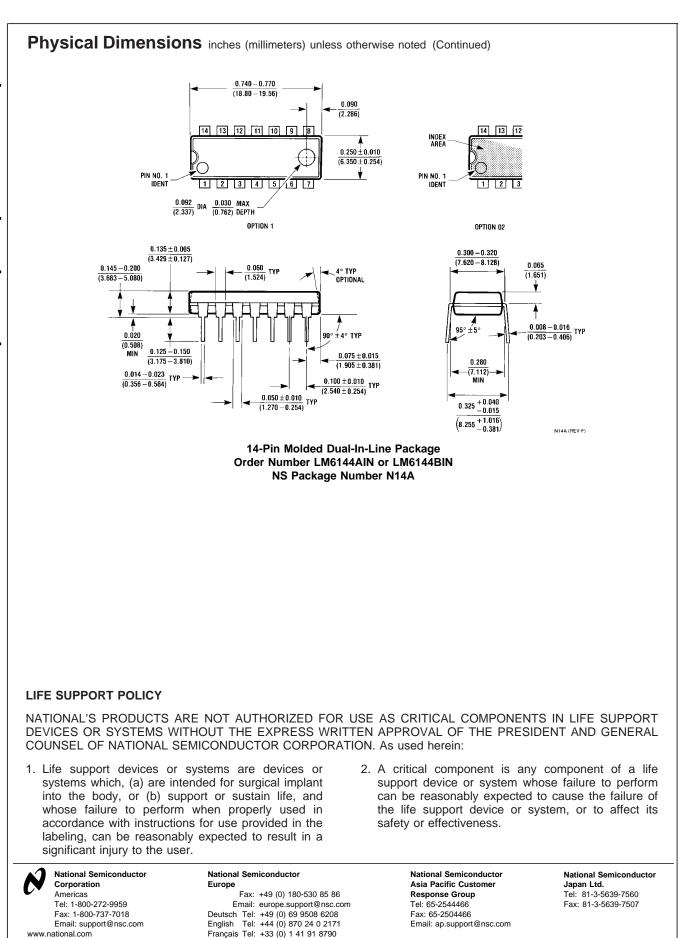
The gain is set by the ratio of R2/R1 and R3 should equal R1 and R4 equal R2. Making R4 slightly smaller than R2 and adding a trim pot equal to twice the difference between R2 and R4 will allow the CMR to be adjusted for optimum.

With both rail to rail input and output ranges, the inputs and outputs are only limited by the supply voltages. Remember that even with rail-to-rail output, the output can not swing past the supplies so the combined common mode voltage plus the signal should not be greater than the supplies or limiting will occur.

SPICE MACROMODEL


A SPICE macromodel of this and many other National Semiconductor opamps is available at no charge from the NSC Customer Response Group at 800-272-9959.


Package	Temperature Range	Temperature Range	NSC
	Industrial	Military	Drawing
	–40°C to +85°C	–55°C to +125°C	
8-Pin Molded DIP	LM6142AIN, LM6142BIN		N08E
8-Pin Small Outline LM6142AIMX,LM6142B	LM6142AIM, IM,LM6142BIMXLM6142BIMTX,		M08A
14-Pin Molded DIP	LM6144AIN, LM6144BIN		N14A
14-Pin Small Outline LM6144	LM6144AIM, AIMX,LM6144BIM,LM6144BIMX		M14A
8-Pin CDIP		LM6142AMJ-QML	J08A


11

Ordering Information

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.