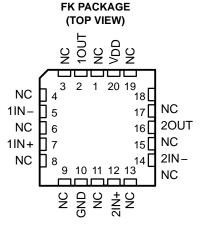
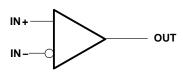
- Very Low Power . . . 110 μW Typ at 5 V
- Fast Response Time . . . t_{PLH} = 2.5 μs Typ With 5-mV Overdrive
- Single Supply Operation:

TLC393C . . . 3 V to 16 V TLC393I . . . 3 V to 16 V TLC393Q . . . 4 V to 16 V TLC393M . . . 4 V to 16 V TLC193M . . . 4 V to 16 V


On-Chip ESD Protection

description

The TLC193 and TLC393 consist of dual independent micropower voltage comparators designed to operate from a single supply. They are functionally similar to the LM393 but uses one-twentieth the power for similar response times. The open-drain MOS output stage interfaces to a variety of loads and supplies. For a similar device with a push-pull output configuration (see the TLC3702 data sheet).


Texas Instruments LinCMOS™ process offers superior analog performance to standard CMOS processes. Along with the standard CMOS advantages of low power without sacrificing speed, high input impedance, and low bias currents, the LinCMOS™ process offers extremely stable input offset voltages, even with differential input stresses of several volts. This characteristic makes it possible to build reliable CMOS comparators.

NC - No internal connection

symbol (each comparator)

The TLC393C is characterized for operation over the commercial temperature range of $T_A = 0^{\circ}\text{C}$ to 70°C . The TLC393I is characterized for operation over the extended industrial temperature range of $T_A = -40^{\circ}\text{C}$ to 85°C . The TLC393Q is characterized for operation over the full automotive temperature range of $T_A = -40^{\circ}\text{C}$ to 125°C . The TLC193M and TLC393M are characterized for operation over the full military temperature range of $T_A = -55^{\circ}\text{C}$ to 125°C .

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

LinCMOS is a trademark of Texas Instruments Incorporated. All other trademarks are the property of their respective owners.


SLCS115D - DECEMBER 1986 - REVISED JULY 2003

AVAILABLE OPTIONS

	V			PACKAGES		
TA	V _{IO} max at 25°C	SMALL OUTLINE (D)	CHIP CARRIER (FK)	CERAMIC DIP (JG)	PLASTIC DIP (P)	TSSOP (PW)
0°C to 70°C	5 mV	TLC393CD	_		TLC393CP	TLC393CPWLE
– 40°C to 85°C	5 mV	TLC393ID	_		TLC393IP	TLC393IPWLE
– 40°C to 125°C	5 mV	TLC393QD	_	_	_	_
– 55°C to 125°C	5 mV	TLC393MD	TLC193MFK	TLC193MJG	TLC393MP	_

The D package is available taped and reeled. Add the suffix R to the device type (e.g., TLC393CDR).

schematic

OPEN-DRAIN CMOS OUTPUT

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{DD} (see Note	1)	– 0.3 V to 18 V
Differential input voltage, VID (see Not	e 2)	±18 V
Input voltage range, V _I		– 0.3 V to V _{DD}
Output voltage range, VO		– 0.3 V to 16 V
Output current, IO (each output)		20 mA
Total supply current into V _{DD}		40 mA
Total current out of GND		40 mA
Continuous total power dissipation		See Dissipation Rating Table
Operating free-air temperature range:	TLC393C	0°C to 70°C
	TLC393I	– 40°C to 85°C
	TLC393Q	– 40°C to 125°C
	TLC393M	– 55°C to 125°C
	TLC193M	
Storage temperature range		– 65°C to 150°C
Case temperature for 60 seconds: FK	package	260°C
Lead temperature 1,6 mm (1/16 inch)	from case for 10 seconds: D or P packa	ge 260°C
Lead temperature 1,6 mm (1/16 inch)	from case for 60 seconds: JG package	300°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATING TABLE

PACKAGE T _A ≤ 25°C POWER RATING		:KΔ(i+ '`		T _A = 85°C POWER RATING	T _A = 125°C POWER RATING	
D	725 mW	5.8 mW/°C	464 mW	377 mW	145 mW	
FK	1375 mW	11.0 mW/°C	880 mW	715 mW	275 mW	
JG	1050 mW	8.4 mW/°C	672 mW	546 mW	210 mW	
Р	1000 mW	8.0 mW/°C	640 mW	520 mW	_	
PW	525 mW	4.2 mW/°C	336 mW	273 mW	_	

NOTES: 1. All voltage values, except differential voltages, are with respect to network ground.

^{2.} Differential voltages are at IN+ with respect to IN-.

SLCS115E - DECEMBER 1986 - REVISED JULY 2003

recommended operating conditions

		TLC393C MIN NOM MAX			
	MIN	MIN NOM MAX 3 5 16		UNIT	
Supply voltage, V _{DD}	3	5	16	V	
Common-mode input voltage, V _{IC}	-0.2		V _{DD} – 1.5	V	
Low-level output current, IOL			20	mA	
Operating free-air temperature, T _A	0		70	°C	

electrical characteristics at specified operating free-air temperature, V_{DD} = 5 V (unless otherwise noted)

	24244555		_	TLC3	93C			
	PARAMETER	TEST CONDITIONS†	TA	MIN	TYP	MAX	UNIT	
V _{IO}	Input offset voltage	$V_{IC} = V_{ICR}$ min, $V_{DD} = 5 \text{ V to } 10 \text{ V}$,	25°C		1.4	5	mV	
VIO	input onset voltage	See Note 3	0°C to 70°C			6.5	IIIV	
	lanut affact current	V 25V	25°C		1		pА	
lo	Input offset current	V _{IC} = 2.5 V	70°C			0.3	nA	
	logue biog guerrant	\\ 25\\	25°C		5		pА	
IВ	Input bias current	V _{IC} = 2.5 V	70°C			0.6	nA	
\/	Common mode innut valtage was		25°C	0 to V _{DD} – 1				
VICR	Common-mode input voltage range		0°C to 70°C	0 to V _{DD} – 1.5			V	
			25°C		84			
CMMR	Common-mode rejection ratio	V _{IC} = V _{ICR} min	70°C		84		dB	
			0°C		84			
			25°C		85			
ksvr	Supply-voltage rejection ratio	$V_{DD} = 5 V \text{ to } 10 V$	70°C		85		dB	
			0°C		85			
,,			25°C		300	400	.,	
VOL	Low-level output voltage	$V_{ID} = -1 \text{ V}, I_{OL} = 6 \text{ mA}$	70°C			650	mV	
	I Pak I and antend annual	V 4V V 5V	25°C		0.8	40	nA	
ЮН	High-level output current	$V_{ID} = 1 \text{ V}, V_{O} = 5 \text{ V}$	70°C			1	μΑ	
1	Supply current (both comparators)	Outputs low, No load	25°C		22	40	^	
lDD	Supply current (both comparators)	Outputs low, No load	0°C to 70°C			50	μΑ	

[†] All characteristics are measured with zero common-mode voltage unless otherwise noted.

NOTE 3: The offset voltage limits given are the maximum values required to drive the output up to 4.5 V or down to 0.3 V.

SLCS115D - DECEMBER 1986 - REVISED JULY 2003

recommended operating conditions

		TLC39	31	UNIT
	MIN	MIN NOM MAX		
Supply voltage, V _{DD}	3	5	16	V
Common-mode input voltage, V _{IC}	- 0.2		V _{DD} – 1.5	V
Low-level output current, IOL			20	mA
Operating free-air temperature, T _A	- 40		85	°C

electrical characteristics at specified operating free-air temperature, V_{DD} = 5 V (unless otherwise noted)

PARAMETER		TEST CONDITIONS!	_	TLC3	931		UNIT
	PARAMETER	TEST CONDITIONS†	TA	MIN	TYP	MAX	UNII
Via	Input offset voltage	V _{IC} = V _{ICR} min, V _{DD} = 5 V to 10 V,	25°C		1.4	5	mV
V _{IO}	input onset voitage	See Note 3	-40°C to 85°C			7	IIIV
1	Input offeet ourrent	V: = = 2.5.V	25°C		1		pA
liO	Input offset current	V _{IC} = 2.5 V	85°C			1	nA
l.a	Input bias current	V:0 - 2 5 V	25°C		5		pA
I _{IB}	input bias current	V _{IC} = 2.5 V	85°C			2	nA
V	Common mode input valtage range		25°C	0 to V _{DD} – 1			٧
VICR	Common-mode input voltage range		-40°C to 85°C	0 to V _{DD} – 1.5			V
			25°C		84		
CMMR	Common-mode rejection ratio	$V_{IC} = V_{ICR}min$	85°C		84		dB
			– 40°C		84		
			25°C		85		
ksvr	Supply-voltage rejection ratio	V _{DD} = 5 V to 10 V	85°C		85		dB
			– 40°C		84		
V	Law law Law to the same	V 4V 1 0 A	25°C		300	400	\/
VOL	Low-level output voltage	$V_{ID} = -1 \text{ V}, I_{OL} = 6 \text{ mA}$	85°C			700	mV
	Ligh lovel output ourrent	V- 4V V- EV	25°C		0.8	40	nA
ІОН	High-level output current	$V_{ID} = 1 \text{ V}, V_{O} = 5 \text{ V}$	85°C			1	μΑ
loo	Supply current (both comparators)	Outputs low, No load	25°C		22	40	μΑ
lDD	Cupply culterit (both comparators)	Outputs low, 140 load	-40°C to 85°C			65	μΛ

[†] All characteristics are measured with zero common-mode voltage unless otherwise noted.

NOTE 3: The offset voltage limits given are the maximum values required to drive the output up to 4.5 V or down to 0.3 V.

SLCS115E - DECEMBER 1986 - REVISED JULY 2003

recommended operating conditions

		TLC393Q MIN NOM MAX 4 5 16			
	MIN	MIN NOM MAX		UNIT	
Supply voltage, V _{DD}	4	5	16	V	
Common-mode input voltage, V _{IC}	0		V _{DD} – 1.5	V	
Low-level output current, I _{OL}			20	mA	
Operating free-air temperature, T _A	-40		125	°C	

electrical characteristics at specified operating free-air temperature, V_{DD} = 5 V (unless otherwise noted)

PARAMETER			_	TLC393Q				
	PARAMETER	TEST CONDITIONS†	TA	MIN	TYP	MAX	UNIT	
V _{IO}	Input offset voltage	V _{IC} = V _{ICR} min, V _{DD} = 5 V to 10 V,	25°C		1.4	5	mV	
VIO	input onset voltage	See Note 4	-40°C to 125°C			10	111 V	
1	long to effect ourment	V 25V	25°C		1		pА	
lio	Input offset current	V _{IC} = 2.5 V	125°C			15	nA	
1	lanut bigg gurrant	\\\- 25\\	25°C		5		pА	
lΒ	Input bias current	V _{IC} = 2.5 V	125°C			30	nA	
.,	Occurred to transfer the management		25°C	0 to V _{DD} – 1			.,	
VICR	Common-mode input voltage range		-40°C to 125°C	0 to V _{DD} – 1.5			V	
			25°C		84			
CMMR	Common-mode rejection ratio	V _{IC} = V _{ICR} min	125°C		84		dB	
			-40°C		84			
			25°C		85			
ksvr	Supply-voltage rejection ratio	V _{DD} = 5 V to 10 V	125°C		84		dB	
			-40°C		84			
.,		V 4V 1 0 4	25°C		300	400	.,	
VOL	Low-level output voltage	$V_{ID} = -1 \text{ V}, I_{OL} = 6 \text{ mA}$	125°C			800	mV	
	I Park I and a standard annual t	477 77 577	25°C		0.8	40	nA	
ЮН	High-level output current	$V_{ID} = 1 \text{ V}, V_{O} = 5 \text{ V}$	125°C			1	μΑ	
1	Supply ourrent (both comparators)	Outpute law No load	25°C		22	40	^	
lDD	Supply current (both comparators)	Outputs low, No load	-40°C to 125°C			90	μΑ	

[†] All characteristics are measured with zero common-mode voltage unless otherwise noted.

NOTE 4: The offset voltage limits given are the maximum values required to drive the output up to 4.5 V or down to 0.3 V (with a 2.5-k Ω load to VDD).

SLCS115D - DECEMBER 1986 - REVISED JULY 2003

recommended operating conditions

	TLC	193M, T	LC393M	UNIT
	MIN	MIN NOM MAX		
Supply voltage, V _{DD}	4	5	16	V
Common-mode input voltage, V _{IC}	0		V _{DD} – 1.5	V
Low-level output current, IOL			20	mA
Operating free-air temperature, T _A	-55		125	°C

electrical characteristics at specified operating free-air temperature, V_{DD} = 5 V (unless otherwise noted)

PARAMETER		TEST SOMBITIONS!	_	TLC193M,	TLC393I	M	LINUT	
	PARAMETER	TEST CONDITIONS†	TA	MIN	TYP	MAX	UNIT	
Via	Input offset voltage	V _{IC} = V _{ICR} min, V _{DD} = 5 V to 10 V,	25°C		1.4	5	mV	
V _{IO}	input onset voltage	See Note 4	–55°C to 125°C			10	1110	
	Input offact ourrent	V: 2 5 V	25°C		1		pA	
IO	Input offset current	V _{IC} = 2.5 V	125°C			15	nA	
l.a	Input bigg gurrent	V:0 - 2 5 V	25°C		5		pA	
IВ	Input bias current	V _{IC} = 2.5 V	125°C			30	nA	
\/	Common mode input voltage range		25°C	0 to V _{DD} – 1			V	
VICR	Common-mode input voltage range		–55°C to 125°C	0 to V _{DD} – 1.5			V	
			25°C		84			
CMMR	Common-mode rejection ratio	$V_{IC} = V_{ICR}min$	125°C		84		dB	
			−55°C		84			
			25°C		85			
ksvr	Supply-voltage rejection ratio	$V_{DD} = 5 \text{ V to } 10 \text{ V}$	125°C		84		dB	
			−55°C		84			
	Landard admits the ma		25°C		300	400	.,	
VOL	Low-level output voltage	$V_{ID} = -1 \text{ V}, I_{OL} = 6 \text{ mA}$	125°C			800	mV	
	High level cutout current	V- 4 V - 5 V	25°C		0.8	40	nA	
lон	High-level output current	$V_{ID} = 1 \text{ V}, V_{O} = 5 \text{ V}$	125°C			1	μΑ	
Inn	Supply current (both comparators)	Outputs low, No load	25°C		22	40	μΑ	
IDD	Cupply current (both comparators)	Outputs low, 140 load	–55°C to 125°C			90	μΛ	

[†] All characteristics are measured with zero common-mode voltage unless otherwise noted.

NOTE 4: The offset voltage limits given are the maximum values required to drive the output up to 4.5 V or down to 0.3 V (with a 2.5-kΩ load to VDD).

switching characteristics, V_{DD} = 5 V, T_A = 25°C (see Figure 3)

	PARAMETER		TEST CONDITIONS			TLC393C, TLC393I TLC393Q, TLC193M, TLC393M		
				MIN	TYP	MAX		
			Overdrive = 2 mV		4.5			
			Overdrive = 5 mV		2.5			
tPLH	Propagation delay time, low-to-high-level output	f = 10 kHz, C _L = 15 pF	Overdrive = 10 mV		1.7		μs	
			Overdrive = 20 mV		1.2			
			Overdrive = 40 mV		1.1			
		V _I = 1.4-V step at IN+			1.1			
			Overdrive = 2 mV		3.6			
			Overdrive = 5 mV		2.1			
tPHL	Propagation delay time, high-to-low-level output	f = 10 kHz, C _I = 15 pF	Overdrive = 10 mV		1.3		μs	
		о_ = 13 рі	Overdrive = 20 mV		0.85			
			Overdrive = 40 mV		0.55			
		V _I = 1.4-V step	at IN+		0.10			
tf	Fall time, output	f = 10 kHz, C _L = 15 pF	Overdrive = 50 mV		22		ns	

PARAMETER MEASUREMENT INFORMATION

The TLC393 contains a digital output stage which, if held in the linear region of the transfer curve, can cause damage to the device. Conventional operational amplifier/comparator testing incorporates the use of a servo loop that is designed to force the device output to a level within this linear region. Since the servo-loop method of testing cannot be used, the following alternatives for testing parameters such as input offset voltage, common-mode rejection ratio, etc., are suggested.

To verify that the input offset voltage falls within the limits specified, the limit value is applied to the input as shown in Figure 1(a). With the noninverting input positive with respect to the inverting input, the output should be high. With the input polarity reversed, the output should be low.

A similar test can be made to verify the input offset voltage at the common-mode extremes. The supply voltages can be slewed as shown in Figure 1(b) for the V_{ICR} test, rather than changing the input voltages, to provide greater accuracy.

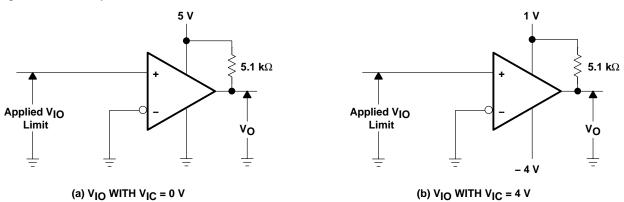


Figure 1. Method for Verifying That Input Offset Voltage Is Within Specified Limits

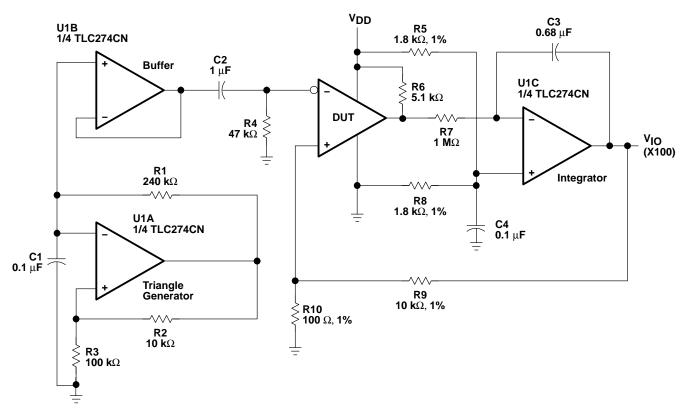
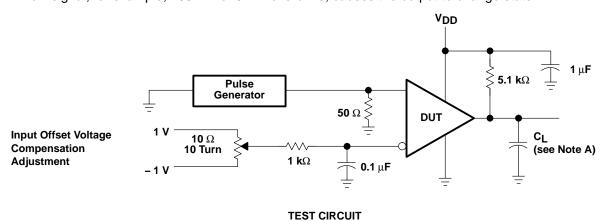
PARAMETER MEASUREMENT INFORMATION

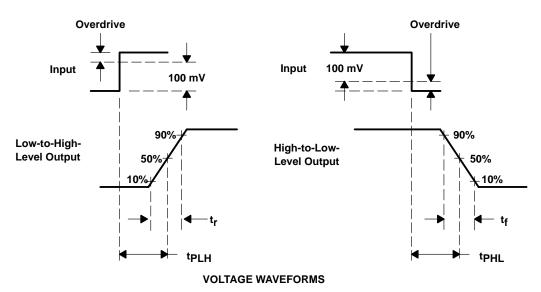
A close approximation of the input offset voltage can be obtained by using a binary search method to vary the differential input voltage while monitoring the output state. When the applied input voltage differential is equal, but opposite in polarity, to the input offset voltage, the output changes states.

Figure 2 illustrates a practical circuit for direct dc measurement of input offset voltage that does not bias the comparator in the linear region. The circuit consists of a switching-mode servo loop in which U1A generates a triangular waveform of approximately 20-mV amplitude. U1B acts as a buffer, with C2 and R4 removing any residual dc offset. The signal is then applied to the inverting input of the comparator under test, while the noninverting input is driven by the output of the integrator formed by U1C through the voltage divider formed by R9 and R10. The loop reaches a stable operating point when the output of the comparator under test has a duty cycle of exactly 50%, which can only occur when the incoming triangle wave is sliced symmetrically or when the voltage at the noninverting input exactly equals the input offset voltage.

The voltage divider formed by R9 and R10 provides an increase in input offset voltage by a factor of 100 to make measurement easier. The values of R5, R8, R9, and R10 can significantly influence the accuracy of the reading; therefore, it is suggested that their tolerance level be 1% or lower.

Measuring the extremely low values of input current requires isolation from all other sources of leakage current and compensation for the leakage of the test socket and board. With a good picoammeter, the socket and board leakage can be measured with no device in the socket. Subsequently, this open-socket leakage value can be subtracted from the measurement obtained with a device in the socket to obtain the actual input current of the device.

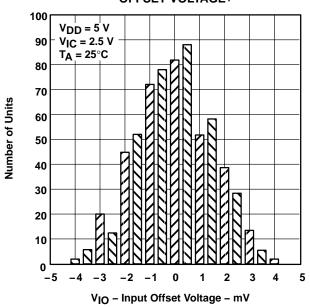




Figure 2. Circuit for Input Offset Voltage Measurement

PARAMETER MEASUREMENT INFORMATION

Propagation delay time is defined as the interval between the application of an input step function and the instant when the output reaches 50% of its maximum value. Propagation delay time, low-to-high-level output, is measured from the leading edge of the input pulse, while propagation delay time, high-to-low-level output, is measured from the trailing edge of the input pulse. Propagation delay time measurement at low input signal levels can be greatly affected by the input offset voltage. The offset voltage should be balanced by the adjustment at the inverting input (as shown in Figure 3) so that the circuit is just at the transition point. Then a low signal, for example, 105 mV or 5 mV overdrive, causes the output to change state.

NOTE A: C_L includes probe and jig capacitance.


Figure 3. Propagation Delay, Rise Time, and Fall Time Circuit and Voltage Waveforms

TYPICAL CHARACTERISTICS

Table of Graphs

			FIGURE
۷ _{IO}	Input offset voltage	Distribution	4
I _{IB}	Input bias current	vs Free-air temperature	5
CMRR	Common-mode rejection ratio	vs Free-air temperature	6
ksvr	Supply-voltage rejection ratio	vs Free-air temperature	7
V _{OL}	Low-level output voltage	vs Low-level output current vs Free-air temperature	8 9
ЮН	Low-level output current	vs High-level output voltage vs Free-air temperature	10 11
I _{DD}	Supply current	vs Supply voltage vs Free-air temperature	12 13
^t PLH	Low-to-high level output propagation delay time	vs Supply voltage	14
tPHL	High-to-low level output propagation delay time	vs Supply voltage	15
	Low-to-high-level output response	Low-to-high level output propagation delay time	16
	High-to-low level output response	High-to-low level output propagation delay time	17
t _f	Fall time	vs Supply voltage	18

DISTRIBUTION OF INPUT OFFSET VOLTAGE†

Figure 4

INPUT BIAS CURRENT VS FREE-AIR TEMPERATURE[†]

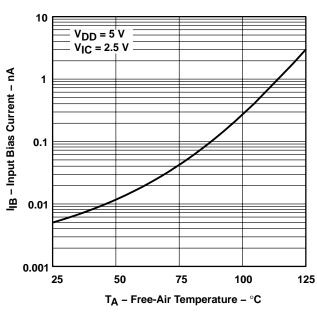
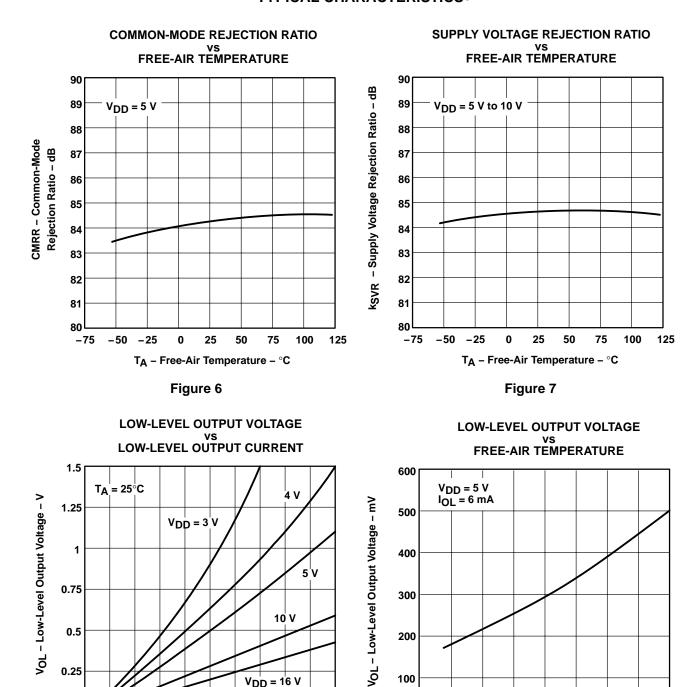



Figure 5

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TYPICAL CHARACTERISTICS[†]

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

20

-75

-50

-25

0

25

T_A - Free-Air Temperature - °C

Figure 9

50

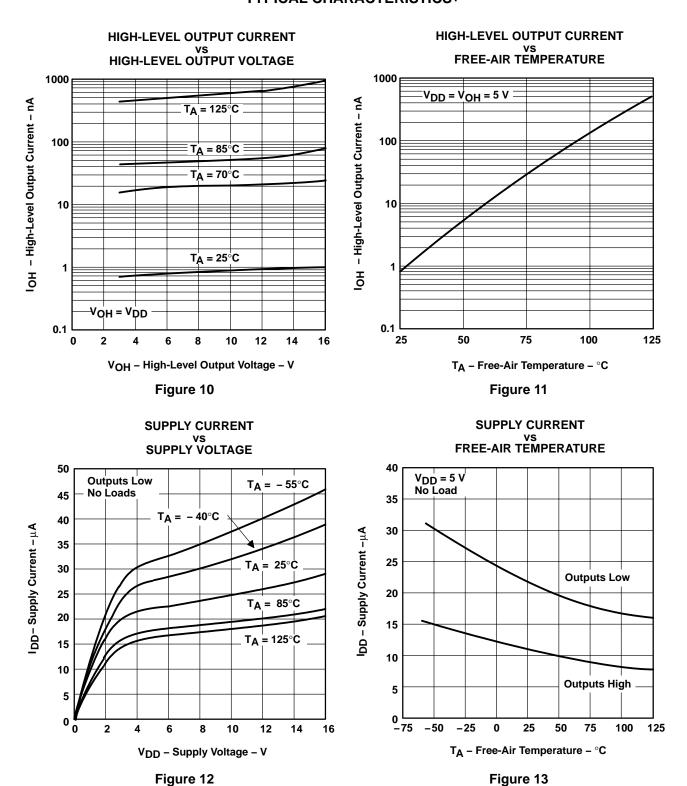
75

100

125

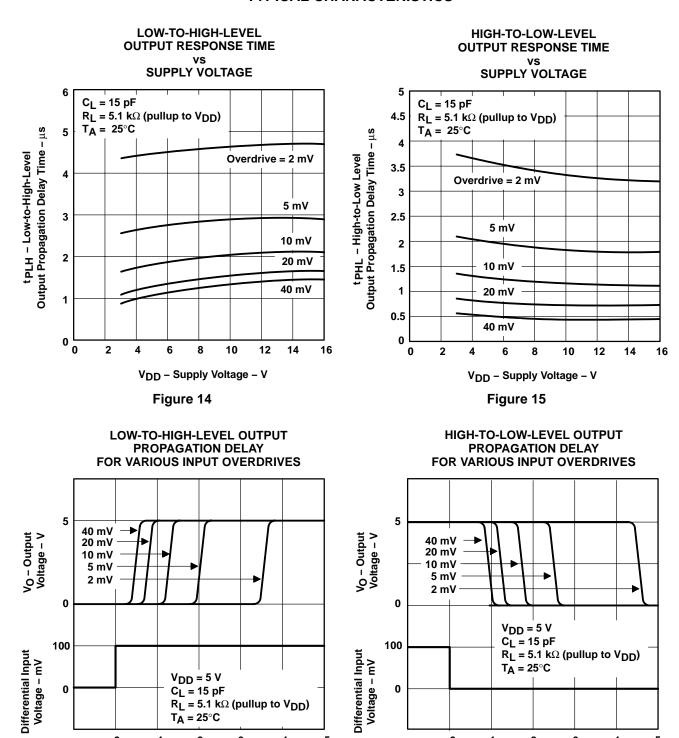
10

IOL - Low-Level Output Current - mA


Figure 8

0

12 14 16


TYPICAL CHARACTERISTICS[†]

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TYPICAL CHARACTERISTICS

5

0

1

2

tpLH - Low-to-High-Level Output

Propagation Delay Time – μs

Figure 16

3

4

2

tpHL - High-to-Low-Level Output

Propagation Delay Time – μs

Figure 17

3

4

5

0

1

TYPICAL CHARACTERISTICS

APPLICATION INFORMATION

The input should always remain within the supply rails in order to avoid forward biasing the diodes in the electrostatic discharge (ESD) protection structure. If either input exceeds this range, the device will not be damaged as long as the input current is limited to less than 5 mA. To maintain the expected output state, the inputs must remain within the common-mode range. For example, at 25° C with $V_{DD} = 5$ V, both inputs must remain between -0.2 V and 4 V to assure proper device operation.

To assure reliable operation, the supply should be decoupled with a capacitor $(0.1-\mu F)$ positioned as close to the device as possible.

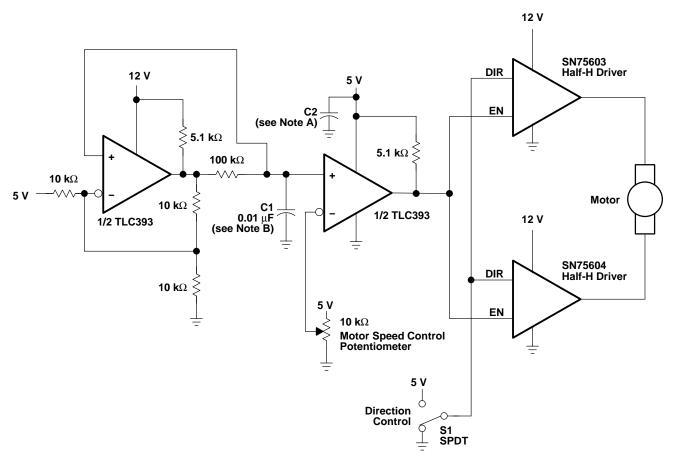
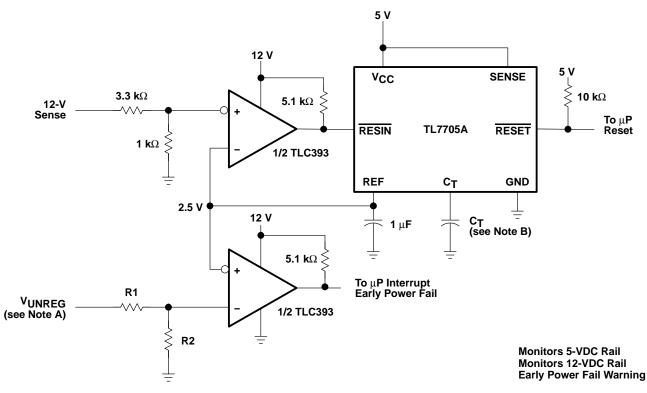

The TLC393 has internal ESD-protection circuits that prevent functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2; however, care should be exercised in handling these devices, as exposure to ESD may result in the degradation of the device parametric performance.

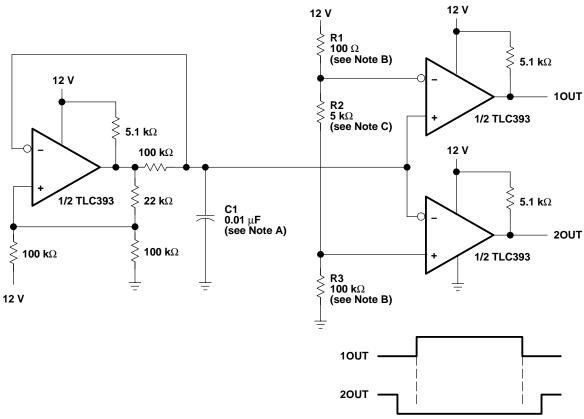
Table of Applications

The state of the s						
	FIGURE					
Pulse-width-modulated motor speed controller	19					
Enhanced supply supervisor	20					
Two-phase nonoverlapping clock generator	21					
Micropower switching regulator	28					


APPLICATION INFORMATION

- NOTES: A. The recommended minimum capacitance is 10 μF to eliminate common ground switching noise.
 - B. Adjust C1 for change in oscillator frequency.

Figure 19. Pulse-Width-Modulated Motor Speed Controller


APPLICATION INFORMATION

NOTES: A. $V_{UNREG} = 2.5 \frac{(R1 + R2)}{R2}$ B. The value of C_T determines the time delay of reset.

Figure 20. Enhanced Supply Supervisor

APPLICATION INFORMATION

NOTES: A. Adjust C1 for a change in oscillator frequency where: $1/f = 1.85(100 \; k\Omega)C1$

- B. Adjust R1 and R3 to change duty cycle
- C. Adjust R2 to change deadtime

Figure 21. Two-Phase Nonoverlapping Clock Generator

17-Mar-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Sample
5962-9555101NXD	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		Q193M	Sample
5962-9555101NXDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		Q193M	Sample
5962-9555101QPA	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	-55 to 125	9555101QPA TLC193M	Sample
TLC193MJGB	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	-55 to 125	9555101QPA TLC193M	Sample
TLC393CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	C393C	Sample
TLC393CDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	C393C	Sample
TLC393CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	C393C	Sample
TLC393CDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	C393C	Sample
TLC393CP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	TLC393CP	Sample
TLC393CPSR	ACTIVE	so	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	P393	Sample
TLC393CPW	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	P393	Sample
TLC393CPWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	P393	Sample
TLC393CPWRG4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	P393	Sample
TLC393ID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	C393I	Sample
TLC393IDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	C393I	Sample
TLC393IDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	C393I	Sample
TLC393IDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	C393I	Sample

www.ti.com

PACKAGE OPTION ADDENDUM

17-Mar-2017

Orderable Device	Status	Package Type	•	Pins	•	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TLC393IP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 85	TLC393IP	Samples
TLC393IPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 85	TLC393IP	Samples
TLC393IPW	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	Y393	Samples
TLC393IPWG4	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	Y393	Samples
TLC393IPWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	Y393	Samples
TLC393IPWRG4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	Y393	Samples
TLC393QDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	C393Q	Samples
TLC393QDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		C393Q	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

PACKAGE OPTION ADDENDUM

17-Mar-2017

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TLC393:

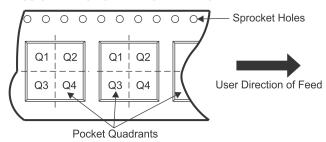
Automotive: TLC393-Q1

NOTE: Qualified Version Definitions:

Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

PACKAGE MATERIALS INFORMATION

www.ti.com 17-Feb-2016


TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
5962-9555101NXDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC393CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC393CPSR	SO	PS	8	2000	330.0	16.4	8.2	6.6	2.5	12.0	16.0	Q1
TLC393CPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
TLC393IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC393IPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
TLC393QDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC393QDRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

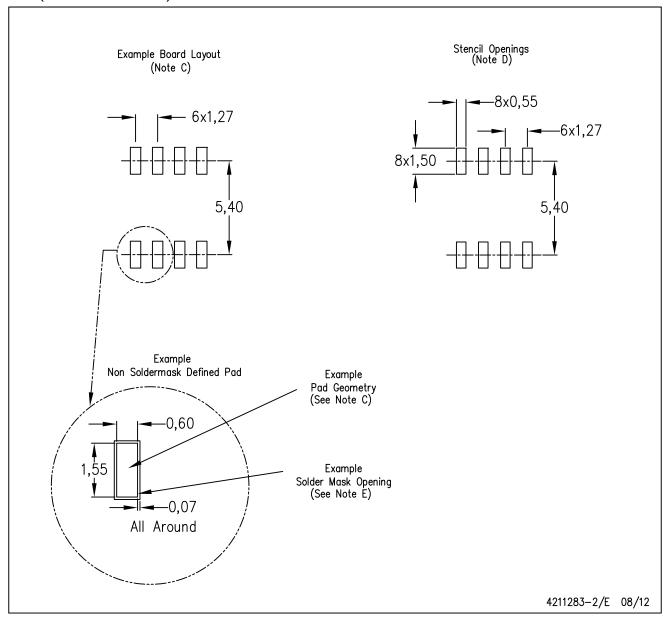
www.ti.com 17-Feb-2016

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
5962-9555101NXDR	SOIC	D	8	2500	367.0	367.0	38.0
TLC393CDR	SOIC	D	8	2500	340.5	338.1	20.6
TLC393CPSR	SO	PS	8	2000	367.0	367.0	38.0
TLC393CPWR	TSSOP	PW	8	2000	367.0	367.0	35.0
TLC393IDR	SOIC	D	8	2500	340.5	338.1	20.6
TLC393IPWR	TSSOP	PW	8	2000	367.0	367.0	35.0
TLC393QDR	SOIC	D	8	2500	367.0	367.0	38.0
TLC393QDRG4	SOIC	D	8	2500	367.0	367.0	38.0

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

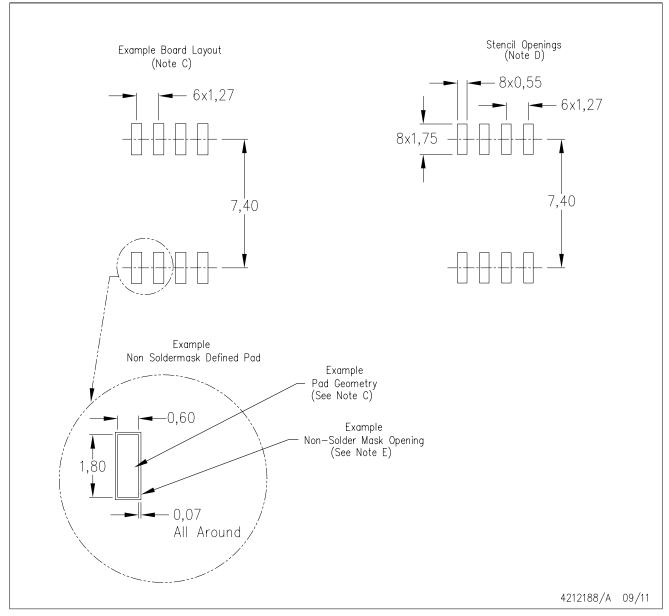
D (R-PDSO-G8)


PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

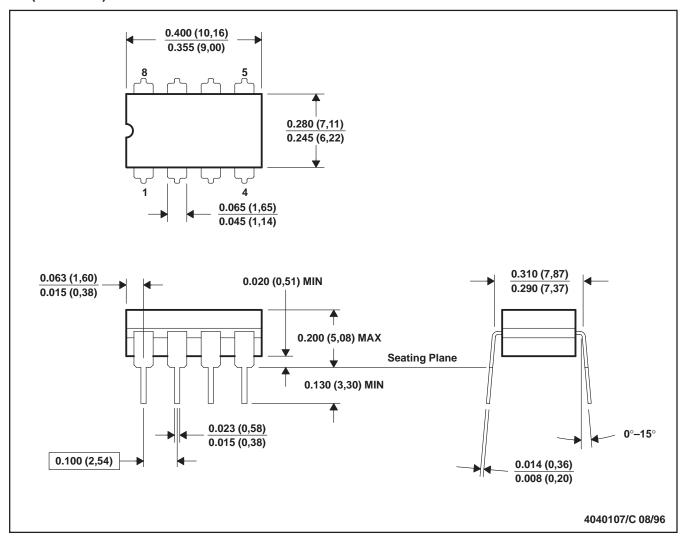
NOTES: A. All linear dimensions are in millimeters.


B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

PS (R-PDSO-G8)

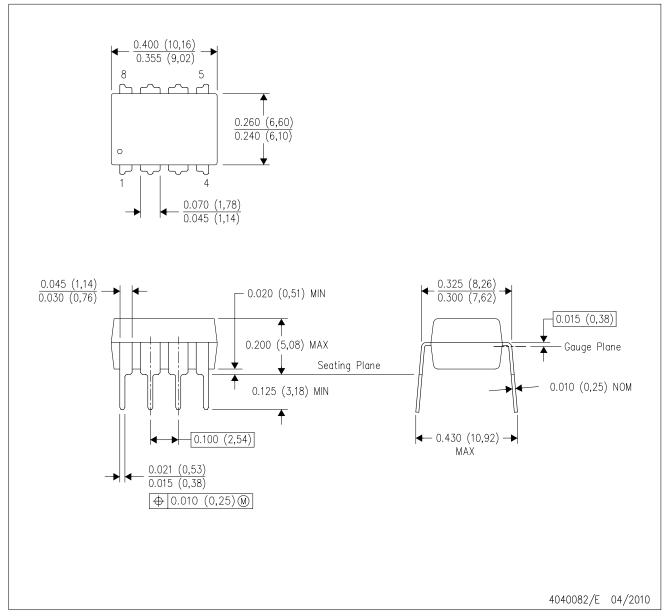
PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

JG (R-GDIP-T8)

CERAMIC DUAL-IN-LINE

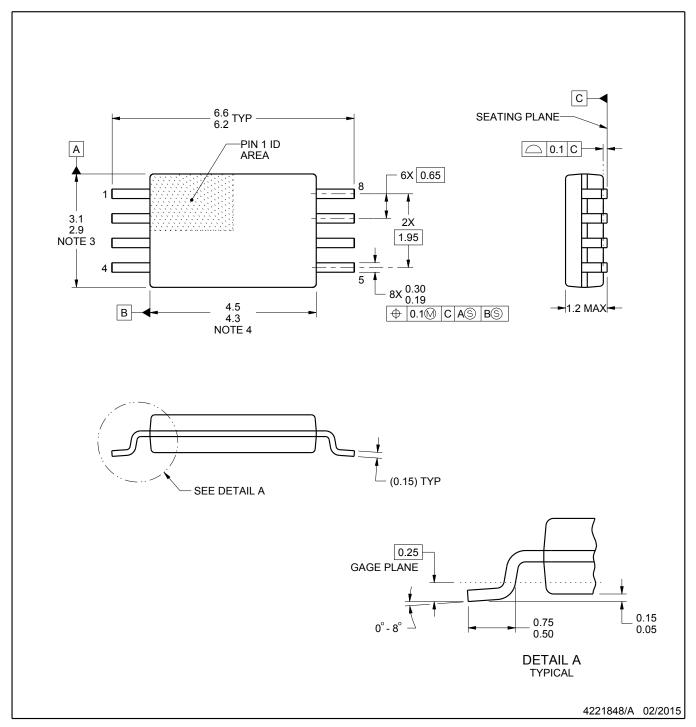


NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification.
- E. Falls within MIL STD 1835 GDIP1-T8

P (R-PDIP-T8)

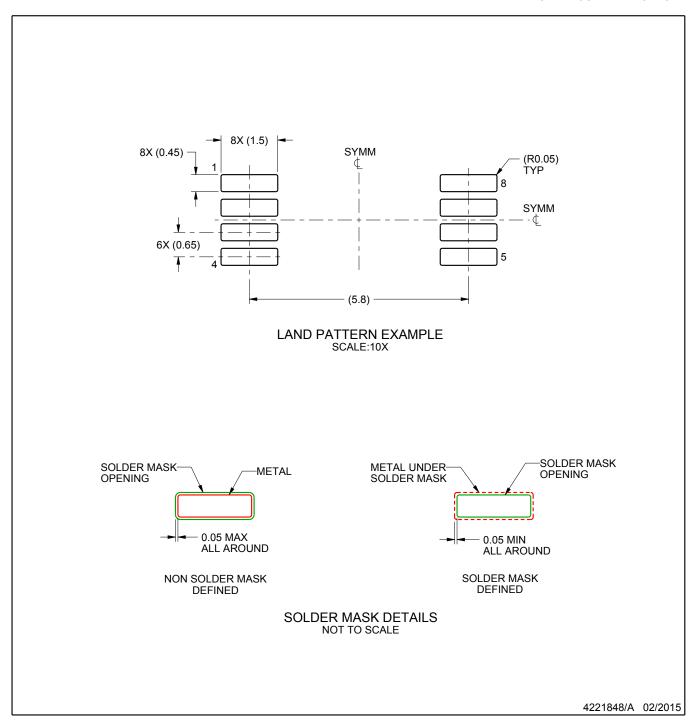
PLASTIC DUAL-IN-LINE PACKAGE


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

SMALL OUTLINE PACKAGE

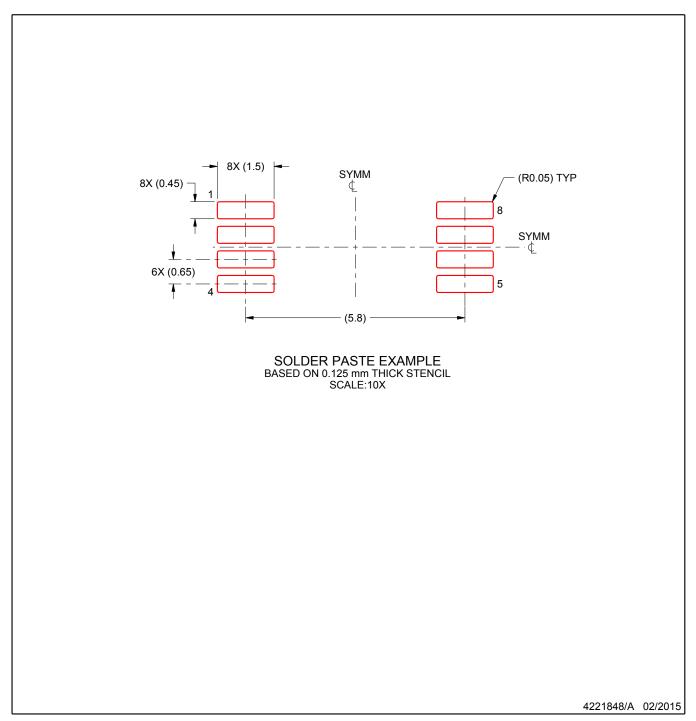
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153, variation AA.

SMALL OUTLINE PACKAGE


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.