

Features

- 16 constant-current output channels
- Constant output current invariant to load voltage change:
 Constant output current range:

3-45mA@V_{DD}=5V;

3-30mA@Vpp=3.3V

• Excellent output current accuracy:

between channels: $\pm 1.5\%$ (typ.) and $\pm 2.5\%$ (max.)

between ICs: $\pm 1.5\%$ (typ.) and $\pm 3\%$ (max.)

- Output current adjusted through an external resistor
- Fast response of output current, \overline{OE} (min.): 70ns with good uniformity between output channels
- Staggered delay of output
- 25MHz clock frequency
- Schmitt trigger input
- 3.3V/ 5V supply voltage
- "Pb-free & Green" Package

Current	Accuracy	Conditions
Between Channels	Between ICs	Conditions
<±2%	<±3%	I _{OUT} =25mA@V _{DS} =0.7V
<±2.5%	<±3%	$I_{OUT}=3mA~30mA@V_{DS}=0.7V; V_{DD}=3.3V$ $I_{OUT}=3mA~45mA@V_{DS}=0.7V; V_{DD}=5.0V$

Product Description

With PrecisionDrive™ technology, MBI5024 is designed for LED displays which require to operate at low current and to match the luminous intensity of each channel. It provides supply voltage and accepts CMOS logic input at 3.3V and 5.0V to meet the trend of low power consumption. MBI5024 contains a serial buffer and data latches which convert serial input data into parallel output format. At MBI5024 output stage, sixteen regulated current ports are designed to provide uniform and constant current sinks for driving LEDs within a large range of V_F variations.

MBI5024 provides users with great flexibility and device performance while using MBI5024 in their system design for LED display applications, e.g. LED panels. It accepts an input voltage range from 3V to 5.5V and maintains a constant current up from 3mA to 45mA determined by an external resistor, R_{ext}, which gives users flexibility in controlling the light intensity of LEDs. MBI5024 guarantees to endure maximum 17V at the output port. The high clock frequency, 25 MHz, also satisfies the system requirements of high volume data transmission.

Block Diagram

Terminal Description

Pin No.	Pin Name	Function
1	GND	Ground terminal for control logic and current sink
2	SDI	Serial-data input to the shift register
3	CLK	Clock input terminal for data shift on rising edge
		Data strobe input terminal
4	LE	Serial data is transferred to the output latch when LE is high. The data is latched when LE goes low.
5~20	OUT0 ~ OUT15	Constant current output terminals
		Output enable terminal
21	ŌĒ	When (active) low, the output drivers are enabled; when high, all output drivers are turned OFF (blanked).
22	SDO	Serial-data output to the following SDI of next driver IC. SDO signal change on rising edge of CLK.
23	R-EXT	Input terminal used to connect an external resistor for setting up output current for all output channels
24	VDD	3.3V/5V supply voltage terminal

Pin Configuration

Equivalent Circuits of Inputs and Outputs

OE terminal

IN O VDD

LE terminal

CLK, SDI terminal

Timing Diagram

Truth Table

CLK	LE	ŌĒ	SDI	OUT0OUT7OUT15	SDO
	Н	L	D _n	<u> </u>	D _{n-15}
	L	L	D _{n+1}	No Change	D _{n-14}
	Н	L	D _{n+2}	<u>Dn + 2</u> <u>Dn - 5</u> <u>Dn - 13</u>	D _{n-13}
—	Х	L	D _{n+3}	Dn+2Dn-5Dn-13	D _{n-13}
	Х	Н	D _{n+4}	Off	D _{n-13}

April 2008, VA.02

MBI5024

Maximum Ratings

Characteristic		Symbol	Rating	Unit
Supply Voltage		V_{DD}	0~7.0	V
Input Voltage		V _{IN}	-0.4~V _{DD} +0.4	V
Output Current		I _{OUT}	+90	mA
Sustaining Voltage at OUT I	Port	V _{DS}	-0.5~+17.0	V
GND Terminal Current	GND Terminal Current		+1000	mA
GF-type			2.35	
Power Dissipation (On PCB, Ta=25°C)	GP-type	P_D	1.76	W
(0.1. 0=, 1.0. =0 0)	GPA-type		1.76	
	GF-type		53.28	
Thermal Resistance (On PCB, Ta=25°C) GP-type GPA-type		$R_{th(j-a)}$	70.90	°C/W
			70.90	
Operating Temperature		T _{opr}	T _{opr} -40~+85	
Storage Temperature		T _{stg}	-55~+150	°C

Electrical Characteristics (V_{DD} = 5.0V)

Charact	eristics	Symbol	Cond	lition	Min.	Тур.	Max.	Unit
Supply Voltag	е	V_{DD}	-	-	4.5	5.0	5.5	V
Sustaining Vo Ports	Itage at OUT	V _{DS}	OUT0 ~ OUT15		-	-	17.0	V
		I _{OUT}	Refer to "Test C Electrical Chara		3	-	45	mA
Output Current	•	I _{OH}	SDO		-	-	-1.0	mA
		I _{OL}	SDO		-	-	1.0	mA
Innut Voltage	"H" level	V _{IH}	Ta =-40~85°C		0.7*V _{DD}	-	V_{DD}	V
Input Voltage	"L" level	V _{IL}	Ta =-40~85°C		GND	-	0.3*V _{DD}	V
Output Leakag	e Current	I _{OH}	V _{DS} =17.0V		-	-	0.5	μA
Output Valtage	s SDO	V _{OL}	I _{OL} =+1.0mA		-	-	0.4	V
Output Voltage	300	V _{OH}	I _{OH} =-1.0mA		4.6	-	-	V
Output Current	: 1	I _{OUT1}	V _{DS} =1.0V R _{ext} =6000 Ω		-	3.1	-	mA
Current Skew		dl _{OUT1}	I _{OL} =3.1mA V _{DS} =1.0V R _{ext} =6000 Ω		-	±1.5	±2.5	%
Output Current	: 2	I _{OUT2}	V _{DS} =1.0V	R _{ext} =720 Ω	-	25.8	-	mA
Current Skew		dl _{OUT2}	I _{OL} =25.8mA V _{DS} =1.0V	R _{ext} =720 Ω	-	±1.5	±2.0	%
Output Current Output Voltage		%/dV _{DS}	V _{DS} within 1.0V	and 3.0V	-	±0.1	-	%/V
Output Current Supply Voltage		%/dV _{DD}	V _{DD} within 4.5V	and 5.5V	-	-	±1.0	%/V
Pull-up Resisto	or	R _{IN} (up)	OE		250	500	800	ΚΩ
Pull-down Res	istor	R _{IN} (down)	LE		250	500	800	ΚΩ
		I _{DD} (off) 1	R _{ext} =Open, OU	T0 ~ OUT15 =Off	-	2.4	5.0	
	"OFF"	I _{DD} (off) 2	$R_{\text{ext}} = 1860\Omega, \overline{\text{OUT0}} \sim \overline{\text{OUT15}} = \text{Off}$		-	4.3	7.0	
Supply Current		I _{DD} (off) 3		T0 ~ OUT15 =Off	-	5.7	9.0	mA
	"ON!"	I _{DD} (on) 1	R _{ext} =1860Ω, OU		-	4.6	8.5	
	"ON"	I _{DD} (on) 2	R _{ext} =744Ω, OU	T0 ~ OUT15 =On	-	6.0	9.5	

Electrical Characteristics (V_{DD} = 3.3V)

Charact	eristics	Symbol	Conc	lition	Min.	Тур.	Max.	Unit
Supply Voltag		V_{DD}	-	-	3.0	3.3	4.5	V
Sustaining Vo Ports	Itage at OUT	V_{DS}	OUT0 ~ OUT15		-	-	17.0	V
		I _{OUT}	Refer to "Test Ci Electrical Charac		3	-	30	mA
Output Curren	t	I _{OH}	SDO		-	-	-1.0	mΑ
		I _{OL}	SDO		-	-	1.0	mA
Innut Valtage	"H" level	V _{IH}	Ta=-40~85°C		0.7*V _{DD}	-	V_{DD}	V
Input Voltage	"L" level	V _{IL}	Ta=-40~85°C		GND	-	0.3*V _{DD}	V
Output Leaka	je Current	I _{OH}	V _{DS} =17.0V		-	-	0.5	μΑ
Outrout Valtage	CDO	V _{OL}	I _{OL} =+1.0mA		-	-	0.4	V
Output Voltage	e SDO	V _{OH}	I _{OH} =-1.0mA		2.9	-	-	V
Output Curren	t 1	I _{OUT1}	V _{DS} =1.0V	R _{ext} =6000 Ω	-	3.1	-	mA
Current Skew		dl _{OUT1}	I_{OL} =3.1mA V_{DS} =1.0V R_{ext} =6000 Ω		-	±1.5	±2.5	%
Output Curren	t 2	I _{OUT2}	V _{DS} =1.0V	R _{ext} =720 Ω	-	25.8	-	mA
Current Skew		dl _{OUT2}	I_{OL} =25.8mA V_{DS} =1.0V R_{ext} =720 Ω		-	±1.5	±2.0	%
Output Curren Output Voltage		%/dV _{DS}	V _{DS} within 1.0V a	and 3.0V	-	±0.1	-	%/V
Output Curren Supply Voltage		%/dV _{DD}	V _{DD} within 3.0V a	and 4.5V	-	-	±1.0	%/V
Pull-up Resisto	or	R _{IN} (up)	ŌĒ		250	500	800	ΚΩ
Pull-down Res	istor	R _{IN} (down)	LE		250	500	800	ΚΩ
		I _{DD} (off) 1	R _{ext} =Open, OUT		-	1.8	5.0	
	"OFF"	I _{DD} (off) 2	R_{ext} =6200 Ω , $\overline{\text{OUT0}} \sim \overline{\text{OUT15}}$ =Off		-	4.0	7.0	
Supply Current		I _{DD} (off) 3			-	5.2	8.5	mA
Carron	"ON"	I _{DD} (on) 1	R _{ext} =6200Ω,		-	4.5	7.0	
	ON	I _{DD} (on) 2	R _{ext} =744Ω, OUT	OUT15 =On	-	5.5	8.5	

Test Circuit for Electrical Characteristics

Switching Characteristics (V_{DD}= 5.0V)

Character	istics	Symbol	Condition	Min.	Тур.	Max.	Unit
Propagation Delay Time ("L" to "H")	CLK-OUT2n			-	50	70	ns
	CLK-OUT2n+1	t _{pLH1}		-	35	55	ns
	LE-OUT2n			-	50	70	ns
	LE-OUT2n+1	t _{pLH2}		-	35	55	ns
	OE - OUT2n	tauus		-	50	70	ns
	OE - OUT2n + 1	t _{pLH3}		-	35	55	ns
	CLK-SDO	t _{pLH}		-	20	40	ns
	CLK-OUT2n	_		-	90	110	ns
	CLK-OUT2n+1	t _{pHL1}		-	75	95	ns
	LE-OUT2n	t _{pHL2}		-	90	110	ns
Propagation Delay Time ("H" to "L")	LE-OUT2n+1		V_{DD} =5.0 V V_{DS} =1.0 V V_{IH} = V_{DD} V_{IL} = V_{DD} V_{IL} = V_{DD} V_{L} =	-	75	95	ns
	OE - OUT2n	t _{pHL3}		-	90	110	ns
	OE - OUT2n + 1			-	75	95	ns
	CLK-SDO	t _{pHL}		-	20	40	ns
	CLK	t _{w(CLK)}	$R_L=162 \Omega$	20	-	-	ns
Pulse Width	LE	t _{w(L)}	$C_L=10 pF$	20	-	-	ns
	ŌĒ	t _{w(OE)}		70	100	-	ns
Hold Time for LE		t _{h(L)}		30	-	-	ns
Setup Time for LE		t _{su(L)}		5	-	-	ns
Hold Time for SDI	Hold Time for SDI			5	-	-	ns
Setup Time for SDI		t _{su(D)}		3	-	-	ns
Maximum CLK Rise Time		t _r		-	-	500	ns
Maximum CLK Fall Time		t _f		-	-	500	ns
SDO Rise Time		t _{r,SDO}		-	10	-	ns
SDO Fall Time		t _{f,SDO}		-	10	-	ns
Output Rise Time of Outp	ut Ports	t _{or}		-	40	-	ns
Output Fall Time of Outpu	t Ports	t _{of}		-	55	-	ns

^{*} Among output channels exist 15ns delay time between odd number $\overline{OUT2n+1}$ (e.g.:Bit1/Bit3/Bit5...)and even number $\overline{OUT2n}$ (ex: Bit0/Bit2/Bit4...). MBI5024 has a built-in staggered circuit to perform delay mechanism, by which the even and odd output ports will be turned on at a different time so that the instant current from the power line will be lowered.

MBI5024

Switching Characteristics (V_{DD}= 3.3V)

Characteri	stics	Symbol	Condition	Min.	Тур.	Max.	Unit
Propagation Delay Time ("L" to "H")	CLK-OUT2n			-	50	70	ns
	CLK-OUT2n + 1	t _{pLH1}		-	35	55	ns
	LE-OUT2n			-	50	70	ns
	LE-OUT2n+1	t _{pLH2}		-	35	55	ns
	OE - OUT2n			-	50	70	ns
	OE - OUT2n + 1	t _{pLH3}		-	35	55	ns
	CLK-SDO	t _{pLH}		-	20	40	ns
	CLK-OUT2n	·		-	115	135	ns
	CLK-OUT2n + 1	t _{pHL1}		-	100	120	ns
	LE-OUT2n	t _{pHL2}		-	115	135	ns
Propagation Delay Time ("H" to "L")	LE- OUT2n + 1		V_{DD} =3.3 V V_{DS} =1.0 V V_{IH} = V_{DD} V_{IL} = V_{DD} V_{IL} = V_{DD}	-	100	120	ns
	OE - OUT2n	t _{pHL3}		-	105	125	ns
	OE - OUT2n + 1			-	90	110	ns
	CLK-SDO	t _{pHL}		-	20	40	ns
	CLK	t _{w(CLK)}	V_L =4.5 V R_L =162 Ω	20	-	-	ns
Pulse Width	LE	t _{w(L)}	C _L =10 pF	20	-	-	ns
	ŌĒ	t _{w(OE)}		100	130	-	ns
Hold Time for LE		t _{h(L)}		30	-	-	ns
Setup Time for LE		t _{su(L)}		5	-	-	ns
Hold Time for SDI	Hold Time for SDI			5	-	-	ns
Setup Time for SDI		t _{su(D)}		3	-	-	ns
Maximum CLK Rise Time		t _r		-	-	500	ns
Maximum CLK Fall Time		t _f		-	-	500	ns
SDO Rise Time		t _{r,SDO}		-	10	-	ns
SDO Fall Time		t _{f,SDO}		-	10	-	ns
Output Rise Time of Outp	ut Ports	t _{or}		-	40	-	ns
Output Fall Time of Outpu	t Ports	t _{of}		-	60	-	ns

Test Circuit for Switching Characteristics

Timing Waveform

Application Information

Constant Current

To design LED displays, MBI5024 provides nearly no variations in current from channel to channel and from IC to IC. This can be achieved by:

- 1) The maximum current variation between channels is less than ±2.5%, and that between ICs is less than ±3%.
- 2) In addition, the current characteristic of output stage is flat and users can refer to the figure as shown below. The output current can be kept constant regardless of the variations of LED forward voltages (V_F). This performs as a perfection of load regulation.

MBI5024

Adjusting Output Current

The output current of each channel (I_{OUT}) is set by an external resistor, R_{ext} . The relationship between I_{OUT} and R_{ext} is shown in the following figure.

Also, the output current can be calculated from the equation:

 $V_{R\text{-EXT}}\text{=}1.24V\text{ ; }I_{OUT}\text{=}V_{R\text{-EXT}}\text{ *}(1/Rext)x15\text{; }R_{ext}\text{=}(V_{R\text{-EXT}}/I_{OUT})x15$

Where R_{ext} is the resistance of the external resistor connected to R-EXT terminal and V_{R-EXT} is the voltage of R-EXT terminal. The magnitude of current (as a function of R_{ext}) is around 25mA at 744 Ω and 10mA at 1860 Ω .

Soldering Process of "Pb-free & Green" Package*

Macroblock has defined "Pb-Free & Green" to mean semiconductor products that are compatible with the current RoHS requirements and selected **100% pure tin** (Sn) to provide forward and backward compatibility with both the current industry-standard SnPb-based soldering processes and higher-temperature Pb-free processes. Pure tin is widely accepted by customers and suppliers of electronic devices in Europe, Asia and the US as the lead-free surface finish of choice to replace tin-lead. Also, it is backward compatible to standard 215°C to 240°C reflow processes which adopt tin/lead (SnPb) solder paste. However, in the whole Pb-free soldering processes and materials, 100% pure tin (Sn), will all require up to 260°C for proper soldering on boards, referring to J-STD-020C as shown below.

*Note1: For details, please refer to Macroblock's "Policy on Pb-free & Green Package".

Package Power Dissipation (PD)

The maximum allowable package power dissipation is determined as $P_D(max)=(Tj-Ta)/R_{th(j-a)}$. When 16 output channels are turned on simultaneously, the actual package power dissipation is

 $P_D(act)=(I_{DD}xV_{DD})+(I_{OUT}xDutyxV_{DS}x16)$. Therefore, to keep $P_D(act)\leq P_D(max)$, the allowable maximum output current as a function of duty cycle is:

 $I_{OUT} = \{ [(Tj-Ta)/R_{th(j-a)}] - (I_{DD}xV_{DD})\}/V_{DS}/Duty/16, \text{ where Tj} = 150^{\circ}C.$

MBI5024GF

MBI5024GP/GPA

Condition: I _{OUT} =50mA, 16 output channels				
Device Type	R _{th(j-a)} (°C/W)			
GF	53.28			
GP/GPA	70.90			

The maximum power dissipation, $P_D(max)=(Tj-Ta)/R_{th(j-a)}$, decreases as the ambient temperature increases.

Load Supply Voltage (V_{LED})

MBI5024 are designed to operate with V_{DS} ranging from 0.4V to 0.8V (depending on I_{OUT} =3~45mA) considering the package power dissipating limits. V_{DS} may be higher enough to make $P_{D(act)} > P_{D(max)}$ when V_{LED} =5V and $V_{DS} = V_{LED} - V_F$, in which V_{LED} is the load supply voltage. In this case, it is recommended to use the lowest possible supply voltage or to set an external voltage reducer, V_{DROP} .

A voltage reducer lets V_{DS}=(V_{LED}-V_F)-V_{DROP}.

Resistors or Zener diode can be used in the applications as shown in the following figures.

Switching Noise Reduction

LED driver ICs are frequently used in switch-mode applications which always behave with switching noise due to the parasitic inductance on PCB. To eliminate switching noise, refer to "Application Note for 8-bit and 16-bit LED Drivers- Overshoot".

Package Outline

MBI5024GF Outline Drawing

MBI5024GP \ GPA Outline Drawing

Note: The unit for the outline drawing is mm.

Product Top-mark Information

Product Revision History

Datasheet version	Device version code
Refer to the Official Datasheet	В
"MBI5024 Datasheet- VA.02-CN"	

^{*}MBI5024 is ONLY sold in China. This English document is an unofficial supplement of MBI5024 Datasheet-VA.02-CN. For any change of MBI5024 in the future, Macroblock will only make changes on the official MBI5024 Datasheet.

Product Ordering Information

Part Number	"Pb-free & Green"	Weight (g)
	Package Type	
MBI5024GF	SOP24L-300-1.00	0.28
MBI5024GP	SSOP24L-150-0.64	0.11
MBI5024GPA	SSOP24L-150-0.64	0.11

Disclaimer

Macroblock reserves the right to make changes, corrections, modifications, and improvements to their products and documents or discontinue any product or service without notice. Customers are advised to consult their sales representative for the latest product information before ordering. All products are sold subject to the terms and conditions supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

Macroblock's products are not designed to be used as components in device intended to support or sustain life or in military applications. Use of Macroblock's products in components intended for surgical implant into the body, or other applications in which failure of Macroblock's products could create a situation where personal death or injury may occur, is not authorized without the express written approval of the Managing Director of Macroblock.

Macroblock will not be held liable for any damages or claims resulting from the use of its products in medical and military applications.

All text, images, logos and information contained on this document is the intellectual property of Macroblock.

Unauthorized reproduction, duplication, extraction, use or disclosure of the above mentioned intellectual property will be deemed as infringement.