DUAL 15- Ω SPDT ANALOG SWITCH

Check for Samples: TS5A23157-Q1

FEATURES

- Qualified for Automotive Applications
- AEC-Q100 Qualified With the Following Results:
- Device Temperature Grade 1: $-40^{\circ} \mathrm{C}$ to 125응
- Device HBM ESD Classification Level H2
- Device CDM ESD Classification Level C4B
- Customer-Specific Configuration Control Can Be Supported Along With Major-Change Approval
- Specified Break-Before-Make Switching
- Low ON-State Resistance (15 Ω)
- Control Inputs Are 5-V Tolerant
- Low Charge Injection
- Excellent ON-Resistance Matching
- Low Total Harmonic Distortion
- 1.8-V to $5.5-\mathrm{V}$ Single-Supply Operation

APPLICATIONS

- Sample-and-Hold Circuits
- Battery-Powered Equipment
- Audio and Video Signal Routing
- Communication Circuits

DESCRIPTION

The TS5A23157 is a dual, single-pole, double-throw (SPDT) analog switch designed to operate from 1.65 V to 5.5 V. This device can handle both digital and analog signals. The device can transmit signals up to 5.5 V (peak) in either direction.

For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI Web site at www.ti.com.

Table 1. FUNCTION TABLE

INPUT IN	NC TO COM, COM TO NC	NO TO COM, COM TO NO
L	ON	OFF
H	OFF	ON

Table 2. SUMMARY OF CHARACTERISTICS

Configuration	2:1 Multiplexer and Demultiplexer $(2 \times$ SPDT $)$
Number of channels	2
$r_{\text {on }}$	15Ω
$\Delta r_{\text {on }}$	0.15Ω
$r_{\text {onfllat) }}$	4Ω
$\mathrm{t}_{\text {ON }}$	8.7 ns
toff	6.8 ns
$\mathrm{t}_{\text {BBM }}$	0.5 ns
Charge injection	7 pC
Bandwidth	220 MHz
OFF isolation	-65 dB at 10 MHz
Crosstalk	-66 dB at 10 MHz
Total harmonic distortion	0.01%
$I_{\text {Com(off) }} / l_{\text {NC(OFF) }}$	$\pm 1 \mathrm{\mu A}$
Package option	$10-\mathrm{pin} \mathrm{DGS}$

Absolute Maximum Ratings ${ }^{(1)}$

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
	Supply voltage range ${ }^{(2)}$		-0.5	6.5	V
V_{NC} V_{NO} $\mathrm{V}_{\mathrm{COM}}$	Analog voltage range ${ }^{(2)}{ }^{(3)(4)}$		-0.5	$\mathrm{V}_{+}+0.5$	V
$\mathrm{I}_{\text {I/OK }}$	Analog port diode current	$\mathrm{V}_{\mathrm{NC}}, \mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{COM}}<0$ or $\mathrm{V}_{\mathrm{NC}}, \mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{COM}}>\mathrm{V}_{+}$		± 50	mA
I_{NC} I_{NO} $\mathrm{I}_{\mathrm{COM}}$	On-state switch current	$\mathrm{V}_{\mathrm{NC}}, \mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{COM}}=0$ to V_{+}		± 50	mA
$\mathrm{V}_{\text {IN }}$	Digital input voltage range ${ }^{(2)(3)}$		-0.5	6.5	V
$\mathrm{I}_{\text {K }}$	Digital input clamp current	$\mathrm{V}_{\text {IN }}<0$		-50	mA
	Continuous current through V_{+}or GND			± 100	mA
θ_{JA}	Package thermal impedance ${ }^{(5)}$			165.36	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\text {stg }}$	Storage temperature range		-65	150	${ }^{\circ} \mathrm{C}$
ESD	Electrostatic discharge rating	Human-body model H2		2	kV
		Charged-device model C4B		750	V

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltages are with respect to ground, unless otherwise specified.
(3) The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
(4) This value is limited to 5.5 V maximum.
(5) The package thermal impedance is calculated in accordance with JESD 51-7.

Electrical Characteristics for 5-V Supply

$\mathrm{V}_{+}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS		T ${ }_{\text {A }}$	V_{+}	MIN	TYP ${ }^{(1)}$	MAX	UNIT
Analog Switch									
Analog signal range	$\mathrm{V}_{\text {COM }}$, $\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$					0		V_{+}	V
ON-state resistance	ron	$\begin{aligned} & 0 \leq \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}} \leq \mathrm{V}_{+}, \\ & \mathrm{I}_{\mathrm{COM}}=-30 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 6	Full	4.5 V	15			Ω
ON-state resistance match between channels	$\Delta r_{\text {on }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=3.15 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=-30 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 6	$25^{\circ} \mathrm{C}$	4.5 V	0.15			Ω
ON-state resistance flatness	$\mathrm{r}_{\text {on(flat) }}$	$\begin{aligned} & 0 \leq \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}} \leq \mathrm{V}_{+}, \\ & \mathrm{I}_{\mathrm{COM}}=-30 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 6	$25^{\circ} \mathrm{C}$	4.5 V		4		Ω
NC, NO OFF leakage current	$I_{\text {NC(OFF) }}$, $\mathrm{I}_{\mathrm{NO}(\mathrm{OFF})}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=0 \text { to } \mathrm{V}_{+}, \\ & \mathrm{V}_{\mathrm{COM}}=0 \text { to } \mathrm{V}_{+}, \end{aligned}$	Switch OFF, See Figure 7	$25^{\circ} \mathrm{C}$	5.5 V	-1	0.05	1	$\mu \mathrm{A}$
				Full		-1		1	
NC, NO ON leakage current	$I_{\mathrm{NC}(\mathrm{ON})}$, $\mathrm{I}_{\mathrm{NO}(\mathrm{ON})}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=0 \text { to } \mathrm{V}_{+}, \\ & \mathrm{V}_{\mathrm{COM}}=\text { Open, } \end{aligned}$	Switch ON, See Figure 7	$25^{\circ} \mathrm{C}$	5.5 V	-0.1		0.1	$\mu \mathrm{A}$
				Full		-1		1	
COM ON leakage current	$\mathrm{I}_{\text {Com(ON }}$	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=$ Open, $\mathrm{V}_{\text {COM }}=0$ to V_{+},	Switch ON, See Figure 7	$25^{\circ} \mathrm{C}$	5.5 V	-0.1		0.1	$\mu \mathrm{A}$
				Full		-1		1	
Digital Inputs (IN1, IN2) ${ }^{(2)}$									
Input logic high	V_{IH}			Full		$\mathrm{V}_{+} \times 0.7$			V
Input logic low	$\mathrm{V}_{\text {IL }}$			Full				$\times 0.3$	V
Input leakage current	$\mathrm{I}_{\mathrm{IH}}, \mathrm{I}_{\text {IL }}$	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$ or 0		$25^{\circ} \mathrm{C}$	5.5 V	-1	0.05	1	$\mu \mathrm{A}$
				Full		-1		1	

(1) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
(2) Hold all unused digital inputs of the device at $\mathrm{V}+$ or GND to ensure proper device operation. See the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

Electrical Characteristics for 5-V Supply (continued)

$\mathrm{V}_{+}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS		TA	V_{+}	MIN	TYP ${ }^{(1)}$	MAX	UNIT
Dynamic									
Turnon time	ton	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}}=\mathrm{GND} \text { and } \mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+}, \\ & \text {or } \\ & \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{+} \text {and } \mathrm{V}_{\mathrm{NO}}=\mathrm{GND}, \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=500 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \text { See Figure } 9 \end{aligned}$	Full	$\begin{gathered} 4.5 \mathrm{~V} \\ \text { to } \\ 5.5 \mathrm{~V} \\ \hline \end{gathered}$	1.2		8.7	ns
Turnoff time	toff	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}}=\mathrm{GND} \text { and } \mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+}, \\ & \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{+} \text {and } \mathrm{V}_{\mathrm{NO}}=\mathrm{GND}, \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=500 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \text { See Figure } 9 \end{aligned}$	Full	$\begin{gathered} 4.5 \mathrm{~V} \\ \text { to } \\ 5.5 \mathrm{~V} \end{gathered}$	0.5		6.8	ns
Break-before-make time	$t_{\text {BBM }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+} / 2, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=35 \mathrm{pF},$ See Figure 10	$25^{\circ} \mathrm{C}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & \text { to } \\ & 5.5 \mathrm{~V} \end{aligned}$	0.5			ns
Charge injection	Qc	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+} / 2, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$	See Figure 14	$25^{\circ} \mathrm{C}$	5 V		7		pC
NC, NO OFF capacitance	$\mathrm{C}_{\mathrm{NC} \text { (OFF) }}$, $\mathrm{C}_{\mathrm{NO} \text { (OFF) }}$	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+}$or GND,	Switch OFF, See Figure 8	$25^{\circ} \mathrm{C}$	5 V		5.5		pF
NC, NO ON capacitance	$\mathrm{C}_{\mathrm{NC}(\mathrm{ON})}$, $\mathrm{C}_{\mathrm{NO}(\mathrm{ON})}$	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+}$or GND,	Switch ON, See Figure 8	$25^{\circ} \mathrm{C}$	5 V		17.5		pF
COM ON capacitance	$\mathrm{C}_{\text {COM(ON) }}$	$\mathrm{V}_{\text {COM }}=\mathrm{V}_{+}$or GND,	Switch ON, See Figure 8	$25^{\circ} \mathrm{C}$	5 V		17.5		pF
Digital input capacitance	$\mathrm{C}_{\text {IN }}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{+}$or GND,	See Figure 8	$25^{\circ} \mathrm{C}$	5 V		2.8		pF
Bandwidth	BW	$\mathrm{R}_{\mathrm{L}}=50 \Omega$,	Switch ON, See Figure 11	$25^{\circ} \mathrm{C}$	4.5 V		220		MHz
OFF isolation	$\mathrm{O}_{\text {ISO }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=10 \mathrm{MHz}, \end{aligned}$	Switch OFF, See Figure 12	$25^{\circ} \mathrm{C}$	4.5 V		-65		dB
Crosstalk	$\mathrm{X}_{\text {taLk }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=10 \mathrm{MHz}, \end{aligned}$	Switch ON, See Figure 13	$25^{\circ} \mathrm{C}$	4.5 V		-66		dB
Total harmonic distortion	THD	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \end{aligned}$	$\begin{aligned} & f=600 \mathrm{~Hz} \text { to } \\ & 20 \mathrm{kHz}, \\ & \text { See Figure } 15 \end{aligned}$	$25^{\circ} \mathrm{C}$	4.5 V		0.01		\%
Supply									
Positive supply current	I_{+}	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{+}$or GND,	Switch ON or OFF	$25^{\circ} \mathrm{C}$	5.5 V			1	$\mu \mathrm{A}$
				Full				10	
Change in supply current	ΔI_{+}	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{+}-0.6 \mathrm{~V}$		Full	5.5 V			500	$\mu \mathrm{A}$

Electrical Characteristics for 3.3-V Supply

$\mathrm{V}_{+}=3 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS		TA	V+	MIN	TYP ${ }^{(1)} \quad$ MAX	UNIT
Analog Switch								
Analog signal range	$\mathrm{V}_{\text {Com }}$, $\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}$						V_{+}	V
ON-state resistance	$r_{\text {on }}$	$\begin{aligned} & 0 \leq V_{N O} \text { or } V_{N C} \leq V_{+}, \\ & I_{C O M}=-24 m A, \end{aligned}$	Switch ON, See Figure 6	Full	3 V	23		Ω
ON-state resistance match between channels	$\Delta r_{\text {on }}$	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=2.1 \mathrm{~V}$, $I_{\text {сом }}=-24 \mathrm{~mA}$,	Switch ON, See Figure 6	$25^{\circ} \mathrm{C}$	3 V		0.2	Ω
ON-state resistance flatness	$\mathrm{r}_{\text {on(flat) }}$	$\begin{aligned} & 0 \leq V_{N O} \text { or } V_{N C} \leq V_{+}, \\ & l_{\text {COM }}=-24 m A, \end{aligned}$	Switch ON, See Figure 6	$25^{\circ} \mathrm{C}$	3 V		9	Ω
NC, NO OFF leakage current	$I_{\text {NC(OFF) }}$, $\mathrm{I}_{\mathrm{NO}(\mathrm{OFF})}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=0 \text { to } \mathrm{V}_{+}, \\ & \mathrm{V}_{\mathrm{COM}}=0 \text { to } \mathrm{V}_{+}, \end{aligned}$	Switch OFF, See Figure 7	$25^{\circ} \mathrm{C}$	3.6 V	-1	$0.05 \quad 1$	$\mu \mathrm{A}$
				Full		-1	1	
NC, NO ON leakage current	$\mathrm{I}_{\mathrm{NC}(\mathrm{ON})}$, $\mathrm{I}_{\mathrm{NO}(\mathrm{ON})}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=0 \text { to } \mathrm{V}_{+}, \\ & \mathrm{V}_{\mathrm{COM}}=\text { Open, } \end{aligned}$	Switch ON, See Figure 7	$25^{\circ} \mathrm{C}$	3.6 V	-0.1	0.1	$\mu \mathrm{A}$
				Full		-1	1	
COM ON leakage current	$\mathrm{I}_{\text {COM(ON }}$	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=$ Open, $\mathrm{V}_{\text {COM }}=0$ to V_{+},	Switch ON, See Figure 7	$25^{\circ} \mathrm{C}$	3.6 V	-0.1	0.1	$\mu \mathrm{A}$
				Full		-1	1	
Digital Inputs (IN1, IN2) ${ }^{(2)}$								
Input logic high	V_{IH}			Full		$V_{+} \times 0.7$		V
Input logic low	$\mathrm{V}_{\text {IL }}$			Full			$\mathrm{V}_{+} \times 0.3$	V
Input leakage current	$\mathrm{I}_{\mathrm{IH}}, \mathrm{I}_{\text {IL }}$	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$ or 0		$25^{\circ} \mathrm{C}$	3.6 V	-1	0.05	$\mu \mathrm{A}$
				Full		-1	1	
Dynamic								
Turnon time	ton	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}}=\mathrm{GND} \text { and } \mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+}, \\ & \text {or } \\ & \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{+} \text {and } \mathrm{V}_{\mathrm{NO}}=\mathrm{GND}, \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=500 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \text { See Figure } 9 \\ & \hline \end{aligned}$	Full	$\begin{aligned} & 3 \mathrm{~V} \text { to } \\ & 3.6 \mathrm{~V} \end{aligned}$	2.0	10.6	ns
Turnoff time	$\mathrm{t}_{\text {OFF }}$	$V_{\mathrm{NC}}=\mathrm{GND}$ and $\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+}$, or $\mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{+}$and $\mathrm{V}_{\mathrm{NO}}=\mathrm{GND}$,	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=500 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \text { See Figure } 9 \\ & \hline \end{aligned}$	Full	$\begin{aligned} & 3 \mathrm{~V} \text { to } \\ & 3.6 \mathrm{~V} \end{aligned}$	1.0	8.3	ns
Break-before-make time	$t_{\text {BBM }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+} / 2, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \text {, }$ See Figure 10	$25^{\circ} \mathrm{C}$	$\begin{aligned} & 3 \mathrm{~V} \text { to } \\ & 3.6 \mathrm{~V} \end{aligned}$	0.5		ns
Charge injection	Qc	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{CL}=0.1 \mathrm{nF}, \end{aligned}$	See Figure 14	$25^{\circ} \mathrm{C}$	3.3 V		3	pC
Bandwidth	BW	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \text { Switch ON, } \end{aligned}$	See Figure 11	$25^{\circ} \mathrm{C}$	3 V		220	MHz
OFF isolation	$\mathrm{O}_{\text {ISo }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=10 \mathrm{MHz}, \end{aligned}$	Switch OFF, See Figure 12	$25^{\circ} \mathrm{C}$	3 V		-65	dB
Crosstalk	$\mathrm{X}_{\text {TALK }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=10 \mathrm{MHz}, \end{aligned}$	Switch ON, See Figure 13	$25^{\circ} \mathrm{C}$	3 V		-66	dB
Total harmonic distortion	THD	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \end{aligned}$	$\begin{aligned} & f=600 \mathrm{~Hz} \text { to } \\ & 20 \mathrm{kHz}, \\ & \text { See Figure } 15 \end{aligned}$	$25^{\circ} \mathrm{C}$	3 V		0.015	\%
Supply								
Positive supply current	I_{+}	$\mathrm{V}_{1 N}=\mathrm{V}_{+}$or GND,	Switch ON or OFF	$25^{\circ} \mathrm{C}$	3.6 V		1	$\mu \mathrm{A}$
				Full			10	
Change in supply current	ΔI_{+}	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{+}-0.6 \mathrm{~V}$		Full	3.6 V		500	$\mu \mathrm{A}$

(1) $T_{A}=25^{\circ} \mathrm{C}$
(2) Hold all unused digital inputs of the device at $\mathrm{V}+$ or GND to ensure proper device operation. See the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

Electrical Characteristics for 2.5-V Supply

$\mathrm{V}_{+}=2.3 \mathrm{~V}$ to $2.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS		TA	V+	MIN	TYP ${ }^{(1)} \quad$ MAX	UNIT
Analog Switch								
Analog signal range	$\begin{gathered} \mathrm{V}_{\mathrm{COM}}, \\ \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}} \end{gathered}$					0	V_{+}	V
ON-state resistance	$\mathrm{r}_{\text {on }}$	$\begin{aligned} & 0 \leq \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}} \leq \mathrm{V}_{+}, \\ & \mathrm{l}_{\mathrm{COM}}=-8 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 6	Full	2.3 V	50		Ω
ON-state resistance match between channels	$\Delta r_{\text {on }}$	$\mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.6 \mathrm{~V} \text {, }$ $\mathrm{I}_{\mathrm{COM}}=-8 \mathrm{~mA} \text {, }$	Switch ON, See Figure 6	$25^{\circ} \mathrm{C}$	2.3 V		0.5	Ω
ON-state resistance flatness	$\mathrm{r}_{\text {on(flat) }}$	$\begin{aligned} & 0 \leq \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}} \leq \mathrm{V}_{+}, \\ & \mathrm{I}_{\mathrm{COM}}=-8 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 6	$25^{\circ} \mathrm{C}$	2.3 V		27	Ω
NC, NO OFF leakage current	$\mathrm{I}_{\mathrm{NC} \text { (OFF) }}$, $\mathrm{I}_{\mathrm{NO}(\mathrm{OFF})}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=0 \text { to } \mathrm{V}_{+}, \\ & \mathrm{V}_{\mathrm{COM}}=0 \text { to } \mathrm{V}_{+}, \end{aligned}$	Switch OFF, See Figure 7	$25^{\circ} \mathrm{C}$	2.7 V	-1	0.05	$\mu \mathrm{A}$
				Full		-1	1	
NC, NO ON leakage current	$\mathrm{I}_{\mathrm{NC}(\mathrm{ON})}$, $\mathrm{I}_{\mathrm{NO}(\mathrm{ON})}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=0 \text { to } \mathrm{V}_{+}, \\ & \mathrm{V}_{\mathrm{COM}}=\text { Open, } \end{aligned}$	Switch ON, See Figure 7	$25^{\circ} \mathrm{C}$	2.7 V	-0.1	0.1	$\mu \mathrm{A}$
				Full		-1	1	
COM ON leakage current	$\mathrm{I}_{\text {COM (ON) }}$	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=$ Open, $\mathrm{V}_{\text {COM }}=0$ to V_{+},	Switch ON, See Figure 7	$25^{\circ} \mathrm{C}$	2.7 V	-0.1	0.1	$\mu \mathrm{A}$
				Full		-1	1	
Digital Inputs (IN1, IN2) ${ }^{(2)}$								
Input logic high	V_{IH}			Full		$V_{+} \times 0.7$		V
Input logic low	$\mathrm{V}_{\text {IL }}$			Full			$\mathrm{V}_{+} \times 0.3$	V
Input leakage current	$\mathrm{I}_{\mathrm{IH}}, \mathrm{I}_{\mathrm{IL}}$	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$ or 0		$25^{\circ} \mathrm{C}$	2.7 V	-1	0.051	$\mu \mathrm{A}$
				Full		-1	1	
Dynamic								
Turnon time	ton	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}}=\mathrm{GND} \text { and } \mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+}, \\ & \text {or } \\ & \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{+} \text {and } \mathrm{V}_{\mathrm{NO}}=\mathrm{GND}, \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=500 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \text { See Figure } 9 \end{aligned}$	Full	$\begin{aligned} & 2.3 \mathrm{~V} \\ & \text { to } \\ & 2.7 \mathrm{~V} \end{aligned}$	2.5	17	ns
Turnoff time	$\mathrm{t}_{\text {OFF }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}}=\mathrm{GND} \text { and } \mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+}, \\ & \text {or } \\ & \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{+} \text {and } \mathrm{V}_{\mathrm{NO}}=\mathrm{GND}, \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=500 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \text { See Figure } 9 \end{aligned}$	Full	$\begin{gathered} 2.3 \mathrm{~V} \\ \text { to } \\ 2.7 \mathrm{~V} \\ \hline \end{gathered}$	1.5	10.5	ns
Break-before-make time	$t_{\text {BBM }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+} / 2, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=35 \mathrm{pF},$ See Figure 10	$25^{\circ} \mathrm{C}$	$\begin{aligned} & 2.3 \mathrm{~V} \\ & \text { to } \\ & 2.7 \mathrm{~V} \end{aligned}$	0.5		ns
Bandwidth	BW	$\mathrm{R}_{\mathrm{L}}=50 \Omega$,	Switch ON, See Figure 11	$25^{\circ} \mathrm{C}$	2.3 V		220	MHz
OFF isolation	$\mathrm{O}_{\text {ISO }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=10 \mathrm{MHz}, \end{aligned}$	Switch OFF, See Figure 12	$25^{\circ} \mathrm{C}$	2.3 V		-65	dB
Crosstalk	$\mathrm{X}_{\text {TALK }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=10 \mathrm{MHz}, \end{aligned}$	Switch ON, See Figure 13	$25^{\circ} \mathrm{C}$	2.3 V		-66	dB
Total harmonic distortion	THD	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \end{aligned}$	$\begin{aligned} & f=600 \mathrm{~Hz} \text { to } \\ & 20 \mathrm{kHz}, \\ & \text { See Figure } 15 \end{aligned}$	$25^{\circ} \mathrm{C}$	2.3 V		0.025	\%
Supply								
Positive supply current	I_{+}	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{+}$or GND,	Switch ON or OFF	$25^{\circ} \mathrm{C}$	2.7 V		1	$\mu \mathrm{A}$
				Full			10	
Change in supply current	Δl_{+}	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{+}-0.6 \mathrm{~V}$		Full	2.7 V		500	$\mu \mathrm{A}$

(1) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
(2) Hold all unused digital inputs of the device at $\mathrm{V}+$ or GND to ensure proper device operation. See the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

Electrical Characteristics for 1.8-V Supply

$\mathrm{V}_{+}=1.65 \mathrm{~V}$ to $1.95 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS		TA	V_{+}	MIN	TYP ${ }^{(1)}$ MAX	UNIT
Analog Switch								
Analog signal range	$\begin{gathered} \mathrm{V}_{\mathrm{COM}} \\ \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}} \end{gathered}$					0	V_{+}	V
ON-state resistance	$r_{\text {on }}$	$\begin{aligned} & 0 \leq \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}} \leq \mathrm{V}_{+}, \\ & \mathrm{I}_{\mathrm{COM}}=-4 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 6	Full	1.65 V		180	Ω
ON-state resistance match between channels	$\Delta r_{\text {on }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.15 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{COM}}=-4 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 6	$25^{\circ} \mathrm{C}$	1.65 V	1		Ω
ON-state resistance flatness	$\mathrm{r}_{\text {on(flat) }}$	$\begin{aligned} & 0 \leq V_{N O} \text { or } V_{N C} \leq V_{+}, \\ & I_{\mathrm{COM}}=-4 \mathrm{~mA}, \end{aligned}$	Switch ON, See Figure 6	$25^{\circ} \mathrm{C}$	1.65 V		110	Ω
NC, NO OFF leakage current	$\mathrm{I}_{\mathrm{NC}(\mathrm{OFF})}$, $\mathrm{I}_{\mathrm{NO}(\mathrm{OFF})}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=0 \text { to } \mathrm{V}_{+}, \\ & \mathrm{V}_{\mathrm{COM}}=0 \text { to } \mathrm{V}_{+}, \end{aligned}$	Switch OFF, See Figure 7	$25^{\circ} \mathrm{C}$	1.95 V	-1	0.05	$\mu \mathrm{A}$
				Full		-1	1	
NC, NO ON leakage current	$\mathrm{I}_{\mathrm{NC}(\mathrm{ON})}$, $\mathrm{I}_{\mathrm{NO}(\mathrm{ON})}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}} \text { or } \mathrm{V}_{\mathrm{NO}}=0 \text { to } \mathrm{V}_{+}, \\ & \mathrm{V}_{\mathrm{COM}}=\text { Open, } \end{aligned}$	Switch ON, See Figure 7	$25^{\circ} \mathrm{C}$	1.95 V	-0.1	0.1	$\mu \mathrm{A}$
				Full		-1	1	
COM ON leakage current	$\mathrm{I}_{\text {com(on) }}$	V_{NC} or $\mathrm{V}_{\mathrm{NO}}=$ Open, $\mathrm{V}_{\text {COM }}=0$ to V_{+},	Switch ON, See Figure 7	$25^{\circ} \mathrm{C}$	1.95 V	-0.1	0.1	$\mu \mathrm{A}$
				Full		-1	1	
Digital Inputs (IN1, IN2) ${ }^{(2)}$								
Input logic high	V_{IH}			Full		$V_{+} \times 0.75$		V
Input logic low	$\mathrm{V}_{\text {IL }}$			Full		$\mathrm{V}_{+} \times 0.25$		V
Input leakage current	$\mathrm{I}_{\mathrm{IH}}, \mathrm{I}_{\mathrm{IL}}$	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$ or 0		$25^{\circ} \mathrm{C}$	1.95 V	-1	0.05	$\mu \mathrm{A}$
				Full		-1	1	
Dynamic								
Turnon time	ton	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}}=\mathrm{GND} \text { and } \mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+}, \\ & \text {or } \\ & \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{+} \text {and } \mathrm{V}_{\mathrm{NO}}=\mathrm{GND}, \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=500 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \text { See Figure } 9 \end{aligned}$	Full	$\begin{gathered} 1.65 \mathrm{~V} \\ \text { to } \\ 1.95 \mathrm{~V} \end{gathered}$	5.5	27	ns
Turnoff time	$\mathrm{t}_{\text {OFF }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}}=\mathrm{GND} \text { and } \mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+}, \\ & \text {or } \\ & \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{+} \text {and } \mathrm{V}_{\mathrm{NO}}=\mathrm{GND}, \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=500 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \text { See Figure } 9 \end{aligned}$	Full	$\begin{gathered} 1.65 \mathrm{~V} \\ \text { to } \\ 1.95 \mathrm{~V} \\ \hline \end{gathered}$	2	16	ns
Break-before-make time	$t_{\text {BBM }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{NO}}=\mathrm{V}_{+} / 2, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \end{aligned}$	$C_{L}=35 \mathrm{pF},$ See Figure 10	$25^{\circ} \mathrm{C}$	$\begin{gathered} 1.65 \mathrm{~V} \\ \text { to } \\ 1.95 \mathrm{~V} \end{gathered}$	0.5		ns
Bandwidth	BW	$\mathrm{R}_{\mathrm{L}}=50 \Omega$,	Switch ON, See Figure 11	$25^{\circ} \mathrm{C}$	1.8 V		220	MHz
OFF isolation	$\mathrm{O}_{\text {ISO }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=10 \mathrm{MHz}, \end{aligned}$	Switch OFF, See Figure 12	$25^{\circ} \mathrm{C}$	1.8 V		-60	dB
Crosstalk	$\mathrm{X}_{\text {TALK }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=10 \mathrm{MHz}, \end{aligned}$	Switch ON, See Figure 13	$25^{\circ} \mathrm{C}$	1.8 V		-66	dB
Total harmonic distortion	THD	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \end{aligned}$	$\begin{aligned} & \mathrm{f}=600 \mathrm{~Hz} \text { to } \\ & 20 \mathrm{kHz}, \\ & \text { See Figure } 15 \end{aligned}$	$25^{\circ} \mathrm{C}$	1.8 V		0.015	\%
Supply								
Positive supply current	I_{+}	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{+}$or GND,	Switch ON or OFF	$25^{\circ} \mathrm{C}$	1.95 V		1	$\mu \mathrm{A}$
				Full			10	
Change in supply current	ΔI_{+}	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{+}-0.6 \mathrm{~V}$		Full	1.95 V		500	$\mu \mathrm{A}$

(1) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
(2) Hold all unused digital inputs of the device at $\mathrm{V}+$ or GND to ensure proper device operation. See the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

TYPICAL CHARACTERISTICS

Figure 1. $\mathrm{r}_{\text {on }}$ versus $\mathrm{V}_{\text {com }}$

Figure 3. t_{ON} and $\mathrm{t}_{\mathrm{OFF}}$ versus Temperature $\left(V_{+}=5 \mathrm{~V}\right)$

Figure 2. t_{oN} and $\mathrm{t}_{\text {off }}$ versus V_{+}

Figure 4. Frequency Response $\left(\mathrm{V}_{+}=3 \mathrm{~V}\right)$

Figure 5. Total Harmonic Distortion (THD) versus Frequency ($\mathrm{V}_{+}=3 \mathrm{~V}$)

PIN DESCRIPTION

NAME	PIN NO.	DESCRIPTION
COM1	10	Common
COM2	6	Common
GND	3	Digital ground
IN1	1	Digital control to connect COM to NO or NC
IN2	5	Digital control to connect COM to NO or NC
NC1	9	Normally closed
NC2	7	Normally closed
NO1	2	Normally open
NO2	4	Normally open
V $_{+}$	8	Power supply

PARAMETER DESCRIPTION

SYMBOL	DESCRIPTION
$\mathrm{V}_{\text {com }}$	Voltage at COM
V_{NC}	Voltage at NC
V_{NO}	Voltage at NO
$\mathrm{r}_{\text {on }}$	Resistance between COM and NC or COM and NO ports when the channel is ON
Δr_{0}	Difference of $r_{\text {on }}$ between channels
$\mathrm{r}_{\text {on(lat) }}$	Difference between the maximum and minimum value of $r_{\text {on }}$ in a channel over the specified range of conditions
$1 \mathrm{NC}($ OFF)	Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the OFF state under worstcase input and output conditions
$1_{\text {No(OFF) }}$	Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the OFF state under worstcase input and output conditions
Inc(ON)	Leakage current measured at the NC port, with the corresponding channel (NC to COM) in the ON state and the output (COM) being open
${ }^{\text {noo(ON) }}$	Leakage current measured at the NO port, with the corresponding channel (NO to COM) in the ON state and the output (COM) being open
$\mathrm{ICOMON}^{\text {a }}$	Leakage current measured at the COM port, with the corresponding channel (NO to COM or NC to COM) in the ON state and the output (NC or NO) being open
V_{IH}	Minimum input voltage for logic high for the control input (IN)
V_{LL}	Minimum input voltage for logic low for the control input (IN)
$\mathrm{V}_{1 \times}$	Voltage at IN
$\mathrm{I}_{\mathrm{H},} \mathrm{I}_{\mathrm{LL}}$	Leakage current measured at \mathbb{N}
ton	Turnon time for the switch. Measure this parameter under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (COM/NC/NO) signal when the switch is turning ON.
toff	Turnoff time for the switch. Measure this parameter under the specified range of conditions and by the propagation delay between the digital control (IN) signal and analog output (COM/NC/NO) signal when the switch is turning OFF.
$\mathrm{t}_{\text {BBM }}$	Break-before-make time. Measure this parameter under the specified range of conditions and by the propagation delay between the output of two adjacent analog channels (NC and NO) when the control signal changes state.
Q_{C}	Charge injection is a measurement of unwanted signal coupling from the control (IN) input to the analog (NC, NO, or COM) output. This measure is in coulombs (C) and is the total charge induced due to switching of the control input. Charge injection, $Q_{C}=C_{L} \times \Delta V_{O}, C_{L}$ is the load capacitance and ΔV_{O} is the change in analog output voltage.
$\mathrm{C}_{\text {NC(OFF) }}$	Capacitance at the NC port when the corresponding channel (NC to COM) is OFF
$\mathrm{C}_{\text {NOOFFF }}$	Capacitance at the NO port when the corresponding channel (NC to COM) is OFF
$\mathrm{C}_{\mathrm{NC} \text { (ON) }}$	Capacitance at the NC port when the corresponding channel (NC to COM) is ON
$\mathrm{C}_{\text {No(ON) }}$	Capacitance at the NO port when the corresponding channel (NC to COM) is ON
ССоm(0N)	Capacitance at the COM port when the corresponding channel (COM to NC or COM to NO) is ON
$\mathrm{CIN}_{\text {IN }}$	Capacitance of IN
O_{13}	OFF isolation of the switch is a measurement of OFF-state switch impedance. This measure is in dB at a specific frequency, with the corresponding channel (NC to COM or NO to COM) in the OFF state. OFF isolation, $\mathrm{O}_{150}=20 \mathrm{LOG}$ $\left(\mathrm{V}_{\mathrm{NC}} / \mathrm{V}_{\mathrm{COM}}\right) \mathrm{dB}, \mathrm{V}_{\mathrm{COM}}$ is the input and V_{NC} is the output.

PARAMETER DESCRIPTION (continued)

SYMBOL	DESCRIPTION
$\mathrm{X}_{\text {TALK }}$	Crosstalk is a measurement of unwanted signal coupling from an ON channel to an OFF channel (NC to NO or NO to $\mathrm{NC})$. This measure is at a specific frequency and in dB. Crosstalk, $\mathrm{X}_{\mathrm{TALK}}=20 \log \left(\mathrm{~V}_{\mathrm{NC} 1} / \mathrm{V}_{\mathrm{NO} 1}\right), \mathrm{V}_{\mathrm{NO} 1}$ is the input and $\mathrm{V}_{\mathrm{NC} 1}$ is the output.
BW	Bandwidth of the switch. This is the frequency where the gain of an ON channel is -3 dB below the dc gain. Gain is measured from the equation, $20 \log \left(V_{N C} / V_{C O M}\right) d B$, where $V_{N C}$ is the output and $\mathrm{V}_{\mathrm{COM}}$ is the input.
I_{+}	Static power-supply current with the control (IN) pin at V_{+}or GND
ΔI_{+}	This is the increase in I_{+}for each control (IN) input that is at the specified voltage, rather than at V_{+}or GND.

PARAMETER MEASUREMENT INFORMATION

$$
\begin{aligned}
& \text { Channel ON } \\
& \mathrm{r}_{\text {on }}=\frac{\mathrm{v}_{\mathrm{COM}}-\mathrm{V}_{\mathrm{NO} / \mathrm{NC}}}{\mathrm{I}_{\mathrm{COM}}} \Omega \\
& \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}}
\end{aligned}
$$

Figure 6. ON-State Resistance (\mathbf{R}_{on})

OFF-State Leakage Current
Channel OFF
$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}
V_{NC} or $\mathrm{V}_{\mathrm{NO}}=0$ to V_{+} or
$\mathrm{V}_{\text {COM }}=0$ to V_{+}

ON-State Leakage Current
Channel ON
$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}
V_{NC} or $\mathrm{V}_{\mathrm{NO}}=0$ to $\mathrm{V}_{+}, \mathrm{V}_{\text {COM }}=$ Open
or
V_{NC} or $\mathrm{V}_{\mathrm{NO}}=$ Open, $\mathrm{V}_{\text {COM }}=0$ to V_{+}

Figure 7. ON- and OFF-State Leakage Current (ICOM(ON), $\left.I_{\mathrm{NC}(\mathrm{OFF})}, I_{\mathrm{NO}(\mathrm{OFF})}, I_{\mathrm{NC}(\mathrm{ON})}, I_{\mathrm{NO}(\mathrm{ON})}\right)$

Figure 8. Capacitance ($\left.\mathrm{C}_{\mathrm{IN}}, \mathrm{C}_{\mathrm{COM}(\mathrm{ON}),} \mathrm{C}_{\mathrm{NC}(\mathrm{OFF})}, \mathrm{C}_{\mathrm{NO}(\mathrm{OFF})}, \mathrm{C}_{\mathrm{NC}(\mathrm{ON})}, \mathrm{C}_{\mathrm{NO}(\mathrm{ON})}\right)$

PARAMETER MEASUREMENT INFORMATION (continued)

Figure 9. Turn-On Time (t_{ON}) and Turn-Off Time ($\mathrm{t}_{\mathrm{OFF}}$)

Figure 10. Break-Before-Make Time (t_{BB})

Figure 11. Frequency Response (BW)

PARAMETER MEASUREMENT INFORMATION (continued)

> Channel OFF: NC to COM
> OFF Isolation $=20 \log \frac{v_{\text {COM }}}{V_{N C}} d B$

Network Analyzer Setup
Source Power = 0 dBM
DC Bias $=350 \mathrm{mV}$

Figure 12. OFF Isolation ($\mathrm{O}_{\mathrm{ISO}}$)

Figure 13. Crosstalk ($\mathrm{X}_{\text {TALK }}$

Figure 14. Charge Injection $\left(Q_{C}\right)$

PARAMETER MEASUREMENT INFORMATION (continued)

Figure 15. Total Harmonic Distortion (THD)

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
TS5A23157QDGSRQ1	ACTIVE	VSSOP	DGS	10	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	Level-3-260C-168 HR	-40 to 125	SJC	Samples
TS5A23157TDGSRQ1	ACTIVE	VSSOP	DGS	10	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	NIPDAU	Level-3-260C-168 HR	-40 to 105	JBR	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the $<=1000$ ppm threshold requirement.
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a " \sim " will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TS5A23157-Q1 :

- Catalog: TS5A23157

NOTE: Qualified Version Definitions:

- Catalog - Tl's standard catalog product

TAPE AND REEL INFORMATION

*All dimensions are nominal

| Device | Package
 Type | Package
 Drawing | Pins | SPQ | Reel
 Diameter
 $(\mathbf{m m})$ | Reel
 Width
 W1 $(\mathbf{m m})$ | A0
 $(\mathbf{m m})$ | B0
 $(\mathbf{m m})$ | K0
 $(\mathbf{m m})$ | P1
 $(\mathbf{m m})$ | W
 $(\mathbf{m m})$ | Pin1
 Quadrant |
| :---: |
| TS5A23157QDGSRQ1 | VSSOP | DGS | 10 | 2500 | 330.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 |
| TS5A23157TDGSRQ1 | VSSOP | DGS | 10 | 2500 | 330.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 |

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TS5A23157QDGSRQ1	VSSOP	DGS	10	2500	346.0	346.0	29.0
TS5A23157TDGSRQ1	VSSOP	DGS	10	2500	346.0	346.0	29.0

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
5. Reference JEDEC registration MO-187, variation BA.

NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL SCALE:10X

NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Tl grants you permission to use these resources only for development of an application that uses the Tl products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify Tl and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
Tl's products are provided subject to Tl's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.

