

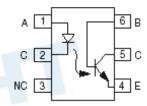
DATASHEET

6 PIN DIP PHOTOTRANSISTOR PHOTOCOUPLER 4N2X Series 4N3X Series H11AX Series

Features:

- 4N2X series: 4N25, 4N26, 4N27, 4N28
- 4N3X series: 4N35, 4N36, 4N37, 4N38
- H11AX series: H11A1, H11A2, H11A3, H11A4, H11A5
- High isolation voltage between input and output (Viso=5000 V rms)
- Creepage distance >7.62 mm
- Operating temperature up to +110°C
- Compact dual-in-line package
- •The product itself will remain within RoHS compliant version
- •Compliance with EU REACH
- UL and cUL approved(No. E214129)
- VDE approved (No. 132249)
- SEMKO approved
- NEMKO approval
- · DEMKO approval
- FIMKO approval
- CQC approved

Description


The 4N2X, 4N3X, H11AX series of devices each consist of an infrared emitting diode optically coupled to a phototransistor.

They are packaged in a 6-pin DIP package and available in wide-lead spacing and SMD option.

Applications

- Power supply regulators
- Digital logic inputs
- Microprocessor inputs

Schematic

Pin Configuration

- 1. Anode
- 2. Cathode
- 3. No Connection
- 4. Emitter
- 5. Collector
- 6. Base

Absolute Maximum Ratings (Ta=25°C)

	Parameter	Symbol	Rating	Unit
	Forward current	l _F	60	mA
	Peak forward current (t = 10µs)	I _{FM}	1	А
Input	Reverse voltage	V_R	6	V
	Power dissipation (T _A = 25°C)	P _D —	100	mW
	Derating factor (above 100°C)	ГΒ	3.8	mW/°C
	Collector-Emitter voltage	V _{CEO}	80	V
	Collector-Base voltage	V_{CBO}	80	V
	Emitter-Collector voltage	V _{ECO} 7		V
Output	Emitter-Base voltage	V _{EBO} 7		V
	Power dissipation (T _A = 25°C)	D	150	mW
	Derating factor (above 100°C)	Pc —	9.0	mW/°C
Total Power Dissipation		P _{TOT}	200	mW
Isolation Voltage*1		V _{ISO}	5000	V rms
Operating Temperature		T_{OPR}	-55 to 110	°C
Storage Temperature		T _{STG}	-55 to 125	°C
Soldering Temperature*2		T _{SOL}	260	°C

Notes:

^{*1} AC for 1 minute, R.H.= $40 \sim 60\%$ R.H. In this test, pins 1, 2 & 3 are shorted together, and pins 4, 5 & 6 are shorted together.

^{*2} For 10 seconds

Electro-Optical Characteristics (Ta=25℃ unless specified otherwise)

Input

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Forward voltage	V _F	-	1.2	1.5	V	I _F = 10mA
Reverse current	I_{R}	-	-	10	μΑ	V _R = 6V
Input capacitance	C _{in}	-	30	-	pF	V = 0, f = 1MHz

Output

Parameter		Symbol	Min	Тур.	Max.	Unit	Condition	
Collector-Base dark current		I _{CBO}	-	-	20	nA	V _{CB} = 10V	
Collector- Emitter - dark current	4N2X H11AX	- I _{CEO} -	-	-	50	nA	V _{CE} = 10V, IF=0mA	
	4N3X	ICEO			50	IIA	V _{CE} = 60V, IF=0mA	
Collector-Emitter breakdown voltage		BV _{CEO}	80			V	I _c =1mA	
Collector-Base breakdown voltage		BV _{CBO}	80	-	-	V	I _C =0.1mA	
Emitter-Collector breakdown voltage		BV_{ECO}	7	-	-	V	I _E =0.1mA	
Emitter-Base breakdown voltage		BV _{EBO}	7	-	-	V	I _E =0.1mA	
Collector-Emitter capacitance		C_CE	-	8	-	pF	VCE=0V, f=1MHz	

^{*} Typical values at T_a = 25°C

Transfer Characteristics

	ameter	Symbol	Min	Тур.	Max.	Unit	Condition	
	4N35, 4N36, 4N37		100	-	-			
	H11A1		50	-	-			
Current Transfer	H11A5	CTR	30	-	-	%	$I_F = \pm 10 \text{mA}, V_{CE} = 10 \text{V}$	
ratio	4N25, 4N26, 4N38, H11A2, H11A3	OIK	20	-	-		IF = ±10111/1, VGE = 10 V	
	4N27, 4N28, H11A4		10	-	-			
	4N25, 4N26, 4N27, 4N28		-	-	0.5		$I_F = 50 \text{mA}, I_C = 2 \text{mA}$	
Collector- Emitter	4N35, 4N36, 4N37		-	-	0.3			
saturation voltage	H11A1,H11A2, H11A3,H11A4, H11A5	V _{CE(sat)}	-	-	0.4	V	$I_F = 10 \text{mA}, I_c = 0.5 \text{mA}$	
	4N38		-		1.0		$I_F = 20$ mA, $I_C = 4$ mA	
Isolation resis	stance	R _{IO}	10 ¹¹	-	رجا	Ω	V _{IO} = 500Vdc	
Input-output o	Input-output capacitance		7.1	0.2	-	pF	$V_{IO} = 0$, $f = 1MHz$	
Turn-on time	4N25, 4N26, 4N27, 4N28, H11A1,H11A2, H11A3,H11A4, H11A5	Ton	-	3	10	μs	V_{CC} = 10V, I_F = 10mA, R_L = 100 Ω See Fig. 11	
	4N35, 4N36, 4N37, 4N38		-	10	12		V_{CC} = 10V, I_C = 2mA, R_L = 100 Ω , See Fig. 11	
Turn-off time	4N25, 4N26, 4N27, 4N28, H11A1,H11A2, H11A3,H11A4, H11A5	Toff	-	3	10	μs	V_{CC} = 10V, I_F = 10mA, R_L = 100 Ω See Fig. 11	
	4N35, 4N36, 4N37, 4N38	-	-	9	12		$V_{CC} = 10V$, $I_C = 2mA$, $R_L = 100\Omega$, See Fig. 11	

^{*} Typical values at T_a = 25°C

Typical Electro-Optical Characteristics Curves

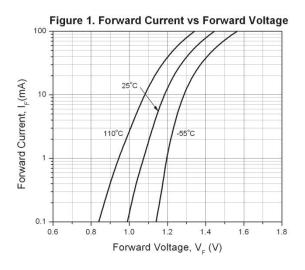
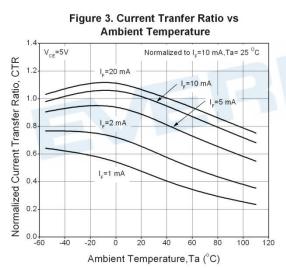


Figure 2. Current Tranfer Ratio vs Forward Current

1.2

0.8

0.8


0.4

V_{cE}=5 V

Ta=25°C

Normalized to I_p=10 mA

Forward Current, I_F (mA)

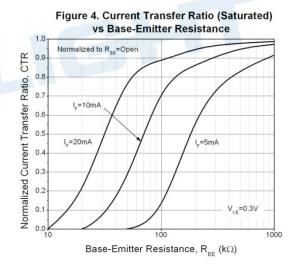


Figure 5. Current Transfer Ratio (Unsaturated) vs Base-Emitter Resistance

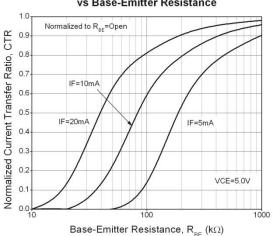


Figure 6. Dark Current vs Ambient Temperature

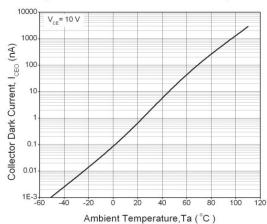


Figure 7. Collector-Emitter Saturation Voltage vs Collector Current

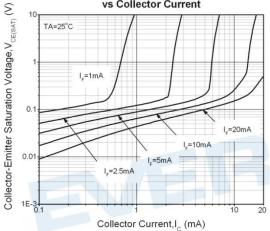


Figure 8. Switching Time vs Load Resistance

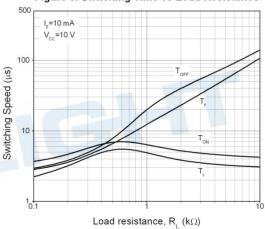


Figure 9. Turn-on Time vs

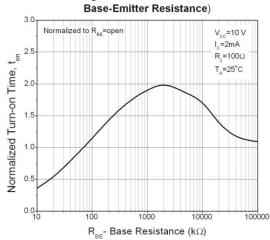
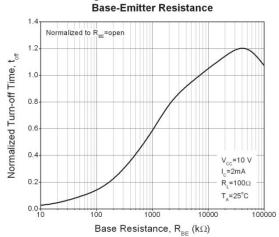



Figure 10. Turn-off Time vs

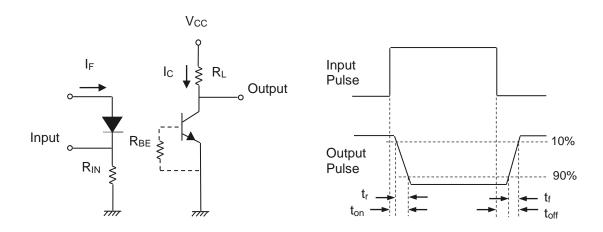


Figure 11. Switching Time Test Circuit & Waveforms

Order Information

Part Number

4NXXY(Z)-V or H11AXY(Z)-V

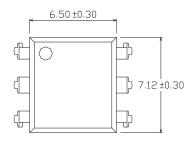
Note

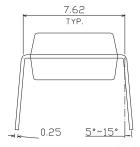
XX = Part no. for 4NXX series (25, 26, 27, 28, 35, 36, 37 or 38)

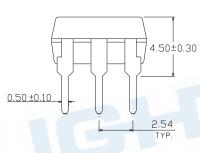
X = Part no. for H11AX series (1, 2, 3, 4, or 5)

Y = Lead form option (S, S1, M or none)

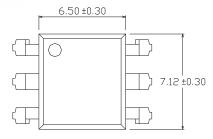
Z = Tape and reel option (TA, TB or none).

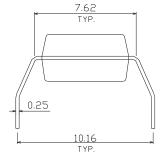

V = VDE safety (optional)

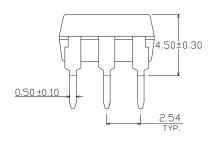

Option	Description	Packing quantity
None	Standard DIP-6	65 units per tube
М	Wide lead bend (0.4 inch spacing)	65 units per tube
S (TA)	Surface mount lead form + TA tape & reel option	1000 units per reel
S (TB)	Surface mount lead form + TB tape & reel option	1000 units per reel
S1 (TA)	Surface mount lead form (low profile) + TA tape & reel option	1000 units per reel
S1 (TB)	Surface mount lead form (low profile) + TB tape & reel option	1000 units per reel



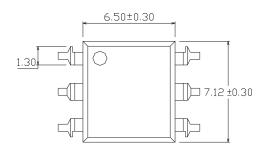
Package Dimension (Dimensions in mm)

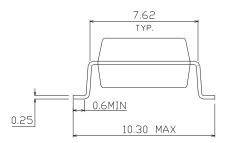

Standard DIP Type

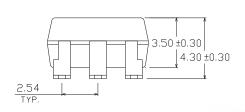


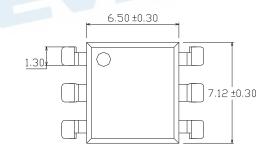


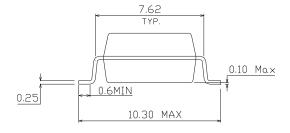
Option M Type

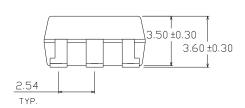




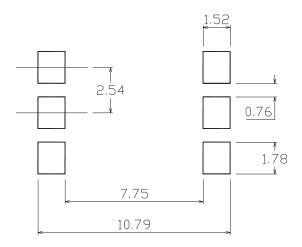


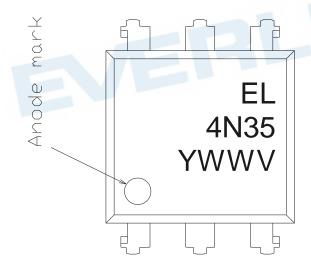

Option S Type





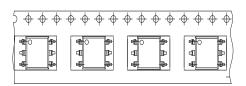
Option S1 Type





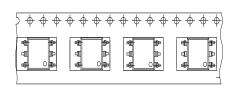
Recommended pad layout for surface mount leadform

Device Marking

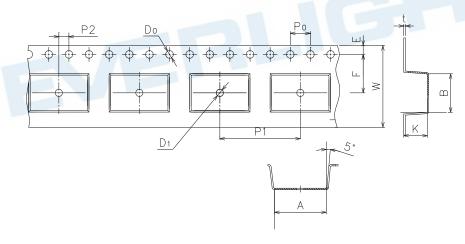

Notes

EL denotes Everlight
4N35 denotes Device Number
Y denotes 1 digit Year code
WW denotes 2 digit Week code
V denotes VDE (optional)

Tape & Reel Packing Specifications

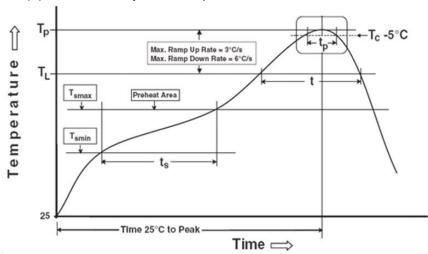

Option TA

Direction of feed from reel


Option TB

Direction of feed from reel

Tape dimensions



Dimension No.	Α	В	Do	D1	E	F
Dimension (mm)	10.8±0.1	7.5±0.1	1.5±0.1	1.5+0.1/-0	1.75±0.1	7.5±0.1
Dimension No.	Ро	P1	P2	t	w	К
Dimension (mm)	4.0±0.15	12±0.1	2.0±0.1	0.35±0.03	16.0±0.2	4.5±0.1

Precautions for Use

1. Soldering Condition

1.1 (A) Maximum Body Case Temperature Profile for evaluation of Reflow Profile

Note:

Preheat

Temperature min (T_{smin})

Temperature max (T_{smax})

Time (T_{smin} to T_{smax}) (t_s)

Average ramp-up rate (T_{smax} to T_p)

Other

Liquidus Temperature (T_L)

Time above Liquidus Temperature (t L)

Peak Temperature (T_P)

Time within 5 °C of Actual Peak Temperature: T_P - 5°C

Ramp- Down Rate from Peak Temperature

Time 25°C to peak temperature

Reflow times

Reference: IPC/JEDEC J-STD-020D

150 °C

200°C

60-120 seconds

3 °C/second max

217 °C

60-100 sec

260°C

30 s

6°C /second max.

8 minutes max.

3 times

DISCLAIMER

- 1. Above specification may be changed without notice. EVERLIGHT will reserve authority on material change for above specification.
- 2. The graphs shown in this datasheet are representing typical data only and do not show guaranteed values.
- 3. When using this product, please observe the absolute maximum ratings and the instructions for use outlined in these specification sheets. EVERLIGHT assumes no responsibility for any damage resulting from use of the product which does not comply with the absolute maximum ratings and the instructions included in these specification sheets.
- 4. These specification sheets include materials protected under copyright of EVERLIGHT. Reproduction in any form is prohibited without the specific consent of EVERLIGHT.
- 5. This product is not intended to be used for military, aircraft, automotive, medical, life sustaining or life saving applications or any other application which can result in human injury or death. Please contact authorized Everlight sales agent for special application request.
- 6. Statements regarding the suitability of products for certain types of applications are based on Everlight's knowledge of typical requirements that are often placed on Everlight products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Everlight's terms and conditions of purchase, including but not limited to the warranty expressed therein.