

Embedded in Tomorrow"

AN308a

Migrating from FM25L256B to FM25V02A or FM25W256

Author: Girija Chougala Associated Part Family: FM25L256B, FM25V02A, and FM25W256 Related Documents: For a complete list, click here

AN308a discusses the key differences between FM25L256B, FM25V02A, and FM25W256 that need to be considered during migration from FM25L256B. FM25L256B is now obsolete and this application note explains how FM25V02A or FM25W256 is a replacement for FM25L256B.

1 Introduction

FM25V02A and FM25W256 are the potential replacement devices for FM25L256B which is obsolete. For most designs, the FM25V02A or FM25W256 devices can be considered equivalent or better than the FM25L256B. The three devices are identical in terms of pinout, package composition and dimensions, and read/write functionality. This application note points out the differences between the FM25L256B, FM25V02A, and FM25W256 F-RAM devices.

2 Device Compatibility

From a software point of view, the three devices are identical. From a hardware point of view, the key difference between the devices is the higher standby current and a change in the PCB assembly process for the DFN package. The EXPOSED PAD of the DFN package must not be soldered on the PCB in FM25V02A while FM25L256B does not have this restriction. Refer to "Critical Considerations" for more details.

The FM25V02A adds many features like operation down to 2.0 V, sleep mode capability, Device ID feature, and higher speed capability. The FM25W256 offers wide voltage operation up to 5.5 V and lower standby current than the FM25V02A. Table 1 shows the compatibility chart of FM25L256B, FM25V02A and FM25W256. For a detailed comparison, see Table 3.

	Potential Replacements		
FM25L256B Feature or Spec	Is FM25V02A compatible?	Is FM25W256 compatible?	
Package/Pinout	Yes	Yes	
Package Footprint	Yes*	Yes	
Temperature Range	Yes	Yes	
Operating Voltage	Yes	Yes	
Operating Current	Yes	Yes	
Standby Current	No	No	
Read / Write Function	Yes	Yes	
Status Register	Yes	Yes	
Timing / Frequency	Yes	Yes	
Data Retention	Yes	Yes	
Endurance	Yes	Yes	

Table 1. Compatibility Chart

* Packages are footprint compatible but DFN package requires change in the PCB assembly process. Refer to DFN Package Assembly Requirement for more details.

3 Ordering Part Numbers

Table 2 gives the recommended FM25V02A and FM25W256 ordering part numbers that correspond to the FM25L256B ordering part numbers.

FM25L256B	3	FM25V02A		FM25W256		Comments	
Ordering Part Number	Status	Ordering Part Number	Status	Ordering Part Number	Status		
FM25L256B-G	Obsolete	FM25V02A-G	In production	FM25W256-G		Hardware change is required only for DFN	
FM25L256B-GTR		FM25V02A-GTR		In production	FM25W256-GTR		assembly process. System firmware
FM25L256B-DG		FM25V02A-DG			Not supported	In production	update is required if you wish to use the additional Device ID
FM25L256B-DGTR		FM25V02A-DGTR		Not supported		feature supported in FM25V02A.	

Table 2 Recommended	Ordering F	Part Numbers	for Migration
			ioi inglutioi

4 Comparison of FM25L256B, FM25V02A, and FM25W256

Table 3 gives a detailed comparison of the three devices.

	FM25L256B	FM25V02A	FM25W256	Comments
Package Types	-G, -DG	-G, -DG	-G	Identical "Green (RoHS)" package for SOIC and DFN. FM25W256 is not offered in DFN package.
Pinout / Package Outlines	SOIC-8, DFN-8	SOIC-8, DFN-8	SOIC-8	FM25W256 is not offered in DFN package
	SOIC-8	SOIC-8	SOIC-8	Identical
Package Footprint	DFN-8	DFN-8	Not supported	The EXPOSED PAD in FM25V02A must not be soldered on the PCB. Refer to DFN Package Assembly Requirement for more details.
Temperature Range	–40 °C to +85 °C	–40 °C to +85 °C	–40 ℃ to +85 ℃	Identical
Operating Voltage Range	2.7 V to 3.6 V	2.0 V to 3.6 V	2.7 V to 5.5 V	FM25V02A allows operation down to 2.0 V, FM25W256 allows operation up to 5.5 V
Active Supply Current	500 μA @ 1 MHz 10.0 mA @ 20 MHz	220 µA @ 1 MHz 2.5 mA @ 40 MHz	250 μA @ 1 MHz 2.0 mA @ 20 MHz	FM25V02A and FM25W256 offer lower active current
Standby Current	10 µA	150 µA	30 µA	Higher
Sleep Mode Current	-	8 μΑ	-	FM25V02A offers a sleep mode which can be used to reduce the standby/idle current. During wake-up from sleep mode, the device has a recovery time of 400 µs.
Read / Write Function	-	-	-	Identical 2-byte addressing, Identical op-codes
Clock Frequency	20 MHz	40 MHz	20 MHz	FM25V02A offers higher speed

Table 3. Detailed Comparison

	FM25L256B	FM25V02A	FM25W256	Comments
Data Retention	10 years (+85 ºC)	10 years (+85 ºC) 38 years (+75 ºC) 151 years (+65 ºC)	10 years (+85 ºC) 38 years (+75 ºC) 151 years (+65 ºC)	Identical
Endurance (Write/Read Cycles)	Unlimited	1E+14	1E+14	FM25V02A's and FM25W256's endurance is large enough to be considered as unlimited for all practical application. For a 64-byte loop, at 20 MHz, endurance is 85 years.
V _{DD} Power-Up Ramp Rate (t _{VR})	50 µs / V	50 µs / V	30 µs / V	Identical or better
V _{DD} Power-Down Ramp Rate (t _{VF})	50 µs / V	100 µs / V	30 µs / V	Worse or better
Power-Up to First Access (t _{PU})	10 ms	250 µs	1 ms	Better power-up to first access specification in FM25V02A and FM25W256
HOLD pin pull-up	-	Internal pull-up	-	FM25V02A does not require any external pull-up resistor
Device ID Feature	-	Yes	-	Additional feature
Fast Read Op-code	-	Yes	-	Additional feature

5 Critical Considerations

You should consider all the parameter differences mentioned in Table 3 during the migration to FM25V02A or FM25W256. This section discusses the critical differences. System designers should also review the datasheets when migrating to the new part.

5.1 Standby Current / Sleep Mode Current

The FM25V02A has higher standby current of 150 μ A compared to FM25L256B. But FM25V02A offers an additional sleep mode which can be used to reduce the standby/idle current. The sleep mode current is as low as 8 μ A. Note that during wake-up from the sleep mode, device needs a recovery time of 400 μ s. The FM25W256 has a higher standby current of 30 μ A compared to FM25L256B.

1.1 New Feature: Device ID

The FM25V02A incorporates a 9-byte read only Device ID (7F7F7F7F7F7F7F22208h) to identify the product uniquely. The Device ID allows the host to determine the manufacturer, product density, and product revision. System firmware update is required when you wish to use this feature in FM25V02A.

1.2 DFN Package Assembly Requirement

In both the FM25L256B and FM25V02A, the EXPOSED PAD of the DFN package is not connected to the die and must be left floating (in other words, no connect in the schematic design). The EXPOSED PAD in FM25V02A shown in the Figure 1 must not be soldered on the PCB. Soldering the EXPOSED PAD will cause the die to be exposed to excessive heat, which can result in bit failures and margin loss. Therefore, ensure that the EXPOSED PAD of the DFN package is masked on the PCB during the soldering process of the FM25V02A device.

There are two ways of masking the EXPOSED PAD, which is explained below:

- 1. Mask the Stencil opening for the EXPOSED PAD during stencil creation which can be done without updating the existing board layout design.
- 2. Mask the EXPOSED PAD in the solder paste film of the PCB design layout if you are designing a new board layout.

Figure 1. 8-Pin DFN Package Outline

6 Summary

AN308a discussed the differences between FM25L256B, FM25V02A, and FM25W256 that need to be considered during migration from FM25L256B to FM25V02A or FM25W256.

7 Related Documents

Datasheet

FM25V02A: 256-Kbit (32 K \times 8) Serial (SPI) F-RAM datasheet FM25W256: 256-Kbit (32 K \times 8) Serial (SPI) F-RAM datasheet

Document History

Document Title: AN308a - Migrating from FM25L256B to FM25V02A or FM25W256

Document Number: 001-86831

Revision	ECN	Orig. of Change	Submission Date	Description of Change
**	3946074	GVCH	03/26/2013	New Spec.
*A	4278908	MEDU	03/05/2014	Updated to Cypress Template. Updated " V_{DD} Power-Down Ramp Rate" for FM25L256B from "100 µs / V" to "50 µs / V". Updated "Power-Up to First Access" for FM25W256 from 10 ms to 1 ms.
*В	4514175	GVCH	09/26/2014	Updated abstract. Added "Ordering Part Numbers" section. Added title for Table 3. Added "Related Documents" section.
*C	4759382	GVCH	06/26/2015	Replaced FM25V02 (Not Recommended For New Design) with FM25V02A (In production) for migration. Updated Device Compatibility for DFN EXPOSED PAD details. Updated Table 1 through Table 3 for DFN package compatibility. Added DFN Package Assembly Requirement.
*D	5623862	GVCH	02/08/2017	Table 3: Updated "Power-Up to First Access (tPU)" parameter spec value from 1ms to 250 µs for FM25V02A partUpdated template

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Videos | Blogs | Training | Components

Technical Support

cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

Cypress Semiconductor 198 Champion Court San Jose, CA 95134-1709

© Cypress Semiconductor Corporation, 2013-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under these claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.