

SN74AVC1T45

SCES530H - DECEMBER 2003 - REVISED DECEMBER 2014

SN74AVC1T45 Single-Bit Dual-Supply Bus Transceiver with Configurable Voltage **Translation and 3-State Outputs**

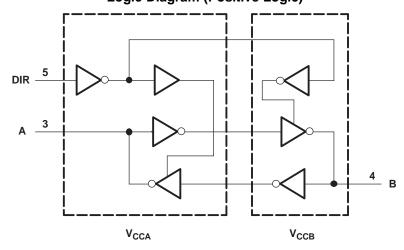
Features

- Available in the Texas Instruments NanoFree™ Package
- Fully Configurable Dual-Rail Design Allows Each Port to Operate Over the Full 1.2-V to 3.6-V Power-Supply Range
- V_{CC} Isolation Feature If Either V_{CC} Input Is At GND, Both Ports Are In The High-Impedance
- DIR Input Circuit Referenced to V_{CCA}
- ±12-mA Output Drive at 3.3 V
- I/Os Are 4.6-V Tolerant
- Ioff Supports Partial-Power-Down Mode Operation
- Typical Max Data Rates
 - 500 Mbps (1.8-V to 3.3-V Translation)
 - 320 Mbps (<1.8-V to 3.3-V Translation)
 - 320 Mbps (Translate to 2.5 V or 1.8 V)
 - 280 Mbps (Translate to 1.5 V)
 - 240 Mbps (Translate to 1.2 V)
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - ±2000-V Human Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - ±1000-V Charged-Device Model (C101)

2 Applications

- Personal Electronic
- Industrial
- Enterprise
- Telecom

3 Description


This single-bit noninverting bus transceiver uses two separate configurable power-supply rails. SN74AVC1T45 is optimized to operate V_{CCA}/V_{CCB} set at 1.4 V to 3.6 V. It is operational with V_{CCA}/V_{CCB} as low as 1.2 V. The A port is designed to track V_{CCA} . V_{CCA} accepts any supply voltage from 1.2 V to 3.6 V. The B port is designed to track V_{CCB} . V_{CCB} accepts any supply voltage from 1.2 V to 3.6 V. This allows for universal low-voltage, bidirectional translation between any of the 1.2-V, 1.5-V, 1.8-V, 2.5-V, and 3.3-V voltage nodes.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
		2.90 mm × 1.60 mm
CNIZAAN/CATAE	SOT (6)	2.00 mm × 1.25 mm
SN74AVC1T45		1.60 mm × 1.20 mm
	DSBGA (6)	1.39 mm × 0.89 mm

(1) For all available packages, see the orderable addendum at the end of the datasheet.

Logic Diagram (Positive Logic)

Table of Contents

1	Features 1	8	Parameter Measurement Information	12
2 .	Applications 1	9	Detailed Description	13
3	Description 1		9.1 Overview	
	Revision History2		9.2 Functional Block Diagram	13
	Description (continued)3		9.3 Feature Description	13
	Pin Configuration and Functions3		9.4 Device Functional Modes	13
	Specifications4	10	Application and Implementation	14
_	7.1 Absolute Maximum Ratings		10.1 Application Information	14
	7.2 ESD Ratings		10.2 Typical Applications	14
	7.3 Recommended Operating Conditions	11	Power Supply Recommendations	18
	7.4 Thermal Information		11.1 Power-Up Considerations	18
	7.5 Electrical Characteristics 6	12	Layout	18
	7.6 Switching Characteristics: V _{CCA} = 1.2 V		12.1 Layout Guidelines	
	7.7 Switching Characteristics: V _{CCA} = 1.5 V ± 0.1 V 7		12.2 Layout Example	
	7.8 Switching Characteristics: V _{CCA} = 1.8 V ± 0.15 V 8	13	Device and Documentation Support	
	7.9 Switching Characteristics: $V_{CCA} = 2.5 \text{ V} \pm 0.2 \text{ V} \dots 8$		13.1 Trademarks	
	7.10 Switching Characteristics: V _{CCA} = 3.3 V ± 0.3 V 9		13.2 Electrostatic Discharge Caution	20
	7.11 Operating Characteristics9		13.3 Glossary	
	7.12 Typical Characteristics	14	Mechanical, Packaging, and Orderable Information	

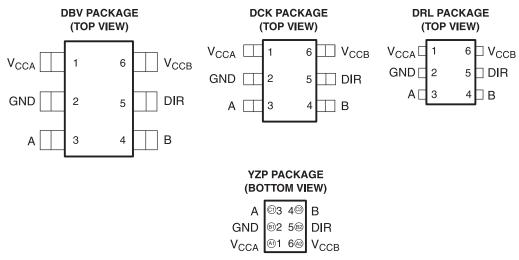
4 Revision History

Changes from Revision G (January 2008) to Revision H

Page

5 Description (continued)

The SN74AVC1T45 is designed for asynchronous communication between two data buses. The logic levels of the direction-control (DIR) input activate either the B-port outputs or the A-port outputs. The device transmits data from the A bus to the B bus when the B-port outputs are activated and from the B bus to the A bus when the A-port outputs are activated. The input circuitry on both A and B ports always is active and must have a logic HIGH or LOW level applied to prevent excess I_{CC} and I_{CCZ} .


The SN74AVC1T45 is designed so that the DIR input is powered by V_{CCA}.

This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

The V_{CC} isolation feature ensures that if either V_{CC} input is at GND, then both ports are in the high-impedance state

NanoFree™ package technology is a major breakthrough in IC packaging concepts, using the die as the package.

6 Pin Configuration and Functions

See mechanical drawings in Mechanical, Packaging, and Orderable Information for dimensions.

Pin Functions

	PIN	1/0	DESCRIPTION
NAME	NO.	1/0	DESCRIPTION
V_{CCA}	1	Р	A-port supply voltage. 1.2 V ≤ V _{CCA} ≤ 3.6 V
GND	2	G	Ground
Α	3	I/O	Input/output A. Referenced to V _{CCA} .
В	4	I/O	Input/output B. Referenced to V _{CCB} .
DIR	5	1	Direction control signal
V _{CCB} 6 P B-port su			B-port supply voltage. 1.2 V ≤ V _{CCB} ≤ 3.6 V.

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

_			MIN	MAX	UNIT
V _{CCA} , V _{CCB}	Supply voltage		-0.5	4.6	V
		I/O ports (A port)	-0.5	4.6	
V_{I}	Input voltage (2)	I/O ports (B port)	-0.5	4.6	V
		Control inputs	-0.5	4.6	
.,	Voltage applied to any output in the high-impedance or power-off	A port	-0.5	4.6	V
Vo	state (2)	B port	-0.5	4.6	V
1/	Valtage applied to any output in the high or law state (2) (3)	A port	-0.5	V _{CCA} + 0.5	V
Vo	Voltage applied to any output in the high or low state (2) (3)	B port	-0.5	$V_{CCB} + 0.5$	V
I _{IK}	Input clamp current	V _I < 0		- 50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
Io	Continuous output current		-50	50	mA
	Continuous current through V _{CCA} , V _{CCB} , or GND		-100	100	mA
T _{stg}	Storage temperature		-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	V
		Machine model, per A115-A	200	

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

⁽²⁾ The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

⁽³⁾ The output positive-voltage rating may be exceeded up to 4.6 V maximum if the output current ratings are observed.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted) $^{(1)}$ $^{(2)}$ $^{(3)}$

			V _{CCI}	V _{cco}	MIN	MAX	UNIT
V _{CCA}	Supply voltage				1.2	3.6	V
V _{CCB}	Supply voltage				1.2	3.6	V
			1.2 V to 1.95 V		V _{CCI} × 0.65		
V_{IH}	High-level input voltage	Data inputs	1.95 V to 2.7 V		1.6		V
	voltage		2.7 V to 3.6 V		2		
			1.2 V to 1.95 V			V _{CCI} × 0.35	
V_{IL}	Low-level input voltage	Data inputs	1.95 V to 2.7 V			0.7	V
	voltage		2.7 V to 3.6 V			0.8	
			1.2 V to 1.95 V		V _{CCA} × 0.65		
V_{IH}	High-level input voltage	DIR (referenced to V _{CCA})	1.95 V to 2.7 V		1.6		V
	voltage	(referenced to vCCA)	2.7 V to 3.6 V		2		
			1.2 V to 1.95 V			V _{CCA} × 0.35	
V_{IL}	Low-level input voltage	DIR (referenced to V _{CCA})	1.95 V to 2.7 V			0.7	V
	voltage	(referenced to vCCA)	2.7 V to 3.6 V			0.8	
V _I	Input voltage	<u>.</u>			0	3.6	V
\/	Outrot valtage	Active state			0	V _{cco}	V
V_{O}	Output voltage	3-state			0	3.6	V
				1.2 V		-3	
				1.4 V to 1.6 V		-6	
I_{OH}	High-level output cu	rrent		1.65 V to 1.95 V		-8	mA
				2.3 V to 2.7 V		-9	
				3 V to 3.6 V		-12	
				1.2 V		3	
				1.4 V to 1.6 V		6	
I_{OL}	Low-level output cur	rrent		1.65 V to 1.95 V		8	mA
				2.3 V to 2.7 V		9	
				3 V to 3.6 V		12	
Δt/Δν	Input transition rise	or fall rate				5	ns/V
T _A	Operating free-air te	emperature			-40	85	°C

7.4 Thermal Information

			SN74A	VC1T45		
	THERMAL METRIC ⁽¹⁾	DBV	DCK	DRL	YZP	UNIT
			6 P	INS		_
$R_{\theta JA}$	Junction-to-ambient thermal resistance	24.3	290.7	236.2	130	
R ₀ JC(top)	Junction-to-case (top) thermal resistance	174.7	97.0	97.6	54	
$R_{\theta JB}$	Junction-to-board thermal resistance	92.4	99.2	71.0	51	°C/W
ΨЈТ	Junction-to-top characterization parameter	61.1	2.1	8.3	1	10/00
ΨЈВ	Junction-to-board characterization parameter	92.0	98.4	70.8	50	
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	N/A	N/A	N/A	N/A	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

 V_{CCI} is the V_{CC} associated with the input port. V_{CCO} is the V_{CC} associated with the output port. All unused data inputs of the device must be held at V_{CCI} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, SCBA004.

7.5 Electrical Characteristics (1) (2)

over recommended operating free-air temperature range (unless otherwise noted)

DAD	AMETER	TEST COND	ITIONS	V	V	7	Γ _A = 25°C		-40°C to	85°C	UNIT
PAR	AMETER	TEST COND	IIIONS	V _{CCA}	V _{CCB}	MIN	TYP	MAX	MIN	MAX	UNIT
		I _{OH} = -100 μA		1.2 V to 3.6 V	1.2 V to 3.6 V				V _{CCO} - 0.2		
		$I_{OH} = -3 \text{ mA}$		1.2 V	1.2 V		0.95				
V_{OH}		$I_{OH} = -6 \text{ mA}$	$V_I = V_{IH}$	1.4 V	1.4 V				1.05		V
0		$I_{OH} = -8 \text{ mA}$]	1.65 V	1.65 V				1.2		
		$I_{OH} = -9 \text{ mA}$		2.3 V	2.3 V				1.75		
		I _{OH} = -12 mA		3 V	3 V				2.3		
		I _{OL} = 100 μA		1.2 V to 3.6 V	1.2 V to 3.6 V					0.2	
		I _{OL} = 3 mA		1.2 V	1.2 V		0.15				
. ,		I _{OL} = 6 mA	., .,	1.4 V	1.4 V					0.35	V
V_{OL}		I _{OL} = 8 mA	$V_I = V_{IL}$	1.65 V	1.65 V					0.45	V
		I _{OL} = 9 mA		2.3 V	2.3 V					0.55	
		I _{OL} = 12 mA		3 V	3 V					0.7	
l _l	DIR	$V_I = V_{CCA}$ or GND	1	1.2 V to 3.6 V	1.2 V to 3.6 V	-0.25	±0.025	0.25	-1	1	μΑ
	A port	V V - 0 1 - 0 0	\ /	0 V	0 to 3.6 V	-1	±0.1	1	-5	5	
l _{off}	B port	V_{I} or $V_{O} = 0$ to 3.6	V	0 to 3.6 V	0 V	-1	±0.1	1	- 5	5	μA
	B port	V _O = V _{CCO} or GNE).	0 V	3.6 V	-2.5	±0.5	2.5	- 5	5	
l _{oz}	A port	$V_I = V_{CCI}$ or GND	,	3.6 V	0 V	-2.5	±0.5	2.5	- 5	5	μΑ
	•			1.2 V to 3.6 V	1.2 V to 3.6 V					10	
I _{CCA}		$V_I = V_{CCI}$ or GND,	$I_O = 0$	0 V	3.6 V					-2	μΑ
				3.6 V	0 V					10	
				1.2 V to 3.6 V	1.2 V to 3.6 V					10	
I _{CCB}		$V_I = V_{CCI}$ or GND,	$I_O = 0$	0 V	3.6 V					10	μΑ
				3.6 V	0 V					-2	
I _{CCA} -	+ I _{CCB} Table 4)	$V_I = V_{CCI}$ or GND,	I _O = 0	1.2 V to 3.6 V	1.2 V to 3.6 V					20	μΑ
Ci	Control inputs	V _I = 3.3 V or GND		3.3 V	3.3 V		2.5				pF
C _{io}	A or B	V _O = 3.3 V or GNE)	3.3 V	3.3 V		6				pF

 $[\]begin{array}{ll} \hbox{(1)} & V_{CCO} \mbox{ is the } V_{CC} \mbox{ associated with the output port.} \\ \hbox{(2)} & V_{CCI} \mbox{ is the } V_{CC} \mbox{ associated with the input port.} \\ \end{array}$

Submit Documentation Feedback

Copyright © 2003–2014, Texas Instruments Incorporated

7.6 Switching Characteristics: $V_{CCA} = 1.2 \text{ V}$

over recommended operating free-air temperature range, V_{CCA} = 1.2 V (see Figure 11)

PARAMETER	FROM	то	V _{CCB} = 1.2 V	V _{CCB} = 1.5 V	V _{CCB} = 1.8 V	V _{CCB} = 2.5 V	$V_{CCB} = 3.3 \text{ V}$	LINUT
PARAMETER	(INPUT)	(OUTPUT)	TYP TYP		TYP	TYP	TYP	UNIT
t _{PLH}	А	В	3.3	2.7	2.4	2.3	2.4	
t _{PHL}	А	В	3.3	2.7	2.4	2.3	2.4	ns
t _{PLH}	В	A	3.3	3.1	2.9	2.8	2.7	
t _{PHL}	Ь	A	3.3	3.1	2.9	2.8	2.7	ns
t _{PHZ}	DIR	^	5.1	5.2	5.3	5.2	3.7	
t _{PLZ}	DIK	A	5.1	5.2	5.3	5.2	3.7	ns
t _{PHZ}	DID		5.3	4.3	4	3.3	3.7	
t _{PLZ}	DIR	В	5.3	4.3	4	3.3	3.7	ns
t _{PZH} (1)	DID	^	8.6	7.3	6.8	6.1	6.4	
t _{PZL} ⁽¹⁾	DIR	Α	8.6	7.3	6.8	6.1	6.4	ns
t _{PZH} ⁽¹⁾	DID	Б	8.3	7.8	7.7	7.5	5.8	
t _{PZL} ⁽¹⁾	DIR	В	8.3	7.8	7.7	7.5	5.8	ns

⁽¹⁾ The enable time is a calculated value, derived using the formula shown in the *Enable Times* section.

7.7 Switching Characteristics: $V_{CCA} = 1.5 \text{ V} \pm 0.1 \text{ V}$

over recommended operating free-air temperature range, $V_{CCA} = 1.5 \text{ V} \pm 0.1 \text{ V}$ (see Figure 11)

PARAMETER	FROM	TO	V _{CCB} = 1.2 V	V _{CCB} = ± 0.1	1.5 V I V	V _{CCB} = ± 0.1	1.8 V 5 V	V _{CCB} = ± 0.2		V _{CCB} = 3.3 V ± 0.3 V		UNIT
	(INPUT)	(OUTPUT)	TYP	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{PLH}	А	В	2.9	0.7	5.6	0.6	5.2	0.5	4.2	0.5	3.8	20
t _{PHL}	A	Б	2.9	0.7	5.6	0.6	5.2	0.5	4.2	0.5	3.8	ns
t _{PLH}	В	Α	2.6	0.6	5.5	0.4	5.3	0.3	4.9	0.3	4.8	20
t _{PHL}	Ь	A	2.6	0.6	5.5	0.4	5.3	0.3	4.9	0.3	4.8	ns
t _{PHZ}	DIR	Α	3.8	1.6	6.7	1.5	6.8	0.3	6.9	0.9	6.9	20
t_{PLZ}	DIK	A	3.8	1.6	6.7	1.5	6.8	0.3	6.9	0.9	6.9	ns
t _{PHZ}	DIR	В	5.1	1.8	8.1	1.6	7.1	1.1	4.7	1.4	4.5	20
t _{PLZ}	DIK	В	5.1	1.8	8.1	1.6	7.1	1.1	4.7	1.4	4.5	ns
t _{PZH} ⁽¹⁾	DID	^	7.7		13.6		12.4		9.6		9.3	
t _{PZL} ⁽¹⁾	DIR	Α	7.7		13.6		12.4		9.6		9.3	ns
t _{PZH} ⁽¹⁾	DID	Б	6.7		12.3		12		11.1		10.7	
t _{PZL} ⁽¹⁾	DIR	В	6.7		12.3		12		11.1		10.7	ns

⁽¹⁾ The enable time is a calculated value, derived using the formula shown in the *Enable Times* section.

7.8 Switching Characteristics: $V_{CCA} = 1.8 \text{ V} \pm 0.15 \text{ V}$

over recommended operating free-air temperature range, $V_{CCA} = 1.8 \text{ V} \pm 0.15 \text{ V}$ (see Figure 11)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CCB} = 1.2 V	V _{CCB} = ± 0.1	1.5 V I V		V _{CCB} = 1.8 V ± 0.15 V		2.5 V 2 V	V _{CCB} = 3.3 V ± 0.3 V		UNIT	
	(INFUT)	(001701)	TYP	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
t _{PLH}	Α	В	2.7	0.6	5.3	0.5	5	0.4	3.9	0.4	3.4	ns	
t _{PHL}	А	Ь	2.7	0.6	5.3	0.5	5	0.4	3.9	0.4	3.4	115	
t _{PLH}	В	А	2.3	0.5	5.2	0.4	5	0.3	4.6	0.2	4.4	ns	
t _{PHL}	ь	Α	2.3	0.5	5.2	0.4	5	0.3	4.6	0.2	4.4	115	
t _{PHZ}	DIR	А	3.8	1.6	5.9	1.6	5.9	1.6	5.9	0.5	6	ns	
t _{PLZ}	DIK	DIK	A	3.8	1.6	5.9	1.6	5.9	1.6	5.9	0.5	6	115
t _{PHZ}	DIR	В	5	1.8	7.7	1.4	6.8	1	4.4	1.4	5.3	no	
t_{PLZ}	DIK	Ь	5	1.8	7.7	1.4	6.8	1	4.4	1.4	5.3	ns	
t _{PZH} ⁽¹⁾	DID	۸	7.3		12.9		11.8		9		8.7		
t _{PZL} ⁽¹⁾	DIR	DIR A	7.3		12.9		11.8		9		8.7	ns	
t _{PZH} ⁽¹⁾	DIB	В	6.5		11.2		10.9		9.8		9.4	20	
t _{PZL} ⁽¹⁾	DIR	DIR	Б	6.5		11.2		10.9		9.8		9.4	ns

⁽¹⁾ The enable time is a calculated value, derived using the formula shown in the *Enable Times* section.

7.9 Switching Characteristics: $V_{CCA} = 2.5 \text{ V} \pm 0.2 \text{ V}$

over recommended operating free-air temperature range, $V_{CCA} = 2.5 \text{ V} \pm 0.2 \text{ V}$ (see Figure 11)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CCB} = 1.2 V	V _{CCB} = ± 0.1	1.5 V I V	V _{CCB} = ± 0.1	1.8 V 5 V	V _{CCB} = ± 0.2		V _{CCB} = ± 0.3		UNIT
	(INPUT)	(001701)	TYP	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{PLH}	А	В	2.6	0.5	4.9	0.4	4.6	0.3	3.4	0.3	3	
t _{PHL}	A	ь	2.6	0.5	4.9	0.4	4.6	0.3	3.4	0.3	3	ns
t _{PLH}	В	А	2.2	0.4	4.2	0.3	3.8	0.2	3.4	0.2	3.3	
t _{PHL}	Ь	A	2.2	0.4	4.2	0.3	3.8	0.2	3.4	0.2	3.3	ns
t _{PHZ}	DIR	Α	2.8	0.3	3.8	0.8	3.8	0.4	3.8	0.5	3.8	20
t_{PLZ}	DIK	A	2.8	0.3	3.8	8.0	3.8	0.4	3.8	0.5	3.8	ns
t_{PHZ}	DIR	В	4.9	2	7.6	1.5	6.5	0.6	4.1	1	4	20
t_{PLZ}	DIK	ь	4.9	2	7.6	1.5	6.5	0.6	4.1	1	4	ns
t _{PZH} ⁽¹⁾	DIR	^	7.1		11.8		10.3		7.5		7.3	
t _{PZL} ⁽¹⁾	DIK	Α	7.1		11.8		10.3		7.5		7.3	ns
t _{PZH} ⁽¹⁾	DIB	В	5.4		8.6		8.1		7		6.6	
t _{PZL} ⁽¹⁾	DIR	В	5.4		8.6		8.1		7		6.6	ns

(1) The enable time is a calculated value, derived using the formula shown in the *Enable Times* section.

7.10 Switching Characteristics: $V_{CCA} = 3.3 \text{ V} \pm 0.3 \text{ V}$

over recommended operating free-air temperature range, $V_{CCA} = 3.3 \text{ V} \pm 0.3 \text{ V}$ (see Figure 11)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CCB} = 1.2 V	V _{CCB} = ± 0.1		V _{CCB} = ± 0.1	1.8 V 5 V	V _{CCB} = ± 0.2		V _{CCB} = ± 0.3		UNIT			
	(INPUT)	(001701)	TYP	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX				
t _{PLH}	А	В	2.6	0.4	4.7	0.3	4.4	0.2	3.3	0.2	2.8	2			
t _{PHL}	A	Ь	2.6	0.4	4.7	0.3	4.4	0.2	3.3	0.2	2.8	ns			
t _{PLH}	В	۸	2.2	0.4	3.8	0.3	3.4	0.2	3	0.1	2.8				
t _{PHL}	Ь	Α	A	A	A	2.2	0.4	3.8	0.3	3.4	0.2	3	0.1	2.8	ns
t _{PHZ}	DIR	А	3.1	1.3	4.3	1.3	4.3	1.3	4.3	1.3	4.3				
t_{PLZ}	DIK	A	3.1	1.3	4.3	1.3	4.3	1.3	4.3	1.3	4.3	ns			
t_{PHZ}	DIR	В	4	0.7	7.4	0.6	6.5	0.7	4	1.5	4.9				
t_{PLZ}	DIK	Ь	4	0.7	7.4	0.6	6.5	0.7	4	1.5	4.9	ns			
t _{PZH} ⁽¹⁾	DID	۸	6.2		11.2		9.9		7		6.7				
t _{PZL} ⁽¹⁾	DIR	Α	6.2		11.2		9.9		7		6.7	ns			
t _{PZH} ⁽¹⁾	DID	В	5.7		8.9		8.5		7.2		6.8	20			
t _{PZL} ⁽¹⁾	DIR	В	5.7		8.9		8.5		7.2		6.8	ns			

⁽¹⁾ The enable time is a calculated value, derived using the formula shown in the *Enable Times* section.

7.11 Operating Characteristics

 $T_A = 25^{\circ}C$

P.	ARAMETER	TEST CONDITIONS	V _{CCA} = V _{CCB} = 1.2 V	V _{CCA} = V _{CCB} = 1.5 V	V _{CCA} = V _{CCB} = 1.8 V	V _{CCA} = V _{CCB} = 2.5 V	V _{CCA} = V _{CCB} = 3.3 V	UNIT
		CONDITIONS	TYP	TYP	TYP	TYP	TYP	
C _{pdA} ⁽¹⁾	A-port input, B-port output	$C_L = 0 \text{ pF},$ $f = 10 \text{ MHz},$	3	3	3	3	4	pF
O _{pdA} \	B-port input, A-port output	$t_r = t_f = 1 \text{ ns}$	13	13	14	15	15	рг
C _{pdB} ⁽¹⁾	A-port input, B-port output	$C_L = 0 \text{ pF},$	13	13	14	15	15	~F
□pdB \ /	B-port input, A-port output	f = 10 MHz, $t_r = t_f = 1 \text{ ns}$	3	3	3	3	3	pF

⁽¹⁾ Power dissipation capacitance per transceiver

7.12 Typical Characteristics

7.12.1 Typical Propagation Delay (A to B) vs Load Capacitance

 $T_A = 25^{\circ}C, V_{CCA} = 1.2 \text{ V}$

Figure 1. Typical Propagation Delay of High-to-Low (A to B) vs Load Capacitance $T_A = 25^{\circ}C$, $V_{CCA} = 1.2 \text{ V}$

Figure 2. Typical Propagation Delay of Low-to-High (A to B) vs Load Capacitance $T_A = 25^{\circ}C$, $V_{CCA} = 1.2 \text{ V}$

7.12.2 Typical Propagation Delay (A to B) vs Load Capacitance

 $T_A = 25^{\circ}C, V_{CCA} = 1.5 \text{ V}$

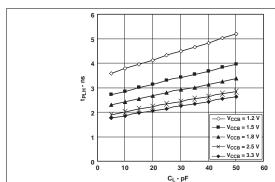


Figure 3. Typical Propagation Delay of High-to-Low (A to B) vs Load Capacitance $T_A = 25^{\circ}C$, $V_{CCA} = 1.5 \text{ V}$

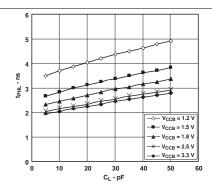


Figure 4. Typical Propagation Delay of Low-to-High (A to B) vs Load Capacitance $T_A = 25^{\circ}C$, $V_{CCA} = 1.5 \text{ V}$

7.12.3 Typical Propagation Delay (A to B) vs Load Capacitance

$$T_A = 25^{\circ}C, V_{CCA} = 1.8 \text{ V}$$

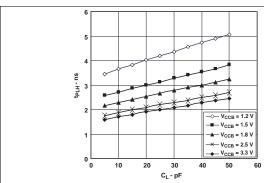


Figure 5. Typical Propagation Delay of High-to-Low (A to B) vs Load Capacitance $T_A = 25^{\circ}C$, $V_{CCA} = 1.8 \text{ V}$

Figure 6. Typical Propagation Delay of Low-to-High (A to B) vs Load Capacitance $T_A = 25^{\circ}C$, $V_{CCA} = 1.8 \text{ V}$

7.12.4 Typical Propagation Delay (A to B) vs Load Capacitance

$$T_A = 25^{\circ}C, V_{CCA} = 2.5 V$$

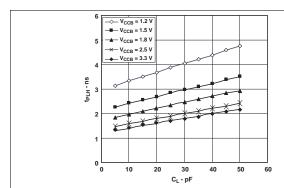


Figure 7. Typical Propagation Delay of High-to-Low (A to B) vs Load Capacitance $T_A = 25^{\circ}C$, $V_{CCA} = 2.5$ V

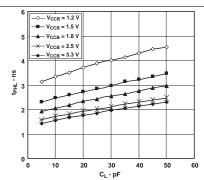


Figure 8. Typical Propagation Delay of Low-to-High (A to B) vs Load Capacitance $T_A = 25$ °C, $V_{CCA} = 2.5$ V

7.12.5 Typical Propagation Delay (A to B) vs Load Capacitance

$$T_A = 25^{\circ}C, V_{CCA} = 3.3 \text{ V}$$

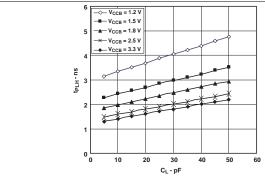
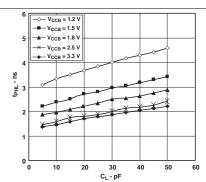
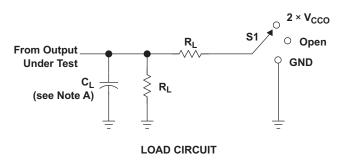


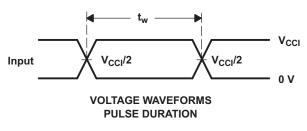
Figure 9. Typical Propagation Delay of High-to-Low (A to B) vs Load Capacitance $T_A = 25$ °C, $V_{CCA} = 3.3$ V



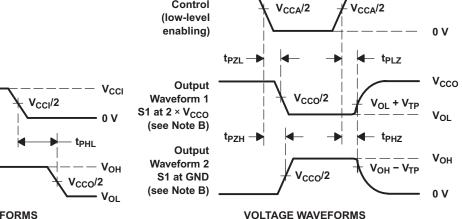

Figure 10. Typical Propagation Delay of Low-to-High (A to B) vs Load Capacitance $T_A = 25^{\circ}C$, $V_{CCA} = 3.3 \text{ V}$

Copyright © 2003–2014, Texas Instruments Incorporated

 V_{CCA}



Parameter Measurement Information


TEST	S1
t _{pd}	Open
t _{PLZ} /t _{PZL}	2 × V _{CCO}
t _{PHZ} /t _{PZH}	GND

V _{cco}	CL	R _L	V _{TP}
1.2 V	15 pF	2 kW	0.1 V
1.5 V ± 0.1 V	15 pF	2 kW	0.1 V
1.8 V ± 0.15 V	15 pF	2 kW	0.15 V
2.5 V ± 0.2 V	15 pF	2 kW	0.15 V
3.3 V ± 0.3 V	15 pF	2 kW	0.3 V

V_{CCA}/2

ENABLE AND DISABLE TIMES

Output Control

Input V_{CCI}/2 Output V_{CCO}/2 **VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES**

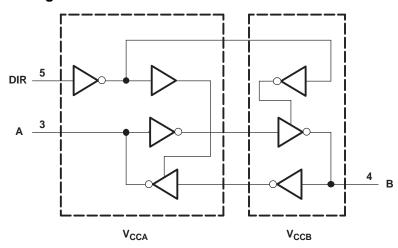
NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, Z_O = 50 W, dv/dt ≥ 1 V/ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis}.
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. V_{CCI} is the V_{CC} associated with the input port.
- I. V_{CCO} is the V_{CC} associated with the output port.

Figure 11. Load Circuit and Voltage Waveforms

Submit Documentation Feedback

Copyright © 2003-2014, Texas Instruments Incorporated



9 Detailed Description

9.1 Overview

The SN74AVC1T45 is single-bit, dual-supply, noninverting voltage level translation. Pin A and direction control pin are support by V_{CCA} and pin B is support by V_{CCB} . The A port is able to accept I/O voltages ranging from 1.2 V to 3.6 V, while the B port can accept I/O voltages from 1.2 to 3.6 V. The high on DIR allows data transmission from A to B and a low on DIR allows data transmission from B to A.

9.2 Functional Block Diagram

9.3 Feature Description

9.3.1 Fully Configurable Dual-Rail Design Allows Each Port to Operate Over the Full 1.2-V to 3.6-V Power-Supply Range

Both V_{CCA} and V_{CCB} can be supplied at any voltage between 1.2 V and 3.6 V making the device suitable for translating between any of the voltage nodes (1.2-V, 1.8-V, 2.5-V and 3.3-V).

9.3.2 Support High-Speed Translation

SN74AVC1T45 can support high data-rate application. The translated signal data rate can be up to 500 Mbps when signal is translated from 1.8 V to 3.3 V.

9.3.3 I_{off} Supports Partial-Power-Down Mode Operation

loff will prevent backflow current by disabling I/O output circuits when device is in partial-power-down mode.

9.4 Device Functional Modes

Table 1. Function Table⁽¹⁾

INPUT DIR	OPERATION
L	B data to A bus
Н	A data to B bus

 Input circuits of the data I/Os always are active.

10 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

10.1 Application Information

The SN74AVC1T45 device can be used in level-translation applications for interfacing devices or systems operating at different interface voltages with one another. The maximum data rate can be up to 500 Mbps when device translate signal from 1.8 V to 3.3 V.

10.1.1 Enable Times

Calculate the enable times for the SN74AVC1T45 using the following formulas:

- t_{PZH} (DIR to A) = t_{PLZ} (DIR to B) + t_{PLH} (B to A)
- t_{PZI} (DIR to A) = t_{PHZ} (DIR to B) + t_{PHI} (B to A)
- t_{PZH} (DIR to B) = t_{PLZ} (DIR to A) + t_{PLH} (A to B)
- t_{PZL} (DIR to B) = t_{PHZ} (DIR to A) + t_{PHL} (A to B)

In a bidirectional application, these enable times provide the maximum delay from the time the DIR bit is switched until an output is expected. For example, if the SN74AVC1T45 initially is transmitting from A to B, then the DIR bit is switched; the B port of the device must be disabled before presenting it with an input. After the B port has been disabled, an input signal applied to it appears on the corresponding A port after the specified propagation delay.

10.2 Typical Applications

10.2.1 Unidirectional Logic Level-Shifting Application

Figure 12 shows an example of the SN74AVC1T45 being used in a unidirectional logic level-shifting application.

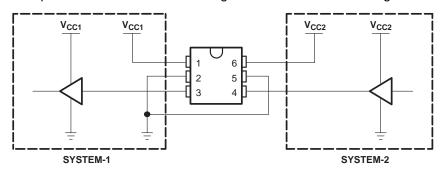


Figure 12. Unidirectional Logic Level-Shifting Application

PIN	NAME	FUNCTION	DESCRIPTION
1	V _{CCA}	V _{CC1}	SYSTEM-1 supply voltage (1.2 V to 3.6 V)
2	GND	GND	Device GND
3	Α	OUT	Output level depends on V _{CC1} voltage.
4	В	IN	Input threshold value depends on V _{CC2} voltage.
5	DIR	DIR	GND (low level) determines B-port to A-port direction.
6	V _{CCB}	V_{CC2}	SYSTEM-2 supply voltage (1.2 V to 3.6 V)

10.2.1.1 Design Requirements

For this design example, use the parameters listed in Table 2.

Table 2. Design Parameters

DESIGN PARAMETERS	EXAMPLE VALUES
Input voltage range	1.2 V to 3.6 V
Output voltage range	1.2 V to 3.6 V

10.2.1.2 Detailed Design Procedure

To begin the design process, determine the following:

- Input voltage range
 - Use the supply voltage of the device that is driving the SN74AVC1T45 device to determine the input voltage range. For a valid logic-high, the value must exceed the VIH of the input port. For a valid logic low the value must be less than the VIL of the input port.
- Output voltage range
 - Use the supply voltage of the device that the SN74AVC1T45 device is driving to determine the output voltage range.

10.2.1.3 Application Curve

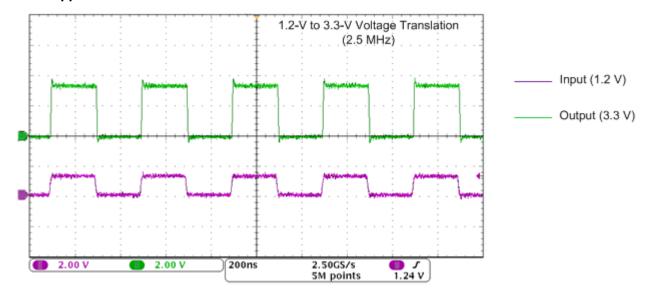


Figure 13. Translation Up (1.2 V to 3.3 V) at 2.5 MHz

10.2.2 Bidirectional Logic Level-Shifting Application

Figure 14 shows the SN74AVC1T45 being used in a bidirectional logic level-shifting application. Because the SN74AVC1T45 does not have an output-enable (OE) pin, the system designer should take precautions to avoid bus contention between SYSTEM-1 and SYSTEM-2 when changing directions.

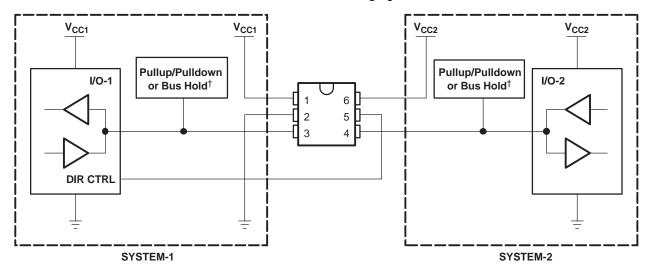


Figure 14. Bidirectional Logic Level-Shifting Application

The following table shows data transmission from SYSTEM-1 to SYSTEM-2 and then from SYSTEM-2 to SYSTEM-1.

Table 3. Data Transmission: SYSTEM-1 and SYSTEM-2

STATE	DIR CTRL	I/O-1	I/O-2	DESCRIPTION
1	Н	Out	In	SYSTEM-1 data to SYSTEM-2
2	Н	Hi-Z	Hi-Z	SYSTEM-2 is getting ready to send data to SYSTEM-1. I/O-1 and I/O-2 are disabled. The busline state depends on pullup or pulldown. (1)
3	L	Hi-Z	Hi-Z	DIR bit is flipped. I/O-1 and I/O-2 still are disabled. The bus-line state depends on pullup or pulldown. (1)
4	L	In	Out	SYSTEM-2 data to SYSTEM-1

⁽¹⁾ SYSTEM-1 and SYSTEM-2 must use the same conditions, i.e., both pullup or both pulldown.

10.2.2.1 Design Requirements

Refer to Design Requirements.

10.2.2.2 Detailed Design Procedure

Refer to Detailed Design Procedure.

10.2.2.3 Application Curve

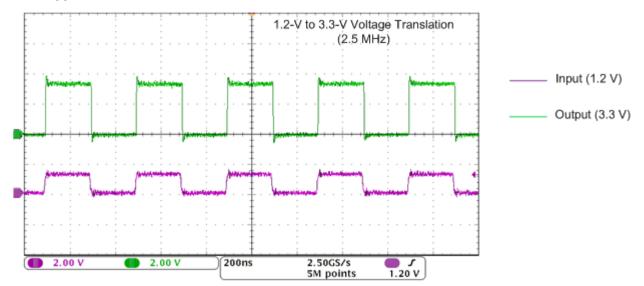


Figure 15. Translation Up (1.2 V to 3.3 V) at 2.5 MHz

3-2014, Texas instruments incorporated

11 Power Supply Recommendations

The SN74AVC1T45 device uses two separate configurable power-supply rails, V_{CCA} and V_{CCB} . V_{CCA} accepts any supply voltage from 1.2 V to 3.6 V and V_{CCB} accepts any supply voltage from 1.2 V to 3.6 V. The A port and B port are designed to track V_{CCA} and V_{CCB} respectively allowing for low-voltage, bidirectional translation between any of the 1.2-V, 1.5 -V, 1.8-V, and 3.3-V voltage nodes.

11.1 Power-Up Considerations

A proper power-up sequence always should be followed to avoid excessive supply current, bus contention, oscillations, or other anomalies. To guard against such power-up problems, take the following precautions:

- 1. Connect ground before any supply voltage is applied.
- 2. Power up V_{CCA}.
- 3. V_{CCB} can be ramped up along with or after V_{CCA} .

VCCA UNIT V_{CCB} 0 V 2.5 V 1.2 V 1.5 V 1.8 V 3.3 V 0 V 0 <0.5 <0.5 <0.5 <0.5 < 0.5 1.2 V <0.5 <1 <1 <1 <1 1 1.5 V < 0.5 <1 <1 <1 <1 1 μΑ 1.8 V <0.5 <1 <1 <1 <1 <1 2.5 V <0.5 1 <1 <1 <1 <1 3.3 V <0.5 <1 <1 <1 <1

Table 4. Typical Total Static Power Consumption ($I_{CCA} + I_{CCB}$)

12 Layout

12.1 Layout Guidelines

To ensure reliability of the device, following common printed-circuit board layout guidelines are recommended:

- Bypass capacitors should be used on power supplies.
- Short trace lengths should be used to avoid excessive loading.
- Placing pads on the signal paths for loading capacitors or pullup resistors to help adjust rise and fall times of signals depending on the system requirements.

12.2 Layout Example

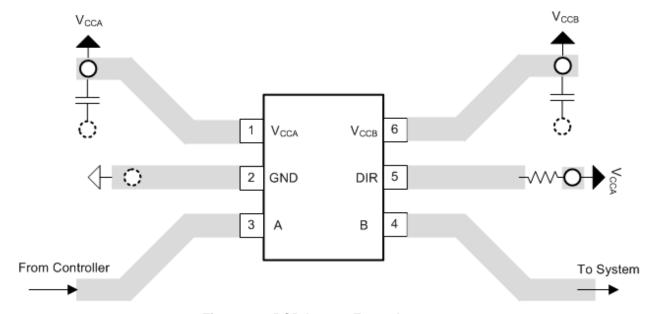


Figure 16. PCB Layout Example

Copyright © 2003–2014, Texas Instruments Incorporated

13 Device and Documentation Support

13.1 Trademarks

NanoFree is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

13.2 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

13.3 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

12-Aug-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
SN74AVC1T45DBVR	ACTIVE	SOT-23	DBV	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(DT1F, DT1R) (DT1H, DT1P)	Samples
SN74AVC1T45DBVRE4	ACTIVE	SOT-23	DBV	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(DT1F, DT1R) (DT1H, DT1P)	Samples
SN74AVC1T45DBVRG4	ACTIVE	SOT-23	DBV	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(DT1F, DT1R) (DT1H, DT1P)	Samples
SN74AVC1T45DBVT	ACTIVE	SOT-23	DBV	6	250	Green (RoHS & no Sb/Br)	CU NIPDAU Call TI	Level-1-260C-UNLIM	-40 to 85	DT1R DT1H	Samples
SN74AVC1T45DBVTE4	ACTIVE	SOT-23	DBV	6	250	Green (RoHS & no Sb/Br)	Call TI	Level-1-260C-UNLIM	-40 to 85	DT1R DT1H	Samples
SN74AVC1T45DBVTG4	ACTIVE	SOT-23	DBV	6	250	Green (RoHS & no Sb/Br)	Call TI	Level-1-260C-UNLIM	-40 to 85	DT1R DT1H	Samples
SN74AVC1T45DCKR	ACTIVE	SC70	DCK	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(TCF, TCR) (TCH, TCP)	Samples
SN74AVC1T45DCKRE4	ACTIVE	SC70	DCK	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(TCF, TCR) (TCH, TCP)	Samples
SN74AVC1T45DCKRG4	ACTIVE	SC70	DCK	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(TCF, TCR) (TCH, TCP)	Samples
SN74AVC1T45DCKT	ACTIVE	SC70	DCK	6	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(TCF, TCR) (TCH, TCP)	Samples
SN74AVC1T45DCKTG4	ACTIVE	SC70	DCK	6	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(TCF, TCR) (TCH, TCP)	Samples
SN74AVC1T45DRLR	ACTIVE	SOT-5X3	DRL	6	4000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TCR TCH	Samples
SN74AVC1T45DRLRG4	ACTIVE	SOT-5X3	DRL	6	4000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	TCR TCH	Samples
SN74AVC1T45YZPR	ACTIVE	DSBGA	YZP	6	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	(TC2, TC7, TCN)	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

PACKAGE OPTION ADDENDUM

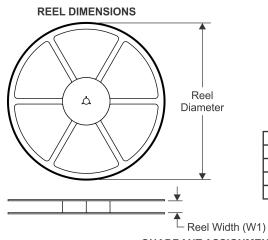
12-Aug-2017

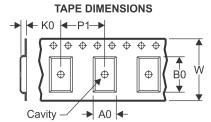
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

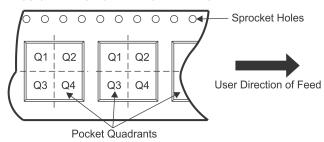
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

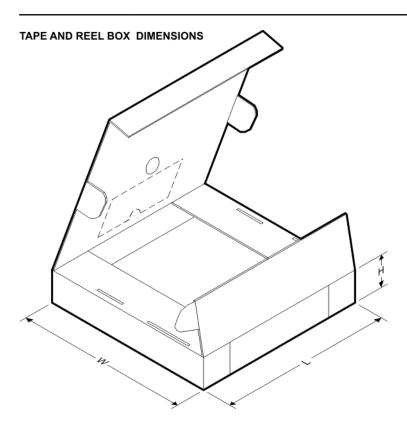

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 3-Aug-2017


TAPE AND REEL INFORMATION

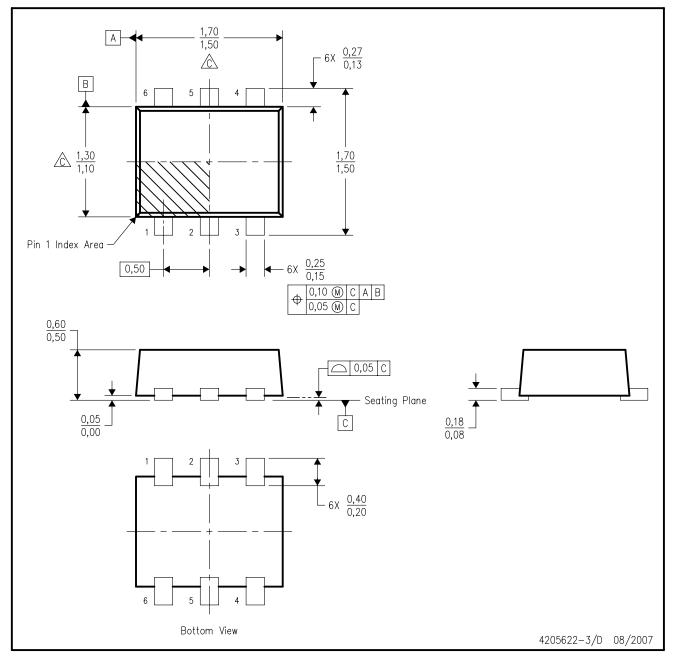
	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74AVC1T45DBVR	SOT-23	DBV	6	3000	180.0	8.4	3.23	3.17	1.37	4.0	8.0	Q3
SN74AVC1T45DBVT	SOT-23	DBV	6	250	180.0	8.4	3.23	3.17	1.37	4.0	8.0	Q3
SN74AVC1T45DCKR	SC70	DCK	6	3000	180.0	8.4	2.41	2.41	1.2	4.0	8.0	Q3
SN74AVC1T45DCKT	SC70	DCK	6	250	180.0	8.4	2.41	2.41	1.2	4.0	8.0	Q3
SN74AVC1T45DRLR	SOT-5X3	DRL	6	4000	180.0	8.4	1.98	1.78	0.69	4.0	8.0	Q3
SN74AVC1T45YZPR	DSBGA	YZP	6	3000	178.0	9.2	1.02	1.52	0.63	4.0	8.0	Q1

www.ti.com 3-Aug-2017



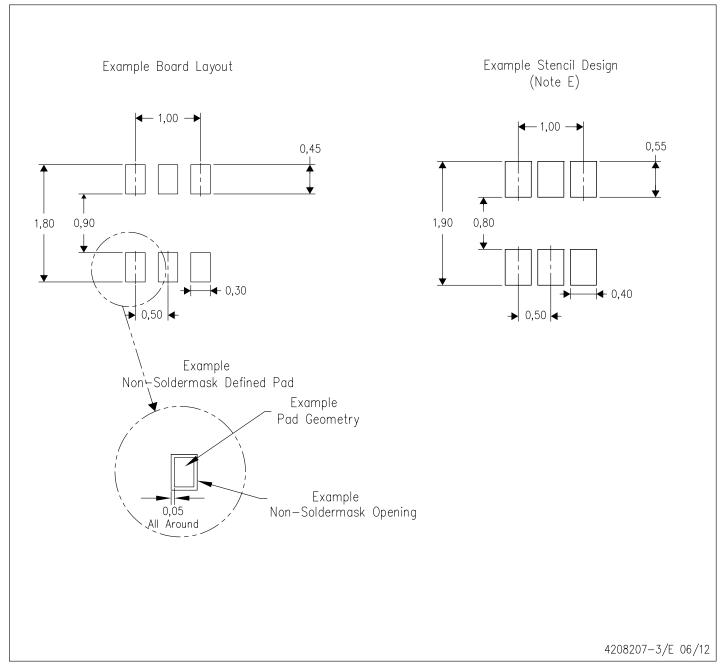
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74AVC1T45DBVR	SOT-23	DBV	6	3000	202.0	201.0	28.0
SN74AVC1T45DBVT	SOT-23	DBV	6	250	202.0	201.0	28.0
SN74AVC1T45DCKR	SC70	DCK	6	3000	202.0	201.0	28.0
SN74AVC1T45DCKT	SC70	DCK	6	250	202.0	201.0	28.0
SN74AVC1T45DRLR	SOT-5X3	DRL	6	4000	202.0	201.0	28.0
SN74AVC1T45YZPR	DSBGA	YZP	6	3000	220.0	220.0	35.0

DRL (R-PDSO-N6)

PLASTIC SMALL OUTLINE

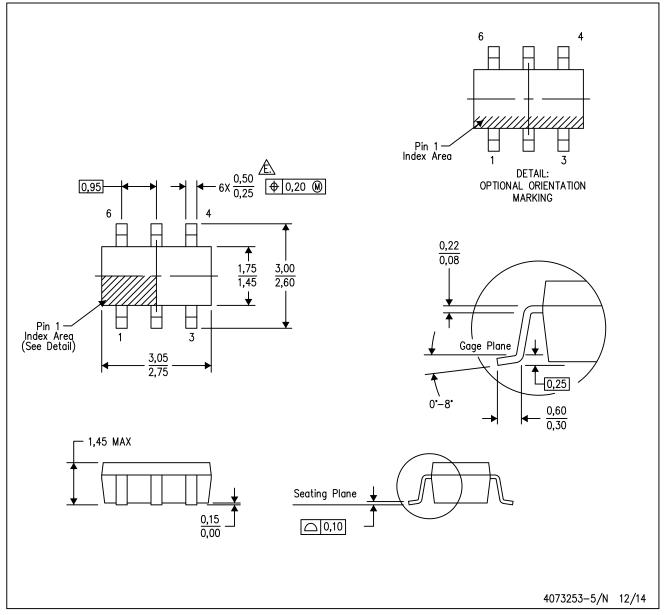
NOTES:


- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body dimensions do not include mold flash, interlead flash, protrusions, or gate burrs.

 Mold flash, interlead flash, protrusions, or gate burrs shall not exceed 0,15 per end or side.
- D. JEDEC package registration is pending.

DRL (R-PDSO-N6)

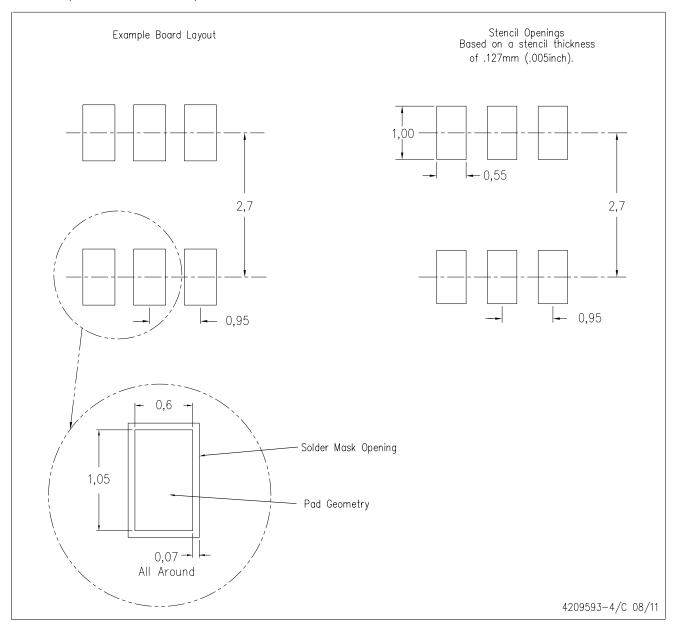
PLASTIC SMALL OUTLINE


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.
- E. Maximum stencil thickness 0,127 mm (5 mils). All linear dimensions are in millimeters.
- F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- G. Side aperture dimensions over—print land for acceptable area ratio > 0.66. Customer may reduce side aperture dimensions if stencil manufacturing process allows for sufficient release at smaller opening.

DBV (R-PDSO-G6)

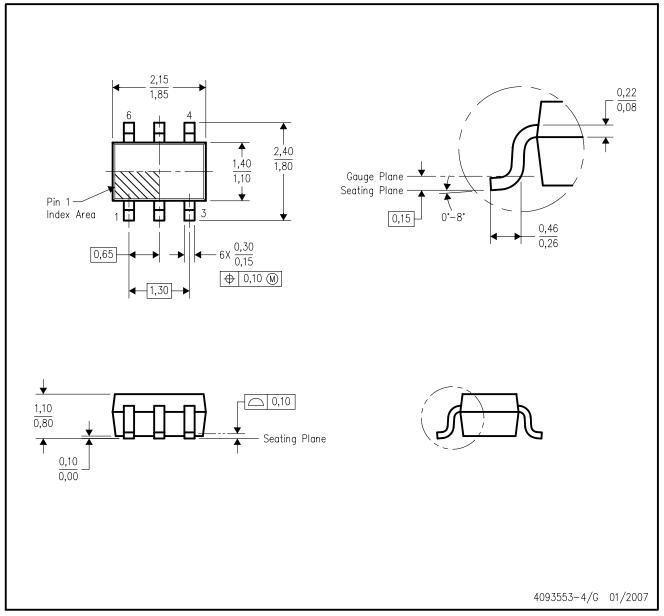
PLASTIC SMALL-OUTLINE PACKAGE


NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.
- Falls within JEDEC MO-178 Variation AB, except minimum lead width.

DBV (R-PDSO-G6)

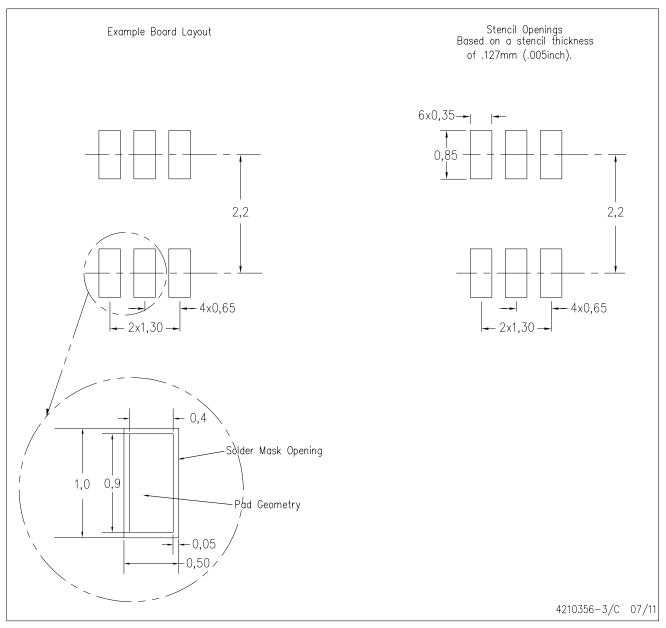
PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

DCK (R-PDSO-G6)

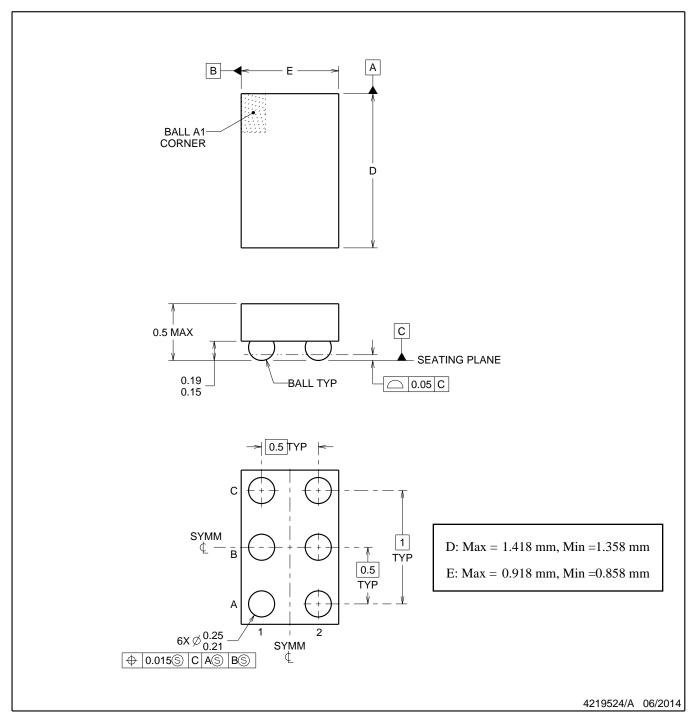
PLASTIC SMALL-OUTLINE PACKAGE


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Falls within JEDEC MO-203 variation AB.

DCK (R-PDSO-G6)

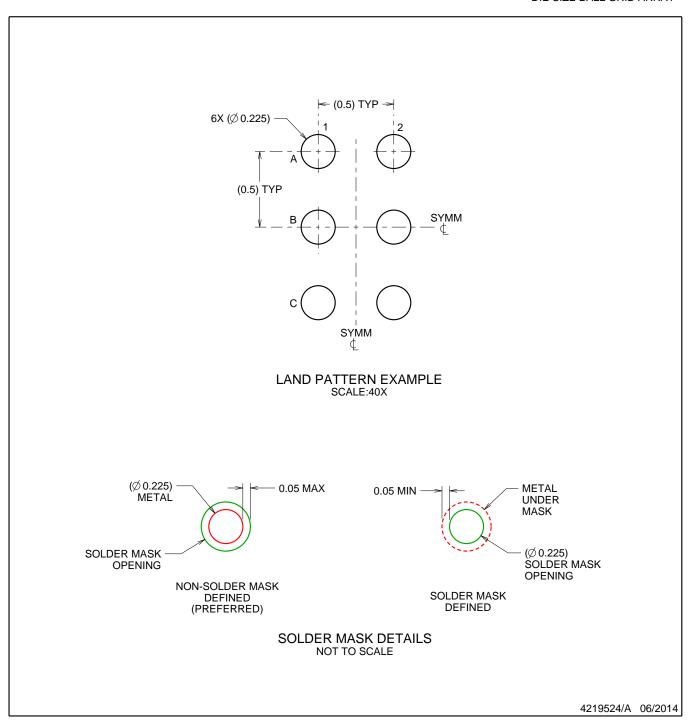
PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

DIE SIZE BALL GRID ARRAY

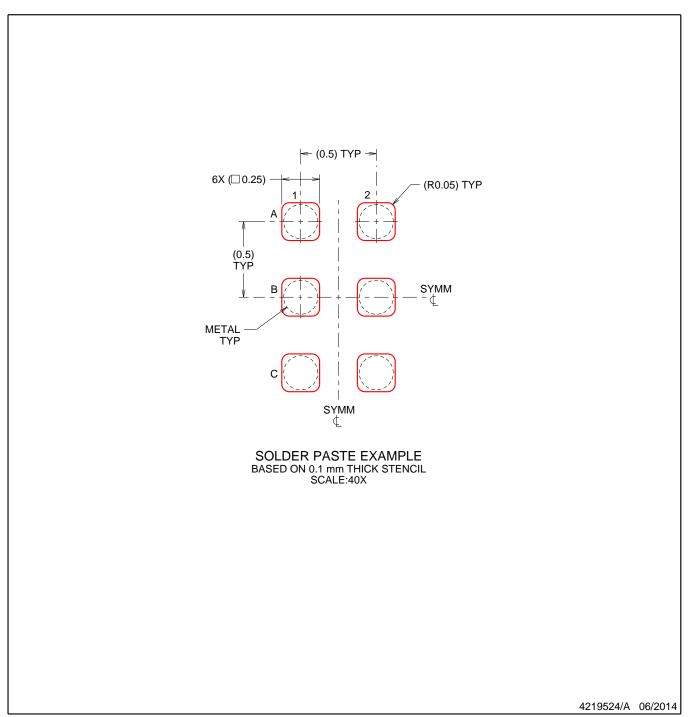
NOTES:


NanoFree Is a trademark of Texas Instruments.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.
- 3. NanoFree[™] package configuration.

DIE SIZE BALL GRID ARRAY



NOTES: (continued)

4. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SBVA017 (www.ti.com/lit/sbva017).

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.