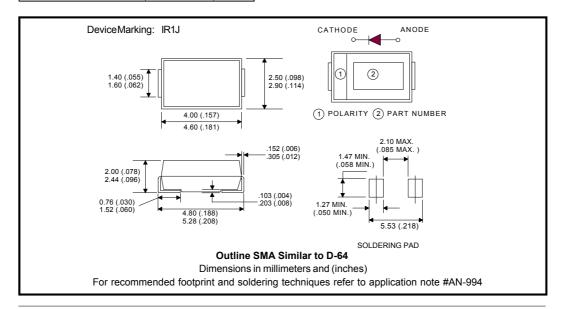

International **TOR** Rectifier

SCHOTTKY RECTIFIER

10MQ100N

2.1 Amp


Major Ratings and Characteristics

Cha	racteristics	10MQ100N	Units
۱ _F	DC	2.1	А
V _{RRM}		100	V
I _{FSM}	@tp=5µssine	120	А
V _F	@1.5Apk,T _J =125°C	0.68	V
Т _Ј	range	-55 to 150	°C

Description/Features

The 10MQ100N surface mount Schottky rectifier has been designed for applications requiring low forward drop and very small foot prints on PC boards. Typical applications are in disk drives, switching power supplies, converters, free-wheeling diodes, battery charging, and reverse battery protection.

- Small foot print, surface mountable
- Low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability

10MQ100N

Bulletin PD-20520 rev. G 02/02

International **IOR** Rectifier

Voltage Ratings

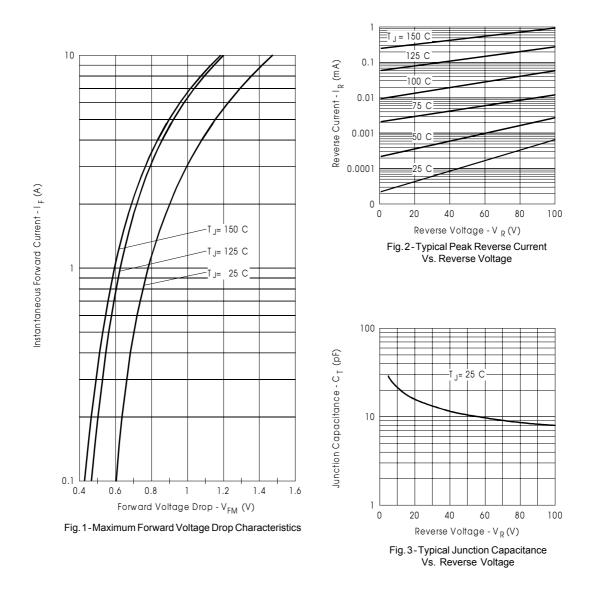
Part number	10MQ100N
V _R Max. DC Reverse Voltage (V)	400
V _{RWM} Max. Working Peak Reverse Vo	age (V) 100

Absolute Maximum Ratings

Parameters		10MQ	Units	Conditions	
I _{F(AV)}	Max.AverageForwardCurrent *SeeFig.4	1.5	A	50% duty cycle @ T _L = 126 °C, rectangular wave form. On PC board 9 mm ² island (.013 mm thick copper pad area	
I _{FSM}	Max.PeakOneCycleNon-Repetitive	120	Α	5µs Sine or 3µs Rect. pulse	Following any rated load condition and
	SurgeCurrent*SeeFig.6	30		10ms Sine or 6ms Rect. pulse	with rated V _{RRM} applied
E _{AS}	Non-RepetitiveAvalancheEnergy	3.0	mJ	T _J =25°C,I _{AS} =0.8A,L=10mH	
I _{AR}	RepetitiveAvalancheCurrent	0.2	А		

Electrical Specifications

	Parameters		Units	Conditions	
V _{EM}	Max. Forward Voltage Drop (1)	0.78	V	@ 1A	T ₁ = 25 °C
	* See Fig. 1	0.85	V	@ 1.5A	1 ₁ = 23 C
		0.63	V	@ 1A	T = 125 °C
		0.68	V	@ 1.5A	1, 120 0
I _{RM}	Max. Reverse Leakage Current (1)	0.1	mA	T _J = 25 °C	$V_{\rm R}$ = rated $V_{\rm R}$
	* See Fig. 2	1	mA	T _J = 125 °C	V _R - lated V _R
V _{F(TO)}	ThresholdVoltage	0.52	V	T _J = T _J max.	
r _t	Forward Slope Resistance	78.4	mΩ		
C _T	Typical Junction Capacitance	38	pF	$V_R = 10V_{DC}$, $T_J = 25^{\circ}C$, test signal = 1Mhz	
L_{S}	Typical Series Inductance	2.0	nH	Measured lead to lead 5mm from package body	
dv/dt	Max. Voltage Rate of Change	10000	V/µs		
	(Rated V _R)				


(1) Pulse Width < 300µs, Duty Cycle < 2%

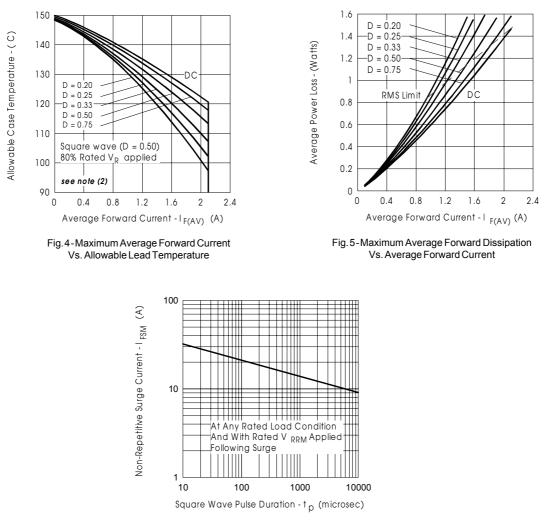
Thermal-Mechanical Specifications

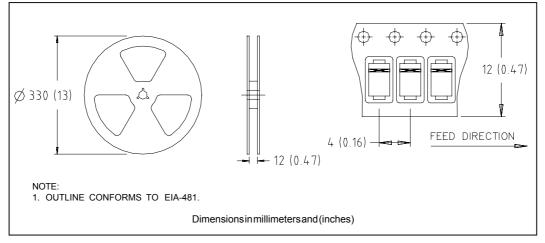
	Parameters	10MQ	Units	Conditions
TJ	Max.JunctionTemperatureRange (*)	-55to 150	°C	
T _{stg}	Max.StorageTemperatureRange	-55 to 150	°C	
R _{thJA}	Max. Thermal Resistance Junction	80	°C/W	DCoperation
	toAmbient			
wt	ApproximateWeight	0.07(0.002)	g(oz.)	
	CaseStyle	SMA	l l	SimilarD-64
	DeviceMarking	IR1J		

(*) dPtot

 $< \frac{1}{Rth(j-a)}$ thermal runaway condition for a diode on its own heatsink 1 dTj

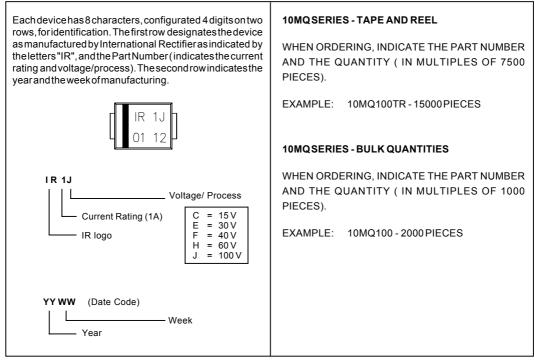
International




Fig. 6-Maximum Peak Surge Forward Current Vs. Pulse Duration

```
(2) Formula used: T_c = T_J - (Pd + Pd_{REV}) \times R_{thJC};

Pd = Forward Power Loss = I_{F(AV)} \times V_{FM} @ (I_{F(AV)}/D) (see Fig. 6);


Pd_{REV} = Inverse Power Loss = V_{R1} \times I_R (1 - D); I_R @ V_{R1} = 80\% rated V_R
```

Tape & Reel Information

Marking & Identification

Ordering Information

10MQ100N	International
	IOR Rectifier

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level. Qualification Standards can be found on IR's Web site.

International **tor** Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7309 Visit us at www.irf.com for sales contact information. 02/02