

SANYO Semiconductors DATA SHEET

LB11884-

Monolithic Digital IC Three-in-One Motor Driver for Portable VCR

Overview

LB11884 is a three-in-one motor driver for portable VCR.

Features

- Capstan motor drive unit
 - 3-phase, 120 degrees full conducting, direct PWM drive
 - Built in PWM oscillator
 - Current limiter (It is fixed internally and setup externally.)
 - Forward/reverse rotation
 - 2 levels FG amplifier (Built-in gain resistor)
 - Control amplifier output pin
 - Built-in over-voltage protection function
- Drum motor drive unit
 - 3-phase, 120 degrees full conducting soft switching sensorless drive
 - FG sensorless function
 - 2 levels PG amplifier
 - FG and PG mixing output (Separated output is also possible.)
 - Over-voltage protection function
- Loading motor drive unit
 - H-bridge forward/reverse rotation Motor voltage switch Short brake Input control for 3 values
 - Over-voltage protection function
- Common unit
 - Over-heat protection function (Thermal Shut Down)

- Any and all SANYO Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO Semiconductor representative nearest you before using any SANYO Semiconductor products described or contained herein in such applications.
- SANYO Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor products described or contained herein.

Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
IC source voltage	VREG max		6.5	V
Motor power source 1	C_V _{CC} max		18.0	V
Motor power source 2	DL_V _{CC} max		18.0	V
Applied input voltage	VI1 max		-0.3 to V _{CC} +0.3	V
Motor output current 1	ICOUT max		1.2	А
Motor output current 2	IDOUT max		0.8	А
Motor output current 3	ILOUT max		0.8	A
Allowable internal power dissipation	Pd max1	IC alone	0.6	×
	Pd max2	* Mounted on a specified board	1.8	W
Pin voltage range 1	VPIN max1	C_RSS, C_RSP, C_UOUT, C_VOUT, C_WOUT IVF = 1.2A	C_MGND-VF to C_V _{CC} +VF	
Pin voltage range 2	VPIN max2	D_RF, D_COM, D_UOUT, D_VOUT, D_WOUT IVF = 0.8A	DL_GND-VF to D_V _{CC} +VF	v
Pin voltage range 3	VPIN max3	L_OUT1, L_OUT2 IVF = 0.8A	DL_GND-VF to L_V _{CC} +VF	V
Operating temperature	Topr		-20 to +75	°C
Storage temperature	Tstg		-55 to +150	°C

Note 1: If the current of maximum IC_V_{CC} rate or more flows while the regenerative diode for capstan motor is recovering, the IC will not be damaged.

*: Mounted on a specified board (114.3mm×76.1mm×1.6mm, glass epoxy)

Allowable Operating Range at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Power source voltage 1	VREG		4 to 6	V
Power source voltage 2	C_V _{CC}		8 to 16	V
Power source voltage e 3	DL_V _{CC}		8 to 16	V
Electric potential difference between MGND and SGND	∆GND	(MGND)-(SGND)	-0.3 to +0.4	V

Note: Turning ON/OFF for C_V_{CC} and DL_V_{CC} must be performed while the VREG is OFF.

Electrical Characteristics

Deventer	Symbol Conditions		Ratings			Linit			
Parameter			min	typ	max	Unit			
Common Unit at Ta = 25° C, V _{CC} = 5V, 0	Common Unit at Ta = 25°C, V _{CC} = 5V, CVCO = DLVCO = 12V								
Power source current 1	IREG	D_PGIN = C_FGIN = C_CNT = D_CNT = 0V		17	25	mA			
Power source current 2		Same as above.		1	2	mA			
Power source current 3	IDL_VCC	Same as above.		2.6	4	mA			
Power source current 4	IVCCQ	VREG = 0V, IC_V _{CC} +IDL_V _{CC}			100	μA			
Thermal shutdown temperature	TSD	*Design Target	140	160	180	°C			
Thermal shutdown hysteresis	∆TSD	*Design Target		15		°C			
Capstan Motor Unit at Ta = 25°C, VREG	6 = 5V, C_V _{CC} =	-12V							
Output saturation voltage	CVSAT	I _O = 1.0A, Source+Sink		2.4	3.5	V			
Hall signal input level	VHALL		100			mVp-p			
Hall in-phase input voltage	VCM		1.0		V _{CC} -1.7	V			
C_ILM pin input voltage	VCILM		0		V _{CC}	V			
C_ILM pin input current	ICILM	C_ILM = 3V, sink current		0.5	2.0	μA			
C_ILM offset voltage	OCILM	VCRSP≥10mV	2.440	2.515	2.590	V			
C_ILM gain	GCILM	C_CNT = 5V Calculation of OC_ILM+0.2V and OC_ILM +0.4V.	0.49	0.53	0.57	V/V			
C_ILM pin short brake release voltage	BROFF1		1.1		1.4	V			
Pin current at C_ILM pin short brake released	IBROFF1	Source current, C_ILM = 0V		0.1	0.3	μΑ			
It is a design target value and measurement is not carried out. Continued on next page.									

Continued from preceding page.							
Deremeter	Parameter Symbol Conditions			Ratings		Linit	
Parameter	Symbol	Conditions	min	typ	max	Unit	
C_CNT input voltage	VCCNT		0		V _{CC}	V	
C_CNT input current	ICCNT	C_CNT = 3V, sink current		0.5	2.0	μA	
C_CNT offset voltage	OCCTL	VC_RFP≥10mV	2.440	2.515	2.590	V	
C_CNT gain	GCCNT	C_ILM = 5V Calculation of "OCCNT+0.2V" and "OCCNT+0.4V".	0.49	0.53	0.57	V/V	
C_CNT pin short brake release voltage	BROFF2		1.1		1.4	v	
Pin current at C_CNT pin short brake released	IBROFF2	Source current, C_CNT = 0V		0.1	0.3	μА	
F/R forward voltage	VFW		1.5		V _{CC}	X	
F/R reverse voltage	VRW		0		1	V	
F/R input current	IFR	C_FR = 3V, sink current		100	200	μA	
FG amplifier reference voltage	VFGR	//	2.40	2.50	2.60	V	
Linear amplifier gain DC 36kHz	GDC		29.5	31.1	32.7	fold	
	G36		20.0	25.0	30.0	fold	
Hysteresis amplifier output low level voltage	VHO	I _{HO} = 4mA		0,2	0.4	V	
Hysteresis of hysteresis amplifier	VHS	Both hysteresis	60	72	80	mV	
Hysteresis amplifier output duty ratio	FGDT	360Hz Fgin = 40mVp-p	49	50	51	%	
PWM carrier frequency	FOSC	CPWM = 680pF	18.5	21.7	25.0	kHz	
Internal current limiter setup voltage	CILM	C_RF = 100Ω	0,70	0.75	0.80	V	
Drum Motor Unit at Ta = 25°C, VREG =	5V, DL_V _{CC} = '	12V					
Output saturation voltage	DVSAT	I _O = 0.6A, Source+Sink		1.8	2.6	V	
D_CNT input voltage	VDCNT		0		Vcc	V	
D_CNT input current	IDCNT	D_CNT = 3V, sink current			0.5	μA	
D_CNT offset voltage	ODCNT	VD_RF≥10mV	2.40	2.50	2.60	V	
D_CNT gain	GDCTL	D_RF = 0.5Ω , Calculation of ODCTL+0.2V and ODCTL	0.40	0.50	0.60	V/V	
PCOUT output current 1	IPCOU	Source current *Design target	20	45		μА	
PCOUT output current 2	IPCOD	Sink current *Design target	20	45		μA	
D_VCOIN input current	IVCOIN	D_VCOIN = 3V, sink current			1	uА	
Minimum VCO frequency	FVCO min	D_CX = 0.022µF, D_VCOIN = Open	330	410	500	Hz	
Maximum VCO frequency	FVCO max	D CX = 0.022µF, D VCOIN = 5V	15.0	18.0	21.0	kHz	
D_C1, D_C2 source current ratio	RSOURCE	1-(IC1SOURCE/IC2SOURCE)	-12	0	12	%	
D_C1, D_C2 sink current ratio	RSINK	1-(IC1SINK/IC2SINK)	-12	0	12	%	
D_C1 source/sink current ratio	RC1	IC1SOURCE/IC1SINK	40	50	60	%	
D_C2 source/sink current ratio	RC2	JC2SOURCE/IC2SINK	40	50	60	%	
D_FG output high level voltage	VFH		47			V	
D_FG output low level voltage	VFL	-0.5mA load			0.4	V	
D_PG amplifier reference voltage	VPGR		2.8	3.0	3.2	V	
D_PG amplifier input offset	OPG		-4		+4	mV	
D_PG amplifier input bias	JPG	D_PG- = 2.5V, source current			0.25	uА	
Linear amplifier gain	G1	Freq = 1kHz	50			dB	
Hysteresis amplifier threshold level 1	VHYS1		70	100	130	mV	
Hysteresis amplifier threshold level 2	VHYS2		140	200	260	mV	
D_PG output high level voltage	VPH	0.5mA load	4.7			V	
D_PG output low ILevel voltage	VPL				0.2	V	
FG/PG mix MID voltage	Vmid	D_PGO2 D_FGO short circuit	24	2.5	2.6	v	
Internal current limiter setup voltage	DILM	D_RF = 100Ω	0.38	0.41	0.44	V	
. · · ·	L		1			· ·	

* It is a design target value and measurement is not carried out.

Continued on next page.

Continued from prec	eding page.							
Data	motor	Cu mi		Conditions		Ratings		
Para	ineter	Sym	001	Conditions	min	typ	max	Unit
Loading Unit at Ta	$a = 25^{\circ}C$, VREG = 5V,	DL_V_{CC}	= 12V					
Input voltage	1 (HIGH)	V _{IN} H			4		5	V
	2 (Middle)	V _{IN} M			2		3	V
	3 (LOW)	VINL	VINL		0		1	V
Input current		ILIN0		L_IN = 0V, source side		130	200	μA
		ILIN5		L_IN = 5V, sink side		130	200	μA
Saturation voltage		VSAT U	J-1	Between output and DL_V _{CC} $I_O = 0.6A$, CW/CCW mode		1.9	2.4	4
		VSAT L	1	Between output and DL_GND $I_O = 0.6A$, CW/CCW mode		1.2	1.7	v
		VSAT I	JL	SINK+SOURCE I _O = 0.4A, CW/CCW mode		2.8	3,4	v
Output transistor leak current		Upper	ILU	VREG = 0V			50	μA
		Lower	ILL	VREG = 0V			50	μΑ

Package Dimensions

unit : mm (typ) 3285

Block Diagram

Sample Application Circuit

Note) The sample application circuit is for reference only and the optimum constant may differ depending on motor characteristics.

Pin Assignment

Pin Description

Pin No	Symbol	Pin voltage	Pin Description	Equivalent Circuit
3	C_VCC	8V to 16V	Power pin of capstan motor driver	
20	DL_V _{CC}	8V to 16V	Power pin of drum and loading motor driver	
38	VREG	4V to 6V	Power pin to provide all voltages other than the output transistor and pre-drive.	
6	C_MGND		Capstan motor GND	
32	SGND		GND for all other than output	
1	C_HU+		U-phase Hall element input pin. C_HU+>C_HU- state for logic H	+ Vcc
2	C_HU-	1.0V to V _{CC} -1.7		
43	C_HV+		V-phase Hall element input pin. C_HV+>C_HV-state for logic H	(1) (2) (43) + w + (44)
44	C_HV-			41 42
41	C_HW+		W-phase Hall element input pin. C_HW+>C_HW-state for logic H	
42	C_HW-			111 111
36	C_FGIN-		Capstan FGAMP reverse input pin	V_{CC}
35	C_FGIN+		Capstan FGAMP non-inverted pin	$\begin{array}{c} 2k\Omega \\ 360 \\ \hline \\ $
37	C_FGO		Capstan FGMP linear output pin Return resistor is incorporated with the amplification degree of about 31-fold.	
39	C_FGS		FG Schmidt amp output pin of capstan block	20kΩ \$5kΩ 39 39 39
40	C_FR		Capstan forward/reverse control pin	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ &$
				Continued on next page.

Continue	ed from preceding	page.		
Pin No	Symbol	Pin voltage	Pin Description	Equivalent Circuit
4	C_RFS		Capstan current detection filter pin. Connect the current detected at C_RFP to this pin after passing through the CR filter.	V_{CC}
33	C_PWM		Capacitor connection pin for PWM oscillation at capstan	33 33 300Ω 33 300Ω 300 300
34	C_ILM	0V to V _{CC}	Capstan current limit setting pin	
27	C_CNT	0V to V _{CC}	Capstan speed control voltage application pin	
7	C_WOUT		Capstan W-phase output pin	CVCO
8	C_VOUT		Capstan V-phase output pin	
9	C_UOUT	S	Capstan V-phase output pin	
5	Ć_RFP	5/	PWRTR GND and current return resistor connection pin	
		\bigvee		Continued on next page.

LB11884

Continue	d from preceding	page.		
Pin No	Symbol	Pin voltage	Pin Description	Equivalent Circuit
29	D_FC		Drum frequency characteristics compensation pin. Insertion of a capacitor to GND stops oscillation of the closed loop of current control system.	
23	D_CNT	0V to V _{CC}	Drum speed control pin. Control is the constant current control to which current return is applied from D_RF.	
21	D_PGIN+	0.5V to V _{CC}	Drum PG amplifier non-inverted input pin. Biased internally to (3/5)×VREG.	
19	D_PGIN-		Drum PG amplifier inverted input pin	

Continued on next page.

Continue	d from preceding	page.	•	
Pin No	Symbol	Pin voltage	Pin Description	Equivalent Circuit
13	D_UOUT		Drum motor driver output pin	
14	D_VOUT			
16	D_WOUT			
15	D_RF		Minimum potential of drum motor driver output transistor. Constant- current control is made through detection of this voltage. The current limiter also functions by detecting this potential.	
17	D_COM		Motor coil neutral point input pin. The coil voltage waveform is detected with reference to this voltage.	DVCO 131416 $10k\Omega$ $2k\Omega \neq 200\Omega$ $2k\Omega \neq 200\Omega$ 777200Ω 777200Ω 777200Ω 777700
31	D_C1		Triangular wave generating capacitor connection pin of drum block. This triangular wave performs soft- switching of the coil output waveform.	
30	D_C2			
28	D_CX		In the VCO circuit, the operation frequency range and minimum operation frequency are determined by means of the capacitor value connected to this pin and GND.	
				Continued on next page

5

Continue	d from preceding p	age.		
Pin No	Symbol	Pin voltage	Pin Description	Equivalent Circuit
26	L_IN	0V to V _{CC}	Loading logic input pin	
12	L_OUT1		Loading motor driver output pin	20
10	L_OUT2			
11	DL_GND		Loading output transistor GND pin	

Timing Chart and Truth Table

1. Capstan Motor Driver Drive waveform (C_FR = L)

2. Capstan Motor Driver Drive waveform (C_FR = H)

3. Capstan Motor Driver Truth Table & Control Functions

	Course , Cink				
	Source→Sink	U	V	W	C_FR
4	$V\toW$				н
1	$W\toV$	н	н	L	L
_	$U\toW$				н
2	$W\toU$	н	L	L	L
	$U\toV$		L	н	Н
3	$V\toU$	н			L
4	$W\toV$		L	н	н
4	$V\toW$	L			L
_	$W\toU$				Н
5	$U\toW$	L	н	н	L
6	$V \rightarrow U$				Н
6	$U \rightarrow V$	L	п	L	L

Note) H of FRC means the voltage of 1.5V or more while L means the voltage of 1.0V or less. (At $V_{CC} = 5V$)

Note) For the Hall input, the input H means the condition in which (+) relative to each phase input (-) is higher by 0.1V. The input L means the condition in which (+) relative to (-) is lower by 0.1V or more.

Control function & control limiting function

Caution: For the VCRF voltage of control characteristics, the peak value is to be measured. Cautions for use)

1. Capstan short-brake safety conditions

• $C_V_{CC} = 14V$ or less • 1500 rpm or less. Limiter 1.1 to 2.6V. 33μ F or more between C_V_{CC} - C_MGND 2. Capstan direct F/R safety conditions

• C_V_{CC} = 16V or less • 2500 rpm or less. Limiter 2.6 to 3.0V. 33µF or more between C_V_{CC} -C_MGND

4. Drum Motor Driver Drive current waveform

5. Loading Motor Truth table

Input	Output		Mada
L_IN	L_OUT1	L_OUT2	Mode
L	L	н	Reverse
M (or OPEN)	4	L	Brake
Н	н		Forward
	5		

- Specifications of any and all SANYO Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment. SANYO Semiconductor Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design. In the event that any or all SANYO Semiconductor products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Semiconductor Co., Ltd. Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of January, 2007. Specifications and information herein are subject to change without notice.