

100V N-Channel Enhancement Mode Power MOSFET

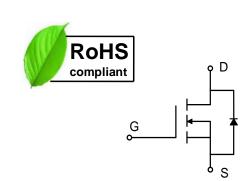
Description

WMQ119N10LG2 uses Wayon's 2nd generation power trench MOSFET technology that has been especially tailored to minimize the on-state resistance and yet maintain superior switching performance. This device is well suited for high efficiency fast switching applications.

Features

- $V_{DS} = 100V$, $I_D = 42A$ (Silicon limited) $R_{DS(on)}$ < 13m Ω @ V_{GS} = 10V $R_{DS(on)} < 17.5 \text{m}\Omega$ @ $V_{GS} = 4.5 \text{V}$
- Green Device Available
- 100% EAS Guaranteed
- High Speed Power Switching, Logic Level

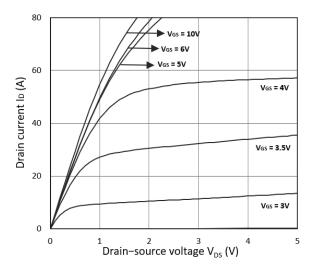
Applications


- Synchronous Rectification in SMPS
- Hard Switching and High Speed Circuit
- DC/DC Converter

Parameter Drain-Source voltage		Symbol	Value	Unit V
		V _{DS}	100	
Gate-Source voltage		V _{GS}	±20	V
Ocationary Basis Occupant/Oils on Limited	T _C =25°C		42	
Continuous Drain Current ¹ (Silicon Limited)	Tc=100°C	lο	26	А
Continuous Drain Current¹(Package Limited)	Tc=25°C		30	
Pulsed Drain Current ²		Ірм	151	А
Single Pulse Avalanche Energy ³		EAS	61	mJ
Avalanche Current		I _{AS}	35	А
Total Power Dissipation ⁴	T _C =25°C	P _D	42	W
Operating Junction and Storage Temperature Range		Тл, Тата	-55 to 150	°C

Thermal Characteristics

Parameter	Symbol	Value	Unit
Thermal Resistance from Junction-to-Ambient ¹	Reja	52	°C/W
Thermal Resistance from Junction-to-Case ¹	ReJc	3	°C/W


Electrical Characteristics T_c = 25°C, unless otherwise noted

Parameter		Symbol Test Conditions		Min.	Тур.	Max.	Unit	
Static Characteristics						l		
Drain-Source Breakdown Voltage		V _{(BR)DSS}	V _{GS} = 0V, I _D = 250µA	100	-	-	V	
Gate-body Leakage Current		I _{GSS}	$V_{DS} = 0V$, $V_{GS} = \pm 20V$	-	-	±100	nA	
Zero Gate Voltage Drain		_	V 400V V 0V	-	-	1		
Current	T _J =100°C	IDSS	V _{DS} = 100V, V _{GS} = 0V	-	-	100	μΑ	
Gate-Threshold Voltage		V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 250\mu A$	1.2	1.8	2.4	V	
Drain-Source on-Resistance ²		R _{DS(on)}	V _{GS} = 10V, I _D = 15A	-	11.6	13	mΩ	
			V _{GS} = 4.5V, I _D = 8A	-	15.3	17.5		
Forward Transconductance ²	2	G fs	V _{DS} = 5V, I _D = 20A	-	45	-	S	
Dynamic Characteristic	s					•		
Input Capacitance		Ciss		-	1170	-		
Output Capacitance Reverse Transfer Capacitance		Coss	V _{DS} = 50V, V _{GS} =0V, f =1MHz	-	210	-	pF	
		C _{rss}	C _{rss}		6.5	-		
Switching Characteristi	cs					•		
Gate Resistance		Rg	V _{DS} =0V, V _{GS} =0V, f =1MHz	-	0.85	-	Ω	
Total Gate Charge		Qg	V _{GS} = 4.5V, V _{DD} = 50V, I _D = 20A	-	10.8	-		
Total Gate Charge		Qg		-	20	-	nC	
Gate-Source Charge		Qgs	$V_{GS} = 10V, V_{DD} = 50V, I_{D} = 20A$	-	4	-		
Gate-Drain Charge		\mathbf{Q}_{gd}		-	5	-		
Turn-on Delay Time		t _{d(on)}		-	4.9	-		
Rise Time		tr	$V_{GS} = 10V, V_{DD} = 50V, R_{G} = 10\Omega,$	-	3	-	nS	
Turn-off Delay Time		t _{d(off)}	I _D = 20A	-	14.5	-		
Fall Time		tf		-	3	-		
Drain-Source Body Dioc	de Charact	eristics						
Diode Forward Voltage ²		V _{SD}	I _S = 1A, V _{GS} = 0V	-	-	1	V	
Continuous Source Current ^{1,5,}		Is	V _G =V _D =0V, Force Current	-	-	42	Α	
Reverse Recovery Time		trr	V _R =50V, I _F =20A,	-	35.5	-	nS	
Reverse Recovery Charge		Qrr	dl _F /dt=500A/μs	-	148	-	nC	

Notes:

- 1.The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.
- 2.The data tested by pulsed , pulse width $\leq 300 \text{us}$, duty cycle $\leq 2\%$
- 3.The EAS data shows Max. rating . The test condition is V_{DD} =25V, V_{GS} =10V,L=0.1mH, I_{AS} =35A
- 4.The power dissipation is limited by 150°C junction temperature
- 5. The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

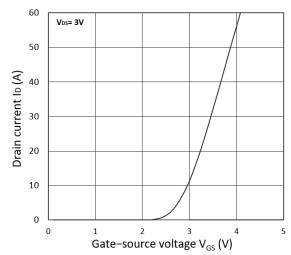
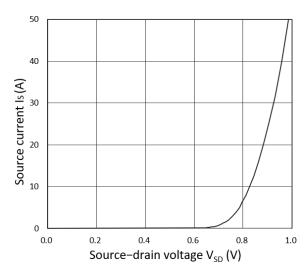



Figure 1. Output Characteristics

Figure 2. Transfer Characteristics

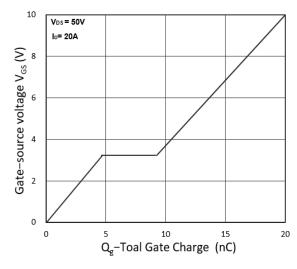
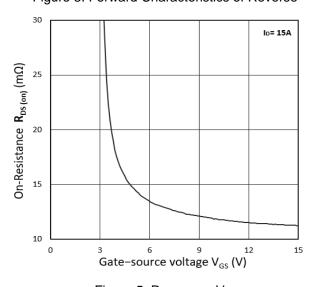



Figure 3. Forward Characteristics of Reverse

Figure 4. Gate Charge Characteristics

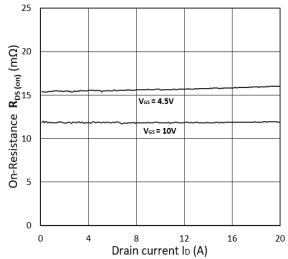
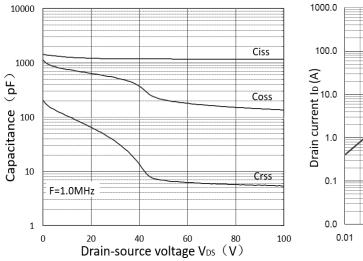



Figure 5. $R_{DS(ON)}$ vs. V_{GS}

Figure 6. RDS(ON) vs. ID

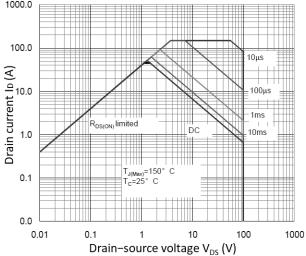


Figure 7. Capacitance Characteristics

Figure 8. Safe Operating Area

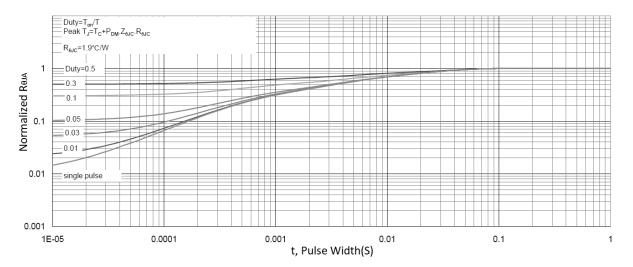


Figure 9. Normalized Maximum Transient Thermal Impedance

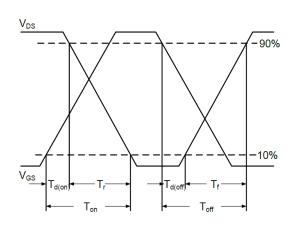
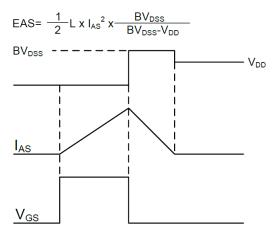
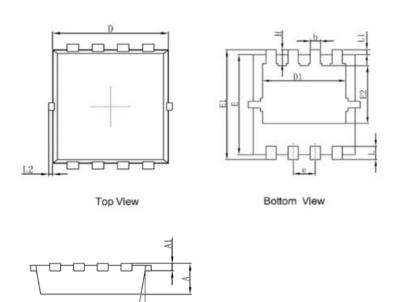


Figure 10. Switching Time Waveform



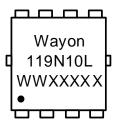

Figure 11. Unclamped Inductive Switching

Waveform

Side View

Mechanical Dimensions for PDFN3030-8L

COMMON DIMENSIONS


SYMBOL	MM			
STIVIBUL	MIN	MAX		
Α	0.70	0.90		
A1	0.10	0.25		
D	2.90	3.25		
D1	2.25	2.69		
E	2.90	3.20		
E1	3.00	3.60		
E2	1.54	2.20		
b	0.20	0.40		
е	0.60	0.70		
L	0.15	0.50		
L1	0.13BSC			
L2	0.00	0.20		
Н	0.15	0.65		
θ	0°	14°		

Ordering Information

Part F		Package	Marking	Packing method
	WMQ119N10LG2	PDFN3030-8L	119N10L	Tape and Reel

Marking Information

119N10L = Device code

WWXXXXX Date code

Contact Information

No.1001, Shiwan(7) Road, Pudong District, Shanghai, P.R.China.201207 Tel: 86-21-50310888 Fax: 86-21-50757680 Email: market@way-on.com

WAYON website: http://www.way-on.com

For additional information, please contact your local Sales Representative.

WAYON ® is registered trademarks of Wayon Corporation.

Disclaimer

WAYON reserves the right to make changes without further notice to any Products herein to improve reliability, function, or design. The Products are not designed for use in hostile environments, including, without limitation, aircraft, nuclear power generation, medical appliances, and devices or systems in which malfunction of any Product can reasonably be expected to result in a personal injury. The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. WAYON does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Products or technical information described in this document.