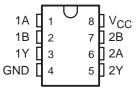
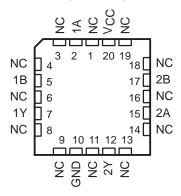
SLRS022A - DECEMBER 1976 - REVISED OCTOBER 1995


PERIPHERAL DRIVERS FOR HIGH-VOLTAGE, HIGH-CURRENT DRIVER APPLICATIONS

- Characterized for Use to 300 mA
- High-Voltage Outputs
- No Output Latch-Up at 30 V (After Conducting 300 mA)
- Medium-Speed Switching
- Circuit Flexibility for Varied Applications and Choice of Logic Function
- TTL-Compatible Diode-Clamped Inputs
- Standard Supply Voltages
- Plastic DIP (P) With Copper Lead Frame for Cooler Operation and Improved Reliability
- Package Options Include Plastic Small Outline Packages, Ceramic Chip Carriers, and Standard Plastic and Ceramic 300-mil DIPs


SUMMARY OF SERIES 55461/75461

DEVICE	LOGIC	PACKAGES
SN55461	AND	FK, JG
SN55462	NAND	FK, JG
SN55463	OR	FK, JG
SN75461	AND	D, P
SN75462	NAND	D, P
SN75463	OR	D, P

SN55461, SN55462, SN55463 . . . JG PACKAGE SN75461, SN75462, SN75463 . . . D OR P PACKAGE (TOP VIEW)

SN55461, SN55462, SN55463 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

description

These dual peripheral drivers are functionally interchangeable with SN55451B through SN55453B and SN75451B through SN75453B peripheral drivers, but are designed for use in systems that require higher breakdown voltages than those devices can provide at the expense of slightly slower switching speeds. Typical applications include logic buffers, power drivers, relay drivers, lamp drivers, MOS drivers, line drivers, and memory drivers.

The SN55461/SN75461, SN55462/SN75462, and SN55463/SN75463 are dual peripheral AND, NAND, and OR drivers respectively (assuming positive logic), with the output of the gates internally connected to the bases of the npn output transistors.

Series SN55461 drivers are characterized for operation over the full military temperature range of -55°C to 125°C. Series SN75461 drivers are characterized for operation from 0°C to 70°C.

SN55461 THRU SN55463 SN75461 THRU SN75463 DUAL PERIPHERAL DRIVERS

SLRS022A - DECEMBER 1976 - REVISED OCTOBER 1995

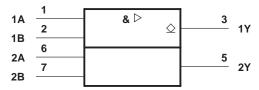
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

		SN55'	SN75'	UNIT		
Supply voltage, V _{CC} (see Note 1)		7	7	V		
Input voltage, V _I		5.5	5.5	V		
Intermitter voltage (see Note 2)		5.5	5.5	V		
Off-state output voltage, VO	35	35	V			
Continuous collector or output current (see Note 3)	400	400	mA			
Peak collector or output current ($t_W \le 10$ ms, duty cycle $\le 50\%$, see No.	ote 4)	500	500	mA		
Continuous total power dissipation		See Dissi	See Dissipation Rating Table			
Operating free-air temperature range, TA		-55 to 125	0 to 70	°C		
Storage temperature range, T _{Stg}		-65 to 150	-65 to 150	°C		
Case temperature for 60 seconds, T _C	FK package	260		°C		
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds	JG package	300		°C		
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	D or P package		260	°C		

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. Voltage values are with respect to network GND unless otherwise specified.

- 2. This is the voltage between two emitters A and B.
- 3. This value applies when the base-emitter resistance (RBE) is equal to or less than 500 Ω .
- 4. Both halves of these dual circuits may conduct rated current simultaneously; however, power dissipation averaged over a short time interval must fall within the continuous dissipation rating.


DISSIPATION RATING TABLE

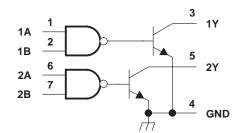
PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 125°C POWER RATING
D	725 mW	5.8 mW/°C	464 mW	-
FK	1375 mW	11.0 mW/°C	880 mW	275 mW
JG	1050 mW	8.4 mW/°C	672 mW	210 mW
Р	1000 mW	8.0 mW/°C	640 mW	-

recommended operating conditions

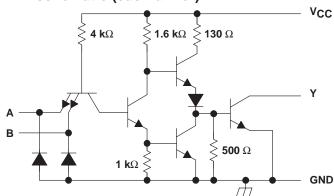
		SN55'			SN75'		
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level input voltage, V _{IH}	2			2			V
Low-level input voltage, V _{IL}			0.8			0.8	V
Operating free-air temperature, TA	-55		125	0		70	°C

logic symbol†

† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.


Pin numbers shown are for D, JG, and P packages.

FUNCTION TABLE (each driver)


Α	В	Υ
L	L	L (on state)
L	Н	L (on state)
Н	L	L (on state)
Н	Н	H (off state)

positive logic: $\underline{\underline{}}$ Y = AB or \overline{A} + \overline{B}

logic diagram (positive logic)

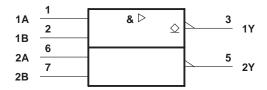
schematic (each driver)

Resistor values shown are nominal.

electrical characteristics over recommended operating free-air temperature range

	24244555			,	SN55461		SN75461			
	PARAMETER		TEST CONDITIONS†		TYP [‡]	MAX	MIN	TYP [‡]	MAX	UNIT
VIK	Input clamp voltage	$V_{CC} = MIN,$	$I_{I} = -12 \text{ mA}$		-1.2	-1.5		-1.2	-1.5	V
ГОН	High-level output current	V _{CC} = MIN, V _{OH} = 35 V	V _{IH} = MIN,			300			100	μΑ
.,	Low-level output voltage	V _{CC} = MIN, I _{OL} = 100 mA			0.25	0.5		0.25	0.4	.,
VOL		V _{CC} = MIN, I _{OL} = 300 mA			0.5	0.8		0.5	0.7	V
II	Input current at maximum input voltage	$V_{CC} = MAX$,	V _I = 5.5 V			1			1	mA
lН	High-level input current	$V_{CC} = MAX$,	V _I = 2.4 V			40			40	μΑ
I _I L	Low-level input current	$V_{CC} = MAX$,	V _I = 0.4 V		-1	-1.6		-1	-1.6	mA
ICCH	Supply current, outputs high	$V_{CC} = MAX$,	V _I = 5 V		8	11		8	11	mA
ICCL	Supply current, outputs low	$V_{CC} = MAX$,	V _I = 0		56	76		56	76	mA

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

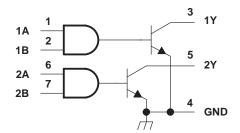

switching characteristics, V_{CC} = 5 V, T_A = 25°C

	PARAMETER			TEST CONDITIONS			MAX	UNIT
^t PLH	Propagation delay time, low-to-high-level o	utput				30	55	
tPHL	tPHL Propagation delay time, high-to-low-level output		I _O ≈ 200 mA,	$C_{L} = 15 \text{ pF},$		25	40	
tTLH			$R_L = 50 \Omega$,	See Figure 1		8	20	ns
tTHL	Transition time, high-to-low-level output		1			10	20	
V	High level output voltage ofter outtaking	SN55461	V _S = 30 V,	l _O ≈ 300 mA,		V _S -10		mV
VOH	High-level output voltage after switching	SN75461	See Figure 2	-	V _S -10			IIIV

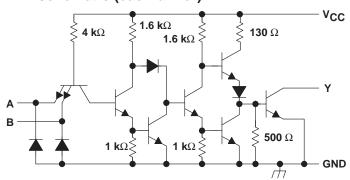
[‡] All typical values are at V_{CC} = 5 V, T_A = 25°C.

logic symbol†

† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.


Pin numbers shown are for D, JG, and P packages.

FUNCTION TABLE (each driver)


Α	В	Y
L	L	H (off state)
L	Н	H (off state)
Н	L	H (off state)
Н	Н	L (on state)

positive logic: $\underline{\quad Y = AB \text{ or } A + B}$

logic diagram (positive logic)

schematic (each driver)

Resistor values shown are nominal.

electrical characteristics over recommended operating free-air temperature range

	24244555		IDITION OF	SN55462			SN75462			
	PARAMETER	TEST CONDITIONS†		MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIK	Input clamp voltage	$V_{CC} = MIN,$	$I_{I} = -12 \text{ mA}$		-1.2	-1.5		-1.2	-1.5	V
ЮН	High-level output current	V _{CC} = MIN, V _{OH} = 35 V	V _{IL} = 0.8 V,			300			100	μΑ
.,	Low-level output voltage	$V_{CC} = MIN,$ $I_{OL} = 100 \text{ mA}$			0.25	0.5		0.25	0.4	.,
VOL		V _{CC} = MIN, I _{OL} = 300 mA			0.5	0.8		0.5	0.7	V
Ц	Input current at maximum input voltage	$V_{CC} = MAX$,	V _I = 5.5 V			1			1	mA
lіН	High-level input current	$V_{CC} = MAX$,	V _I = 2.4 V			40			40	μΑ
IIL	Low-level input current	$V_{CC} = MAX$,	V _I = 0.4 V		-1.1	-1.6		-1.1	-1.6	mA
ІССН	Supply current, outputs high	$V_{CC} = MAX$,	V _I = 0		13	17		13	17	mA
ICCL	Supply current, outputs low	$V_{CC} = MAX$,	V _I = 5 V		61	76		61	76	mA

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

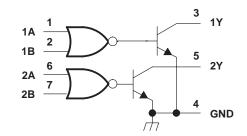
switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

	PARAMETER			TEST CONDITIONS			MAX	UNIT
tPLH	Propagation delay time, low-to-high-level of	utput				45	65	
tPHL				$C_L = 15 pF$,		30	50	
tTLH				See Figure 1		13	25	ns
tTHL	t _{THL} Transition time, high-to-low-level output					10	20	
V	/ High lovel output valte as after quitables	SN55462	$V_S = 30 \text{ V},$	I _O ≈ 300 mA,		V _S -10		mV
VOH	High-level output voltage after switching	SN75462	See Figure 2		V _S -10			IIIV

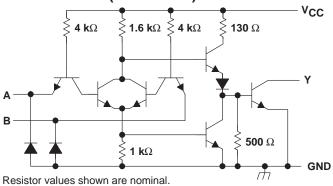
[‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

logic symbol†

† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.


Pin numbers shown are for D, JG, and P packages.

FUNCTION TABLE (each driver)


Α	В	Y
L	L	L (on state)
L	Н	H (off state)
Н	L	H (off state)
Н	Н	H (off state)

positive logic: $Y = A + B \text{ or } \overline{A} \overline{B}$

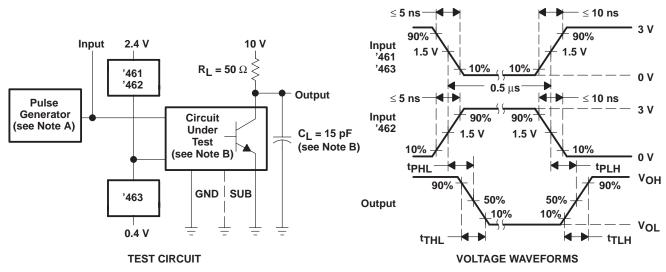
logic diagram (positive logic)

schematic (each driver)

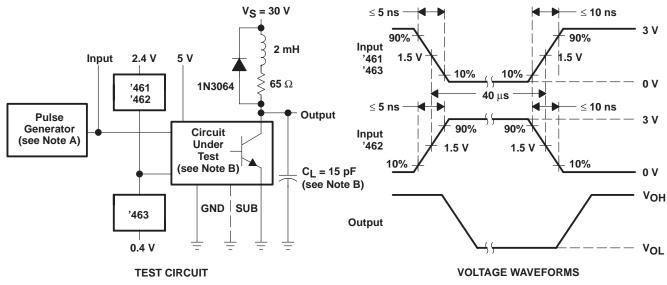
electrical characteristics over recommended operating free-air temperature range

	DADAMETED	TEOT 001	IDITIONST	•	SN55463			UNIT		
	PARAMETER	TEST CONDITIONS†		MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNII
VIK	Input clamp voltage	$V_{CC} = MIN,$	$I_{I} = -12 \text{ mA}$		-1.2	-1.5		-1.2	-1.5	V
ЮН	High-level output current	V _{CC} = MIN, V _{OH} = 35 V	V _{IH} = MIN,			300			100	μΑ
V	Low-level output voltage	V _{CC} = MIN, I _{OL} = 100 mA			0.25	0.5		0.25	0.4	V
VOL		$V_{CC} = MIN,$ $I_{OL} = 300 \text{ mA}$			0.5	0.8		0.5	0.7	V
II	Input current at maximum input voltage	$V_{CC} = MAX$,	V _I = 5.5 V			1			1	mA
ΙН	High-level input current	$V_{CC} = MAX$,	V _I = 2.4 V			40			40	μΑ
IլL	Low-level input current	$V_{CC} = MAX$,	V _I = 0.4 V		-1	-1.6		-1	-1.6	mA
ICCH	Supply current, outputs high	$V_{CC} = MAX$,	V _I = 5 V		8	11		8	11	mA
ICCL	Supply current, outputs low	$V_{CC} = MAX$,	V _I = 0		58	76		58	76	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.


switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

	PARAMETER		TEST CO	TEST CONDITIONS			MAX	UNIT
tPLH	Propagation delay time, low-to-high-level o				30	55		
tPHL	Propagation delay time, high-to-low-level o	I _O ≈ 200 mA,	C _L = 15 pF, See Figure 1		25	40		
tTLH	Transition time, low-to-high-level output	$R_L = 50 \Omega$,			8	25	ns	
tTHL	Transition time, high-to-low-level output				10	25	ı	
V	High-level output voltage after switching	SN55463	V _S = 30 V,	l _O ≈ 300 mA,		V _S -10		mV
VOH		SN75463	See Figure 2	-	V _S -10			IIIV


[‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

PARAMETER MEASUREMENT INFORMATION

- NOTES: A. The pulse generator has the following characteristics: PRR \leq 1 MHz, $Z_O\approx50~\Omega$
 - B. C_L includes probe and jig capacitance.

Figure 1. Test Circuit and Voltage Waveforms for Switching Times

- NOTES: A. The pulse generator has the following characteristics: PRR \leq 12.5 kHz, Z_O = 50 Ω .
 - B. C_L includes probe and jig capacitance.

Figure 2. Test Circuit and Voltage Waveforms for Latch-Up Test

17-Mar-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	_		Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
JM38510/12908BPA	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510 /12908BPA	Samples
M38510/12908BPA	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510 /12908BPA	Samples
SN75462D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	75462	Samples
SN75462DR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	75462	Samples
SN75462P	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN75462P	Samples
SN75462PE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN75462P	Samples
SN75463P	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN75463P	Samples
SNJ55462FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	SNJ55 462FK	Samples
SNJ55462JG	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	-55 to 125	SNJ55462JG	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

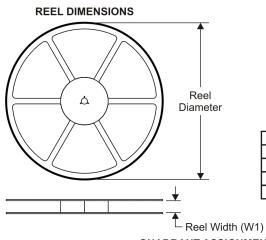
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

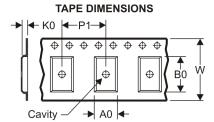
⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

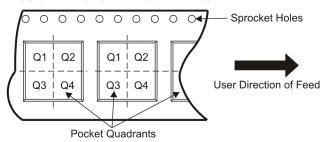
PACKAGE OPTION ADDENDUM

17-Mar-2017

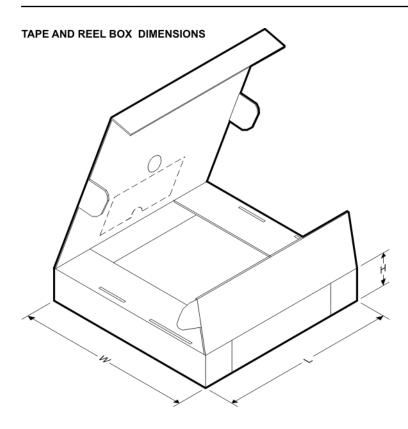

- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

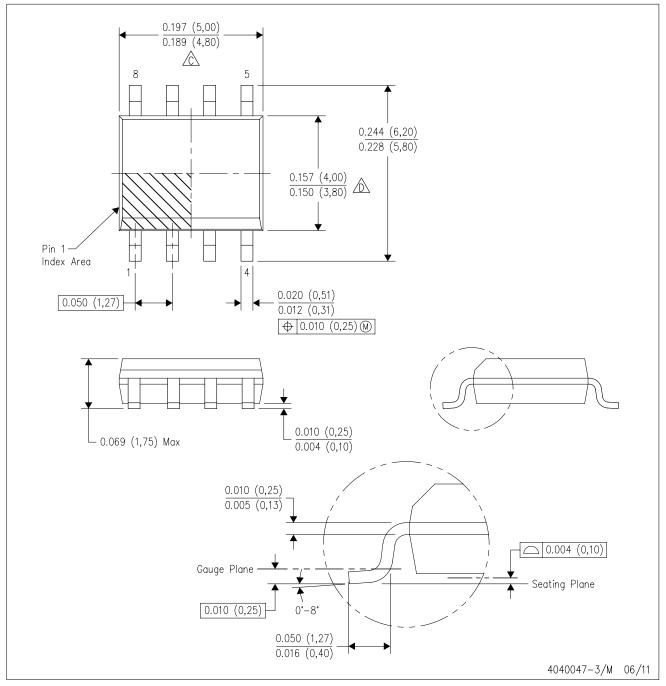

TAPE AND REEL INFORMATION

_		
	A0	Dimension designed to accommodate the component width
	B0	Dimension designed to accommodate the component length
		Dimension designed to accommodate the component thickness
	W	Overall width of the carrier tape
Γ	P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device		Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN75462DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

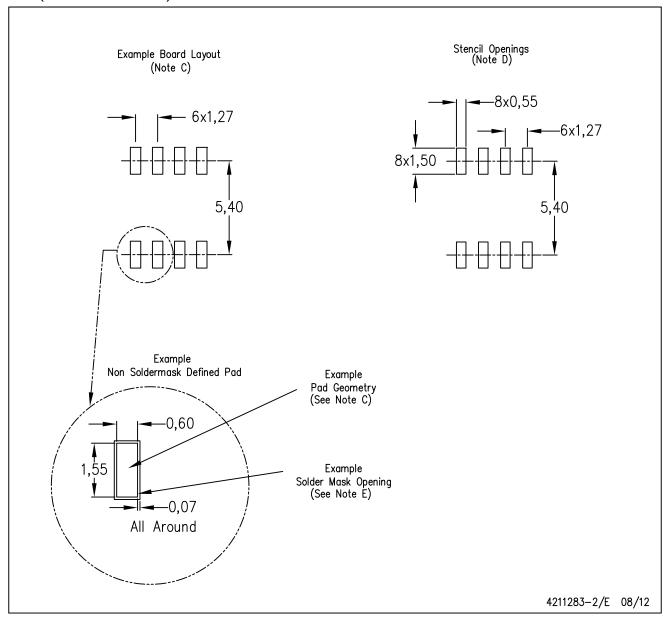


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
SN75462DR	SOIC	D	8	2500	340.5	338.1	20.6	

D (R-PDSO-G8)

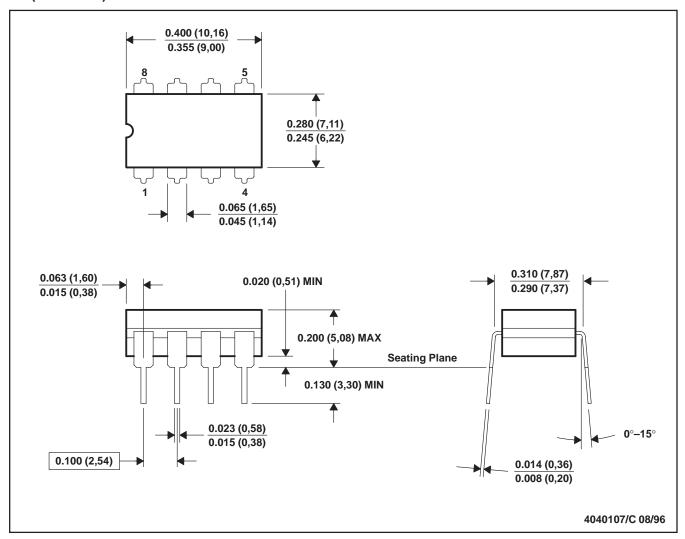
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

D (R-PDSO-G8)

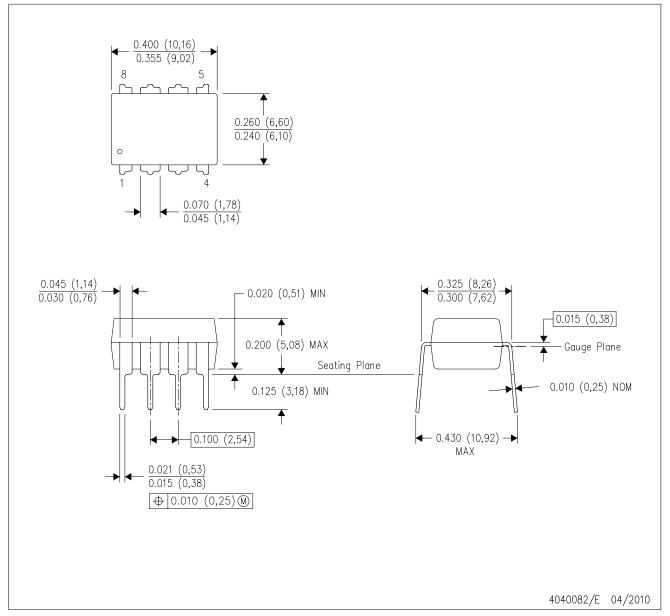
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

JG (R-GDIP-T8)

CERAMIC DUAL-IN-LINE

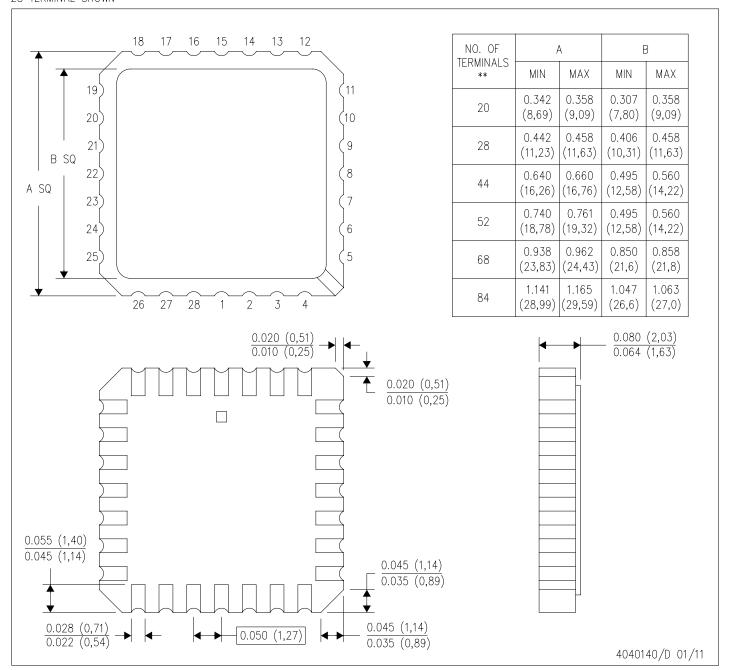


NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification.
- E. Falls within MIL STD 1835 GDIP1-T8

P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

FK (S-CQCC-N**)

LEADLESS CERAMIC CHIP CARRIER

28 TERMINAL SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.