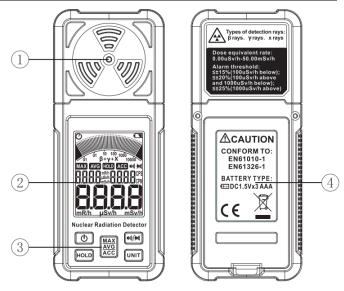
Дозиметр НТ629


▲ Перед началом работы с прибором внимательно прочтите эту инструкцию по эксплуатации и храните ее в надежном месте для дальнейшего использования.

1. ПРАВИЛА БЕЗОПАСНОЙ РАБОТЫ

- Внимательно прочтите эту инструкцию, обращая особое внимание на предупреждения и замечания, касающиеся безопасности
- При работе с прибором строго придерживайтесь указаний этой инструкции. В противном случае защита, обеспечиваемая прибором, может оказаться неэффективной.
- Перед началом работы с прибором проверьте, нет ли трещин или повреждений пластиковых деталей на его корпусе. Если они обнаружатся, прекратите работу с прибором.
- Во избежание ошибок измерений заменяйте батареи, как только на дисплее появляется индикатор разряженной батареи.
- Не работайте с прибором в присутствии взрывоопасных газов, паров или во влажной среде.

2. ОПИСАНИЕ ПРИБОРА

В этом приборе для детектирования интенсивности ионизирующего излучения (бета-частиц, гамма-лучей и рентгеновских лучей) используется счетчик Гейгера-Мюллера. Его работа основана на способности радиации ионизировать газы. В приборе в качестве датчика используется газоразрядная трубка с миниатюрной камерой. Начиная с определенного уровня напряжения, приложенного к газоразрядной трубке, каждый раз, когда излучение вызывает ионизацию и формирует пару ионов, этот эффект может быть усилен, преобразован в электрический импульс соответствующей величины и записан с помощью электроники прибора. Таким образом измеряется число частиц или квантов ионизирующего излучения в единицу времени.

- 1. Лампа индикатора состояния прибора.
- 2. Экран дисплея.
- 3. Кнопки.
- 4. Крышка батарейного отсека.

3. ВЫПОЛНЕНИЕ ИЗМЕРЕНИЙ

- 1) Коротко нажмите на кнопку 1 для включения прибора. Длительное нажатие на кнопку 1 выключает прибор.
- 2) Краткое нажатие на кнопку $\boxed{\text{UNIT}}$ позволяет переключиться между единицами измерения мк3в/ч (μ Sv/h), мР/ч (mR/h) и м3в/ч (mSv/h).
- 3) Долгое нажатие на кнопку <u>UNIT</u> позволяет переключиться между единицами измерения: число импульсов в секунду (**CPS**), и число импульсов в минуту (**CPM**).
- 4) Нажмите на кнопку 🕬, чтобы включить или выключить звуковое оповещение.
- 5) Нажмите на кнопку $\frac{|\mathbf{AVG}|}{|\mathbf{ACC}|}$, чтобы переключиться между отображением на дисплее максимального (**MAX**), среднего (**AVG**) и текущего (**ACC**) значений.
- 6) Нажмите на кнопку HOLD, чтобы зафиксировать текущее показание на дисплее.
- 7) Долгое нажатие на кнопку HOLD позволяет включить или выключить функцию автоматического выключения прибора.

4. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Наименование прибора	Дозиметр (детектор ионизирующего излучения)		
Типы детектируемого излучения	Гамма-излучение, рентгеновское излучение, бета-излучение		
Тип детектора	Газоразрядная трубка с компенсацией энергии (счетчик Гейгера-Мюллера)		
Диапазон эквивалентной дозы	0,00 — 50000 мкЗв/ч (50 мЗв/ч)		
Суммарная эквивалентная доза	0,00 мкЗв – 5000 мЗв		

Диапазон энергий	48 кэВ – 1,5 МэВ ≤±30% (для ¹³⁷ Сs)			
Коэффициент преобразования	80 импульсов в минуту/мк3в (для ⁶⁰ Co)			
Единицы измерения дозы	мкЗв/ч, мР/ч, имп/с, имп/мин			
Погрешность	≤±15%(ниже 100 мк3в/ч); ≤±20%(от 100 мк3в/ч до 1000 мк3в/ч); ≤±25% (выше 1000 мк3в/ч)			

5. ПРЕОБРАЗОВАНИЕ ЕДИНИЦ РАДИОАКТИВНОСТИ

1) Международные стандарты (1990 г.)

1. Персонал, работающий с радиоактивными веществами.

20 м3в/год (10 мк3в/ч)

2. Основное население

1 м3в/год (0,5 мк3в/ч)

2) Преобразование единиц измерения

1 мкЗв/ч = 100 мкР/ч, 1 нКл/(кг⋅ч) = 4 мкР/ч

1 мкР = 1 у (единица, используемая для геологоразведки в ядерной промышленности).

Радиоактивность:

1 Ки = 1000 мКи

1 мКи = 1000 мкКи

1 Ки = $3,7x10^{10}$ Бк = 37 ГБк

1 мКи = $3.7x10^7$ Бк = 37 МБк

1 мкКи = 3.7×10^4 Бк = 37 кБк

1 Бк = $2,703x10^{-11}$ Ки = 27,03 пКи

Экспозиционная доза:

 $1 P = 10^3 MP = 10^6 MKP$

1 P = 2,58x10⁻⁴ Кл/кг

Поглошенная доза:

1 $\Gamma p = 10^3 \text{ м} \Gamma p = 10^6 \text{ мк} \Gamma p$

1 Гр = 100 Рад, 100 мкРад = 1 мкГр

Эквивалентная доза:

 $1 \text{ } 3B = 10^3 \text{ } \text{ } \text{м} 3B = 10^6 \text{ } \text{м} \text{к} 3B$

1 Зв = 100 бэр, 100 мкбэр = 1 мкЗв

Концентрация радиоактивного вещества (измерения радона): 1 Бк/л = 0.27×10^{-10} Ки/л

Прочие:

1 Зв эквивалентен 1 Гр

1 рад г = 0,97 Ки ≈ 1 Ки

3) Вычисление значений радиоактивного распада $A = A_0e^{-\lambda t}$

где А₀ – интенсивность излучения радиоактивного источника в начальный момент, а А – интенсивность через время t, λ – постоянная распада. Период полураспада $T_{1/2}$ = $ln2/\lambda$.

4) Соотношение между интенсивностью излучения и расстоянием до источника

Интенсивность излучения радиоактивного источника обратно пропорциональна квадрату расстояния до него:

 $X = (Ar)/R^2$, где A – радиоактивность точечного источника излучения, R – расстояние до источника.

Примечание:

²²⁶Ra (радий-226 (Т_{1/2} = 1608 лет), r = 0,825 (Р·м²)/(ч·Ки)

¹³⁷Сs (цезий-137, $T_{1/2}$ = 29,9 лет), r = 0,33 ($P \cdot M^2$)/(ч·Ки) 60 Со (кобальт-60, $T^{1/2}$ = 5,23 лет): r = 1,32 ($P \cdot M^2$)/(ч·Ки)

Рассчитывайте необходимую защиту от радиоактивности в соответствии с таблицей расчета радиоактивного распада:

	Толщина (см) ослабления излучения в 2 раза и в 10 раз для разных материалов							
Нуклид	Кара	ндаш	Железо		Бетон			
	1/2	1/10	1/2	1/10	1/2	1/10		
Цезий-137	0,65	2,2	1,6	5,4	4,9	16,3		
Иридий-192	0,55	1,9	1,3	4,3	4,3	14,0		
Кобальт-60	1,10	4,10	2,0	6,7	6,3	20,3		

6. УХОД И ОБСЛУЖИВАНИЕ

- Обслуживание и ремонт прибора должны выполняться квалифицированными специалистами или в специализирован-
- Держите прибор сухим. Перед использованием очищайте корпус прибора мягкой тканью. Не используйте чистящие средства и растворители.
- Утилизируйте и отправляйте на переработку поврежденные принадлежности и упаковочные материалы в соответствии с требованиями охраны окружающей среды.
- Если прибор не будет использоваться долгое время, выключайте его, не откладывая.
- Во избежание неправильной работы прибора не разбирайте его и не заменяйте его компоненты без соответствующего разрешения
- Когда прибор не используется, храните его в сухом месте.

7. УСТАНОВКА И ЗАМЕНА БАТАРЕЙ

Для питания прибора используются три батареи типа ААА (№ 7) на 1,5 В. Для установки или замены батарей выполните следующие действия.

- 1) Выключите питание прибора.
- 2) С помощью отвертки отверните винты, которыми закреплена крышка батарейного отсека, и снимите ее.
- 3) Извлеките разряженные батареи и установите на их место новые в соответствии с полярностью, указанной отметками в батарейном отсеке.
- 4) После установки новых батарей надежно установите крышку батарейного отсека на свое место и закрепите ее винтами.

Предупреждения:

- Во избежание угрозы поражения электрическим током и получения травм, связанных с неверными результатами измерения, заменяйте батареи, как только на дисплее появляется симвоп «**■ Д**»
- Для замены используйте батареи только той же модели, а батареи, не соответствующие стандарту.
- Чтобы обеспечить безопасность работы и обслуживания прибора, извлекайте из него батареи, если прибор не будет использоваться долгое время, во избежание протечки электролита и вызванных ей повреждений.

Сделано в Китае