

# SH79F3283

## Enhanced 8051 Microcontroller with 12bit ADC

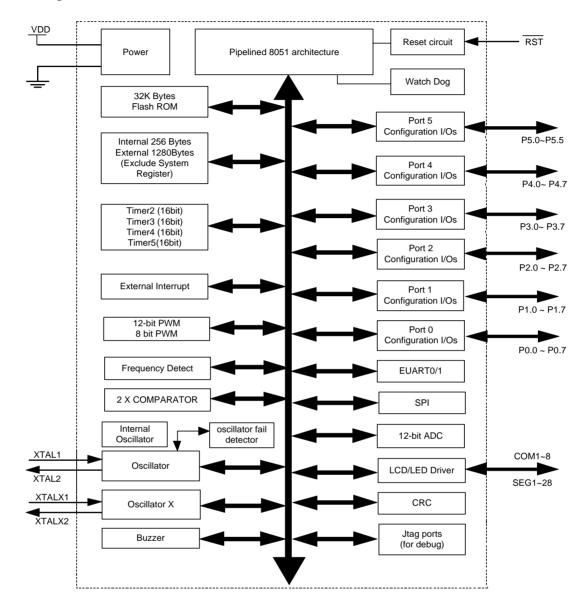
#### 1. Features

- 8bits micro-controller with Pipe-line structured 8051 compatible instruction set
- Flash ROM: 32K Bytes
- RAM: internal 256 Bytes, external 1280 Bytes, LCD RAM: 28 Bytes
- EEPROM-like: 1024 Bytes
- Operation Voltage: f<sub>OSC</sub> = 32.768kHz - 16MHz, V<sub>DD</sub> = 2.0V - 5.5V
- Oscillator (code option)
  - Crystal oscillator: 32.768kHz
  - Crystal oscillator: 2MHz 16MHz
  - Ceramic oscillator: 2MHz 16MHz
  - Internal RC: 12MHz (±2%)/128K
- 46/42/30 CMOS bi-directional I/O pins
- Built-in pull-up resistor for input pin
- Four 16-bit timer/counters: T2, T3, T4 and T5
- One 12-bit PWM
- One 8-bit PWM
- Powerful interrupt sources:
  - Timer2, 3, 4, 5
  - INT0, 1, 2, 3
  - INT40 INT47
  - ADC, EUART, SCM, LPD
  - PWM, SPI
- EUART0, EUART1 (No EUART1 in 32 PIN package)
- SPI Interface (Master/Slave Mode)

- Buzzer
- 9 channels 12-bits Analog Digital Converter (ADC), with comparator function built-in
- LED driver:
  - 3-8 X 8 dots (1/3 1/8 duty)
- LCD driver:
   8 X 24 dots (1/8 duty, 1/4 bias)
  - 6 X 26 dots (1/6 duty, 1/4 blas)
  - 5 X 27 dots (1/5 duty, 1/3 bias)
  - 4 X 28 dots (1/4 duty, 1/3 bias)
- Low Voltage Reset (LVR) function (enabled by code option)
  - LVR voltage level 1: 4.1V
  - LVR voltage level 2: 3.7V
  - LVR voltage level 3: 2.8V
  - LVR voltage level 4: 2.1V
- CRC verify module built-in, check size is optional
- Support SWE simulation, write and read
- CPU Machine cycle: 1 oscillator clock
- Watch Dog Timer (WDT)
- Warm-up Timer
- Support Low power operation modes:
   Idle Mode
  - Power-Down Mode
- Flash Type
- Package: TQFP48/LQFP44/LQFP32

#### 2. General Description

The SH79F3283 is a high performance 8051 compatible micro-controller, regard to its build-in Pipe-line instruction fetch structure, that helps the SH79F3283 can perform more fast operation speed and higher calculation performance, if compare SH79F3283 with standard 8051 at same clock speed.

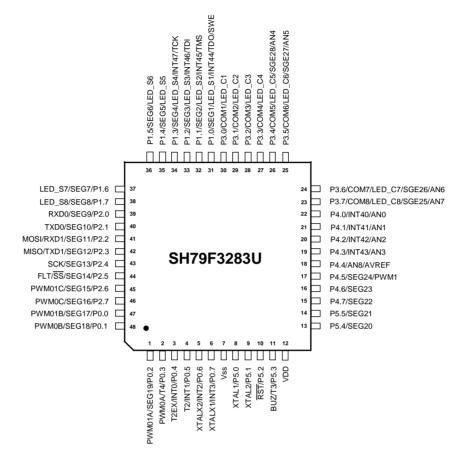

The SH79F3283 retains most features of the standard 8051. These features include internal 256 bytes RAM, UART and INT0, INT1, INT2 and INT3. In addition, the SH79F3283 provides external 1280 bytes RAM, Four 16-bit timer/counters T2-T5. It also contains 32K bytes Flash memory block both for program and data.

Also the ADC, EUART, SPI, LCD Driver, PWM timer and CRC module functions are incorporated in SH79F3283.

For high reliability and low power consumption, the SH79F3283 builds in Watchdog Timer, Low Voltage Reset function and SCM function. And SH79F3283 also supports two power saving modes to reduce power consumption.



#### 3. Block Diagram



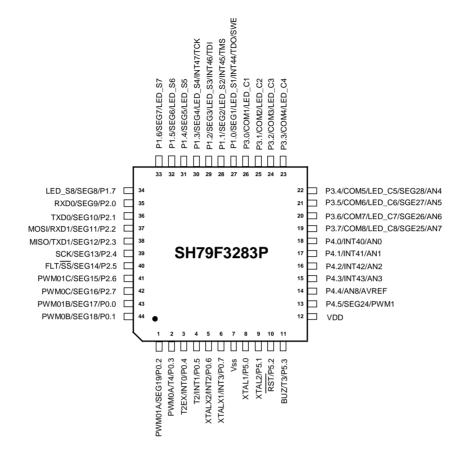





#### 4. Pin Configuration

#### 4.1 TQFP48




#### Pin Configuration Diagram TQFP48

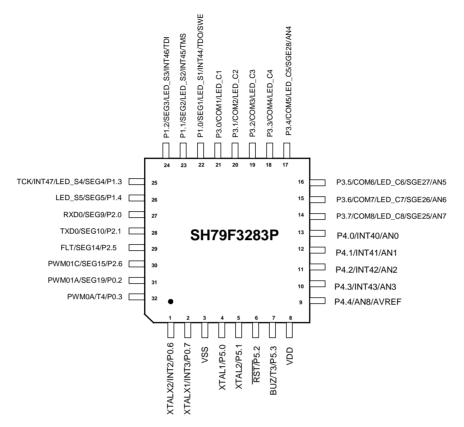
#### Note:

The out most pin function has the highest priority, and the inner most pin function has the lowest priority (Refer to Pin Configuration Diagram. This means when one pin is occupied by a higher priority function (if enabled) cannot be used as the lower priority functional pin, even when the lower priority function is also enabled. Until the higher priority function is closed by software, can the corresponding pin be released for the lower priority function to use.



#### 4.2 LQFP44




#### Pin Configuration Diagram LQFP44

#### Note:

The out most pin function has the highest priority, and the inner most pin function has the lowest priority (Refer to Pin Configuration Diagram. This means when one pin is occupied by a higher priority function (if enabled) cannot be used as the lower priority functional pin, even when the lower priority function is also enabled. Until the higher priority function is closed by software, can the corresponding pin be released for the lower priority function to use.



### 4.3 LQFP32



Pin Configuration Diagram LQFP32

#### Note:

The out most pin function has the highest priority, and the inner most pin function has the lowest priority (Refer to Pin Configuration Diagram. This means when one pin is occupied by a higher priority function (if enabled) cannot be used as the lower priority functional pin, even when the lower priority function is also enabled. Until the higher priority function is closed by software, can the corresponding pin be released for the lower priority function to use.



**Table 4.1 Pin Function** 

| Pin No.<br>(TQFP48) | Pin No.<br>(LQFP44) | Pin No.<br>(LQFP32) | Pin Name                   | Default Function |  |  |  |  |
|---------------------|---------------------|---------------------|----------------------------|------------------|--|--|--|--|
| 1                   | 1                   | 31                  | PWM01A/SEG19/P0.2          | P0.2             |  |  |  |  |
| 2                   | 2                   | 32                  | PWM0A/T4/P0.3              | P0.3             |  |  |  |  |
| *3                  | *3                  | -                   | T2EX/INT0/P0.4             | P0.4             |  |  |  |  |
| *4                  | *4                  | -                   | T2/INT1/P0.5               | P0.5             |  |  |  |  |
| 5                   | 5                   | 1                   | XTALX2/INT2/P0.6           | P0.6             |  |  |  |  |
| 6                   | 6                   | 2                   | XTALX1/INT3/P0.7           | P0.7             |  |  |  |  |
| 7                   | 7                   | 3                   | V <sub>SS</sub>            |                  |  |  |  |  |
| 8                   | 8                   | 4                   | XTAL1/P5.0                 |                  |  |  |  |  |
| 9                   | 9                   | 5                   | XTAL2/P5.1                 |                  |  |  |  |  |
| 10                  | 10                  | 6                   | RST/P5.2                   | RST              |  |  |  |  |
| 11                  | 11                  | 7                   | BUZ/T3/P5.3                | P5.3             |  |  |  |  |
| 12                  | 12                  | 8                   | V <sub>DD</sub>            |                  |  |  |  |  |
| 13                  | -                   | -                   | SEG20/P5.4                 | P5.4             |  |  |  |  |
| 14                  | -                   | -                   | SEG21/P5.5                 | P5.5             |  |  |  |  |
| 15                  | -                   | -                   | SEG22/P4.7                 | P4.7             |  |  |  |  |
| 16                  | -                   | -                   | SEG23/P4.6                 | P4.6             |  |  |  |  |
| 17                  | 13                  | -                   | PWM1/SEG24/P4.5            | P4.5             |  |  |  |  |
| 18                  | 14                  | 9                   | AVREF/AN8/P4.4             | P4.4             |  |  |  |  |
| 19                  | 15                  | 10                  | AN3/INT43/P4.3             | P4.3             |  |  |  |  |
| 20                  | 16                  | 11                  | AN2/INT42/P4.2             | P4.2             |  |  |  |  |
| 21                  | 17                  | 12                  | AN1/INT41/P4.1             | P4.1             |  |  |  |  |
| 22                  | 18                  | 13                  | AN0/INT40/P4.0             | P4.0             |  |  |  |  |
| 23                  | 19                  | 14                  | AN7/SEG25/LED_C8/COM8/P3.7 | P3.7             |  |  |  |  |
| 24                  | 20                  | 15                  | AN6/SEG26/LED_C7/COM7/P3.6 | P3.6             |  |  |  |  |
| 25                  | 21                  | 16                  | AN5/SEG27/LED_C6/COM6/P3.5 | P3.5             |  |  |  |  |
| 26                  | 22                  | 17                  | AN4/SEG28/LED_C5/COM5/P3.4 | P3.4             |  |  |  |  |
| 27                  | 23                  | 18                  | LED_C4/COM4/P3.3           | P3.3             |  |  |  |  |
| 28                  | 24                  | 19                  | LED_C3/COM3/P3.2           | P3.2             |  |  |  |  |
| 29                  | 25                  | 20                  | LED_C2/COM2/P3.1           | P3.1             |  |  |  |  |
| 30                  | 26                  | 21                  | LED_C1/COM1/P3.0           | P3.0             |  |  |  |  |
| 31                  | 27                  | 22                  | INT44/LED_S1/SEG1/P1.0     | P1.0             |  |  |  |  |
| 32                  | 28                  | 23                  | INT45/LED_S2/SEG2/P1.1     | P1.1             |  |  |  |  |
| 33                  | 29                  | 24                  | INT46/LED_S3/SEG3/P1.2     | P1.2             |  |  |  |  |
| 34                  | 30                  | 25                  | INT47/LED_S4/SEG4/P1.3     | P1.3             |  |  |  |  |
| 35                  | 31                  | 26                  | LED_S5/SEG5/P1.4           | P1.4             |  |  |  |  |
| 36                  | 32                  | -                   | LED_S6/SEG6/P1.5           | P1.5             |  |  |  |  |

(to be continued)



(continue)

| Pin No.<br>(TQFP48) | Pin No.<br>(LQFP44) | Pin No.<br>(LQFP32) | Pin Name             | Default Function |
|---------------------|---------------------|---------------------|----------------------|------------------|
| 37                  | 33                  | -                   | LED_S7/SEG7/P1.6     | P1.6             |
| 38                  | 34                  | -                   | LED_S8/SEG8/P1.7     | P1.7             |
| 39                  | 35                  | 27                  | RXD0/SEG9/P2.0       | P2.0             |
| 40                  | 36                  | 28                  | TXD0/SEG10/P2.1      | P2.1             |
| 41                  | 37                  | -                   | MOSI/RXD1/SEG11/P2.2 | P2.2             |
| 42                  | 38                  | -                   | MISO/TXD1/SEG12/P2.3 | P2.3             |
| 43                  | 39                  | -                   | SCK/SEG13/P2.4       | P2.4             |
| 44                  | 40                  | 29                  | FLT/SS/SEG14/P2.5    | P2.5             |
| 45                  | 41                  | 30                  | PWM01C/SEG15/P2.6    | P2.6             |
| 46                  | 42                  | -                   | PWM0C/SEG16/ P2.7    | P2.7             |
| 47                  | 43                  | -                   | PWM01B/SEG17/P0.0    | P0.0             |
| 48                  | 44                  | -                   | PWM0B/SEG18/P0.1     | P0.1             |

\* Note: P0.4, P0.5 are configured as N-channel open drain IO.



## 5. Pin Description

| Pin No.         | Туре | Description                                                            |
|-----------------|------|------------------------------------------------------------------------|
| I/O PORT        |      |                                                                        |
| P0.0 - P0.7     | I/O  | 8 bit General purpose CMOS I/O                                         |
| P1.0 - P1.7     | I/O  | 8 bit General purpose CMOS I/O                                         |
| P2.0 - P2.7     | I/O  | 8 bit General purpose CMOS I/O                                         |
| P3.0 - P3.7     | I/O  | 8 bit General purpose CMOS I/O                                         |
| P4.0 - P4.7     | I/O  | 8 bit General purpose CMOS I/O                                         |
| P5.0 - P5.5     | I/O  | 6 bit General purpose CMOS I/O                                         |
| Timer           | •    | ·                                                                      |
| T2              | I/O  | Timer2 external input/baud rate clock output                           |
| Т3              | I    | Timer3 external input                                                  |
| T4              | I/O  | Timer4 external input/output                                           |
| T2EX            | I    | Timer2 Reload/Capture/Direction Control                                |
| PWM             |      |                                                                        |
| PWM0A/0B/0C     | 0    | Output pin for 12-bit PWM0 timer                                       |
| PWM01A/01B/01C  | 0    | Output pin for 12-bit PWM0 timer with fixed phase relationship of PWM0 |
| FLT             | I    | PWM0 Fault Detect input                                                |
| PWM1            | 0    | Output pin for 8-bit PWM1 timer                                        |
| EUART           |      |                                                                        |
| RXD0/1          | I    | EUART0/1 data input                                                    |
| TXD0/1          | 0    | EUART0/1 data output                                                   |
| SPI             |      | ·                                                                      |
| MOSI            | I/O  | SPI Master output Slave input                                          |
| MISO            | I/O  | SPI Master input Slave output                                          |
| SCK             | I/O  | SPI serial clock                                                       |
| SS              | I    | SPI Slave Select                                                       |
| ADC             |      | ·                                                                      |
| AN0 - AN7       | I    | ADC input channel                                                      |
| AVREF           | I    | External ADC reference voltage input                                   |
| LCD             |      |                                                                        |
| COM1 - COM8     | 0    | Common signal output for LCD display                                   |
| SEG1 - SEG28    | 0    | Segment signal output for LCD display                                  |
| LED             |      |                                                                        |
| LED_C1 - LED_C8 | 0    | Common signal output for LCD display                                   |
| LED_S1 - LED_S8 | 0    | Segment signal output for LCD display                                  |

(to be continued)



(continue)

| Interrupt & Reset & C | lock & Po  | wer                                                                                                                                                                                                        |
|-----------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| INT0 - INT3           | I          | External interrupt 0-3 input source                                                                                                                                                                        |
| INT40 - INT47         | I          | External interrupt 40-47 input source                                                                                                                                                                      |
| RST                   | I          | The device will be reset by a low voltage on this pin longer than 10us, an internal resistor about $30k\Omega$ to V <sub>DD</sub> , So using only an external capacitor to GND can cause a power-on reset. |
| XTAL1                 | I          | Oscillator input                                                                                                                                                                                           |
| XTAL2                 | 0          | Oscillator output                                                                                                                                                                                          |
| XTALX1                | I          | Oscillator X input                                                                                                                                                                                         |
| XTALX2                | 0          | Oscillator X output                                                                                                                                                                                        |
| V <sub>SS</sub>       | Р          | Ground                                                                                                                                                                                                     |
| V <sub>DD</sub>       | Р          | Power supply (2.0 - 5.5V)                                                                                                                                                                                  |
| Buzzer                | -          |                                                                                                                                                                                                            |
| BUZ                   | 0          | Buzzer output pin                                                                                                                                                                                          |
| Programmer            |            |                                                                                                                                                                                                            |
| TDO (P1.0)            | 0          | Debug interface: Test data out                                                                                                                                                                             |
| TMS (P1.1)            | I          | Debug interface: Test mode select                                                                                                                                                                          |
| TDI (P1.2)            | I          | Debug interface: Test data in                                                                                                                                                                              |
| TCK (P1.3)            | I          | Debug interface: Test clock in                                                                                                                                                                             |
| SWE (P1.0)            | I/O        | Single simulation interface. If the power on or down slope of $V_{DD}$ is greater than 500ms/V, it is recommended to connect 47k-1m resistor to GND or $V_{DD}$ to increase the stability of the chip      |
| Note: When P1.0-1.3 ι | ised as de | bug interface, functions of P1.0-1.3 are blocked.                                                                                                                                                          |



## 6. SFR Mapping

The SH79F3283 provides 256 bytes of internal RAM to contain general-purpose data memory and Special Function Register (SFR). The SFR of the SH79F3283 fall into the following categories:

| CPU Core Registers:                | ACC, B, PSW, SP, DPL, DPH                                                                                  |
|------------------------------------|------------------------------------------------------------------------------------------------------------|
| Enhanced CPU Core Registers:       | AUXC, DPL1, DPH1, INSCON, XPAGE                                                                            |
| Power and Clock Control Registers: | PCON, SUSLO                                                                                                |
| Flash Registers:                   | IB_OFFSET, IB_DATA, IB_CON1, IB_CON2, IB_CON3, IB_CON4, IB_CON5                                            |
| Data Memory Register:              | XPAGE                                                                                                      |
| Hardware Watchdog Timer Registers: | RSTSTAT                                                                                                    |
| System Clock Control Register:     | CLKCON, SCMCON                                                                                             |
| Interrupt System Registers:        | IEN0, IEN1, IENC, IPH0, IPL0, IPH1, IPL1, EXF0, EXF1, EXCON                                                |
| I/O Port Registers:                | P0, P1, P2, P3, P4, P5, P0CR, P1CR, P2CR, P3CR, P4CR, P5CR, P0PCR, P1PCR, P2PCR, P3PCR, P4PCR, P5PCR, P0OS |
| Timer Registers:                   | TCON, T2CON, T2MOD, TH2, TL2, RCAP2L, RCAP2H, T3CON, TH3, TL3, T4CON, TH4, TL4, SWTHL, T5CON, TH5, TL5     |
| EUART Registers:                   | SCON, SBUF, SADEN, SADDR, PCON, SCON1, SBUF1, SADEN1, SADDR1, SBRTL, SBRTH, BFINE                          |
| SPI Registers:                     | SPCON, SPSTA, SPDAT                                                                                        |
| ADC Registers:                     | ADCON, ADT, ADCH, ADDL, ADDH, ADCON1                                                                       |
| LCD Registers:                     | DISPCON, DISPCON1, DISPCLK0, P0SS, P1SS, P2SS, P3SS                                                        |
| LED Registers:                     | DISPCON, DISPCLK0, P1SS, P3SS                                                                              |
| BUZZER Registers:                  | BUZCON                                                                                                     |
| PWM Registers:                     | PWMEN, PWMEN1, PWM0C, PWM0PL, PWM0PH, PWM0DL, PWM0DH, PWM1C, PWM1P, PWM1D                                  |
| LPD Registers:                     | LPDCON                                                                                                     |
| CRC Registers:                     | CRCCON, CRCDL, CRCDH                                                                                       |



SH79F3283

## Table 6.1 CPU Core SFRs

| Mnem   | Add | Name                     | POR/WDT/LVR<br>/PIN Reset Value | Bit7   | Bit6   | Bit5   | Bit4   | Bit3   | Bit2   | Bit1   | Bit0   |
|--------|-----|--------------------------|---------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|
| ACC    | E0H | Accumulator              | 00000000                        | ACC.7  | ACC.6  | ACC.5  | ACC.4  | ACC.3  | ACC.2  | ACC.1  | ACC.0  |
| В      | F0H | B Register               | 00000000                        | B.7    | B.6    | B.5    | B.4    | B.3    | B.2    | B.1    | B.0    |
| AUXC   | F1H | C Register               | 00000000                        | C.7    | C.6    | C.5    | C.4    | C.3    | C.2    | C.1    | C.0    |
| PSW    | D0H | Program Status Word      | 00000000                        | CY     | AC     | F0     | RS1    | RS0    | OV     | F1     | Р      |
| SP     | 81H | Stack Pointer            | 00000111                        | SP.7   | SP.6   | SP.5   | SP.4   | SP.3   | SP.2   | SP.1   | SP.0   |
| DPL    | 82H | Data Pointer Low byte    | 00000000                        | DPL0.7 | DPL0.6 | DPL0.5 | DPL0.4 | DPL0.3 | DPL0.2 | DPL0.1 | DPL0.0 |
| DPH    | 83H | Data Pointer High byte   | 00000000                        | DPH0.7 | DPH0.6 | DPH0.5 | DPH0.4 | DPH0.3 | DPH0.2 | DPH0.1 | DPH0.0 |
| DPL1   | 84H | Data Pointer 1 Low byte  | 00000000                        | DPL1.7 | DPL1.6 | DPL1.5 | DPL1.4 | DPL1.3 | DPL1.2 | DPL1.1 | DPL1.0 |
| DPH1   | 85H | Data Pointer 1 High byte | 00000000                        | DPH1.7 | DPH1.6 | DPH1.5 | DPH1.4 | DPH1.3 | DPH1.2 | DPH1.1 | DPH1.0 |
| INSCON | 86H | Data pointer select      | -000-0                          | -      | BKS0   | -      | -      | DIV    | MUL    | -      | DPS    |

Table 6.2 Power and Clock control SFRs

| Mnem  | Add | Name                 | POR/WDT/LVR<br>/PIN Reset Value | Bit7    | Bit6    | Bit5    | Bit4    | Bit3    | Bit2    | Bit1    | Bit0    |
|-------|-----|----------------------|---------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|
| PCON  | 87H | Power Control        | 000-0000                        | SMOD    | SSTAT   | SSTAT1  | -       | GF1     | GF0     | PD      | IDL     |
| SUSLO | 8EH | Suspend Mode Control | 0000000                         | SUSLO.7 | SUSLO.6 | SUSLO.5 | SUSLO.4 | SUSLO.3 | SUSLO.2 | SUSLO.1 | SUSLO.0 |



## SH79F3283

## Table 6.3 Flash control SFRs

| Mnem          | Add          | Name                                               | POR/WDT/LVR<br>/PIN Reset Value | Bit7            | Bit6            | Bit5            | Bit4            | Bit3            | Bit2            | Bit1            | Bit0            |
|---------------|--------------|----------------------------------------------------|---------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| IB_OFF<br>SET | FBH<br>Bank0 | Low byte offset of flash memory<br>for programming | 0000000                         | IB_OFF<br>SET.7 | IB_OFF<br>SET.6 | IB_OFF<br>SET.5 | IB_OFF<br>SET.4 | IB_OFF<br>SET.3 | IB_OFF<br>SET.2 | IB_OFF<br>SET.1 | IB_OFF<br>SET.0 |
| IB_DATA       | FCH<br>Bank0 | Data Register for programming<br>flash memory      | 0000000                         | IB_DATA.7       | IB_DATA.6       | IB_DATA.5       | IB_DATA.4       | IB_DATA.3       | IB_DATA.2       | IB_DATA.1       | IB_DATA.0       |
| IB_CON1       | F2H<br>Bank0 | Flash Memory Control Register 1                    | 0000000                         | IB_CON1.7       | IB_CON1.6       | IB_CON1.5       | IB_CON1.4       | IB_CON1.3       | IB_CON1.2       | IB_CON1.1       | IB_CON1.0       |
| IB_CON2       | F3H<br>Bank0 | Flash Memory Control Register 2                    | 0000                            | -               | -               | -               | -               | IB_CON2.3       | IB_CON2.2       | IB_CON2.1       | IB_CON2.0       |
| IB_CON3       | F4H<br>Bank0 | Flash Memory Control Register 3                    | 0000                            | -               | -               | -               | -               | IB_CON3.3       | IB_CON3.2       | IB_CON3.1       | IB_CON3.0       |
| IB_CON4       | F5H<br>Bank0 | Flash Memory Control Register 4                    | 0000                            | -               | -               | -               | -               | IB_CON4.3       | IB_CON4.2       | IB_CON4.1       | IB_CON4.0       |
| IB_CON5       | F6H<br>Bank0 | Flash Memory Control Register 5                    | 0000                            | -               | -               | -               | -               | IB_CON5.3       | IB_CON5.2       | IB_CON5.1       | IB_CON5.0       |
| XPAGE         | F7H<br>Bank0 | Memory Page                                        | -0000000                        | -               | XPAGE.6         | XPAGE.5         | XPAGE.4         | XPAGE.3         | XPAGE.2         | XPAGE.1         | XPAGE.0         |
| FLASHCON      | A7H<br>Bank0 | Flash access control                               | 0                               | -               | -               | -               | -               | -               | -               | -               | FAC             |

## Table 6.4 WDT SFR

| Mnem    | Add          | Name                   | POR/WDT/LVR<br>/PIN Reset Value | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2  | Bit1  | Bit0  |
|---------|--------------|------------------------|---------------------------------|------|------|------|------|------|-------|-------|-------|
| RSTSTAT | B1H<br>Bank0 | Watchdog Timer Control | 0-000000*                       | WDOF | -    | PORF | LVRF | CLRF | WDT.2 | WDT.1 | WDT.0 |

\*Note: RSTSTAT initial value is determined by different RESET.

Table 6.5 CLKCON SFRs

| Mnem   | Add          | Name                          | POR/WDT/LVR<br>/PIN Reset Value | Bit7          | Bit6  | Bit5  | Bit4  | Bit3 | Bit2 | Bit1 | Bit0 |
|--------|--------------|-------------------------------|---------------------------------|---------------|-------|-------|-------|------|------|------|------|
| CLKCON | B2H<br>Bank0 | System Clock Control Register | 111000                          | 32k_<br>SPDUP | CLKS1 | CLKS0 | SCMIF | HFON | FS   | -    | -    |
| SCMCON | A1H<br>Bank0 | SCM Clock Control Register    | 011                             | -             | -     | -     | -     | -    | SCK2 | SCK1 | SCK0 |



SH79F3283

## Table 6.6 Interrupt SFRs

| Mnem  | Add          | Name                               | POR/WDT/LVR<br>/PIN Reset Value | Bit7             | Bit6  | Bit5  | Bit4    | Bit3  | Bit2  | Bit1  | Bit0  |
|-------|--------------|------------------------------------|---------------------------------|------------------|-------|-------|---------|-------|-------|-------|-------|
| IEN0  | A8H<br>Bank0 | Interrupt Enable Control 0         | 0000000                         | EA               | EADC  | ET2   | ES      | ECMP  | EX1   | ET5   | EX0   |
| IEN1  | A9H<br>Bank0 | Interrupt Enable Control 1         | 0000000                         | ESCM_LPD<br>_CRC | ET4   | EPWM  | ET3_ES1 | EX4   | EX3   | EX2   | ESPI  |
| IENC  | BAH<br>Bank0 | Interrupt 4channel enable control  | 0000000                         | EXS47            | EXS46 | EXS45 | EXS44   | EXS43 | EXS42 | EXS41 | EXS40 |
| IENC1 | BBH<br>Bank0 | Interrupt channel enable control 1 | -0000000                        | -                | ECRC  | ES1   | ET3     | ECMP1 | ECMP2 | ESCM  | ELPD  |
| IPH0  | B4H<br>Bank0 | Interrupt Priority Control High 0  | -0000000                        | -                | PADCH | PT2H  | PSH     | PCMPH | PX1H  | PT5H  | PX0H  |
| IPL0  | B8H<br>Bank0 | Interrupt Priority Control Low 0   | -0000000                        | -                | PADCL | PT2L  | PSL     | PCMPL | PX1L  | PT5L  | PX0L  |
| IPH1  | B5H<br>Bank0 | Interrupt Priority Control High 1  | 0000000                         | PSCMH            | PT4H  | PPWMH | PT3S1H  | PX4H  | PX3H  | PX2H  | PSPIH |
| IPL1  | B9H<br>Bank0 | Interrupt Priority Control Low 1   | 0000000                         | PSCML            | PT4L  | PPWML | PT3S1L  | PX4L  | PX3L  | PX2L  | PSPIL |
| EXF0  | E8H<br>Bank0 | External interrupt Control 0       | 0000000                         | IT4.1            | IT4.0 | IT3.1 | IT3.0   | IT2.1 | IT2.0 | IE3   | IE2   |
| EXF1  | D8H<br>Bank0 | External interrupt Control 1       | 0000000                         | IF47             | IF46  | IF45  | IF44    | IF43  | IF42  | IF41  | IF40  |
| EXCON | 8BH<br>Bank0 | External interrupt Sample Control  | 00000000                        | l1PS1            | I1PS0 | I1SN1 | I1SN0   | I0PS1 | I0PS0 | I0SN1 | I0SN0 |



SH79F3283

## Table 6.7 Port SFRs

| Mnem  | Add          | Name                                 | POR/WDT/LVR<br>/PIN Reset Value | Bit7    | Bit6    | Bit5    | Bit4    | Bit3    | Bit2    | Bit1    | Bit0    |
|-------|--------------|--------------------------------------|---------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|
| P0    | 80H<br>Bank0 | 8-bit Port 0                         | 0000000                         | P0.7    | P0.6    | P0.5    | P0.4    | P0.3    | P0.2    | P0.1    | P0.0    |
| P1    | 90H<br>Bank0 | 8-bit Port 1                         | 00000000                        | P1.7    | P1.6    | P1.5    | P1.4    | P1.3    | P1.2    | P1.1    | P1.0    |
| P2    | A0H<br>Bank0 | 8-bit Port 2                         | 00000000                        | P2.7    | P2.6    | P2.5    | P2.4    | P2.3    | P2.2    | P2.1    | P2.0    |
| P3    | B0H<br>Bank0 | 8-bit Port 3                         | 0000000                         | P3.7    | P3.6    | P3.5    | P3.4    | P3.3    | P3.2    | P3.1    | P3.0    |
| P4    | C0H<br>Bank0 | 8-bit Port 4                         | 00000000                        | P4.7    | P4.6    | P4.5    | P4.4    | P4.3    | P4.2    | P4.1    | P4.0    |
| P5    | 80H<br>Bank1 | 6-bit Port 5                         | 000000                          | -       | -       | P5.5    | P5.4    | P5.3    | P5.2    | P5.1    | P5.0    |
| P0CR  | E1H<br>Bank0 | Port0 input/output direction control | 00000000                        | P0CR.7  | P0CR.6  | P0CR.5  | P0CR.4  | P0CR.3  | P0CR.2  | P0CR.1  | P0CR.0  |
| P1CR  | E2H<br>Bank0 | Port1 input/output direction control | 00000000                        | P1CR.7  | P1CR.6  | P1CR.5  | P1CR.4  | P1CR.3  | P1CR.2  | P1CR.1  | P1CR.0  |
| P2CR  | E3H<br>Bank0 | Port2 input/output direction control | 00000000                        | P2CR.7  | P2CR.6  | P2CR.5  | P2CR.4  | P2CR.3  | P2CR.2  | P2CR.1  | P2CR.0  |
| P3CR  | E4H<br>Bank0 | Port3 input/output direction control | 00000000                        | P3CR.7  | P3CR.6  | P3CR.5  | P3CR.4  | P3CR.3  | P3CR.2  | P3CR.1  | P3CR.0  |
| P4CR  | E5H<br>Bank0 | Port4 input/output direction control | 00000000                        | P4CR.7  | P4CR.6  | P4CR.5  | P4CR.4  | P4CR.3  | P4CR.2  | P4CR.1  | P4CR.0  |
| P5CR  | E1H<br>Bank1 | Port5 input/output direction control | 000000                          | -       | -       | P5CR.5  | P5CR.4  | P5CR.3  | P5CR.2  | P5CR.1  | P5CR.0  |
| P0PCR | E9H<br>Bank0 | Internal pull-high enable for Port0  | 00000000                        | P0PCR.7 | P0PCR.6 | P0PCR.5 | P0PCR.4 | P0PCR.3 | P0PCR.2 | P0PCR.1 | P0PCR.0 |
| P1PCR | EAH<br>Bank0 | Internal pull-high enable for Port1  | 00000000                        | P1PCR.7 | P1PCR.6 | P1PCR.5 | P1PCR.4 | P1PCR.3 | P1PCR.2 | P1PCR.1 | P1PCR.0 |
| P2PCR | EBH<br>Bank0 | Internal pull-high enable for Port2  | 00000000                        | P2PCR.7 | P2PCR.6 | P2PCR.5 | P2PCR.4 | P2PCR.3 | P2PCR.2 | P2PCR.1 | P2PCR.0 |
| P3PCR | ECH<br>Bank0 | Internal pull-high enable for Port3  | 00000000                        | P3PCR.7 | P3PCR.6 | P3PCR.5 | P3PCR.4 | P3PCR.3 | P3PCR.2 | P3PCR.1 | P3PCR.0 |
| P4PCR | EDH<br>Bank0 | Internal pull-high enable for Port4  | 00000000                        | P4PCR.7 | P4PCR.6 | P4PCR.5 | P4PCR.4 | P4PCR.3 | P4PCR.2 | P4PCR.1 | P4PCR.0 |
| P5PCR | E9H<br>Bank1 | Internal pull-high enable for Port5  | 000000                          | -       | -       | P5PCR.5 | P5PCR.4 | P5PCR.3 | P5PCR.2 | P5PCR.1 | P5PCR.0 |
| P0OS  | EFH<br>Bank0 | Output mode control                  | 00                              | -       | -       | P0OS.5  | P0OS.4  | -       | -       | -       | -       |



SH79F3283

## Table 6.8 Timer SFRs

| Mnem   | Add          | Name                                         | POR/WDT/LVR<br>/PIN Reset Value | Bit7     | Bit6     | Bit5     | Bit4     | Bit3     | Bit2     | Bit1     | Bit0     |
|--------|--------------|----------------------------------------------|---------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|
| TCON   | 88H<br>Bank0 | Timer/Counter Control                        | 0000                            | -        | -        | -        | -        | IE1      | IT1      | IE0      | IT0      |
| T2CON  | C8H<br>Bank0 | Timer/Counter 2 Control                      | 00000000                        | TF2      | EXF2     | RCLK     | TCLK     | EXEN2    | TR2      | C/T 2    | CP/RL2   |
| T2MOD  | C9H<br>Bank0 | Timer/Counter 2 Mode                         | 000                             | TCLKP2   | -        | -        | -        | -        | -        | T2OE     | DCEN     |
| RCAP2L | CAH<br>Bank0 | Timer/Counter 2 Reload<br>/Capture Low Byte  | 0000000                         | RCAP2L.7 | RCAP2L.6 | RCAP2L.5 | RCAP2L.4 | RCAP2L.3 | RCAP2L.2 | RCAP2L.1 | RCAP2L.0 |
| RCAP2H | CBH<br>Bank0 | Timer/Counter 2 Reload<br>/Capture High Byte | 0000000                         | RCAP2H.7 | RCAP2H.6 | RCAP2H.5 | RCAP2H.4 | RCAP2H.3 | RCAP2H.2 | RCAP2H.1 | RCAP2H.0 |
| TL2    | CCH<br>Bank0 | Timer/Counter 2 Low Byte                     | 0000000                         | TL2.7    | TL2.6    | TL2.5    | TL2.4    | TL2.3    | TL2.2    | TL2.1    | TL2.0    |
| TH2    | CDH<br>Bank0 | Timer/Counter 2 High Byte                    | 0000000                         | TH2.7    | TH2.6    | TH2.5    | TH2.4    | TH2.3    | TH2.2    | TH2.1    | TH2.0    |
| T3CON  | 88H<br>Bank1 | Timer/Counter 3 Control                      | 0-00-000                        | TF3      | -        | T3PS.1   | T3PS.0   | -        | TR3      | T3CLKS.1 | T3CLKS.0 |
| SWTHL  | 89H<br>Bank1 | Timer/Counter data switch                    | 00                              | -        | -        | -        | -        | -        | -        | T5HLCON  | T3HLCON  |
| TL3    | 8CH<br>Bank1 | Timer/Counter 3 Low Byte                     | 0000000                         | TL3.7    | TL3.6    | TL3.5    | TL3.4    | TL3.3    | TL3.2    | TL3.1    | TL3.0    |
| TH3    | 8DH<br>Bank1 | Timer/Counter 3 High Byte                    | 0000000                         | TH3.7    | TH3.6    | TH3.5    | TH3.4    | TH3.3    | TH3.2    | TH3.1    | TH3.0    |
| T4CON  | C8H<br>Bank1 | Timer/Counter 4 Control                      | 0000000                         | TF4      | TC4      | T4PS1    | T4PS0    | T4M1     | T4M0     | TR4      | T4CLKS   |
| TL4    | CCH<br>Bank1 | Timer/Counter 4 Low Byte                     | 0000000                         | TL4.7    | TL4.6    | TL4.5    | TL4.4    | TL4.3    | TL4.2    | TL4.1    | TL4.0    |
| TH4    | CDH<br>Bank1 | Timer/Counter 4 High Byte                    | 00000000                        | TH4.7    | TH4.6    | TH4.5    | TH4.4    | TH4.3    | TH4.2    | TH4.1    | TH4.0    |
| T5CON  | C0H<br>Bank1 | Timer/Counter 5 Control                      | 0-000-                          | TF5      | -        | T5PS1    | T5PS0    | -        | -        | TR5      | -        |
| TL5    | CEH<br>Bank1 | Timer/Counter 5 Low Byte                     | 0000000                         | TL5.7    | TL5.6    | TL5.5    | TL5.4    | TL5.3    | TL5.2    | TL5.1    | TL5.0    |
| TH5    | CFH<br>Bank1 | Timer/Counter 5 High Byte                    | 00000000                        | TH5.7    | TH5.6    | TH5.5    | TH5.4    | TH5.3    | TH5.2    | TH5.1    | TH5.0    |





## Table 6.9 EUART SFRs

| Mnem   | Add          | Name                      | POR/WDT/LVR<br>/PIN Reset Value | Bit7     | Bit6           | Bit5            | Bit4     | Bit3     | Bit2     | Bit1     | Bit0     |
|--------|--------------|---------------------------|---------------------------------|----------|----------------|-----------------|----------|----------|----------|----------|----------|
| SCON   | 98H<br>Bank0 | EUART0 Serial Control     | 00000000                        | SM0/FE   | SM1/RXOV       | SM2/TXCOL       | REN      | TB8      | RB8      | TI       | RI       |
| SBUF   | 99H<br>Bank0 | EUART0 Serial Data Buffer | 00000000                        | SBUF.7   | SBUF.6         | SBUF.5          | SBUF.4   | SBUF.3   | SBUF.2   | SBUF.1   | SBUF.0   |
| SADEN  | 9BH<br>Bank0 | EUART0 Slave Address Mask | 00000000                        | SADEN.7  | SADEN.6        | SADEN.5         | SADEN.4  | SADEN.3  | SADEN.2  | SADEN.1  | SADEN.0  |
| SADDR  | 9AH<br>Bank0 | EUART0 Slave Addres       | 00000000                        | SADDR.7  | SADDR.6        | SADDR.5         | SADDR.4  | SADDR.3  | SADDR.2  | SADDR.1  | SADDR.0  |
| PCON   | 87H<br>Bank0 | Power & serial Control    | 000000                          | SMOD     | SSTAT          | -               | -        | GF1      | GF0      | PD       | IDL      |
| SCON1  | 98H<br>Bank1 | EUART1 Serial Control     | 00000000                        | SM10/FE1 | SM11/<br>RXOV1 | SM12/<br>TXCOL1 | REN1     | TB18     | RB18     | TI1      | RI1      |
| SBUF1  | 99H<br>Bank1 | EUART1 Serial Data Buffer | 00000000                        | SBUF1.7  | SBUF1.6        | SBUF1.5         | SBUF1.4  | SBUF1.3  | SBUF1.2  | SBUF1.1  | SBUF1.0  |
| SADEN1 | 9AH<br>Bank1 | EUART1 Slave Address Mask | 00000000                        | SADEN1.7 | SADEN1.6       | SADEN1.5        | SADEN1.4 | SADEN1.3 | SADEN1.2 | SADEN1.1 | SADEN1.0 |
| SADDR1 | 9BH<br>Bank1 | EUART1 Slave Addres       | 00000000                        | SADDR1.7 | SADDR1.6       | SADDR1.5        | SADDR1.4 | SADDR1.3 | SADDR1.2 | SADDR1.1 | SADDR1.0 |
| SBRTH  | 9DH<br>Bank1 | EUART1 Baudrate Generator | 0000000                         | SBRTEN   | SBRT.14        | SBRT.13         | SBRT.12  | SBRT.11  | SBRT.10  | SBRT.9   | SBRT.8   |
| SBRTL  | 9CH<br>Bank1 | EUART1 Baudrate Generator | 0000000                         | SBRT.7   | SBRT.6         | SBRT.5          | SBRT.4   | SBRT.3   | SBRT.2   | SBRT.1   | SBRT.0   |
| BFINE  | 9EH<br>Bank1 | EUART1 Baudrate Generator | 0000                            | BFINE.7  | BFINE.6        | BFINE.5         | BFINE.4  | -        | -        | -        | -        |

### Table 6.10 SPI SFRs

| Mnem  | Add          | Name        | POR/WDT/LVR<br>/PIN Reset Value | Bit7   | Bit6   | Bit5   | Bit4   | Bit3   | Bit2   | Bit1   | Bit0   |
|-------|--------------|-------------|---------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|
| SPCON | A2H<br>Bank0 | SPI Control | 00000000                        | DIR    | MSTR   | СРНА   | CPOL   | SSDIS  | SPR2   | SPR1   | SPR0   |
| SPSTA | F8H<br>Bank0 | SPI Status  | 00000                           | SPEN   | SPIF   | MODF   | WCOL   | RXOV   | -      | -      | -      |
| SPDAT | A3H<br>Bank0 | SPI Data    | 00000000                        | SPDAT7 | SPDAT6 | SPDAT5 | SPDAT4 | SPDAT3 | SPDAT2 | SPDAT1 | SPDAT0 |





## Table 6.11 ADC SFRs

| Mnem   | Add          | Name                      | POR/WDT/LVR<br>/PIN Reset Value | Bit7  | Bit6  | Bit5  | Bit4 | Bit3 | Bit2 | Bit1 | Bit0    |
|--------|--------------|---------------------------|---------------------------------|-------|-------|-------|------|------|------|------|---------|
| ADCON  | 93H<br>Bank0 | ADC Control               | 0000000                         | ADON  | ADCIF | EC    | REFC | SCH2 | SCH1 | SCH0 | GO/DONE |
| ADT    | 94H<br>Bank0 | ADC Time Configuration    | 0000000                         | TADC2 | TADC1 | TADC0 | CDIR | TS3  | TS2  | TS1  | TS0     |
| ADCH   | 95H<br>Bank0 | ADC Channel Configuration | 0000000                         | CH7   | CH6   | CH5   | CH4  | CH3  | CH2  | CH1  | CH0     |
| ADDL   | 96H<br>Bank0 | ADC Data Low Byte         | 0000                            | -     | -     | -     | -    | A3   | A2   | A1   | A0      |
| ADDH   | 97H<br>Bank0 | ADC Data High Byte        | 0000000                         | A11   | A10   | A9    | A8   | A7   | A6   | A5   | A4      |
| ADCON1 | 92H<br>Bank0 | ADC Control 1             | 000                             | -     | -     | -     | -    | -    | RESO | CH8  | SCH3    |

#### Table 6.12 Buzzer SFR

| Mnem   | Add          | Name                  | POR/WDT/LVR<br>/PIN Reset Value | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|--------|--------------|-----------------------|---------------------------------|------|------|------|------|------|------|------|------|
| BUZCON | BDH<br>Bank0 | Buzzer output control | 0000                            | -    | -    | -    | -    | BCA2 | BCA1 | BCA0 | BZEN |

## Table 6.13 LCD SFRs

| Mnem     | Add          | Name           | POR/WDT/LVR<br>/PIN Reset Value | Bit7    | Bit6  | Bit5  | Bit4  | Bit3   | Bit2   | Bit1 | Bit0 |
|----------|--------------|----------------|---------------------------------|---------|-------|-------|-------|--------|--------|------|------|
| DISPCON  | ABH<br>Bank0 | LCD Control    | 00000000                        | DISPSEL | LCDON | ELCC  | DUTY0 | VOL3   | VOL2   | VOL1 | VOL0 |
| DISPCON1 | ADH<br>Bank0 | LCD Control 1  | 0000000                         | MODSW   | DUTY2 | DUTY1 | RLCD  | FCCTL1 | FCCTL0 | MOD1 | MOD0 |
| DISPCLK0 | ACH<br>Bank0 | LCD clock 0    | 00                              | -       | -     | -     | -     | -      | -      | DCK1 | DCK0 |
| POSS     | B6H<br>Bank0 | P0 mode select | 00000000                        | P4S7    | P4S6  | P4S5  | P5S5  | P5S4   | P0S2   | P0S1 | P0S0 |
| P1SS     | 9CH<br>Bank0 | P1 mode select | 00000000                        | P1S7    | P1S6  | P1S5  | P1S4  | P1S3   | P1S2   | P1S1 | P1S0 |
| P2SS     | 9DH<br>Bank0 | P2 mode select | 00000000                        | P2S7    | P2S6  | P2S5  | P2S4  | P2S3   | P2S2   | P2S1 | P2S0 |
| P3SS     | 9EH<br>Bank0 | P3 mode select | 00000000                        | P3S7    | P3S6  | P3S5  | P3S4  | P3S3   | P3S2   | P3S1 | P3S0 |



## SH79F3283

## Table 6.14 LED SFRs

| Mnem     | Add          | Name           | POR/WDT/LVR<br>/PIN Reset Value | Bit7    | Bit6  | Bit5  | Bit4  | Bit3 | Bit2 | Bit1 | Bit0 |
|----------|--------------|----------------|---------------------------------|---------|-------|-------|-------|------|------|------|------|
| DISPCON  | ABH<br>Bank0 | LED Control    | 00-0                            | DISPSEL | LEDON | -     | DUTY0 | -    | -    | -    | -    |
| DISPCON1 | ADH<br>Bank0 | LED Control 1  | 000                             | MODSW   | DUTY2 | DUTY1 | -     | -    | -    | -    | -    |
| DISPCLK0 | ACH<br>Bank0 | LED clock 0    | 00                              | -       | -     | -     | -     | -    | -    | DCK1 | DCK0 |
| P1SS     | 9CH<br>Bank0 | P1 mode select | 00000000                        | P1S7    | P1S6  | P1S5  | P1S4  | P1S3 | P1S2 | P1S1 | P1S0 |
| P3SS     | 9EH<br>Bank0 | P3 mode select | 0000000                         | P3S7    | P3S6  | P3S5  | P3S4  | P3S3 | P3S2 | P3S1 | P3S0 |

#### Table 6.15 PWM SFRs

| Mnem   | Add          | Name                                    | POR/WDT/LVR<br>/PIN Reset Value | Bit7    | Bit6    | Bit5     | Bit4     | Bit3     | Bit2    | Bit1    | Bit0    |
|--------|--------------|-----------------------------------------|---------------------------------|---------|---------|----------|----------|----------|---------|---------|---------|
| PWMEN  | CFH<br>Bank0 | PWM0 timer enable                       | 00000000                        | EPWM0   | EFLT    | PWM01COE | PWM01BOE | PWM01AOE | PWM0COE | PWM0BOE | PWM0AOE |
| PWMLO  | E7H<br>Bank0 | PWM0 register Lock                      | 0000000                         | PWMLO.7 | PWMLO.6 | PWMLO.5  | PWMLO.4  | PWMLO.3  | PWMLO.2 | PWMLO.1 | PWMLO.0 |
| PWM0C  | D2H<br>Bank0 | 12-bit PWM0 Control                     | 0000000                         | PWM0IE  | PWM0IF  | TnCK02   | FLTS     | FLTC     | PWM0S   | TnCK01  | TnCK00  |
| PWM0PL | D3H<br>Bank0 | 12-bit PWM0 Period Control Iow byte     | 0000000                         | PP0.7   | PP0.6   | PP0.5    | PP.4     | PP0.3    | PP0.2   | PP0.1   | PP0.0   |
| PWM0PH | D4H<br>Bank0 | 12-bit PWM0 Period Control high<br>byte | 0000                            | -       | -       | -        | -        | PP0.11   | PP0.10  | PP0.9   | PP0.8   |
| PWM0DL | D5H<br>Bank0 | 12-bit PWM0 Duty Control low byte       | 0000000                         | PD0.7   | PD0.6   | PD0.5    | PD0.4    | PD0.3    | PD0.2   | PD0.1   | PD0.0   |
| PWM0DH | D6H<br>Bank0 | 12-bit PWM0 Duty Control high byte      | 0000                            | -       | -       | -        | -        | PD0.11   | PD0.10  | PD0.9   | PD0.8   |
| PWM0DT | D1H<br>Bank0 | 12-bit PWM0 Dead time control           | 0000000                         | DT0.7   | DT0.6   | DT0.5    | DT0.4    | DT0.3    | DT0.2   | DT0.1   | DT0.0   |
| PWM1C  | D9H<br>Bank0 | 8-bit PWM1 Control                      | 0000-000                        | PWM1EN  | PWM1S   | TnCK11   | TnCK10   | -        | PWM1IE  | PWM1IF  | PWM1OE  |
| PWM1P  | DAH<br>Bank0 | 8-bit PWM1 Period Control               | 0000000                         | PP1.7   | PP1.6   | PP1.5    | PP1.4    | PP1.3    | PP1.2   | PP1.1   | PP1.0   |
| PWM1D  | DBH<br>Bank0 | 8-bit PWM1 Duty Control                 | 0000000                         | PD1.7   | PD1.6   | PD1.5    | PD1.4    | PD1.3    | PD1.2   | PD1.1   | PD1.0   |



## SH79F3283

## Table 6.16 LPD SFR

| Mnem   | Add          | Name        | POR/WDT/LVR<br>/PIN Reset Value | Bit7  | Bit6 | Bit5  | Bit4  | Bit3  | Bit2  | Bit1  | Bit0  |
|--------|--------------|-------------|---------------------------------|-------|------|-------|-------|-------|-------|-------|-------|
| LPDCON | B3H<br>Bank0 | LPD Control | 0000000                         | LPDEN | LPDF | LPDMD | LPDIF | LPDS3 | LPDS2 | LPDS1 | LPDS0 |

#### Table 6.17 CRC SFRs

| Mnem   | Add          | Name                        | POR/WDT/LVR<br>/PIN Reset Value | Bit7   | Bit6   | Bit5   | Bit4   | Bit3    | Bit2    | Bit1    | Bit0    |
|--------|--------------|-----------------------------|---------------------------------|--------|--------|--------|--------|---------|---------|---------|---------|
| CRCCON | FDH<br>Bank0 | CRC verify control          | 000000                          | CRC_GO | CRCIF  | -      | -      | CRCADR3 | CRCADR2 | CRCADR1 | CRCADR0 |
| CRCDL  | F9H<br>Bank0 | CRC verify result low byte  | 00000000                        | CRCD7  | CRCD6  | CRCD5  | CRCD4  | CRCD3   | CRCD2   | CRCD1   | CRCD0   |
| CRCDH  | FAH<br>Bank0 | CRC verify result high byte | 0000000                         | CRCD15 | CRCD14 | CRCD13 | CRCD12 | CRCD11  | CRCD10  | CRCD9   | CRCD8   |

Note: - : Unimplemented



#### SFR Map Bank0

|     | Bit<br>addressable |         |          | Non       | Bit address | able     |         |          |     |
|-----|--------------------|---------|----------|-----------|-------------|----------|---------|----------|-----|
|     | 0/8                | 1/9     | 2/A      | 3/B       | 4/C         | 5/D      | 6/E     | 7/F      |     |
| F8H | SPSTA              | CRCDL   | CRCDH    | IB_OFFSET | IB_DATA     | CRCCON   |         |          | FFH |
| F0H | В                  | AUXC    | IB_CON1  | IB_CON2   | IB_CON3     | IB_CON4  | IB_CON5 | XPAGE    | F7H |
| E8H | EXF0               | P0PCR   | P1PCR    | P2PCR     | P3PCR       | P4PCR    |         | P0OS     | EFH |
| E0H | ACC                | P0CR    | P1CR     | P2CR      | P3CR        | P4CR     |         | PWMLO    | E7H |
| D8H | EXF1               | PWM1C   | PWM1P    | PWM1D     |             |          |         |          | DFH |
| D0H | PSW                | PWM0DT  | PWM0C    | PWM0PL    | PWM0PH      | PWM0DL   | PWM0DH  |          | D7H |
| C8H | T2CON              | T2MOD   | RCAP2L   | RCAP2H    | TL2         | TH2      |         | PWMEN    | CFH |
| C0H | P4                 | CMP1CON | CMP2CON  | CMPCON0   | CMPCON1     | INVCON   | INVCTL  | INVCTH   | C7H |
| B8H | IPL0               | IPL1    | IENC     | IENC1     |             | BUZCON   |         |          | BFH |
| B0H | P3                 | RSTSTAT | CLKCON   | LPDCON    | IPH0        | IPH1     | POSS    |          | B7H |
| A8H | IEN0               | IEN1    | DISPCLK1 | DISPCON   | DISPCLK0    | DISPCON1 |         |          | AFH |
| A0H | P2                 | SCMCON  | SPCON    | SPDAT     |             | ISPLO    | ISPCON  | FLASHCON | A7H |
| 98H | SCON               | SBUF    | SADDR    | SADEN     | P1SS        | P2SS     | P3SS    |          | 9FH |
| 90H | P1                 |         | ADCON1   | ADCON     | ADT         | ADCH     | ADDL    | ADDH     | 97H |
| 88H | TCON               |         |          | EXCON     |             |          | SUSLO   |          | 8FH |
| 80H | P0                 | SP      | DPL      | DPH       | DPL1        | DPH1     | INSCON  | PCON     | 87H |
|     | 0/8                | 1/9     | 2/A      | 3/B       | 4/C         | 5/D      | 6/E     | 7/F      |     |

#### Bank1

|     | Bit<br>addressable |       |        | Nor    | Bit address | able  |        |       |     |
|-----|--------------------|-------|--------|--------|-------------|-------|--------|-------|-----|
|     | 0/8                | 1/9   | 2/A    | 3/B    | 4/C         | 5/D   | 6/E    | 7/F   |     |
| F8H |                    |       |        |        |             |       |        |       | FFH |
| F0H | В                  | AUXC  |        |        |             |       |        | XPAGE | F7H |
| E8H |                    | P5PCR |        |        |             |       |        |       | EFH |
| E0H | ACC                | P5CR  |        |        |             |       |        |       | E7H |
| D8H |                    |       |        |        |             |       |        |       | DFH |
| D0H | PSW                |       |        |        |             |       |        |       | D7H |
| C8H | T4CON              |       |        |        | TL4         | TH4   | TL5    | TH5   | CFH |
| C0H | T5CON              |       |        |        |             |       |        |       | C7H |
| B8H | IPL0               | IPL1  |        |        |             |       |        |       | BFH |
| B0H |                    |       |        |        | IPH0        | IPH1  |        |       | B7H |
| A8H | IEN0               | IEN1  |        |        |             |       |        |       | AFH |
| A0H |                    |       |        |        |             |       |        |       | A7H |
| 98H | SCON1              | SBUF1 | SADDR1 | SADEN1 | SBRTL       | SBRTH | BFINE  |       | 9FH |
| 90H |                    |       |        |        |             |       |        |       | 97H |
| 88H | T3CON              | SWTHL |        |        | TL3         | TH3   | SUSLO  |       | 8FH |
| 80H | P5                 | SP    | DPL    | DPH    | DPL1        | DPH1  | INSCON | PCON  | 87H |
|     | 0/8                | 1/9   | 2/A    | 3/B    | 4/C         | 5/D   | 6/E    | 7/F   |     |

Note: The unused addresses of SFR are not available.



#### 7. Normal Function

#### 7.1 CPU

#### 7.1.1 CPU Core SFR

#### Feature

■ CPU core registers: ACC, B, PSW, SP, DPL, DPH

#### Accumulator

ACC is the Accumulator register. Instruction system adopts A as mnemonic symbol of accumulator.

#### **B** Register

The B register is used during multiply and divide operations. For other instructions it can be treated as another scratch pad register.

#### Stack Pointer (SP)

The Stack Pointer Register is 8 bits special register, It is incremented before data is stored during PUSH, CALL executions and it is decremented after data is out of stack during POP, RET, RETI executions. The stack may reside anywhere in on-chip internal RAM (00H-FFH). On reset, the Stack Pointer is initialized to 07H causing the stack to begin at location 08H.

#### Program Status Word Register (PSW)

The PSW register contains program status information.

#### Data Pointer Register (DPTR)

DPTR consists of a high byte (DPH) and a low byte (DPL). Its intended function is to hold a 16-bit address, but it may be manipulated as a 16-bit register or as two independent 8-bit registers.

Table 7.1 PSW Register

| D0H                               | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|-----------------------------------|------|------|------|------|------|------|------|------|
| PSW                               | CY   | AC   | F0   | RS1  | RS0  | OV   | F1   | Р    |
| R/W                               | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R    |
| Reset Value<br>(POR/WDT/LVR/PIN)) | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

| Bit Number | Bit Mnemonic | Description                                                                                                                                                             |
|------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7          | CY           | Carry flag bit<br>0: no carry or borrow in an arithmetic or logic operation<br>1: a carry or borrow in an arithmetic or logic operation                                 |
| 6          | AC           | Auxiliary Carry flag bit<br>0: no auxiliary carry or borrow in an arithmetic or logic operation<br>1: an auxiliary carry or borrow in an arithmetic or logic operation  |
| 5          | FO           | F0 flag bit<br>Available to the user for general purposes                                                                                                               |
| 4-3        | RS[1:0]      | R0-R7 Register bank select bits<br>00: Bank0 (Address to 00H-07H)<br>01: Bank1 (Address to 08H-0FH)<br>10: Bank2 (Address to 10H-17H)<br>11: Bank3 (Address to 18H-1FH) |
| 2          | ov           | Overflow flag bit<br>0: no overflow happen<br>1: an overflow happen                                                                                                     |
| 1          | F1           | F1 flag bit<br>Available to the user for general purposes                                                                                                               |
| 0          | Р            | Parity flag bit<br>0: In the Accumulator, the bits whose value is 1 is even number<br>1: In the Accumulator, the bits whose value is 1 is odd number                    |



#### 7.1.2 Enhanced CPU core SFRs

- Extended 'MUL' and 'DIV' instructions: 16bit X 8bit, 16bit/8bit
- Dual Data Pointer
- Enhanced CPU core registers: AUXC, DPL1, DPH1, INSCON

The SH79F3283 has modified 'MUL' and 'DIV' instructions. These instructions support 16 bit operand. A new register - the register AUXC is applied to hold the upper part of the operand/result.

The AUXC register is used during 16 bit operand multiply and divide operations. For other instructions it can be treated as another scratch pad register.

After reset, the CPU is in standard mode, which means that the 'MUL' and 'DIV' instructions are operating like the standard 8051 instructions. To enable the 16 bit mode operation, the corresponding enable bit in the INSCON register must be set.

|     | Operation                 |              |                   | Result      |                    |
|-----|---------------------------|--------------|-------------------|-------------|--------------------|
|     | Operation                 |              | Α                 | В           | AUXC               |
| MUL | INSCON.2 = 0; 8 bit mode  | (A)*(B)      | Low Byte          | High Byte   |                    |
| MOL | INSCON.2 = 1; 16 bit mode | (AUXC A)*(B) | Low Byte          | Middle Byte | High Byte          |
| DIV | INSCON.3 = 0; 8 bit mode  | (A)/(B)      | Quotient Low Byte | Remainder   |                    |
|     | INSCON.3 = 1; 16 bit mode | (AUXC A)/(B) | Quotient Low Byte | Remainder   | Quotient High Byte |

#### **Dual Data Pointer**

Using two data pointers can accelerate data memory moves. The standard data pointer is called DPTR and the new data pointer is called DPTR1.

DPTR1 is similar to DPTR, which consists of a high byte (DPH1) and a low byte (DPL1). Its intended function is to hold a 16-bit address, but it may be manipulated as a 16-bit register or as two independent 8-bit registers.

The DPS bit in INSTCON register is used to choose the active pointer by setting 1 or 0. And all DPTR-related instructions will use the currently selected data pointer.

#### 7.1.3 Register

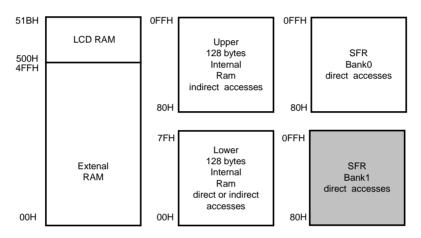
 Table 7.2 Data Pointer Select Register

| 86H                              | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|----------------------------------|------|------|------|------|------|------|------|------|
| INSCON                           | -    | BKS0 | -    | -    | DIV  | MUL  | -    | DPS  |
| R/W                              | -    | R/W  | -    | -    | R/W  | R/W  | -    | R/W  |
| Reset Value<br>(POR/WDT/LVR/PIN) | -    | 0    | -    | -    | 0    | 0    | -    | 0    |

| Bit Number | Bit Mnemonic | Description                                                                           |
|------------|--------------|---------------------------------------------------------------------------------------|
| 6          | BKS0         | SFR Bank Selection Bit<br>0: SFR Bank0 selected<br>1: SFR Bank1 selected              |
| 3          | DIV          | <b>16 bit/8 bit Divide Selection Bit</b><br>0: 8 bit Divide<br>1: 16 bit Divide       |
| 2          | MUL          | <b>16 bit/8 bit Multiply Selection Bit</b><br>0: 8 bit Multiply<br>1: 16 bit Multiply |
| 0          | DPS          | Data Pointer Selection Bit<br>0: Data pointer<br>1: Data pointer1                     |



#### 7.2 RAM


#### 7.2.1 Features

SH79F3283 provides both internal RAM and external RAM for random data storage. The internal data memory is mapped into four separated segments:

- The Lower 128 bytes of RAM (addresses 00H to 7FH) are directly and indirectly addressable.
- The Upper 128 bytes of RAM (addresses 80H to FFH) are indirectly addressable only.
- The Special Function Registers (SFR, addresses 80H to FFH) are directly addressable only.
- The 1280 bytes of external RAM (addresses 00H to FFH) are indirectly accessed by MOVX instructions.

The Upper 128 bytes occupy the same address space as SFR, but they are physically separate from SFR space. When an instruction accesses an internal location above address 7FH, the CPU can distinguish whether to access the upper 128 bytes data RAM or to access SFR by different addressing mode of the instruction.

SH79F3283 provides an extra 1280 bytes of RAM to support high-level language in external data space. Also, SH79F3283 provides 28 bytes LCD RAM (500H - 51BH).



The Internal and External RAM Configuration

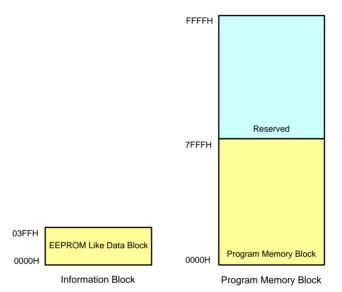
The SH79F3283 provides traditional method for accessing of external RAM. Use *MOVXA*, *@Ri* or *MOVX @Ri*, *A*; to access external low 256 bytes RAM; *MOVX A*, *@DPTR* or *MOVX @DPTR*, *A* also to access external 1308 bytes RAM. In SH79F3283 the user can also use XPAGE register to access external RAM only with *MOVX A*, *@Ri* or *MOVX @Ri*, *A* instructions. The user can use XPAGE to represent the high byte address of RAM above 256 Bytes.

In Flash SSP mode, the XPAGE can also be used as sector selector (Refer to SSP Function).

#### 7.2.2 Register

Table 7.3 Data Memory Page Register

| F7H                              | Bit7 | Bit6    | Bit5    | Bit4    | Bit3    | Bit2    | Bit1    | Bit0    |
|----------------------------------|------|---------|---------|---------|---------|---------|---------|---------|
| XPAGE                            | -    | XPAGE.6 | XPAGE.5 | XPAGE.4 | XPAGE.3 | XPAGE.2 | XPAGE.1 | XPAGE.0 |
| R/W                              | -    | R/W     |
| Reset Value<br>(POR/WDT/LVR/PIN) | -    | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
|                                  |      |         |         |         |         |         |         |         |


| Bit Number | Bit Mnemonic | Description       |
|------------|--------------|-------------------|
| 6-0        | XPAGE[6:0]   | RAM Page Selector |



#### 7.3 Flash Program Memory

#### 7.3.1 Features

- The program memory consists 32 X 1KB sectors, total 32KB
- Programming and erase can be done over the full operation voltage range
- Write, read and erase operation are all supported by In-Circuit Programming (ICP)
- Support overall/sector erase and programming
- Minimum program/erase cycles: Program area: 10000
  - EEPROM-like area: 100,000
- Minimum years data retention: 10
- Low power consumption



The SH79F3283 embeds 32K flash program memory for program code. The flash program memory provides electrical erasure and programming and supports In-Circuit Programming (ICP) mode and Self-Sector Programming (SSP) mode. Every sector is 1024 bytes.

The SH79F3283 also embeds 1024 bytes EEPROM-like memory block for storing user data. Every sector is 256 bytes. It has 4 sectors.

Flash operation defined:

In-Circuit Programming (ICP): Through the Flash programmer to wipe the Flash memory, read and write operations.

Self-Sector Programming (SSP) mode: User Program code run in Program Memory to wipe the flash memory, read and write operations.

#### Flash Memory Supports the Following Operations:

#### (1) Code Protection Control Mode

SH79F3283 code protection function provides a high-performance security measures for the user. Each partition has four modes are available.

Code protection mode 0: allow/forbid any programmer write/read operations (not including overall erasure).

Code protection mode 1: allow/forbid through MOVC instructions to read operation in other sectors, or through SSP mode to erased/write operation.

Code-protect control mode 2: Used to enable/disable the erase/write EEPROM operation through SSP Function.

Code-protect control mode 3: Customer password, write by customer, consists of 6 bytes. To enable the wanted protect mode, the user must use the Flash Programmer to set the corresponding protect bit.

The user must use the following two ways to complete code protection control mode Settings:

1. Flash programmer in ICP mode is set to corresponding protection bit to enter the protected mode.

2. The SSP mode does not support code protection control mode programming.



#### (2) Mass Erase

Regardless of the state of the code protection control mode, the overall erasure operation will erase all programs, code options, the code protection bit, but they will not erase EEPROM-like memory block.

The user must use the following way to complete the overall erasure:

The Flash programmer in ICP mode sends overall erasure instruction to run overall erasure.

The SSP mode does not support overall erasure mode.

#### (3) Sector Erase

Sector erasure operations will erase the content of selected sector. The user program (SSP) and Flash programmer can perform this operation.

For user programs to perform the operation, code protection mode 1 in the selected sector must be forbidden.

For Flash programmer to perform the operation, code protection mode 0 in the selected sector must be forbidden.

The user must use one of the following two ways to complete sector erasure:

1. Flash programmer in ICP mode send sector erasure instruction to run sector erasure.

2. Through the SSP function sends sector erasure instruction to run sector erasure (see chapter SSP).

#### (4) EEPROM-like Memory Block Erasure

EEPROM-like memory block erasure operations will erase the content in EEPROM-like memory block. The user program (SSP) and Flash programmer can perform this operation.

The user must use one of the following two ways to complete EEPROM-like memory block erasure:

- 1. Flash programmer in ICP mode send EEPROM-like memory block erasure instruction to run EEPROM-like memory block erasure.
- 2. Through the SSP function send EEPROM-like memory block erasure instruction to run EEPROM-like memory block erasure (see chapter SSP).

#### (5) Write/Read Code

Write/read code operation can read or write code from flash memory block. The user program (SSP) and Flash programmer can perform this operation.

For user programs to perform the operation, code protection mode 1 in the selected sector must be forbidden. Regardless of the security bit Settings or not, the user program can read/write the sector which contains program itself.

For Flash programmer to perform the operation, code protection mode 0 in the selected sector must be forbidden.

The user must use one of the following two ways to complete write/read code:

1. Flash programmer in ICP mode send write/read code instruction to run write/read code.

2. Through the SSP function send write/read code instruction to run write/read code.

#### (6) Write/Read EEPROM-like Memory Block

EEPROM-like memory block operation can read or write data from EEPROM-like memory block. The user program (SSP) and Flash programmer can perform this operation.

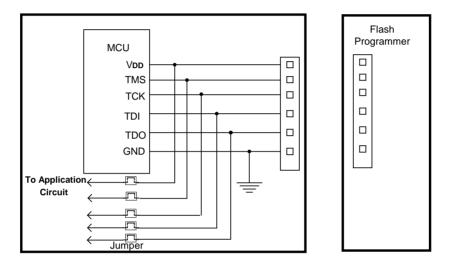
The user must use one of the following two ways to complete write/read EEPROM-like memory block:

- 1. Flash programmer in ICP mode send write/read EEPROM-like memory block instruction to run write/read EEPROM-like memory block.
- 2. Through the SSP function send write/read EEPROM-like memory block instruction to run write/read EEPROM-like memory block.

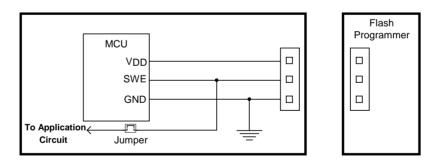
#### Flash Memory Block Operation Summary

| Operation                           | ICP                       | SSP                       |  |
|-------------------------------------|---------------------------|---------------------------|--|
| Code protection                     | support                   | non support               |  |
| Sector erasure                      | support (no security bit) | support (no security bit) |  |
| Overall erasure                     | support                   | non support               |  |
| EEPROM-like memory block erasure    | support                   | support                   |  |
| Write/read code                     | Support (no security bit) | support (no security bit) |  |
| Read/write EEPROM-like memory block | support                   | support                   |  |




#### 7.3.2 Flash Operation in ICP Mode

ICP has two modes: four JTAG pins and single SWE pin. ICP mode is performed without removing the micro-controller from the system. In ICP mode, the user system must be power-off, and the programmer can refresh the program memory through ICP programming interface. The ICP programming interface consists of 6 pins ( $V_{DD}$ , GND, TCK, TDI, TMS, TDO/SWE).


SH79F3283 provides two types JTAG pins, the four JTAG pins (TDO, TDI, TCK, TMS) and the single SWE pin (SWE) are used to enter the programming mode. Only after the four pins are inputted the specified waveform, the CPU will enter the programming mode. For more detail description please refers to the FLASH Programmer's user guide.

In ICP mode, all the flash operations are completed by the programmer through 6-wire interface. Since the program signal is very sensitive, 6 jumpers are needed ( $V_{DD}$ , GND, TDO/SWE, TDI, TCK, TMS) to separate the program pins from the application circuit, as show in the following diagram.

#### Four JTAG Pins Mode:



#### Single SWE Pin Mode:



The recommended steps are as following:

(1) The jumpers must be open to separate the programming pins from the application circuit before programming.

(2) Connect the programming interface with programmer and begin programming.

(3) Disconnect programmer interface and connect jumpers to recover application circuit after programming is complete.



## 7.4 SSP Function

The SH79F3283 provides SSP (Self Sector Programming) function, each sector can be sector erased or programmed by the user's code if the selected sector is not be protected. But once sector has been programmed, it cannot be reprogrammed before sector erase.

The SH79F3283 builds in a complex control flow to prevent the code from carelessly modification. If the dedicated conditions are not met (IB\_CON2-5), the SSP will be terminated.

#### 7.4.1 Register

Table 7.4 Memory Page Register for Programming (For Flash memory, one sector is 1024 bytes)

| F7H                              | Bit7 | Bit6    | Bit5    | Bit4    | Bit3    | Bit2    | Bit1    | Bit0    |
|----------------------------------|------|---------|---------|---------|---------|---------|---------|---------|
| XPAGE                            | -    | XPAGE.6 | XPAGE.5 | XPAGE.4 | XPAGE.3 | XPAGE.2 | XPAGE.1 | XPAGE.0 |
| R/W                              | -    | R/W     |
| Reset Value<br>(POR/WDT/LVR/PIN) | -    | 0       | 0       | 0       | 0       | 0       | 0       | 0       |

| Bit Number Bit Mnemonic Description |            |                                                                             |  |  |  |
|-------------------------------------|------------|-----------------------------------------------------------------------------|--|--|--|
| 6-2                                 | XPAGE[6:2] | Sector of the flash memory to be programmed, 0000 means sector 0, and so on |  |  |  |
| 1-0                                 | XPAGE[1:0] | High 2 Address of the flash memory sector to be programmed                  |  |  |  |

Table 7.5 Memory Page Register for Programming (For EEPROM-like memory, one sector is 256 bytes)

| F7H                              | Bit7 | Bit6    | Bit5    | Bit4    | Bit3    | Bit2    | Bit1    | Bit0    |
|----------------------------------|------|---------|---------|---------|---------|---------|---------|---------|
| XPAGE                            | -    | XPAGE.6 | XPAGE.5 | XPAGE.4 | XPAGE.3 | XPAGE.2 | XPAGE.1 | XPAGE.0 |
| R/W                              | -    | R/W     |
| Reset Value<br>(POR/WDT/LVR/PIN) | -    | 0       | 0       | 0       | 0       | 0       | 0       | 0       |

| Bit Number | Bit Mnemonic | Description                                                               |
|------------|--------------|---------------------------------------------------------------------------|
| 6-2        | XPAGE[6:2]   | Reserved                                                                  |
| 1-0        | XPAGE[1:0]   | Sector of the flash memory to be programmed, 00 means sector 0, and so on |

Table 7.6 Offset of Flash Memory for Programming

| FBH, Bank0                       | Bit7            | Bit6            | Bit5            | Bit4            | Bit3            | Bit2            | Bit1            | Bit0            |
|----------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| IB_OFFSET                        | IB_OFF<br>SET.7 | IB_OFF<br>SET.6 | IB_OFF<br>SET.5 | IB_OFF<br>SET.4 | IB_OFF<br>SET.3 | IB_OFF<br>SET.2 | IB_OFF<br>SET.1 | IB_OFF<br>SET.0 |
| R/W                              | R/W             | R/W             | R/W             | R/W             | R/W             | R/W             | R/W             | R/W             |
| Reset Value<br>(POR/WDT/LVR/PIN) | 0               | 0               | 0               | 0               | 0               | 0               | 0               | 0               |

| Bit Number | Bit Mnemonic   | Description                                                         |
|------------|----------------|---------------------------------------------------------------------|
| 7-0        | IB_OFFSET[7:0] | Low 8 Address of Offset of the flash memory sector to be programmed |

Table 7.7 Data Register for Programming

| FCH, Bank                        | )     | Bit7      | Bit6                  | Bit5      | Bit4      | Bit3      | Bit2      | Bit1      | Bit0      |
|----------------------------------|-------|-----------|-----------------------|-----------|-----------|-----------|-----------|-----------|-----------|
| IB_DATA                          |       | IB_DATA.7 | IB_DATA.6             | IB_DATA.5 | IB_DATA.4 | IB_DATA.3 | IB_DATA.2 | IB_DATA.1 | IB_DATA.0 |
| R/W                              |       | R/W       | R/W                   | R/W       | R/W       | R/W       | R/W       | R/W       | R/W       |
| Reset Value<br>(POR/WDT/LVR/PIN) |       | 0         | 0                     | 0         | 0         | 0         | 0         | 0         | 0         |
| Bit Number                       | Bit N | Inemonic  | Description           |           |           |           |           |           |           |
| 7-0                              | IB_D  | OATA[7:0] | Data to be programmed |           |           |           |           |           |           |



### Table 7.8 SSP Type select Register

| F2H, Bank(                       | )     | Bit7      | Bit6                                                              | Bit5 | Bit4 | Bit3        | Bit2      | Bit1      | Bit0 |
|----------------------------------|-------|-----------|-------------------------------------------------------------------|------|------|-------------|-----------|-----------|------|
| IB_CON1                          |       | IB_CON1.7 | IB_CON1.6 IB_CON1.5 IB_CON1.4 IB_CON1.3 IB_CON1.2 IB_CON          |      |      |             | IB_CON1.1 | IB_CON1.0 |      |
| R/W                              |       | R/W       | R/W R/W R/W R/W R/W R                                             |      |      |             |           | R/W       |      |
| Reset Value<br>(POR/WDT/LVR/PIN) |       | 0         | 0 0 0 0 0 0                                                       |      |      |             |           | 0         |      |
| Bit Number                       | Bit N | Inemonic  |                                                                   |      |      | Description |           |           |      |
| 7-0                              | IB_C  | ON1[7:0]  | SSP Type select<br>0xE6: Sector Erase<br>0x6E: Sector Programming |      |      |             |           |           |      |

#### Table 7.9 SSP Flow Control Register1

| F3H, Bank0                       | )     | Bit7     | Bit6                                                    | Bit5 | Bit4 | Bit3      | Bit2      | Bit1      | Bit0      |
|----------------------------------|-------|----------|---------------------------------------------------------|------|------|-----------|-----------|-----------|-----------|
| IB_CON2                          |       | -        | -                                                       | -    | -    | IB_CON2.3 | IB_CON2.2 | IB_CON2.1 | IB_CON2.0 |
| R/W                              |       | -        | -                                                       | -    | -    | R/W       | R/W       | R/W       | R/W       |
| Reset Value<br>(POR/WDT/LVR/PIN) |       | -        | -                                                       | -    | -    | 0         | 0         | 0         | 0         |
| Bit Number                       | Bit N | Inemonic | Description                                             |      |      |           |           |           |           |
| 3-0                              | IB_C  | ON2[3:0] | Must be 05H, otherwise Flash Programming will terminate |      |      |           |           |           |           |

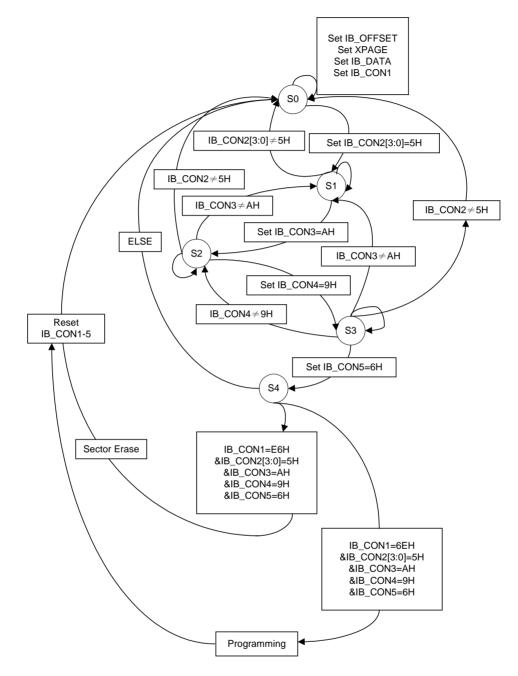
### Table 7.10 SSP Flow Control Register2

| F4H, Bank0                       | Bit7     | Bit6 | Bit5 | Bit4 | Bit3        | Bit2      | Bit1      | Bit0      |
|----------------------------------|----------|------|------|------|-------------|-----------|-----------|-----------|
| IB_CON3                          | -        | -    | -    | -    | IB_CON3.3   | IB_CON3.2 | IB_CON3.1 | IB_CON3.0 |
| R/W                              | -        | -    | -    | -    | R/W         | R/W       | R/W       | R/W       |
| Reset Value<br>(POR/WDT/LVR/PIN) | -        | -    | -    | -    | 0           | 0         | 0         | 0         |
| Bit Number Bit I                 | Inemonic |      |      |      | Description |           |           |           |

| 3-0 | IB_CON3[3:0] | Must be 0AH, otherwise Flash Programming will terminate |
|-----|--------------|---------------------------------------------------------|

#### Table 7.11 SSP Flow Control Register3

| F5H, Bank0                    | Bit7         | Bit6 | Bit5        | Bit4 | Bit3      | Bit2      | Bit1      | Bit0      |
|-------------------------------|--------------|------|-------------|------|-----------|-----------|-----------|-----------|
| IB_CON4                       | -            | -    | -           | -    | IB_CON4.3 | IB_CON4.2 | IB_CON4.1 | IB_CON4.0 |
| R/W                           | -            | -    | -           | -    | R/W       | R/W       | R/W       | R/W       |
| Reset Value<br>(POR/WDT/LVR/F | PIN)         | -    | -           | -    | 0         | 0         | 0         | 0         |
| Bit Number                    | Bit Mnemonic |      | Description |      |           |           |           |           |


3-0 IB\_CON4[3:0] Must be 09H, otherwise Flash Programming will terminate

#### Table 7.12 SSP Flow Control Register4

| F6H, Bank(                  | )     | Bit7     | Bit6                                                    | Bit5 | Bit4 | Bit3      | Bit2      | Bit1      | Bit0      |
|-----------------------------|-------|----------|---------------------------------------------------------|------|------|-----------|-----------|-----------|-----------|
| IB_CON5                     |       | -        | -                                                       | -    | -    | IB_CON5.3 | IB_CON5.2 | IB_CON5.1 | IB_CON5.0 |
| R/W                         |       | -        | -                                                       | -    | -    | R/W       | R/W       | R/W       | R/W       |
| Reset Value<br>(POR/WDT/LVR | -     | -        | -                                                       | -    | -    | 0         | 0         | 0         | 0         |
| Bit Number                  | Bit N | Inemonic | Description                                             |      |      |           |           |           |           |
| 3-0                         | IB_C  | ON5[3:0] | Must be 06H, otherwise Flash Programming will terminate |      |      |           |           |           |           |



#### 7.4.2 Flash Control Flow







#### 7.4.3 SSP Programming Notice

To successfully complete SSP programming, the user's software must be set as the following the steps:

#### (1) For Code/Data Programming:

- 1. Disable interrupt;
- 2. Fill in the XPAGE, IB\_OFFSET for the corresponding address;
- 3. Fill in IB\_DATA if programming is wanted;
- 4. Fill in IB\_CON1-5 sequentially;
- 5. Add 4 nops for more stable operation;
- 6. Code/Data programming, CPU will be in IDLE mode;
- 7. Go to Step 2 if more data are to be programmed;
- 8. Clear XPAGE; enable interrupt if necessary.

#### (2) For Sector Erase:

- 1. Disable interrupt;
- 2. Fill in the XPAGE for the corresponding sector;
- 3. Fill in IB\_CON1-5 sequentially;
- 4. Add 4 NOPs for more stable operation;
- 5. Sector Erase, CPU will be in IDLE mode;
- 6. Go to step 2 if more sectors are to be erased;
- 7. Clear XPAGE; enable interrupt if necessary.

#### (3) For Code Reading:

Just Use "MOVC A, @A+DPTR" or "MOVC A, @A+PC".

#### (4) For EEPROM-Like:

Step is same as code programming, the differences are:

1. Set FAC bit in FLASHCON register before programming or erase EEPROM-Like;

2. One sector of EEPROM-Like is 256 bytes, not 1024 bytes.

#### Note:

(1) The system clock is not less than 200 KHZ to ensure normal FLASH programming

(2) FAC must be cleared when you don't need to do EEPROM-like operation.

FLASHCON Register Description is as follows:

 Table 7.13 Flash Access Control Register

| A7H, Bank0                       | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|----------------------------------|------|------|------|------|------|------|------|------|
| FLASHCON                         | -    | -    | -    | -    | -    | -    | -    | FAC  |
| R/W                              | -    | -    | -    | -    | -    | -    | -    | R/W  |
| Reset Value<br>(POR/WDT/LVR/PIN) | -    | -    | -    | -    | -    | -    | -    | 0    |

| Bit Number | Bit Mnemonic | Description                                                                                         |
|------------|--------------|-----------------------------------------------------------------------------------------------------|
| 7-1        | -            | Reserved                                                                                            |
| 0          | FAC          | FAC: Flash access control<br>0: MOVC or SSP access main memory<br>1: MOVC or SSP access EEPROM-like |

SH79F3283



#### 7.5 System Clock and Oscillator

#### 7.5.1 Features

- Six oscillator types: 32.768kHz crystal oscillator, crystal oscillator, ceramic oscillator and 16MHz/12MHz/8MHz /128kHz internal RC
- 4 Oscillator pin (XTAL1, XTAL2, XTALX1, XTALX2)
- Built-in 16MHz/12MHz/8MHz/128KHz Internal RC
- Built-in 32.768kHz speed up circuit
- Built-in system clock prescaler

#### 7.5.2 Clock Definition

The SH79F3283 have several internal clocks defined as below:

**OSCCLK:** the oscillator clock is selected from the four oscillator types (32.768kHz crystal oscillator, crystal oscillator, ceramic oscillator and internal 16M/12M/8M RC/128K oscillator from XTAL input). f<sub>OSC</sub> is defined as the OSCCLK frequency. t<sub>OSC</sub> is defined as the OSCCLK period.

**OSCXCLK:** the oscillator clock is select from the four oscillator types (32.768kHz crystal oscillator, crystal oscillator, ceramic oscillator and internal 16M/12M/8M RC/128K oscillator from XTALX input).  $f_{OSC}$  is defined as the OSCXCLK frequency.  $t_{OSC}$  is defined as the OSCXCLK period.

**Note:** OSCXCLK does not exist when code option OP\_OSC is not 0011, 0110, 1010, 1101 (32.768kHz/128kHz RC is not selected, Refer to **code option** section for details)

WDTCLK: the internal WDT RC clock. f<sub>WDT</sub> is defined as the WDTCLK frequency. t<sub>WDT</sub> is defined as the WDTCLK period.

**OSCSCLK:** the input clock of system clock frequency prescaler. It can be OSCCLK or OSCXCLK. f<sub>OSCS</sub> is defined as the OSCSCLK frequency. t<sub>OSCS</sub> is defined as the OSCSCLK period.

**SYSCLK:** system clock, the output clock of system clock prescaler. It is the CPU instruction clock.  $f_{SYS}$  is defined as the SYSCLK frequency.  $t_{SYS}$  is defined as the SYSCLK period.

#### 7.5.3 Description

SH79F3283 has six oscillator types: 32.768kHz crystal oscillator, crystal oscillator/ceramic oscillator (2MHz-16MHz) and internal RC (16MHz, 12MHz, 8MHz, 128KHz), which is selected by code option OP\_OSC (Refer to code option section for details). SH79F3283 has 4 oscillator pins (XTAL1, XTAL2, XTALX1, XTALX2), which can generate 1 or 2 clocks from 3 oscillator types. They also are selected by code option OP\_OSC (Refer to code option for details). The oscillator generates the basic clock pulse that provides the system clock to supply CPU and on-chip peripherals.

#### 7.5.4 Register

| B2H, Bank0                       | Bit7      | Bit6  | Bit5  | Bit4  | Bit3 | Bit2 | Bit1 | Bit0 |
|----------------------------------|-----------|-------|-------|-------|------|------|------|------|
| CLKCON                           | 32K_SPDUP | CLKS1 | CLKS0 | SCMIF | HFON | FS   | -    | -    |
| R/W                              | R/W       | R/W   | R/W   | R     | R/W  | R/W  | -    | -    |
| Reset Value<br>(POR/WDT/LVR/PIN) | 1         | 1     | 1     | 0     | 0    | 0    | -    | -    |

Table 7.14 System Clock Control Register

| Bit Number | Bit Mnemonic | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7          | 32K_SPDUP    | <ul> <li>32.768kHz oscillator speed up mode control bit</li> <li>0: 32.768kHz oscillator normal mode, cleared by software.</li> <li>1: 32.768kHz oscillator speed up mode, set by hardware or software.<br/>This control bit is set by hardware automatically in all kinds of RESET such as Power on reset, watch dog reset etc. to speed up the 32.768kHz Oscillator oscillating, shorten the 32.768kHz oscillator start-oscillating time.<br/>And this bit also can be set or cleared by software if necessary. Such as set before entering Power-down mode and cleared when Power-down mode wakes up.</li> <li>It should be noticed that turning off 32.768kHz oscillator speed up (clear this bit) could reduce the system power consumption.<br/>Only when code option OP_OSC is 1010 or 1101, this bit is valid. (32.768kHz oscillator is selected, Refer to code option for details)</li> </ul> |

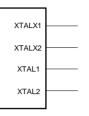
(to be continued)



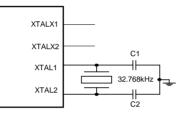
(continue)

| 6-5 | CLKS [1: 0] | $\begin{array}{l} \textbf{SYSCLK Prescaler Register} \\ 00: f_{SYS} = f_{OSCS} \\ 01: f_{SYS} = f_{OSCS}/2 \\ 10: f_{SYS} = f_{OSCS}/4 \\ 11: f_{SYS} = f_{OSCS}/12 \\ If 32.768 \text{kHz oscillator is selected as OSCSCLK, these control bits is invalid.} \end{array}$            |
|-----|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3   | HFON        | OSCXCLK On-Off control Register<br>0: turn off OSCXCLK<br>1: turn on OSCXCLK<br>Only when code option OP_OSC is 0011, 0110, 1010, 1101 this bit is valid.<br>(32.768kHz oscillator/128kHz internal RC is selected, refer to code option<br>section for details)                       |
| 2   | FS          | Frequency Select Register<br>0: 32.768kHz/128kHz is selected as OSCSCLK.<br>1: OSCXCLK is selected as OSCSCLK.<br>Only when code option OP_OSC is 0011, 0110, 1010. 1101 this bit is valid.<br>(32.768kHz oscillator/128kHz internal RC is selected, refer to code option<br>section) |

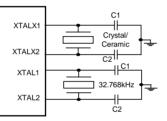
#### Note:


(1) If code option OP\_OSC is 0011, 1010, OSCXCLK is Internal 12M RC, if code option OP\_OSC is 0110, 1101, OSCXCLK is oscillator from XTALX1 input.

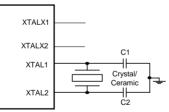
- (2) HFON and FS is valid only when code option OP\_OSC is 0011, 0110, 1010, 1101
- (3) When OSCXCLK is used as OSCSCLK (that is HFON = 1 and FS = 1), HFON is can't be cleared by software.
- (4) When OSCSCLK changed from 32.768kHz/128kHz to OSCXCLK, if OSCXCLK is off, the setting must be done as the following steps:
  - a. Set HFON = 1 to turn on the OSCXCLK
  - b. Wait at least Oscillator Warm-up timer (Refer to Warm-up Timer section for details)
  - c. Set FS = 1 to select OSCXCLK as OSCSCLK.
- (5). When OSCSCLK changed from OSCXCLK to 32.768kHz/128kHz, the setting must be done as the following steps: a. Clear FS to select 32.768kHZ/128k as OSCSCLK.
  - b. Add one NOP
  - c. Clear HFON (reduce power consumption)
  - d. Add four NOPs.



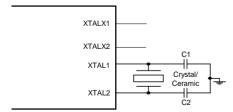

#### 7.5.5 Oscillator Type


(1) OP\_OSC = 0000, 0001, 0011, 0100: internal RC 16M/12M/8M/128K, XTAL, XTALX shared with IO.




(2) OP\_OSC = 1010, 1011: 32.768kHz Crystal Oscillator at XTAL, Internal RC can be enabled, XTALX shared with IO.




(3) OP\_OSC = 1101: 32.768kHz Crystal Oscillator at XTAL, 2M - 12M Crystal/Ceramic oscillator from XTALX input



(4) OP\_OSC = 1110: 2M - 12M Crystal/Ceramic oscillator from XTAL input, XTALX shared with IO.



(5) OP\_OSC = 0110: 128kHz internal RC, 2M - 12M Crystal/Ceramic oscillator from XTAL input, XTALX shared with IO.





#### 7.5.6 Capacitor Selection for Oscillator

| Ceramic Oscillator |    |    |  |  |  |  |
|--------------------|----|----|--|--|--|--|
| Frequency          | C1 | C2 |  |  |  |  |
| 3.58MHz            | -  | -  |  |  |  |  |
| 4MHz               | -  | -  |  |  |  |  |

| Crystal Oscillator |           |           |  |  |  |  |  |
|--------------------|-----------|-----------|--|--|--|--|--|
| Frequency          | C1        | C2        |  |  |  |  |  |
| 32.768kHz          | 10 - 12pF | 10 - 12pF |  |  |  |  |  |
| 4MHz               | 8 - 22pF  | 8 - 22pF  |  |  |  |  |  |
| 12MHz              | 8 - 22pF  | 8 - 22pF  |  |  |  |  |  |

#### Note:

(1) Capacitor values are used for design guidance only!

(2) These capacitors were tested with the crystals listed above for basic start-up and operation. They are not optimized.

(3) Be careful for the stray capacitance on PCB board, the user should test the performance of the oscillator over the expected V<sub>DD</sub> and the temperature range for the application.

(4) Before selecting crystal/ceramic, the user should consult the crystal/ceramic manufacturer for appropriate value of external component to get best performance, visit <u>http://www.sinowealth.com</u> for more recommended manufactures.





#### 7.6 System Clock Monitor (SCM)

In order to enhance the system reliability, SH79F3283 contains a system clock monitor (SCM) module. If the system clock breaks down (for example the external oscillator stops oscillating), the built-in SCM will switch the OSCCLK to the internal RC clock, and set system clock monitor bit (SCMIF) to 1. And the SCM interrupt will be generated when EA and ESCM is enabled. If the external oscillator comes back, SCM will switch the OSCCLK back to the external oscillator and clears the SCMIF automatically.

Select SCM clock by set up SCMCON, if the built-in SCM detect the system clock breaks down, that will switch the OSCCLK to the internal SCM clock.

The SCM function is valid when using external clock only.

#### Notes:

The SCMIF is read only register; it can be clear to 0 or set to 1 by hardware only.

If SCMIF is cleared, the SCM switches the system clock to the state before system clock breaks down automatically.

If Internal RC is selected as OSCSCLK by code option (Refer to code option section for detail), the SCM can not work.

| Table 7 | .15 System | Clock Control | Register |
|---------|------------|---------------|----------|
|---------|------------|---------------|----------|

| B2H                             | Bit7 | Bit6 | Bit5 | Bit4  | Bit3 | Bit2 | Bit1 | Bit0 |
|---------------------------------|------|------|------|-------|------|------|------|------|
| CLKCON                          | -    | -    | -    | SCMIF | -    | -    | -    | -    |
| R/W                             | -    | -    | -    | R     | -    | -    | -    | -    |
| Reset Value<br>(POR/WDT/LVR/PIN | -    | -    | -    | 0     | -    | -    | -    | -    |

| Bit Number | Bit Mnemonic | Description                                                                                                                                   |
|------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 4          | SCMIF        | System Clock Monitor flag bit<br>0: Clear by hardware to indicate system clock is normal<br>1: Set by hardware to indicate system clock fails |

Table 7.16 SCM Clock Control Register

| A1H                             | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|---------------------------------|------|------|------|------|------|------|------|------|
| SCMCON                          | -    | -    | -    | -    | -    | SCK2 | SCK1 | SCK0 |
| R/W                             | -    | -    | -    | -    | -    | R/W  | R/W  | R/W  |
| Reset Value<br>(POR/WDT/LVR/PIN | -    | -    | -    | -    | -    | 0    | 1    | 1    |

| Bit Number | Bit Mnemonic | Description                                                                                                         |
|------------|--------------|---------------------------------------------------------------------------------------------------------------------|
| 2-0        | SCK[2:0]     | SCM Clock select bits<br>000: 2MHz<br>001: 4MHz<br>010: 6MHz<br>011: 8MHz (Default)<br>100: 12MHz<br>101-111: 16MHz |



## 7.7 I/O Port

#### 7.7.1 Features

- 46/42/30 bi-directional I/O ports
- Share with alternative functions

The SH79F3283 has 46 bi-directional I/O ports. The PORT data is put in Px register. The PORT control register (PxCRy) controls the PORT as input or output. Each I/O port has an internal pull-high resistor, which is controlled by PxPCRy when the PORT is used as input (x = 0-5, y = 0-7).

For SH79F3283, some I/O pins can share with alternative functions. There exists a priority rule in CPU to avoid these functions conflicts when all the functions are enabled. (Refer to **Port Share** Section for details).

#### 7.7.2 Register

Table 7.17 Port Control Register

| E1H - E5H                        | Bit7   | Bit6   | Bit5   | Bit4   | Bit3   | Bit2   | Bit1   | Bit0   |
|----------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|
| P0CR (E1H, Bank0)                | P0CR.7 | P0CR.6 | P0CR.5 | P0CR.4 | P0CR.3 | P0CR.2 | P0CR.1 | P0CR.0 |
| P1CR (E2H, Bank0)                | P1CR.7 | P1CR.6 | P1CR.5 | P1CR.4 | P1CR.3 | P1CR.2 | P1CR.1 | P1CR.0 |
| P2CR (E3H, Bank0)                | P2CR.7 | P2CR.6 | P2CR.5 | P2CR.4 | P2CR.3 | P2CR.2 | P2CR.1 | P2CR.0 |
| P3CR (E4H, Bank0)                | P3CR.7 | P3CR.6 | P3CR.5 | P3CR.4 | P3CR.3 | P3CR.2 | P3CR.1 | P3CR.0 |
| P4CR (E5H, Bank0)                | P4CR.7 | P4CR.6 | P4CR.5 | P4CR.4 | P4CR.3 | P4CR.2 | P4CR.1 | P4CR.0 |
| P5CR (E1H, Bank1)                | -      | -      | P5CR.5 | P5CR.4 | P5CR.3 | P5CR.2 | P5CR.1 | P5CR.0 |
| R/W                              | R/W    | R/W    | R/W    | R/W    | R/W    | R/W    | R/W    | R/W    |
| Reset Value<br>(POR/WDT/LVR/PIN) | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |

| Bit Number | Bit Mnemonic              | Description                                                           |
|------------|---------------------------|-----------------------------------------------------------------------|
| 7-0        | PxCRy<br>x = 0-5, y = 0-7 | Port input/output control Register<br>0: input mode<br>1: output mode |

#### Table 7.18 Port Pull up Resistor Control Register

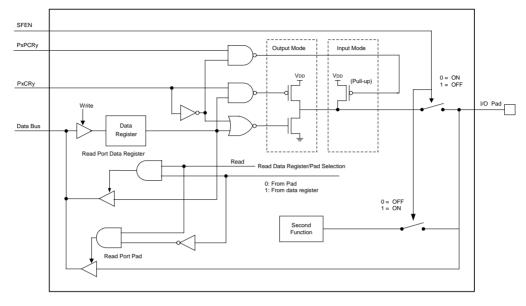
| E9H - ECH                        | Bit7    | Bit6    | Bit5    | Bit4    | Bit3    | Bit2    | Bit1    | Bit0    |
|----------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|
| P0PCR (E9H, Bank0)               | P0PCR.7 | P0PCR.6 | P0PCR.5 | P0PCR.4 | P0PCR.3 | P0PCR.2 | P0PCR.1 | P0PCR.0 |
| P1PCR (EAH, Bank0)               | P1PCR.7 | P1PCR.6 | P1PCR.5 | P1PCR.4 | P1PCR.3 | P1PCR.2 | P1PCR.1 | P1PCR.0 |
| P2PCR (EBH, Bank0)               | P2PCR.7 | P2PCR.6 | P2PCR.5 | P2PCR.4 | P2PCR.3 | P2PCR.2 | P2PCR.1 | P2PCR.0 |
| P3PCR (ECH, Bank0)               | P3PCR.7 | P3PCR.6 | P3PCR.5 | P3PCR.4 | P3PCR.3 | P3PCR.2 | P3PCR.1 | P3PCR.0 |
| P4PCR (EDH, Bank0)               | P4PCR.7 | P4PCR.6 | P4PCR.5 | P4PCR.4 | P4PCR.3 | P4PCR.2 | P4PCR.1 | P4PCR.0 |
| P5PCR (E9H, Bank1)               | -       | -       | P5PCR.5 | P5PCR.4 | P5PCR.3 | P5PCR.2 | P5PCR.1 | P5PCR.0 |
| R/W                              | R/W     | R/W     | R/W     | R/W     | R/W     | R/W     | R/W     | R/W     |
| Reset Value<br>(POR/WDT/LVR/PIN) | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
|                                  |         |         |         |         |         |         |         |         |

| Bit Number | Bit Mnemonic               | Description                                                                                                                                        |
|------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 7-0        | PxPCRy<br>x = 0-5, y = 0-7 | Input Port internal pull-high resistor enable/disable control<br>0: internal pull-high resistor disabled<br>1: internal pull-high resistor enabled |



# Table 7.19 Port Data Register

| 80H - C0H                   |                                                                                | Bit7     | Bit6        | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|-----------------------------|--------------------------------------------------------------------------------|----------|-------------|------|------|------|------|------|------|
| P0 (80H, Ban                | P0 (80H, Bank0)                                                                |          | P0.6        | P0.5 | P0.4 | P0.3 | P0.2 | P0.1 | P0.0 |
| P1 (90H, Ban                | k0)                                                                            | P1.7     | P1.6        | P1.5 | P1.4 | P1.3 | P1.2 | P1.1 | P1.0 |
| P2 (A0H, Ban                | k0)                                                                            | P2.7     | P2.6        | P2.5 | P2.4 | P2.3 | P2.2 | P2.1 | P2.0 |
| P3 (B0H, Ban                | k0)                                                                            | P3.7     | P3.6        | P3.5 | P3.4 | P3.3 | P3.2 | P3.1 | P3.0 |
| P4 (C0H, Ban                | P4 (C0H, Bank0)                                                                |          | P4.6        | P4.5 | P4.4 | P4.3 | P4.2 | P4.1 | P4.0 |
| P5 (80H, Ban                | P5 (80H, Bank1) -                                                              |          |             | P5.5 | P5.4 | P5.3 | P5.2 | P5.1 | P5.0 |
| R/W                         |                                                                                | R/W      | R/W         | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  |
| Reset Value<br>(POR/WDT/LVR | -                                                                              | 0        | 0           | 0    | 0    | 0    | 0    | 0    | 0    |
| Bit Number                  | Bit N                                                                          | Inemonic | Description |      |      |      |      |      |      |
| 7-0                         | 7-0 $\begin{array}{c} Px.y \\ x = 0-5, y = 0-7 \end{array}$ Port Data Register |          |             |      |      |      |      |      |      |


# Table 7.20 Port mode select Register

| EFH, Bank                        | EFH, Bank0 Bit7 |                | Bit6                                                                                                   | Bit5   | Bit4   | Bit3        | Bit2 | Bit1 | Bit0 |
|----------------------------------|-----------------|----------------|--------------------------------------------------------------------------------------------------------|--------|--------|-------------|------|------|------|
| POOS                             |                 | -              | -                                                                                                      | P0OS.5 | P0OS.4 | -           | -    | -    | -    |
| R/W                              | R/W -           |                | -                                                                                                      | R/W    | R/W    | -           | -    | -    | -    |
| Reset Value<br>(POR/WDT/LVR/PIN) |                 | -              | - 0 0 -                                                                                                |        | -      | -           | -    |      |      |
| Bit Number                       | Bit N           | Inemonic       |                                                                                                        |        |        | Description |      |      |      |
| 5-4                              |                 | 0OS.x<br>= 5-4 | Port0 output mode select<br>0: Port output mode is CMOS<br>1: Port output mode is N-channel open drain |        |        |             |      |      |      |

Note: P0.4, P0.5 art configured as N-channel open drain I/O, but voltage provided for this pin can't exceed  $V_{DD}$ +0.3V.



# 7.7.3 Port Diagram



#### Note:

- (1) The input source of reading input port operation is from the input pin directly.
- (2) The input source of reading output port operation has two paths, one is from the port data Register, and the other is from the output pin directly.
- (3) The read Instruction distinguishes which path is selected: The read-modify-write instruction is for the reading of the data register in output mode, and the other instructions are for reading of the output pin directly.
- (4) The destination of writing port operation is the data register regardless of the port shared as the second function or not.

#### 7.7.4 Port Share

The 46/42/30 bi-directional I/O ports can also share second or third special function. But the share priority should obey the **Outer Most Inner Lest** rule:

The out most pin function in **Pin Configuration** has the highest priority, and the inner most pin function has the lowest priority. This means when one pin is occupied by a higher priority function (if enabled), it cannot be used as the lower priority functional pin, even the lower priority function is also enabled. Only until the higher priority function is closed by hardware or software, can the corresponding pin be released for the lower priority function use. Also the function that need pull up resister is also controlled by the same rule.

When port share function is enabled, the user can modify PxCR, PxPCR (x = 0.5), but these operations will have no effect on the port status until the second function was disabled.

When port share function is enabled, any read or write operation to port will only affect the data register. The value of the port pin keeps unchanged until the second function was disabled.

#### PORT0:

- LCD Segment 17-19 (P0.0-P0.2)
- PWM01B: PWM01B output (P0.0)
- PWM0B: PWM0B output (P0.1)
- PWM01A: PWM01A output (P0.2)
- PWM0A: PWM0A output (P0.3)
- INT0: external inturrupt0 (P0.4)
- INT1: external inturrupt1 (P0.5)
- INT2: external inturrupt2 (P0.6)
- INT3: external inturrupt3 (P0.7)
- T2: Timer2 external input/baud rate clock output (P0.5)
- T2EX: Timer2 reload/capture control (P0.4)
- T4: Timer4 external input/Baud-rate clock output (P0.3)



Table 7.21 PORT0 Share Table

|        | Pin No. |        | Duiauitu | <b>F</b> ormation | Fachla bit                                                                                                                                                                                            |  |  |  |  |
|--------|---------|--------|----------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| TQFP48 | LQFP44  | LQFP32 | Priority | Function          | Enable bit                                                                                                                                                                                            |  |  |  |  |
|        |         |        | 1        | PWM01B            | Set EPWM1 bit and PWM01BOE bit in PWMEN Register                                                                                                                                                      |  |  |  |  |
| 47     | 43      | -      | 2        | SEG17             | Clear <b>DISPSEL</b> bit in <b>DISPCON</b> Register and set <b>P0S0</b> in <b>P0SS</b> Register                                                                                                       |  |  |  |  |
|        |         |        | 3        | P0.0              | Above condition is not met                                                                                                                                                                            |  |  |  |  |
|        |         |        | 1        | PWM0B             | Set EPWM0 bit and PWM01BOE bit in PWMEN Register                                                                                                                                                      |  |  |  |  |
| 48     | 44      | -      | 2        | SEG18             | Clear <b>DISPSEL</b> bit in <b>DISPCON</b> Register and set <b>P0S1</b> in <b>P0SS</b> Register                                                                                                       |  |  |  |  |
|        |         |        | 3        | P0.1              | Above condition is not met                                                                                                                                                                            |  |  |  |  |
|        |         |        | 1        | PWM01A            | Set EPWM0bit and PWM01AOE bit in PWMEN Register                                                                                                                                                       |  |  |  |  |
| 1      | 1 31    |        | 2        | SEG19             | Clear <b>DISPSEL</b> bit in <b>DISPCON</b> Register and set <b>P0S2</b> in <b>P0SS</b> Register                                                                                                       |  |  |  |  |
|        |         |        | 3        | P0.2              | Above condition is not met                                                                                                                                                                            |  |  |  |  |
|        |         |        | 1        | PWM0A             | Set EPWM0 bit and PWM01AOE bit in PWMEN Register                                                                                                                                                      |  |  |  |  |
| 2      | 2 32    |        | 2        | T4                | Set TR4 bit and T4CLKS bit in T4CON register (Auto Pull up) or clear T4CLKS bit and set TC4 bit or set TR4 bit in Mode2                                                                               |  |  |  |  |
|        |         |        | 3        | P0.3              | Above condition is not met                                                                                                                                                                            |  |  |  |  |
| 3      | 3       | -      | 1        | T2EX              | In mode 0, 2, 3, set <b>EXEN2</b> bit in <b>T2CON</b> register, or in mode 1 set <b>DCEN</b> bit in <b>T2MOD</b> register or in mode 1, clear <b>DCEN</b> bit and set <b>EXEN2</b> bit (Auto Pull up) |  |  |  |  |
| Ū      | Ū       |        | 2        | INT0              | Set EX0 bit in IEN0 Register and Port0.4 is in input mode                                                                                                                                             |  |  |  |  |
|        |         |        | 3        | P0.4              | Above condition is not met                                                                                                                                                                            |  |  |  |  |
|        | _       |        | 1        | T2                | Set TR2 bit and C/T2 bit in T2CON register (Auto Pull up) or clear C/T2 bit and set T2OE bit in T2MOD register.                                                                                       |  |  |  |  |
| 4      | 4       | -      | 2        | INT1              | Set EX1 bit in IEN0 Register and Port0.5 is in input mode                                                                                                                                             |  |  |  |  |
|        |         |        | 3        | P0.5              | Above condition is not met                                                                                                                                                                            |  |  |  |  |
|        |         |        | 1        | XTALX2            | Selected by Code Option                                                                                                                                                                               |  |  |  |  |
| 5      | 5       | 1      | 2        | INT2              | Set EX2 bit in IEN1 Register and Port0.6 is in input mode                                                                                                                                             |  |  |  |  |
|        |         |        | 3        | P0.6              | Above condition is not met                                                                                                                                                                            |  |  |  |  |
|        |         |        | 1        | XTALX1            | LX1 Selected by Code Option                                                                                                                                                                           |  |  |  |  |
| 6      | 6       | 2      | 2        | INT3              | Set EX3 bit in IEN1 Register and Port0.7 is in input mode                                                                                                                                             |  |  |  |  |
|        |         |        |          | P0.7              | Above condition is not met                                                                                                                                                                            |  |  |  |  |

Note: Pin3, Pin4 art open drain port when P0OS is 30H.



# PORT1:

- LED Segment 1-8 (P1.0-P1.7)

- LCD Segment 1-8 (P1.0-P1.7)

- INT44-INT47 (P1.0-P1.3): External interrupt input

Table 7.22 PORT1 Share Table

|        | Pin No.        |        | Delogity | Function   | Enable bit                                                                                                          |
|--------|----------------|--------|----------|------------|---------------------------------------------------------------------------------------------------------------------|
| TQFP48 | LQFP44         | LQFP32 | Priority | Function   |                                                                                                                     |
|        |                |        | 1        | INT44-47   | Set <b>EX4</b> bit in <b>IEN1</b> register and <b>EXS44-47</b> bit in <b>IENC</b> register, P1.0-P1.3 in input mode |
| 31-34  | 27-30          | 22-25  | 2        | LED S1-4   | Set <b>DISPSEL</b> bit in <b>DISPCON</b> Register and set <b>P1S0-P1S3</b> in <b>P0SS</b> Register                  |
|        |                |        | 3        | LCD SEG1-4 | Clear <b>DISPSEL</b> bit in <b>DISPCON</b> Register and set <b>P1S0-P1S3</b> in <b>P0SS</b> Register                |
|        |                |        | 4        | P1.0-P1.3  | Above condition is not met                                                                                          |
|        |                |        | 1        | LED S5-8   | Set <b>DISPSEL</b> bit in <b>DISPCON</b> Register and set <b>P1S4-P1S7</b> in <b>P0SS</b> Register 1                |
| 35-38  | 35-38 31-34 26 |        | 2        | LCD SEG5-8 | Clear <b>DISPSEL</b> bit in <b>DISPCON</b> Register and set <b>P1S4-P1S7</b> in <b>P0SS</b> Register                |
|        |                |        | 3        | P1.4-P1.7  | Above condition is not met                                                                                          |

#### PORT2:

- RXD0: EUART0 data input (P2.0)
- TXD0: EUART0 data output (P2.1) MOSI: SPI Master output Slave input (P2.2)
- MISO: SPI Master input Slave output (P2.3)
- SCK: SPI Serial Clock (P2.4)
- FLT: Fault input pin (P2.5)
- LCD Segment 9-16 (P2.0-P2.7)
- SS: SPI Slave selection (P2.5)
- PWM0C: PWM0C output (P2.7)
- PWM01C: PWM01C output (P2.6)

Table 7.23 PORT2 Share Table

|        | Pin No.  |        | Duiouitur | Function |                                                                                                                                                         |
|--------|----------|--------|-----------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| TQFP48 | LQFP44   | LQFP32 | Priority  | Function | Enable bit                                                                                                                                              |
|        |          |        | 1         | RXD0     | Set REN bit in SCON Register (Auto Pull up)                                                                                                             |
| 39     | 35       | 27     | 2         | SEG9     | Clear <b>DISPSEL</b> bit in <b>DISPCON</b> Register and set <b>P2S0</b> in <b>P2SS</b> Register                                                         |
|        |          |        | 3         | P2.0     | Above condition is not met                                                                                                                              |
|        | 40 36 28 |        | 1         | TXD0     | Do write operation to <b>SBUF</b> register                                                                                                              |
| 40     |          |        | 2         | SEG10    | Clear <b>DISPSEL</b> bit in <b>DISPCON</b> Register and set <b>P2S1</b> in <b>P2SS</b><br>Register                                                      |
|        |          |        | 3         | P2.1     | Above condition is not met                                                                                                                              |
|        |          |        | 1         | MOSI     | Set <b>SPEN</b> bit in <b>SPSTAT</b> register in Slave mode<br>(when <b>SPEN</b> , <b>CPHA</b> , <b>SSDIS</b> bits all set in Slave mode, Auto Pull up) |
| 44     | 27       |        | 2         | RXD1     | Set REN1 bit in SCON1 Register (Auto Pull up)                                                                                                           |
| 41     | 41 37    |        | 3         | SEG11    | Clear <b>DISPSEL</b> bit in <b>DISPCON</b> Register and set <b>P2S2</b> in <b>P2SS</b> Register                                                         |
|        |          |        | 4         | P2.2     | Above condition is not met                                                                                                                              |

(to be continued)



(continued)

|    |          |    | 1 | MISO   | Set <b>SPEN</b> bit in <b>SPSTAT</b> register<br>(when <b>SPEN</b> bit in <b>SPSTAT</b> register in Master mode, Auto Pull up)                                                                                                                                                                                                                                                               |  |  |  |  |   |       |                                                                     |
|----|----------|----|---|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|---|-------|---------------------------------------------------------------------|
| 42 | 38       | -  | 2 | TXD1   | Do write operation to SBUF1 register                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |   |       |                                                                     |
|    |          |    | 3 | SEG12  | Clear DISPSEL bit in DISPCON Register and set P2S3 in P2SS Register                                                                                                                                                                                                                                                                                                                          |  |  |  |  |   |       |                                                                     |
|    |          |    | 4 | P2.3   | Above condition is not met                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |   |       |                                                                     |
|    |          |    | 1 | SCK    | Set <b>SPEN</b> bit in <b>SPSTAT</b> register<br>(when <b>SPEN</b> , <b>CPHA</b> , <b>SSDIS</b> bits all set in Slave mode, Auto Pull up)                                                                                                                                                                                                                                                    |  |  |  |  |   |       |                                                                     |
| 43 | 39       | -  | 2 | SEG13  | Clear DISPSEL bit in DISPCON Register and set P2S4 in P2SS Register                                                                                                                                                                                                                                                                                                                          |  |  |  |  |   |       |                                                                     |
|    |          |    | 3 | P2.4   | Above condition is not met                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |   |       |                                                                     |
|    |          |    | 1 | FLT    | Set EFLT bit in PWMEN register                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |   |       |                                                                     |
| 44 | 44 40 29 |    | 2 | SS     | When <b>SPEN</b> = 1,<br>Clear <b>SSDIS</b> bit in <b>SPCON</b> register in SPI Master mode or clear<br><b>SSDIS</b> bit when <b>CPHA</b> = 1 in <b>SPCON</b> register in SPI slave mode<br>or clear <b>CPHA</b> bit in <b>SPCON</b> register in SPI slave mode<br>(When <b>SPEN</b> = 1 & Master = 1 & <b>SSDIS</b> = 1, auto pull-high or<br><b>SPEN</b> = 1 & Master = 0, auto pull-high) |  |  |  |  |   |       |                                                                     |
|    |          | -  | [ |        |                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  | 3 | SEG14 | Clear DISPSEL bit in DISPCON Register and set P2S5 in P2SS Register |
|    |          |    | 4 | P2.5   | Above condition is not met                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |   |       |                                                                     |
|    |          |    | 1 | PWM01C | Set EPWM1 bit and PWM01COE bit in PWMEN Register                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |   |       |                                                                     |
| 45 | 41       | 30 | 2 | SEG15  | Clear DISPSEL bit in DISPCON Register and set P2S6 in P2SS Register                                                                                                                                                                                                                                                                                                                          |  |  |  |  |   |       |                                                                     |
|    |          |    | 3 | P2.6   | Above condition is not met                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |   |       |                                                                     |
|    |          |    | 1 | PWM0C  | Set EPWM1 bit and PWM01COE bit in PWMEN Register                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |   |       |                                                                     |
| 46 | 42       | -  | 2 | SEG16  | Clear DISPSEL bit in DISPCON Register and set P2S7 in P2SS Register                                                                                                                                                                                                                                                                                                                          |  |  |  |  |   |       |                                                                     |
|    |          |    | 3 | P2.7   | Above condition is not met                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |   |       |                                                                     |

## PORT3:

- LED COM1-COM8 (P3.0-P3.7) - LCD COM1-COM8 (P3.0-P3.7) - AN4-AN7: ADC input channel (P3.4-P3.7)

Table 7.24 PORT3 Share Table

|        | Pin No.     |          | Delogia  | Function          |                                                                                                                                 |
|--------|-------------|----------|----------|-------------------|---------------------------------------------------------------------------------------------------------------------------------|
| TQFP48 | LQFP44      | LQFP32   | Priority | Function          | Enable bit                                                                                                                      |
|        |             |          | 1        | AN7-AN4           | Set CH7-4 bit in ADCH Register and set ADON bit in ADCON Register, and set SCH [2:0]                                            |
| 23-26  | 19-22       | 22 14-17 | 2        | LED_C8<br>-LED_C5 | Set <b>P3S7-P3S4</b> bits in <b>P3SS</b> register and set <b>DISPSEL</b> bit and set <b>DUTY</b> bit in <b>DISPCON</b> register |
|        |             |          | 3        | COM8-COM5         | Set <b>P3S7-P3S4</b> bits in <b>P3SS</b> register, clear <b>DISPSEL</b> bit and set <b>DUTY</b> bit in <b>DISPCON</b> register  |
|        |             |          | 4        | P3.7-P3.4         | Above condition is not met                                                                                                      |
|        |             |          | 1        | LED_C4<br>-LED_C1 | Set <b>P3S3-P3S0</b> bits in <b>P3SS</b> register and set <b>DISPSEL</b> bit and set <b>DUTY</b> bit in <b>DISPCON</b> register |
| 27-30  | 27-30 23-26 | 18-21    | 2        | COM4-COM1         | Set <b>P3S3-P3S0</b> bits in <b>P3SS</b> register, clear <b>DISPSEL</b> bit and set <b>DUTY</b> bit in <b>DISPCON</b> register  |
|        |             |          | 3        | P3.3-P3.0         | Above condition is not met                                                                                                      |



## PORT4:

- INT40-INT43 (P4.0-P4.3): External interrupt input

- AN0-AN3, AN8 (P4.0-P4.4): ADC input channel - LCD SEGMENT22-24 (P4.5-P4.7)

- AVREF (P4.4): AD reference voltage

- PWM1: PWM1 output (P4.5)

### Table 7.25 PORT4 Share Table

|        | Pin No. |        | Drierity | Function  |                                                                                                                 |  |  |  |  |  |
|--------|---------|--------|----------|-----------|-----------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| TQFP48 | LQFP44  | LQFP32 | Priority | Function  | Enable bit                                                                                                      |  |  |  |  |  |
| 15-16  | -       | -      | 1        | SEG22-23  | Set <b>P4S7-P4S6</b> bits in <b>P0SS</b> register, clear <b>DISPSEL</b> bit in <b>DISPCON</b> register          |  |  |  |  |  |
|        |         |        | 2        | P4.6-P4.7 | Above condition is not met                                                                                      |  |  |  |  |  |
|        |         |        | 1        | PWM1      | Set PWM1EN bit and set PWM1OE bit in PWM1C register                                                             |  |  |  |  |  |
| 17     | 13      | -      | 2        | SEG24     | Set P4S5 bits in P0SS register, clear DISPSEL bit in DISPCON register                                           |  |  |  |  |  |
|        |         |        | 3        | P4.5      | Above condition is not met                                                                                      |  |  |  |  |  |
|        |         |        | 1        | AVREF     | Set REFC bit in ADCON register                                                                                  |  |  |  |  |  |
| 18     | 14      | 9      | 2        | AN8       | Set CH8 bit in ADCH Register and set SCH [2:0]                                                                  |  |  |  |  |  |
|        |         |        | 3        | P4.4      | Above condition is not met                                                                                      |  |  |  |  |  |
|        |         |        | 1        | AN3       | Set CH3 bit in ADCH Register and set SCH [2:0]                                                                  |  |  |  |  |  |
| 19     | 15      | 10     | 2        | INT43     | Set <b>EX4</b> bit in <b>IEN1</b> register and set <b>EXS43</b> bit in <b>IENC</b> register, P4.3 in input mode |  |  |  |  |  |
|        |         |        | 3        | P4.3      | Above condition is not met                                                                                      |  |  |  |  |  |
|        |         |        | 1        | AN2       | Set CH2 bit in ADCH Register and set SCH [2:0]                                                                  |  |  |  |  |  |
| 20     | 16      | 11     | 2        | INT42     | Set <b>EX4</b> bit in <b>IEN1</b> register and set <b>EXS42</b> bit in <b>IENC</b> register, P4.2 in input mode |  |  |  |  |  |
|        |         |        | 3        | P4.2      | Above condition is not met                                                                                      |  |  |  |  |  |
|        |         |        | 1        | AN1       | Set CH1 bit in ADCH Register and set SCH [2:0]                                                                  |  |  |  |  |  |
| 21     | 17      | 12     | 2        | INT41     | Set <b>EX4</b> bit in <b>IEN1</b> register and set <b>EXS41</b> bit in <b>IENC</b> register, P4.1 in input mode |  |  |  |  |  |
|        |         |        | 3        | P4.1      | Above condition is not met                                                                                      |  |  |  |  |  |
|        |         |        | 1        | AN0       | Set CH0 bit in ADCH Register and set SCH [2:0]                                                                  |  |  |  |  |  |
| 22     | 18      | 13     | 2        | INT40     | Set <b>EX4</b> bit in <b>IEN1</b> register and set <b>EXS40</b> bit in <b>IENC</b> register, P4.0 in input mode |  |  |  |  |  |
|        |         |        | 3        | P4.0      | Above condition is not met                                                                                      |  |  |  |  |  |



# PORT5:

- XTAL1 (P5.0): oscillator input
- XTAL2 (P5.1): oscillator output
- RST (P5.2): system reset pin PWM1 (P5.3): PWM1 output

- BUZ (P5.3): Buzzer output T3 (P5.3): Timer3 external input
- LCD SEGMENT20-21 (P5.4-P5.5)

#### Table 7.26 PORT5 Share Table

|        | Pin No. |        | Drierity | Function | Enable bit                                                                                                          |    |                                                                                        |  |  |
|--------|---------|--------|----------|----------|---------------------------------------------------------------------------------------------------------------------|----|----------------------------------------------------------------------------------------|--|--|
| TQFP48 | LQFP44  | LQFP32 | Priority | Function |                                                                                                                     |    |                                                                                        |  |  |
| 8      | 8       | 4      | 1        | XTAL1    | Selected by Code Option                                                                                             |    |                                                                                        |  |  |
| 0      | 0       | 4      | 2        | P5.0     | Above condition is not met                                                                                          |    |                                                                                        |  |  |
| 9      | 9       | 5      | 1        | XTAL2    | Selected by Code Option                                                                                             |    |                                                                                        |  |  |
| 9      | 9 5     |        | 2        | P5.1     | Above condition is not met                                                                                          |    |                                                                                        |  |  |
| 10     | 10      | 6      | 1        | RST      | Selected by Code Option                                                                                             |    |                                                                                        |  |  |
| 10     | 10      | 0      | 2        | P5.2     | Selected by Code Option                                                                                             |    |                                                                                        |  |  |
|        |         |        | 1        | BUZ      | Set BZEN bit in BUZCON register                                                                                     |    |                                                                                        |  |  |
| 11     | 11      | 7      | 7        | 7        | 2                                                                                                                   | Т3 | Set <b>TR3</b> bit in <b>T3CON</b> register and <b>T3CLKS[1:0]</b> = 01 (Auto Pull up) |  |  |
|        |         |        |          |          |                                                                                                                     |    |                                                                                        |  |  |
| 13     | -       | -      | 1        | SEG20    | Set <b>P5S4</b> bits in <b>P0SS</b> register, set <b>DISPSEL</b> bit and <b>DUTY</b> bit in <b>DISPCON</b> register |    |                                                                                        |  |  |
|        |         |        | 2        | P5.4     | Above condition is not met                                                                                          |    |                                                                                        |  |  |
| 14     | -       | -      | 1        | SEG21    | Set <b>P5S5</b> bits in <b>P0SS</b> register, set <b>DISPSEL</b> bit and <b>DUTY</b> bit in <b>DISPCON</b> register |    |                                                                                        |  |  |
|        |         |        | 2        | P5.5     | Above condition is not met                                                                                          |    |                                                                                        |  |  |



# 7.8 Timer

#### 7.8.1 Features

- The SH79F3283 has four timers (Timer2, 3, 4, 5)
- Timer2 is compatible with the standard 8052 and has up or down counting and programmable clock output function
- Timer3 is a 16-bit auto-reload timer and can operate even in Power-Down mode
- Timer4 is a 16-bit auto-reload timer and can be selected as a baud-rate generator
- Timer5 is a 16-bit auto-reload timer

#### 7.8.2 Timer2

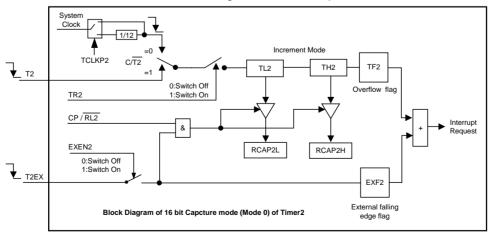
The Timer 2 is implemented as a 16-bit register accessed as two cascaded data registers: TH2 and TL2. It is controlled by the register T2CON and T2MOD. The Timer2 interrupt can be enabled by setting the ET2 bit in the IEN0 register. (Refer to Interrupt Section for details)

 $C/\overline{T2}$  selects system clock (timer operation) or external in T2 (count operation) as the timer clock input. Setting TR2 allows Timer2/Count2 Data Register to increment by the selected input.

#### **Timer2 Modes**

Timer2 has 4 operating modes: Capture/Reload, Auto-reload mode with up counter and Baud Rate Generator and Programmable clock-output. These modes are selected by the combination of RCLK, TCLK and CP/RL2.

| C/T2 | T2OE | DCEN | TR2 | CP/RL2 | RCLK | TCLK |   | MODE                                        |
|------|------|------|-----|--------|------|------|---|---------------------------------------------|
| Х    | 0    | Х    | 1   | 1      | 0    | 0    | 0 | 16 bit capture                              |
| Х    | 0    | 0    | 1   | 0      | 0    | 0    | 1 | 16 bit auto-reload timer                    |
| Х    | 0    | 1    | 1   | 0      | 0    | 0    | - |                                             |
| х    | 0    | Х    | 1   | Х      | 1    | Х    | 2 | Poud Poto gonorator                         |
| ^    | 0    | ^    | I   | ^      | Х    | 1    | 2 | Baud-Rate generator                         |
|      |      |      |     |        | 0    | 0    | 3 | Programmable clock-output only              |
| 0    | 1    | Х    | 1   | Х      | 1    | Х    | 3 | Programmable clock-output with Baud-Rate    |
|      |      |      |     |        | Х    | 1    | 3 | generator                                   |
| 1    | 1    | Х    | 1   | Х      | Х    | Х    |   | Not recommending                            |
| Х    | Х    | Х    | 0   | Х      | Х    | Х    | Х | Timer2 stops, the T2EX channel still enable |


#### Table 7.27 Timer2 Mode select

## Mode0: 16 bit Capture

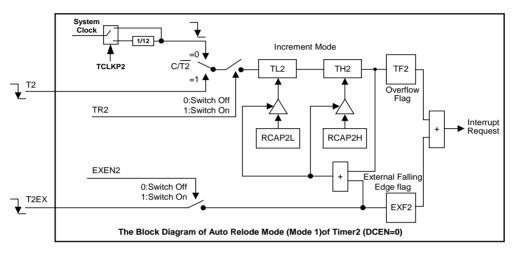
In the capture mode, two options are selected by bit EXEN2 in T2CON.

If EXEN2 = 0, Timer2 is 16-bit timer or counter which will set TF2 on overflow to generate an interrupt if ET2 is enable.

If EXEN2 = 1, Timer2 performs the same operation, but a 1-to-0 transition at external input T2EX also causes the current value in TH2 and TL2 to be captured to RCAP2H and RCAP2L respectively, In addition, a 1-to-0 transition at T2EX causes bit EXF2 in T2CON to be set. The EXF2 bit, like TF2, can also generate an interrupt if ET2 is enabled.





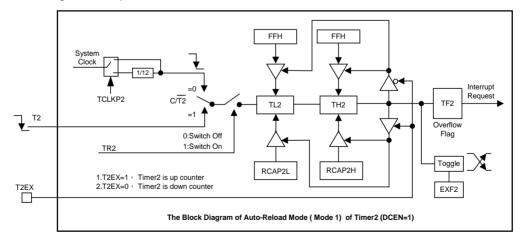

#### Mode1: 16 bit auto-reload Timer

Timer2 can be programmed to count up or down when configured in its 16-bit auto-reload mode. This feature is invoked by the DCEN (Down Counter Enable) bit in T2MOD. After reset, the DCEN bit is set to 0 so that Timer2 will default to count up. When DCEN is set, Timer2 can count up or down, depending on the value of the T2EX pin.

When DCEN = 0, two options are selected by bit EXEN2 in T2CON.

If EXEN2 = 0, Timer2 counts up to 0FFFFH and then sets the TF2 bit upon overflow. The overflow also causes the timer registers to be reloaded with the 16-bit value in RCAP2H and RCAP2L, which are pressed by software.

If EXEN2 = 1, a 16-bit reload can be triggered either by an overflow or by a 1-to-0 transition at external input T2EX. This transition also sets the EXF2 bit. Both the TF2 and EXF2 bits can generate an interrupt if ET2 is enabled.




Setting the DCEN bit enables Timer2 to count up or down. When DCEN = 1, the T2EX pin controls the direction of the count, and EXEN2's control is invalid.

A logical "1" at T2EX makes Timer2 count up. The timer will overflow at 0FFFFH and set the TF2 bit. This overflow also causes the 16-bit value in RCAP2H and RCAP2L to be reloaded into the timer registers, TH2 and TL2, respectively.

A logical "0" at T2EX makes Timer2 count down. The timer underflows when TH2 and TL2 equal the values stored in RCAP2H and RCAP2L. The underflow sets the TF2 bit and causes 0FFFFH to be reloaded into the timer registers.

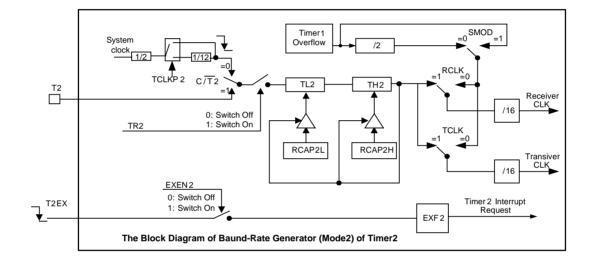
The EXF2 bit toggles whenever Timer2 overflows or underflows and can be used as a 17th bit of resolution. In this operating mode, EXF2 does not flag an interrupt.





#### Mode2: Baud-Rate Generator

Timer2 is selected as the baud rate generator by setting TCLK and/or RCLK in T2CON. The baud rates for transmit and receive can be different if Timer2 is used for the receiver or transmitter and Timer4 is used for the other.


Setting RCLK and/or TCLK will put Timer2 into its baud rate generator mode, which is similar to the auto-reload mode.

Over flow of Timer2 will causes the Timer2 registers to be reloaded with the 16-bit value in registers RCAP2H and RCAP2L that preset by software. But this will not generate an interrupt.

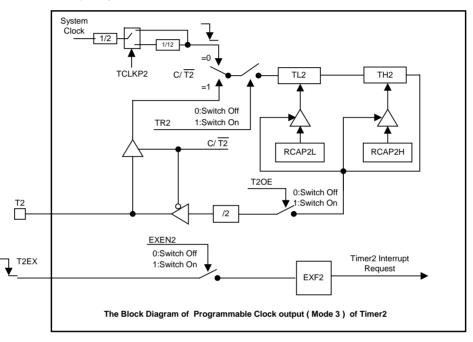
If EXEN2 is set, a 1-to-0 transition in T2EX will set EXF2 but will not cause a reload. Thus when Timer2 is in use as a baud rate generator, T2EX can be used as an extra external interrupt.

The baud rate in EUART mode 1 & 3 is determined by the timer 2 overflow ratio according to the following equation.

BaudRate =  $\frac{1}{2 \times 16} \times \frac{f_{SYS}}{65536 - [RCAP2H, RCAP2L]}$ ; C/T2 = 0 BaudRate =  $\frac{1}{16} \times \frac{f_{T2}}{65536 - [RCAP2H, RCAP2L]}$ ; C/T2 = 1






#### Mode3: Programmable Clock Output

A 50% duty cycle clock can be programmed to come out on P0.5. To configure the Timer2 as a clock generator, bit  $C/\overline{T2}$  must be cleared and bit T2OE must be set. Bit TR2 starts and stops the timer.

In this mode T2 will output a 50% duty cycle clock:

Clock Out Frequency = 
$$\frac{1}{2 \times 2} \times \frac{f_{SYS}}{65536 - [RCAP2H, RCAP2L]}$$

Timer2 overflow will not generate an interrupt, so it is possible to use Timer2 as a baud-rate generator and a clock output simultaneously with the same frequency.



## Note:

- (1) Both TF2 and EXF2 can cause timer2 interrupt request, and they have the same vector address.
- (2) TF2 and EXF2 are set as 1 by hardware while event occurs. But they can also be set by software at any time. Only the software and the hardware reset will be able to clear TF2 & EXF2 to 0.
- (3) When EA = 1 & ET2 = 1, setting TF2 or EXF2 as 1 will cause a timer2 interrupt.
- (4) While Timer2 is used as baud rate generator, writing TH2/TL2, writing RCAPH2/RCAPL2 will affect the accutacy of baud rate, thus might make cause communication error.



# Registers

Table 7.28 Timer2 Control Register

| C8H, Bank                   | 0     | Bit7     | Bit6                                                                                                                                                                                               | Bit5                                                                                                                            | Bit4                                            | Bit3                                        | Bit2         | Bit1        | Bit0      |  |  |
|-----------------------------|-------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------|--------------|-------------|-----------|--|--|
| T2CON                       |       | TF2      | EXF2                                                                                                                                                                                               | RCLK                                                                                                                            | TCLK                                            | EXEN2                                       | TR2          | C/T2        | CP/RL2    |  |  |
| R/W                         |       | R/W      | R/W                                                                                                                                                                                                | R/W                                                                                                                             | R/W                                             | R/W                                         | R/W          | R/W         | R/W       |  |  |
| Reset Value<br>(POR/WDT/LVR | -     | 0        | 0                                                                                                                                                                                                  | 0 0 0 0 0 0                                                                                                                     |                                                 |                                             |              |             |           |  |  |
| Bit Number                  | Bit N | Inemonic | Description                                                                                                                                                                                        |                                                                                                                                 |                                                 |                                             |              |             |           |  |  |
| 7                           |       | TF2      | 0: No ove                                                                                                                                                                                          | Timer2 overflow flag bit<br>0: No overflow(must be cleared by software)<br>1: Overflow (Set by hardware if RCLK = 0 & TCLK = 0) |                                                 |                                             |              |             |           |  |  |
| 6                           |       | EXF2     | External event input (falling edge) from T2EX pin detected flag bit<br>0: No external event input (Must be cleared by software)<br>1: Detected external event input (Set by hardware if EXEN2 = 1) |                                                                                                                                 |                                                 |                                             |              |             |           |  |  |
| 5                           | F     | RCLK     | EUART0 Receive Clock control bit<br>0: Timer4 generates receiving baud-rate<br>1: Timer2 generates receiving baud-rate                                                                             |                                                                                                                                 |                                                 |                                             |              |             |           |  |  |
| 4                           | 7     | ICLK     | EUART0 Transmit Clock control bit<br>0: Timer4 generates transmitting baud-rate<br>1: Timer2 generates transmitting baud-rate                                                                      |                                                                                                                                 |                                                 |                                             |              |             |           |  |  |
| 3                           | E     | XEN2     | trigger enal<br>0: Ignore<br>1: Cause                                                                                                                                                              | ble/disable of<br>events on T<br>a capture of<br>Timer 2 is r                                                                   | control bit<br>2EX pin<br>pr reload wh          | e) from T2E<br>en a negativ<br>clock the EU | re edge on ⊺ | Γ2EX pin is | detected, |  |  |
| 2                           |       | TR2      | Timer2 start/stop control bit<br>0: Stop Timer2<br>1: Start Timer2                                                                                                                                 |                                                                                                                                 |                                                 |                                             |              |             |           |  |  |
| 1                           |       | C/T2     | <b>Timer2 Timer/Counter mode selected bit</b><br>0: Timer Mode, T2 pin is used as I/O port<br>1: Counter Mode, the internal pull-up resister is turned on                                          |                                                                                                                                 |                                                 |                                             |              |             |           |  |  |
| 0                           | с     | P/RL2    |                                                                                                                                                                                                    | s timer/count                                                                                                                   | selected bit<br>er with reload<br>er with captu |                                             |              |             |           |  |  |



# Table 7.29 Timer2 Mode Control Register

| C9H, Bank0                       | Bit7   | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|----------------------------------|--------|------|------|------|------|------|------|------|
| T2MOD                            | TCLKP2 | -    | -    | -    | -    | -    | T2OE | DCEN |
| R/W                              | R/W    | -    | -    | -    | -    | -    | R/W  | R/W  |
| Reset Value<br>(POR/WDT/LVR/PIN) | 0      | -    | -    | -    | -    | -    | 0    | 0    |

| Bit Number | Bit Mnemonic | Description                                                                                                                        |
|------------|--------------|------------------------------------------------------------------------------------------------------------------------------------|
| 7          | TCLKP2       | Prescaler control bit<br>0: Timer2 source is system clock<br>1:Timer2 source is 1/12 prescaler of system clock                     |
| 1          | T2OE         | Timer2 Output Enable bit<br>0: Set P0.5/T2 as clock input or I/O port<br>1: Set P0.5/T2 as clock output (Baud-Rate generator mode) |
| 0          | DCEN         | Down Counter Enable bit<br>0: Disable Timer2 as up/down counter, Timer2 is an up counter<br>1: Enable Timer2 as up/down counter    |

Table 7.30 Timer2 Reload/Capture Data Registers

| CAH-CDH, Bank0                   | Bit7     | Bit6     | Bit5     | Bit4     | Bit3     | Bit2     | Bit1     | Bit0     |
|----------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|
| RCAP2L                           | RCAP2L.7 | RCAP2L.6 | RCAP2L.5 | RCAP2L.4 | RCAP2L.3 | RCAP2L.2 | RCAP2L.1 | RCAP2L.0 |
| RCAP2H                           | RCAP2H.7 | RCAP2H.6 | RCAP2H.5 | RCAP2H.4 | RCAP2H.3 | RCAP2H.2 | RCAP2H.1 | RCAP2H.0 |
| TL2                              | TL2.7    | TL2.6    | TL2.5    | TL2.4    | TL2.3    | TL2.2    | TL2.1    | TL2.0    |
| TH2                              | TH2.7    | TH2.6    | TH2.5    | TH2.4    | TH2.3    | TH2.2    | TH2.1    | TH2.0    |
| R/W                              | R/W      | R/W      | R/W      | R/W      | R/W      | R/W      | R/W      | R/W      |
| Reset Value<br>(POR/WDT/LVR/PIN) | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |

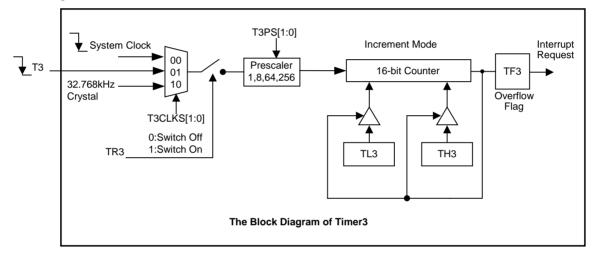
| Bit Number | Bit Mnemonic | Description                                             |  |  |  |  |  |
|------------|--------------|---------------------------------------------------------|--|--|--|--|--|
| 7-0        | RCAP2L.x     | Timer 2 Peleod/Conture Data Low 8 High but $x = 0.7$    |  |  |  |  |  |
| 7-0        | RCAP2H.x     | Timer2 Reload/Capture Data Low & High byte, $x = 0 - 7$ |  |  |  |  |  |
| 7-0        | TL2.x        | Timer2 Low/High byte counter, x = 0 - 7                 |  |  |  |  |  |
| 7-0        | TH2.x        | Timerz Low/High byte counter, x = 0 - 7                 |  |  |  |  |  |





## 7.8.3 Timer3

Timer3 is a 16-bit auto-reload timer. It is accessed as two cascaded data registers: TH3 and TL3. It is controlled by the T3CON register. The Timer3 interrupt can be enabled by setting ET3 bit in IEN1 register (Refer to **Interrupt** Section for details).


Timer3 has only one operating mode: 16-bit Counter/Timer with auto-reload. Timer3 also supports the following features: selectable prescaler setting and Operation during CPU Power-Down mode.

Timer3 consists of a 16-bit Counter/Timer register (TH3, TL3). When writing to TH3 and TL3, they are used as Timer reload register. When reading from TH3 and TL3, they are used as Counter register. Setting the TR3 bit enables Timer 3 to count up. The Timer will overflow from 0xFFFF to 0x0000 and set the TF3 bit. This overflow also causes the 16-bit value written in timer load register to be reloaded into the timer counter register. Writing to TH3 also can cause the 16-bit value written in timer load register to be reloaded into the timer counter register.

Read or write operation to TH3 and TL3 should follow these steps:

Write operation: Low bits first, High bits followed.

Read operation: High bits first, Low bits followed.



Timer3 can operate in Power-Down mode.

When OP\_OSC[3:0] (Refer to Code Option Section for details) is 1010, 1101, 0011 or 0110, T3CLKS [1:0] can select 00, or 10. When OP\_OSC[3:0] is not 1010, 1101, 0011 or 0110, T3CLKS[1:0] can only be selected as 00 or 01, and 10 will be an invalid value.

If T3CLKS[1:0] is 00, Timer 3 can't work in Power Down mode. If T3CLKS[1:0] is 01 and external clock input from T3 Pin, Timer3 can work in CPU normal mode or Power Down mode If T3CLKS[1:0] is 10 and OP\_OSC[3:0] is 1010, 1101, 0011 or 0110, Timer3 can work in CPU normal mode or Power Down mode If T3CLKS[1:0] is 10 and OP\_OSC[3:0] is not 1010, 1101, 0011 or 0110, Timer3 can't work. It can be described in the following table.

| OP_OSC[3:0]                  | T3CLKS[1:0] | Can work in Normal Mode | Can work in Power Down Mode |
|------------------------------|-------------|-------------------------|-----------------------------|
|                              | 00          | YES                     | NO                          |
| 1010, 1101, 0011 or 0110     | 01          | YES                     | YES                         |
|                              | 10          | YES                     | YES                         |
|                              | 00          | YES                     | NO                          |
| Not 1010, 1101, 0011 or 0110 | 01          | YES                     | YES                         |
|                              | 10          | NO                      | NO                          |

#### Note:

(1) When TH3 and TL3 read or written, must make sure TR3 = 0.

(2) TF3 cleared by hardware, and the interrupt vector address is as the same as Uart1. Please pay attention to the interrupt flag, when use both Timer3 and Uart1.



# Registers

Table 7.31 Timer3 Control Register

| 88H, Bank1                  |       | Bit7     | Bit6                                                              | Bit5                                                                                                                                                                              | Bit4         | Bit3        | Bit2 | Bit1     | Bit0     |
|-----------------------------|-------|----------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|------|----------|----------|
| T3CON                       |       | TF3      | -                                                                 | T3PS.1                                                                                                                                                                            | T3PS.0       | -           | TR3  | T3CLKS.1 | T3CLKS.0 |
| R/W                         |       | R/W      | -                                                                 | R/W                                                                                                                                                                               | R/W          | -           | R/W  | R/W      | R/W      |
| Reset Value<br>(POR/WDT/LVR | -     | 0        | -                                                                 | 0                                                                                                                                                                                 | 0            | -           | 0    | 0        | 0        |
| Bit Number                  | Bit N | Inemonic |                                                                   |                                                                                                                                                                                   | [            | Description |      |          |          |
| 7                           |       | TF3      |                                                                   |                                                                                                                                                                                   | ed by hardwa | ire)        |      |          |          |
| 5-4                         | Т3    | PS[1:0]  | <b>Timer3 inpu</b><br>00: 1/1<br>01: 1/8<br>10: 1/64<br>11: 1/256 |                                                                                                                                                                                   | scaler Selec | t bits      |      |          |          |
| 2                           |       | TR3      | 0: Stop T                                                         | Timer3 start/stop control bit<br>0: Stop Timer3<br>1: Start Timer3                                                                                                                |              |             |      |          |          |
| 1-0                         | тзс   | LKS[1:0] | 00: Syste<br>01: Exter<br>10: Exter                               | Timer3 Counter/Timer mode select bits<br>00: System clock<br>01: External clock from pin T3, auto pull-up<br>10: External 32.768kHz crystal or internal 128kHZ RC<br>11: reserved |              |             |      |          |          |

# Table 7.32 Timer3 Reload/Counter Data Registers

| 8CH-8DH, Bank1                  | Bit7  | Bit6  | Bit5  | Bit4  | Bit3  | Bit2  | Bit1  | Bit0  |
|---------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| TL3                             | TL3.7 | TL3.6 | TL3.5 | TL3.4 | TL3.3 | TL3.2 | TL3.1 | TL3.0 |
| TH3                             | TH3.7 | TH3.6 | TH3.5 | TH3.4 | TH3.3 | TH3.2 | TH3.1 | TH3.0 |
| R/W                             | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   |
| Reset Value<br>(POR/WDT/LVR/PIN | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

| Bit Number | Bit Mnemonic | Description                               |
|------------|--------------|-------------------------------------------|
| 7-0        | TL3.x        | Timer 2 Low 8 High byte counter $x = 0$   |
| 7-0        | TH3.x        | Timer3 Low & High byte counter, x = 0 - 7 |

Table 7.33 Timer3 Reload/Count Data Register

| 89H, Bank1                      | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1    | Bit0    |
|---------------------------------|------|------|------|------|------|------|---------|---------|
| SWTHL                           | -    | -    | -    | -    | -    | -    | T5HLCON | T3HLCON |
| R/W                             | -    | -    | -    | -    | -    | -    | R/W     | R/W     |
| Reset Value<br>(POR/WDT/LVR/PIN | -    | -    | -    | -    | -    | -    | 0       | 0       |

| Bit Number | Bit Mnemonic | Description                                                                                          |
|------------|--------------|------------------------------------------------------------------------------------------------------|
| 0          | T3HLCON      | 0: when read TH3, TL3, return T3 count data<br>1: when read TH3, TL3, return T3 reload register data |





#### 7.8.4 Timer4

Timer4 is a 16-bit auto-reload timer. It is accessed as two cascaded data registers: TH4 and TL4. It is controlled by the T4CON register. The Timer 4 interrupt can be enabled by setting ET4 bit in IEN1 register (Refer to **interrupt** Section for details).

When writing to TH4 and TL4, they are used as timer load register. When reading from TH4 and TL4, they are used as timer counter register. Setting the TR4 bit enables Timer 4 to count up. The timer will overflow from 0xFFFF to 0x0000 and set the TF4 bit. This overflow also causes the 16-bit value written in timer load register to be reloaded into the timer counter register. Writing to TH4 also can cause the 16-bit value written in timer load register to be reloaded into the timer counter register.

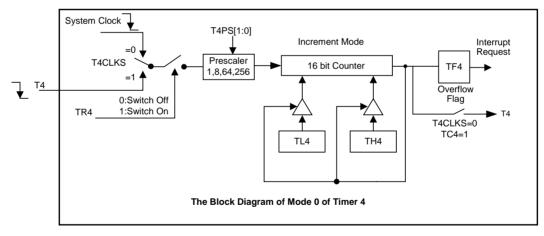
Read or write operation to TH4 and TL4 should follow these steps:

Write operation: Low bits first, High bits followed.

Read operation: High bits first, Low bits followed.

#### Timer4 Modes

Timer4 has three operating modes: 16-bit auto-reload timer, serial port Baud Rate Generator and 16 bit auto-reload timer with T4 edge trig. These modes are selected by T4M[1:0] bits in T4CON Register.


#### Mode0: 16 bit Auto-Reload Timer

Timer4 operates as 16-bit auto-reload timer in Mode 0. The TH4 register holds the high eight bits of the 16-bit counter/timer, TL4 holds the low eight bits. As the 16-bit timer register increments and overflows from 0xFFFF to 0x0000, the timer overflow flag TF4 (T4CON.7) is set and the 16-bit value in timer load register are reloaded into timer counter register, and an interrupt will occur if Timer 4 interrupts is enabled.

The T4CLKS bit (T4CON.0) selects the counter/timer's clock source. If T4CLKS = 1, external clock from the Pin T4 is selected as Timer4 clock, after prescaled, it will increase the Counter/Timer4 Data register. Else if T4CLKS = 0, the system clock is selected as Timer4 clock.

Setting the TR4 bit (T4CON.1) enables the timer. Setting TR4 does not clear the counter data of Timer4. The timer load register should be loaded with the desired initial value before the timer is enabled.

In Compare mode, the T4 pin is automatically set as output mode by hardware. the internal counter is constantly countered from TH4 and TL4 register value to 0xFFFF. When an overflow occurs, the T4 pin will be inverted. At the same time, interrupt flag bit of Time4 is set. Timer4 must be running in Timer mode (T4CLKS = 0) when compare function enabled.



#### Mode1: Baud-Rate Generator

Timer4 is selected as the baud rate generator by setting T4MOD bit in T4M[1:0] register. If Timer2 is used for the receiver or transmitter and Timer4 is used for the other, the baud rates for transmit and receive can be different.

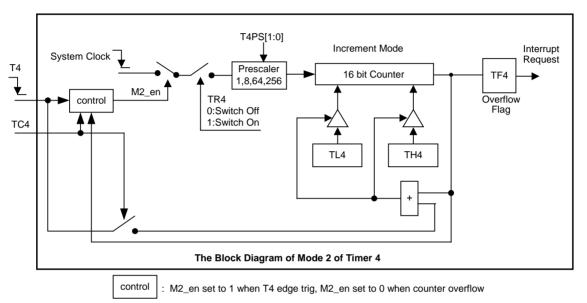
The mode is similar to the auto-reload mode. Overflow of Timer4 will causes the Timer4 counter register to be reloaded with the 16-bit value in timer load register. But this will not generate an interrupt.

The baud rates in EUART mode1 and mode3 are determined by Timer4's overflow rate according to the following equation.

 $BaudRate = \frac{2^{SMOD}}{2 \times 16} \times \frac{f_{T4}^{}/PRESCALER}{65536 - [TH4, TL4]}$ 

Here, TH4 and TL4 stand for Timer4 reload register.




### Mode2: Mode2: 16 bit Auto-Reload Timer with T4 Edge Trig

Timer4 operates as 16-bit timer in Mode 2. T4CLKS bit in T4CON.0 will be always 0. Timer4 can select system clock as clock source. Other settings accord with mode 0.

In Mode 2, After setting the TR4 bit (T4CON.1), Timer4 does not start counting but waits the trig signal (rising or falling edge controlled by T4M[1:0]) from T4. An active trig signal will start the Timer4. When Timer 4 overflows from 0XFFFF to 0x0000, TF4 will be set, TH4 and TL4 will be reloaded from timer load register, and Timer4 holds and waits the next trig edge.

When Timer4 is working, an active trig signal maybe come, if TC4 = 0, the trig signal will be ignored; if TC4 = 1, Timer4 will be re-trigged.

Setting TR4 does not clear the counter data of Timer4. The timer register should be loaded with the desired initial value before the timer is enabled.



Note: When Timer4 is used as a counter, the frequency of input signal of T4 pin must be less than half of system clock.



# Registers

Table 7.34 Timer4 Control Register

| C8H, Bank                   | 1     | Bit7     | Bit6                                                               | Bit5                                                                                                                                                                                                                           | Bit4                                                              | Bit3                      | Bit2 | Bit1 | Bit0 |  |  |
|-----------------------------|-------|----------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------|------|------|------|--|--|
| T4CON                       |       | TF4      | TC4                                                                | TC4 T4PS1 T4PS0 T4M1 T4M0 TR4 T4CLKS                                                                                                                                                                                           |                                                                   |                           |      |      |      |  |  |
| R/W                         |       | R/W      | R/W                                                                | R/W R/W R/W R/W R/W R/W                                                                                                                                                                                                        |                                                                   |                           |      |      |      |  |  |
| Reset Value<br>(POR/WDT/LVR | -     | 0        | 0                                                                  | 0 0 0 0 0 0 0                                                                                                                                                                                                                  |                                                                   |                           |      |      |      |  |  |
| Bit Number                  | Bit N | Inemonic |                                                                    |                                                                                                                                                                                                                                |                                                                   | Description               |      |      |      |  |  |
| 7                           |       | TF4      |                                                                    |                                                                                                                                                                                                                                | ed by hardwa                                                      | are)                      |      |      |      |  |  |
| 6                           |       | TC4      | When T4<br>0: Disabl<br>1: Enable<br>When T4<br>0: Timer4          | Compare function Enable bit<br>When T4M[1:0] = 00<br>0: Disable compare function of Timer4<br>1: Enable compare function of Timer4<br>When T4M[1:0] = 10 or 11<br>0: Timer4 can't be re-trigged<br>1: Timer4 can be re-trigged |                                                                   |                           |      |      |      |  |  |
| 5-4                         | T4    | PS[1:0]  | <b>Timer4 inpu</b><br>00: 1/1<br>01: 1/8<br>10: 1/64<br>11: 1/256  |                                                                                                                                                                                                                                | scale Select                                                      | bits                      |      |      |      |  |  |
| 3-2                         | T4    | 4M[1:0]  | 01: Mode<br>10: Mode                                               | e0, 16-bit aut<br>e1, baud-rate<br>e2 with rising                                                                                                                                                                              | o-reload time<br>generator fo<br>edge trig fro<br>g edge trig fro | or EUART<br>om pin T4 (sy |      |      |      |  |  |
| 1                           |       | TR4      | Timer4 start/stop control bit<br>0: Stop Timer4<br>1: Start Timer4 |                                                                                                                                                                                                                                |                                                                   |                           |      |      |      |  |  |
| 0                           | T     | 4CLKS    | 0: Syster<br>1: Extern                                             | <ul> <li>Timer4 Clock Source select bit</li> <li>0: System clock, T4 pin is used as I/O port</li> <li>1: External clock from pin T4 (On the falling edge), the internal pull-up resister is turned on</li> </ul>               |                                                                   |                           |      |      |      |  |  |

| Table 7.35 Timer4 | Reload/Counter | Data Registers |
|-------------------|----------------|----------------|
|-------------------|----------------|----------------|

| CCH-CDH, Bank1                      | Bit7  | Bit6  | Bit5  | Bit4  | Bit3  | Bit2  | Bit1  | Bit0  |
|-------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| TL4                                 | TL4.7 | TL4.6 | TL4.5 | TL4.4 | TL4.3 | TL4.2 | TL4.1 | TL4.0 |
| TH4                                 | TH4.7 | TH4.6 | TH4.5 | TH4.4 | TH4.3 | TH4.2 | TH4.1 | TH4.0 |
| R/W                                 | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   |
| Reset Value<br>(POR/WDT/LVR/PIN     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| Bit Number Bit Mnemonic Description |       |       |       |       |       |       |       |       |

| Bit Number | Bit Mnemonic | Description                                 |
|------------|--------------|---------------------------------------------|
| 7-0        | TL4.x        | Timer4 Low & High byte counter, x = 0 - 7   |
| 7-0        | TH4.x        | Timer4 Low & High byte counter, $x = 0 - 7$ |



## 7.8.5 Timer5

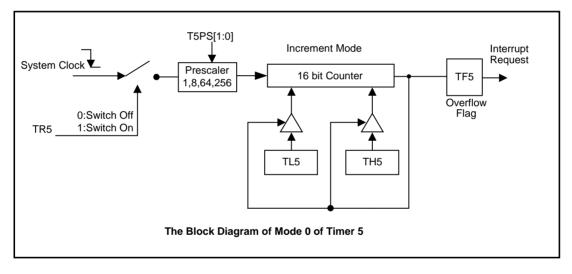
Timer5 is a 16-bit auto-reload timer. It is accessed as two cascaded data registers: TH5 and TL5. It is controlled by the T5CON register. The interrupt can be enabled by setting ET5 bit in IEN0 register (Refer to **interrupt** Section for details).

When writing to TH5 and TL5, they are used as timer load register. When reading from TH5 and TL5, they are used as timer counter register. Setting the TR5 bit enables Timer5 to count up. The timer will overflow from 0xFFFF to 0x0000 and set the TF5 bit. This overflow also causes the 16-bit value written in timer load register to be reloaded into the timer counter register. Writing to TH4 also can cause the 16-bit value written in timer load register to be reloaded into the timer counter register.

Read or write operation to TH5 and TL5 should follow these steps:

Write operation: Low bits first, High bits followed.

Read operation: High bits first, Low bits followed.


#### **Timer5 Modes**

Timer5 has one operating modes: 16-bit auto-reload timer.

#### Mode0: 16 bit Auto-Reload Counter/Timer

Timer5 operates as 16-bit counter/timer in Mode 0. The TH5 register holds the high eight bits of the 16-bit counter/timer, TL5 holds the low eight bits. As the 16-bit timer register increments and overflows from 0xFFFF to 0x0000, the timer overflow flag TF5 (T5CON.7) is set and the 16-bit value in timer load register are reloaded into timer counter register, and an interrupt will occur if Timer 5 interrupts is enabled.

Setting the TR5 bit (T5CON.1) enables the timer. Setting TR5 does not clear the counter data of Timer4. The timer load register should be loaded with the desired initial value before the timer is enabled.





# Registers

Table 7.36 Timer5 Control Register

| C0H, Bank1                       | Bit7 | Bit6 | Bit5  | Bit4  | Bit3 | Bit2 | Bit1 | Bit0 |
|----------------------------------|------|------|-------|-------|------|------|------|------|
| T5CON                            | TF5  | -    | T5PS1 | T5PS0 | -    | -    | TR5  | -    |
| R/W                              | R/W  | -    | R/W   | R/W   | -    | -    | R/W  | -    |
| Reset Value<br>(POR/WDT/LVR/PIN) | 0    | -    | 0     | 0     | -    | -    | 0    | -    |

| Bit Number | Bit Mnemonic | Description                                                                                                        |
|------------|--------------|--------------------------------------------------------------------------------------------------------------------|
| 7          | TF5          | Timer5 overflow flag bit<br>0: No overflow (cleared by hardware)<br>1: Overflow (Set by hardware)                  |
| 5-4        | T5PS[1:0]    | Timer5 input clock Prescale Select bits           00: 1/1           01: 1/8           10: 1/64           11: 1/256 |
| 1          | TR5          | Timer5 start/stop control bit<br>0: Stop Timer5<br>1: Start Timer5                                                 |

Table 7.37 Timer5 Reload/Counter Data Registers

| CEH-CFH, Bank1                   | Bit7  | Bit6  | Bit5  | Bit4  | Bit3  | Bit2  | Bit1  | Bit0  |
|----------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| TL5                              | TL5.7 | TL5.6 | TL5.5 | TL5.4 | TL5.3 | TL5.2 | TL5.1 | TL5.0 |
| TH5                              | TH5.7 | TH5.6 | TH5.5 | TH5.4 | TH5.3 | TH5.2 | TH5.1 | TH5.0 |
| R/W                              | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   |
| Reset Value<br>(POR/WDT/LVR/PIN) | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

| Bit Number                                          | Bit Mnemonic                              | Description                             |
|-----------------------------------------------------|-------------------------------------------|-----------------------------------------|
| 7.0                                                 | TL5.x                                     | Timer E Low 8 High byte counter $x = 0$ |
| 7-0 TH5.x Timer5 Low & High byte counter, x = 0 - 7 | Timers Low & High byte counter, x = 0 - 7 |                                         |

Table 7.38 Timer5 Reload/Count Data Register

| 89H, Bank1                       | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1    | Bit0    |
|----------------------------------|------|------|------|------|------|------|---------|---------|
| SWTHL                            | -    | -    | -    | -    | -    | -    | T5HLCON | T3HLCON |
| R/W                              | -    | -    | -    | -    | -    | -    | R/W     | R/W     |
| Reset Value<br>(POR/WDT/LVR/PIN) | -    | -    | -    | -    | -    | -    | 0       | 0       |
|                                  | _    |      |      |      |      |      |         |         |

| Bit Number | Bit Mnemonic | Description                                                                                          |
|------------|--------------|------------------------------------------------------------------------------------------------------|
| 1          | T5HLCON      | 0: when read TH5, TL5, return T5 count data<br>1: when read TH5, TL5, return T5 reload register data |



# 7.9 Interrupt

### 7.9.1 Feature

- 15 interrupt sources
- 4 interrupt priority levels

The SH79F3283 provides total 15 interrupt sources: 5 external interrupts (INT0, INT1, INT2, INT3, INT4), INT4 has 8 interrupt sources (INT40-47, which share the same vector address), 4 timer interrupts (Timer2, 3, 4, 5), two EUART interrupt, SPI interrupt, ADC Interrupt, PWM interrupts, SCM interrupt and LPD interrupt.

## 7.9.2 Interrupt Enable Control

Each interrupt source can be individually enabled or disabled by setting or clearing the corresponding bit in the interrupt enable registers IEN0 or IEN1. The IEN0 register also contains global interrupt enable bit, EA, which can enable/disable all the interrupts at once. Generally, after reset, all interrupt enable bits are set to 0, which means that all the interrupts are disabled.

# 7.9.3 Register

Table 7.39 Primary Interrupt Enable Register

| A8H                              | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|----------------------------------|------|------|------|------|------|------|------|------|
| IEN0                             | EA   | EADC | ET2  | ES0  | -    | EX1  | ET5  | EX0  |
| R/W                              | R/W  | R/W  | R/W  | R/W  | -    | R/W  | R/W  | R/W  |
| Reset Value<br>(POR/WDT/LVR/PIN) | 0    | 0    | 0    | 0    | -    | 0    | 0    | 0    |

| Bit Number | Bit Mnemonic | Description                                                                                                         |
|------------|--------------|---------------------------------------------------------------------------------------------------------------------|
| 7          | EA           | All interrupt enable bit<br>0: Disable all interrupt<br>1: Enable all interrupt                                     |
| 6          | EADC         | ADC interrupt enable bit<br>0: Disable ADC interrupt<br>1: Enable ADC interrupt                                     |
| 5          | ET2          | Timer2 overflow interrupt enable bit<br>0: Disable Timer2 overflow interrupt<br>1: Enable Timer2 overflow interrupt |
| 4          | ES0          | EUART0 interrupt enable bit<br>0: Disable EUART0 interrupt<br>1: Enable EUART0 interrupt                            |
| 2          | EX1          | External interrupt1 enable bit<br>0: Disable external interrupt1<br>1: Enable external interrupt1                   |
| 1          | ET5          | Timer5 overflow interrupt enable bit<br>0: Disable Timer5 overflow interrupt<br>1: Enable Timer5 overflow interrupt |
| 0          | EX0          | External interrupt0 enable bit<br>0: Disable external interrupt0<br>1: Enable external interrupt0                   |



| A9H                          |       | Bit7      | Bit6                                                                                                                                     | Bit5                                                                            | Bit4                                                   | Bit3        | Bit2 | Bit1 | Bit0 |  |
|------------------------------|-------|-----------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------|-------------|------|------|------|--|
| IEN1                         | IEN1  |           | ET4                                                                                                                                      | EPWM                                                                            | ET3_ES1                                                | EX4         | EX3  | EX2  | ESPI |  |
| R/W                          |       | R/W       | R/W                                                                                                                                      | R/W                                                                             | R/W                                                    | R/W         | R/W  | R/W  | R/W  |  |
| Reset Value<br>(POR/WDT/LVR/ | -     | 0         | 0                                                                                                                                        | 0                                                                               | 0                                                      | 0           | 0    | 0    | 0    |  |
| Bit Number                   | Bit I | Mnemonic  |                                                                                                                                          |                                                                                 |                                                        | Description | l    |      |      |  |
| 7                            | ESCN  | I_LPD_CRC | 0: Disa                                                                                                                                  | ble SCM/LPI                                                                     | <b>Ipt enable b</b> i<br>D/CRC interr<br>D/CRC interru | upt         |      |      |      |  |
| 6                            | ET4   |           | 0: Disa                                                                                                                                  | ble Timer4 o                                                                    | rupt enable<br>verflow interr<br>verflow interr        | upt         |      |      |      |  |
| 5                            |       | EPWM      | PWM interrupt enable bit<br>0: Disable PWM interrupt<br>1: Enable PWM interrupt                                                          |                                                                                 |                                                        |             |      |      |      |  |
| 4                            | E     | T3_ES1    | Timer3/EUART0 overflow interrupt enable bit<br>0: Disable timer3/EUART0 overflow interrupt<br>1: Enable timer3/EUART0 overflow interrupt |                                                                                 |                                                        |             |      |      |      |  |
| 3                            |       | EX4       | External interrupt4 enable bit<br>0: Disable external interrupt4<br>1: Enable external interrupt4                                        |                                                                                 |                                                        |             |      |      |      |  |
| 2                            | EX3   |           | External interrupt3 enable bit<br>0: Disable external interrupt3<br>1: Enable external interrupt3                                        |                                                                                 |                                                        |             |      |      |      |  |
| 1                            | EX2   |           | External interrupt2 enable bit<br>0: Disable external interrupt2<br>1: Enable external interrupt2                                        |                                                                                 |                                                        |             |      |      |      |  |
| 0                            |       |           | 0: Disa                                                                                                                                  | SPI interrupt enable bit<br>0: Disable SPI interrupt<br>1: Enable SPI interrupt |                                                        |             |      |      |      |  |

# Table 7.40 Secondary Interrupt Enable Register

#### Note:

(1) To enable External interrupt0/12/3/4, the corresponding port must be set to input mode before using it.

(2) EPWM is the both PWM0 and PWM1 interrupt enable bit. To enable PWM timer interrupt, the EPWM bit here should be set. Also, the PWMIE in PWM interrupt control register should be set.



# Table 7.41 Interrupt channel Enable Register

| BAH, Bank0                       | Bit7  | Bit6  | Bit5  | Bit4  | Bit3  | Bit2  | Bit1  | Bit0  |
|----------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| IENC                             | EXS47 | EXS46 | EXS45 | EXS44 | EXS43 | EXS42 | EXS41 | EXS40 |
| R/W                              | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   |
| Reset Value<br>(POR/WDT/LVR/PIN) | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

| Bit Number | Bit Mnemonic       | Description                                                                                                             |
|------------|--------------------|-------------------------------------------------------------------------------------------------------------------------|
| 7-0        | EXS4x<br>(x = 7-0) | External interrupt4 channel select bit (x = 7-0)<br>0: Disable external interrupt 4x<br>1: Enable external interrupt 4x |

Table 7.42 Interrupt channel Enable Register1

| BBH, Bank0                       | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|----------------------------------|------|------|------|------|------|------|------|------|
| IENC1                            | -    | ECRC | ES1  | ET3  | -    | -    | ESCM | ELPD |
| R/W                              | -    | R/W  | R/W  | R/W  | -    | -    | R/W  | R/W  |
| Reset Value<br>(POR/WDT/LVR/PIN) | -    | 0    | 0    | 0    | -    | -    | 0    | 0    |

| Bit Number | Bit Mnemonic | Description                                                                              |
|------------|--------------|------------------------------------------------------------------------------------------|
| 6          | ECRC         | CRC interrupt enable bit<br>0: Disable CRC interrupt<br>1: Enable CRC interrupt          |
| 5          | ES1          | EUART1 interrupt enable bit<br>0: Disable EUART1 interrupt<br>1: Enable EUART1 interrupt |
| 4          | ET3          | Timer3 interrupt enable bit<br>0: Disable Timer3 interrupt<br>1: Enable Timer3 interrupt |
| 1          | ESCM         | SCM interrupt enable bit<br>0: Disable SCM interrupt<br>1: Enable SCM interrupt          |
| 0          | ELPD         | LPD interrupt enable bit<br>0: Disable LPD interrupt<br>1: Enable LPD interrupt          |



# 7.9.4 Interrupt Flag

Each Interrupt source has its own interrupt flag, when interrupt occurs, corresponding flag will be set by hardware, the interrupt flag bits are listed in interrupt abstract table.

When an external interrupt **INT0/1/2/3** is generated, if the interrupt was edge trigged, the flag IEx (x = 0-3) that generated this interrupt is cleared by hardware when the service routine is vectored. If the interrupt was level trigged, then the requesting external source directly controls the request flag, rather than the on-chip hardware.

When **INT4** generates an interrupt, the flag (IF4x (x = 0-7) in EXF1 register) that generated this interrupt should be cleared by user's program because the same vector entrance was used in INT4. But if INT4 is set up as level trigged, the flag can't be cleared by user's program, it only be controlled by peripheral signal level that connect to INT source pin.

The **Timer2** interrupt is generated by the logical OR of flag TF2 in T2CON register, which is set by hardware. None of these flags can be cleared by hardware after CPU responses to the interrupt, the flag must be cleared by software

When the **Timer3** counter overflow, set interrupt flag bit TF3 in T3CON to 1 to generate Timer3 interrupt. The flag will be cleared automatically by hardware after CPU responses to the interrupt.

When the **Timer4** counter overflow, set interrupt flag bit TF4 in T4CON to 1 to generate Timer4 interrupt. The flag will be cleared automatically by hardware after CPU responses to the interrupt.

When the **Timer5** counter overflow, set interrupt flag bit TF5 in T5CON to 1 to generate Timer5 interrupt. The flag will be cleared automatically by hardware after CPU responses to the interrupt.

The **EUARTx(x = 0, 1)** interrupts is generated by the logical OR of flag RI and TI in SCON/SCON1 register, which is set by hardware. Neither of these flags can be cleared by hardware when the service routine is vectored. In fact, the service routine will normally have to determine whether it was the receive interrupt flag or the transmission interrupt flag that generated the interrupt, so the flag must be cleared by software.

The **ADC interrupt** is generated by ADCIF bit in ADCON. If an interrupt is generated, the converted result in ADCDH/ADCDL will be valid. If continuous compare function in ADC module is Enable, ADCIF will not be clear at each conversion when conversion results is less than the compare value. But if converted result is larger than compare value, ADCIF bit will be 1. The flag must be cleared by software.

The **SPI interrupt** are generated by SPIF in SPSTA or set MODF. The flags can be cleared by software.

The **SCM** interrupt is generated by SCMIF in CLKCON register, which is set by hardware. And the flag can only be cleared by hardware.

The **LPD interrupt** is generated by LPDF in LPDCON register. And the flag can only be cleared by hardware. By setting the LPDMD, can choose when the  $V_{DD}$  voltage is above or below the LPD set generated when the detecting voltage interruption of LPD.

The **PWM** interrupts are generated by PWMxIF in PWMxC (x = 0, 1). The flags can be cleared by software.

The **CRC** interrupt is generated by CRCIF in CRCCON. The flags can be cleared by software.

| 88H, Bank0                       | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|----------------------------------|------|------|------|------|------|------|------|------|
| TCON                             | -    | -    | -    | -    | IE1  | IT1  | IE0  | IT0  |
| R/W                              | -    | -    | -    | -    | R/W  | R/W  | R/W  | R/W  |
| Reset Value<br>(POR/WDT/LVR/PIN) | -    | -    | -    | -    | 0    | 0    | 0    | 0    |

 Table 7.43 External Interrupt 0/1 Control Register

| Bit Number | Bit Mnemonic      | Description                                                                                        |
|------------|-------------------|----------------------------------------------------------------------------------------------------|
| 1, 3       | IEx<br>(x = 0, 1) | External interrupt x request flag bit<br>0: No interrupt pending<br>1: Interrupt is pending        |
| 0, 2       | ITx<br>(x = 0, 1) | External interrupt x trigger mode selection bit<br>0: Low level trigger<br>1: Falling edge trigger |



# Table 7.44 External Interrupt Flag Register

| E8H, Bank0                       | Bit7  | Bit6  | Bit5  | Bit4  | Bit3  | Bit2  | Bit1 | Bit0 |
|----------------------------------|-------|-------|-------|-------|-------|-------|------|------|
| EXF0                             | IT4.1 | IT4.0 | IT3.1 | IT3.0 | IT2.1 | IT2.0 | IE3  | IE2  |
| R/W                              | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W  | R/W  |
| Reset Value<br>(POR/WDT/LVR/PIN) | 0     | 0     | 0     | 0     | 0     | 0     | 0    | 0    |

| Bit Number | Bit Mnemonic | Description                                                                                                                                                                                                                       |
|------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7-6        | IT4[1:0]     | External interrupt4 trigger mode selection bit<br>00: Low Level trigger<br>01: Trigger on falling edge<br>10: Trigger on rising edge<br>11: Trigger on both edge<br>IT4 [1:0] is effect on external interrupt 4x at the same mode |
| 5-4        | IT3[1:0]     | External interrupt3 trigger mode selection bit<br>00: Low Level trigger<br>01: Trigger on falling edge<br>10: Trigger on rising edge<br>11: Trigger on both edge                                                                  |
| 3-2        | IT2[1:0]     | External interrupt2 trigger mode selection bit<br>00: Low Level trigger<br>01: Trigger on falling edge<br>10: Trigger on rising edge<br>11: Trigger on both edge                                                                  |
| 1          | IE3          | External interrupt3 request flag bit<br>0: No interrupt pending<br>1: Interrupt is pending                                                                                                                                        |
| 0          | IE2          | External interrupt2 request flag bit<br>0: No interrupt pending<br>1: Interrupt is pending                                                                                                                                        |

Table 7.45 External Interrupt 4 Flag Register

| D8H, Bank0                       | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|----------------------------------|------|------|------|------|------|------|------|------|
| EXF1                             | IF47 | IF46 | IF45 | IF44 | IF43 | IF42 | IF41 | IF40 |
| R/W                              | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  |
| Reset Value<br>(POR/WDT/LVR/PIN) | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

| Bit Number | Bit Mnemonic      | Description                                                                                                               |
|------------|-------------------|---------------------------------------------------------------------------------------------------------------------------|
| 7-0        | IF4x<br>(x = 7-0) | External interrupt4 request flag bit<br>0: No interrupt pending<br>1: Interrupt is pending<br>IF4x is cleared by software |



## 7.9.5 Interrupt Vector

When an interrupt occurs, the program counter is pushed onto the stack and the corresponding interrupt vector address is loaded into the program counter. The interrupt vector addresses are listed in **Interrupt Summary table**.

#### 7.9.6 Interrupt Priority

Each interrupt source can be individually programmed to one of four priority levels by setting or clearing corresponding bits in the interrupt priority control registers IPL0, IPH0, IPL1, and IPH1. The interrupt priority service is described below.

An interrupt service routine in progress can be interrupted by a higher priority interrupt, but can not by another interrupt with the same or lower priority.

The highest priority interrupt service cannot be interrupted by any other interrupt source. If two requests of different priority levels are received simultaneously, the request of higher priority level is serviced.

If the same priority interrupt source apply for the interrupt at the beginning of the instruction cycle at the same time, an internal polling sequence determines which request is serviced.

|        | Interrupt Priority |                            |  |  |  |  |  |  |  |
|--------|--------------------|----------------------------|--|--|--|--|--|--|--|
| Priori | ity bits           | Interrupt Lover Priority   |  |  |  |  |  |  |  |
| IPHx   | IPLx               | Interrupt Lever Priority   |  |  |  |  |  |  |  |
| 0      | 0                  | Level 0 (lowest priority)  |  |  |  |  |  |  |  |
| 0      | 1                  | Level 1                    |  |  |  |  |  |  |  |
| 1      | 0                  | Level 2                    |  |  |  |  |  |  |  |
| 1      | 1                  | Level 3 (highest priority) |  |  |  |  |  |  |  |

Table 7.46 Interrupt Priority Control Registers

| B8H, B4H                        |            | Bit7     | Bit6                                                               | Bit5  | Bit4   | Bit3 | Bit2 | Bit1 | Bit0  |
|---------------------------------|------------|----------|--------------------------------------------------------------------|-------|--------|------|------|------|-------|
| IPL0                            |            | -        | PADCL                                                              | PT2L  | PS0L   | -    | PX1L | PT5L | PX0L  |
| IPH0                            |            | -        | PADCH                                                              | PT2H  | PS0H   | -    | PX1H | PT5H | PX0H  |
| R/W                             |            | -        | R/W                                                                | R/W   | R/W    | -    | R/W  | R/W  | R/W   |
| Reset Value<br>(POR/WDT/LVR     | -          | -        | 0                                                                  | 0     | 0      | -    | 0    | 0    | 0     |
| B9H, B5H                        | B9H, B5H E |          | Bit6                                                               | Bit5  | Bit4   | Bit3 | Bit2 | Bit1 | Bit0  |
| IPL1                            |            | PSCML    | PT4L                                                               | PPWML | PT3S1L | PX4L | PX3L | PX2L | PSPIL |
| IPH1                            |            | PSCMH    | PT4H                                                               | PPWMH | PT3S1H | PX4H | РХ3Н | PX2H | PSPIH |
| R/W                             |            | R/W      | R/W                                                                | R/W   | R/W    | R/W  | R/W  | R/W  | R/W   |
| Reset Value 0 (POR/WDT/LVR/PIN) |            | 0        | 0                                                                  | 0     | 0      | 0    | 0    | 0    | 0     |
| Bit Number                      | Bit N      | Inemonic | Description                                                        |       |        |      |      |      |       |
| 7-0                             | P          | xxL/H    | Corresponding interrupt source xxx's priority level selection bits |       |        |      |      |      |       |

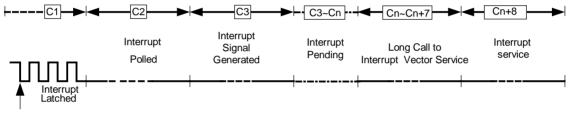


## 7.9.7 Interrupt Handling

The interrupt flags are sampled and captured at each machine cycle. All interrupts are sampled at the rising edge of the clock. If one of the flags was set, the CPU will find it and the interrupt system will generate a LCALL to the appropriate service routine, LCALL generated by hardware is not blocked by any of the following conditions:

An interrupt of equal or higher priority is already in progress.

The current cycle is not in the final cycle of the instruction in progress. In other words, any interrupt request cannot get response before executing instructions to complete.


The instruction in progress is RETI or visit the special register IEN0/1 or IPLH instruction. This ensures that if the instruction in progress is RETI or read and write IEN0/1 or IPLH then at least one more instruction except RETI will be executed before any interrupt is vectored to; this delay guarantees that the CPU can observe the changes of the interrupt status.

#### Note:

Since priority change normally needs 2 instructions, it is recommended to disable corresponding Interrupt Enable flag to avoid interrupt between these 2 instructions during the change of priority.

If the flag is no longer active when the blocking condition is removed, the denied interrupt will not be serviced. Every polling cycle interrogates only the valid interrupt requests.

The polling cycle/LCALL sequence is illustrated below:



#### Interrupt Response Time

The hardware-generated LCALL pushes the contents of the program counter onto the stack (but it does not save the PSW). Then vector address of the corresponding interrupt source (referring to the interrupt vector table) will be stored in the program counter.

Interrupt service execution proceeds from that location until the RETI instruction is encountered. The RETI instruction informs the processor that the interrupt routine is no longer in progress, and then pops the top two bytes from the stack and reloads the program counter. Execution of the interrupted program continues from the point where it was stopped. The RET instruction can also return to the original address to continue, but the interrupt priority control system still think the interrupt in a same priority is responsed, in this case, the same priority or lower priority interrupt will not be responsed.

#### 7.9.8 Interrupt Response Time

If an interrupt is detected, its request flag will be set in every machine cycle after detection. The value will be kept by the internal circuitry until the next machine cycle; the CPU will generate an interrupt at the third machine cycle. If the request is active and conditions are right for it to be acknowledged, hardware instruction LCALL will call service routine which requeste interrupt at the next instruction to be executed. Otherwise the interrupt will pending. The call itself takes 7 machine cycles. Therefore, from the external interrupt request to start the implementation of interrupt program requires at least 3+7 completed machine cycle.

A longer response time would be obtained if the request was blocked by one of the above three previously listed conditions. If an interrupt of equal or higher priority is already in progress, the additional wait time obviously depends on the length of the other interrupt's service routine.

If the instruction in progress is not in its final cycle and the instruction in progress is RETI, the additional wait time is 8 machine cycles. For a single interrupt system, if the next instruction is 20 machine cycles long (the longest instructions DIV & MUL are 20 machine cycles long for 16 bit operation), adding the LCALL instruction 7 machine cycles the total response time is 2+8+20+7 machine cycles.

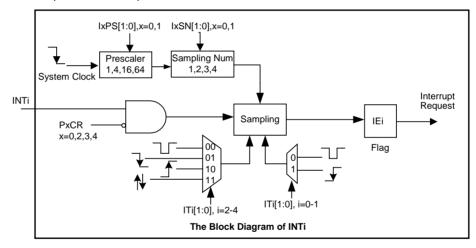
Thus interrupt response time is always more than 10 machine cycles and less than 37 machine cycles.



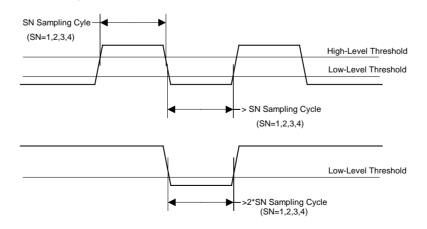


#### 7.9.9 External Interrupt Inputs

The SH79F3283 has 5 external interrupt inputs. External interrupt0-3 each has one vector address. External interrupt 4 has 8 inputs; all of them share one vector address. These external interrupts can be programmed to be level-triggered or edge-triggered by clearing or setting bit IT1 or IT0 in register TCON and register EXF1. If ITn = 0 (n = 0 - 1), external interrupt 0/1 is triggered by a low level detected at the INT0/1 pin. If ITn = 1 (n = 0 - 1), external interrupt 0/1 is edge triggered. In this mode if consecutive samples of the INT0/1 pin show a high level in one cycle and a low level in the next cycle, interrupt request flag in register r EXF1 is set, causing an interrupt request. Since the external interrupt pins are sampled once each machine cycle, an input high or low level should be held for at least one machine cycle to ensure proper sampling.


If the external interrupt is edge-triggered, the external source has to hold the request pin high for at least one machine cycle, and then hold it low for at least one machine cycle. This is to ensure that the transition is detected and that interrupt request flag is set. Notice that IE0-1 is automatically cleared by CPU when the service routine is called while IF4x should be cleared by software. External interrupt4 operates in the similar ways except have different registers and have more selection of trigger.

If the external interrupt is level-triggered, the external source must hold the request active until the requested interrupt is generated, which will take 2 machine cycles. If the external interrupt is still asserted when the interrupt service routine is completed, another interrupt will be generated. It is not necessary to clear the interrupt flag IEx (x = 0, 1, 2, 3) when the interrupt is level sensitive, it simply tracks the input pin level.


In order to satisfy the different request interrupt response, there can set sample clock Prescaler Select bits and sample times Select bits in EXCON register

Sample clock Prescaler Select bits and sample times Select bits in EXCON register are invalid in the IDLE and Power-Down mode.

If an external interrupt is enabled when the SH79F3283 is put into Power down or Idle mode, the interrupt occurrence will cause the processor to wake up and resume operation.



Note: The INT0/1/2/3 interrupt flag will be cleared by hardware, but IF40-IF47 must be cleared by software



**External Interrupt Detecting** 



| 8BH, Bank0              |         | Bit7                                             | Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit                                                           |                     |          |             |       |       |       |  |  |
|-------------------------|---------|--------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------|----------|-------------|-------|-------|-------|--|--|
| EXCON                   |         | I1PS1                                            | I1PS0                                                                                       | I1SN1               | I1SN0    | I0PS1       | I0PS0 | I0SN1 | I0SN0 |  |  |
| R/W                     | R/W R/W |                                                  |                                                                                             | R/W                 | R/W      | R/W         | R/W   | R/W   | R/W   |  |  |
| Reset Value 0           |         |                                                  | 0                                                                                           | 0                   | 0        | 0           | 0     | 0     | 0     |  |  |
| Bit Number Bit Mnemonic |         |                                                  |                                                                                             |                     |          | Description |       |       |       |  |  |
| 7-6                     | 111     | PS[1:0]                                          | INT4 sample<br>00: 1/1<br>01: 1/4<br>10: 1/16<br>11: 1/64                                   | 01: 1/4<br>10: 1/16 |          |             |       |       |       |  |  |
| 5-4                     | 115     | SN[1:0]                                          | INT4 sample<br>00: 1<br>01: 2<br>10: 3<br>11: 4                                             | e times Sele        | ect bits |             |       |       |       |  |  |
| 3-2                     | 10      | PS[1:0]                                          | INT0/1/2/3 sample clock Prescaler Select bits<br>00: 1/1<br>01: 1/4<br>10: 1/16<br>11: 1/64 |                     |          |             |       |       |       |  |  |
| 1-0 IOSN[1:0]           |         | INT0/1/2/3 s<br>00: 1<br>01: 2<br>10: 3<br>11: 4 | ample time                                                                                  | s Select bits       | 3        |             |       |       |       |  |  |

# Table7.47 External interrupt sample times control register

Note: If IOSN[1:0] = 11, the INT0/1/2/3 (falling edge trigger) need sample 4 times low-level to generate the interrupt flag



# 7.9.10 Interrupt Summary

| Source      | Vector<br>Address | Enable bits                     | Flag bits            | Polling Priority | Interrupt number<br>(C51) |
|-------------|-------------------|---------------------------------|----------------------|------------------|---------------------------|
| Reset       | 0000H             | -                               | -                    | 0 (highest)      | -                         |
| INT0        | 0003H             | EX0                             | IE0                  | 1                | 0                         |
| Timer5      | 000BH             | ET5                             | TF5                  | 2                | 1                         |
| INT1        | 0013H             | EX1                             | IE1                  | 3                | 2                         |
| EUART0      | 0023H             | ES0                             | RI+TI                | 5                | 4                         |
| Timer2      | 002BH             | ET2                             | TF2+EXF2             | 6                | 5                         |
| ADC         | 0033H             | EADC                            | ADCIF                | 7                | 6                         |
| SPI         | 003BH             | ESPI                            | SPIF                 | 8                | 7                         |
| INT2        | 0043H             | EX2                             | IE2                  | 9                | 8                         |
| INT3        | 004BH             | EX3                             | IE3                  | 10               | 9                         |
| INT4        | 0053H             | EX4+IENC                        | IF43-40              | 11               | 10                        |
| Timer3      | 005BH             | ET3+ET3_ES1                     | TF3                  | 12               | 11                        |
| PWM         | 0063H             | EPWM                            | PWM0/1IF             | 13               | 12                        |
| Timer4      | 006BH             | ET4                             | TF4                  | 14               | 13                        |
| SCM/LPD/CRC | 0073H             | ESCM/ELPD/ECRC+<br>ESCM_LPD_CRC | SCMIF/LPDF/<br>CRCIF | 15 (lowest)      | 14                        |



# 8. Enhanced Function

#### 8.1 LCD Driver

#### Normal Resistor LCD Driver with Fast charge

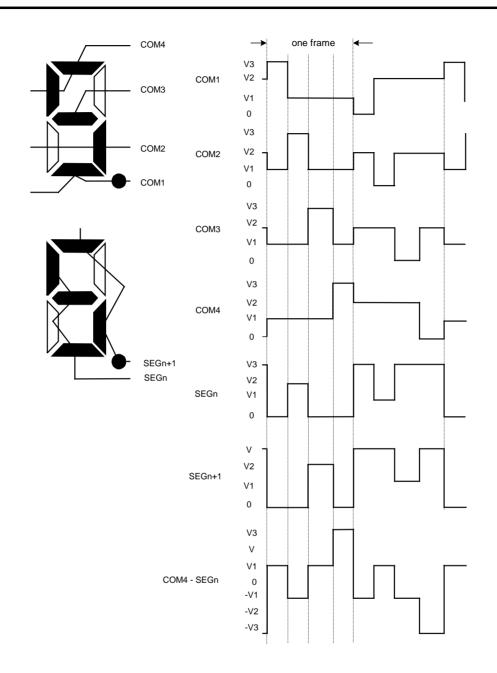
The LCD driver contains a controller, a duty cycle generator with 4/8 Common signal pins and 28/27/26/24 Segment driver pins. Segment 1-28 and COM1-COM4 can also be used as I/O port, it is controlled by the POSS, P1SS, P2SS, P3SS, register. LCD COM1-COM8 can be shared with LED Driver. The 28 bytes display data RAM is addressed to 500H-51BH, which could be used as data memory if needed.

The MCU consists normal display topologies with contrast adjustment which supports both 1/4duty-1/3bias and 1/5duty-1/3 bias, 1/6duty-1/4 bias and 1/8duty-1/4 bias driving mode. DISPSEL (DISPCON.7) must be cleared before LCD working. When ELCC in DISPCON is set, the LCD power supply  $V_{LCD}$  is selected by VOL[0:3]. When ELCC is cleared,  $V_{LCD}$  equals  $V_{DD}$ .

When MCU enters the Power-down mode, the LCD will be turned off. If 32.768kHz crystal/128kHz works in Power-down mode, the LCD is still working. During the Power in Reset, Pin Reset, LVR Reset and Watchdog Reset, the LCD will be turned off, and Common and Segment will output low.

The features of the LCD Normal Display Mode include the following:

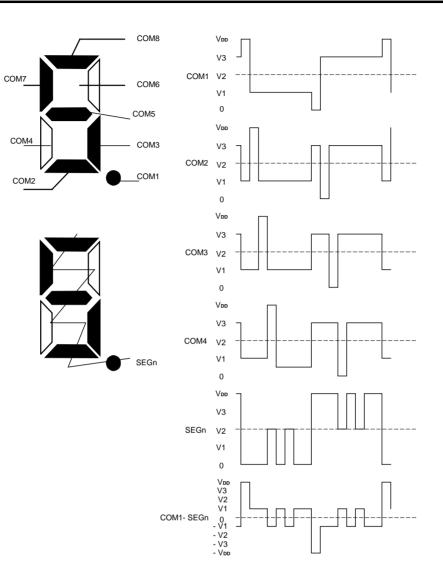
- LCD clock is decided by code option OP\_OSC
- When OP\_OSC[3:0] is 1010, 1011 or 1101, LCD clock source is 32.768kHz, DISPCLK0 register is invalid, LCD frame is 64Hz.
- When OP\_OSC[3:0] is others, LCD clock source is 128kHz, set DCK[1:0] bits in DISPCLK0 register, select 1/4, 1/3, 1/2, 1/1, prescaler, so that the LCD frame is 256/4Hz, 256/3Hz, 256/2Hz, 256/1Hz.
- When OP\_OSC[3:0] is 0000, 0001, 1110, in stop mode, the LCD clock will be turned off. When OP\_OSC[3:0] is 0011, 0100, 0110, 1011, 1101, and MCU worked in high frequency mode in stop mode, the LCD clock is still working. When OP\_OSC[3:0] is 0011, 0100, 0110, 1011, 1101, and MCU worked in low frequency mode in stop mode, the LCD clock will be turned off, and the LCD clock is still working in IDLE mode.
- LCD worked 1/4duty-1/3bias and 1/5duty-1/3 bias, 1/6duty-1/3 bias, 1/6duty-1/4 bias and 1/8duty-1/4 bias driving mode by set DUTY[2:0] bits in DISPCON register.
- 16 levels contrast adjustment by configuring the VOL[3:0] bits in DISPCON register.
- LCD bias resistor ( $R_{LCD}$ ) can be selected as 20K/75K/300K $\Omega$  when select 1/3 bias. LCD bias resistor ( $R_{LCD}$ ) can be selected as 15K/56K/225K $\Omega$  when select 1/4 bias. The sum LCD bias resistor ( $R_{LCD}$ ) is 60K/225K/900K.


Fast Charge mode or Normal resistor mode is selected by set MOD[1:0] bits in DISPCON1 register. Fast Charge mode can effectively reduce the power consumption.

When refresh the display data 20k bias resistors are selected to provide larger current to get better LCD display effect, but it not suitable for some low current consume application. When keep the display data 75K/300k bias resistors are selected to save drive current, but the LCD display effect will down.

Therefore SH79F3283 provides both the low power consumption and display effect of the display mode. Set MOD[1:0] = 10 to select this mode. When refresh the display data 20k bias resistors are selected to provide larger current. When keep the display data 75K/300k bias resistors are selected to save drive current. Charging time is selected as 1/8, 1/16, 1/32 or 1/64 of LCD com period by FCCTL[1:0] in DISPCON1register.

# SH79F3283






LCD Waveform (1/4duty, 1/3bias)

# SH79F3283





LCD Waveform (1/8duty, 1/4bias)



# 8.1.1 Register

Table 8.1 LCD Control Register

| ABH, Bank                   | ABH, Bank0 |          | Bit6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bit5                                  | Bit4  | Bit3      | Bit2 | Bit1 | Bit0 |  |  |
|-----------------------------|------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------|-----------|------|------|------|--|--|
| DISPCON                     |            | DISPSEL  | LCDON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ELCC                                  | DUTY0 | VOL3      | VOL2 | VOL1 | VOL0 |  |  |
| R/W                         |            | R/W      | R/W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R/W                                   | R/W   | R/W       | R/W  | R/W  | R/W  |  |  |
| Reset Value<br>(POR/WDT/LVR | -          | 0        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                     | 0     | 0         | 0    | 0    | 0    |  |  |
| Bit Number                  | Bit N      | Inemonic |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |       | Descripti | on   |      |      |  |  |
| 7                           | DI         | SPSEL    | LCD/LED control bit<br>0: select LCD driver<br>1: select LED driver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |       |           |      |      |      |  |  |
| 6                           | L          | CDON     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I bit<br>f LCD driver<br>n LCD driver |       |           |      |      |      |  |  |
| 5                           | ELCC       |          | LCD contrast on/off control bit<br>0: disable contrast<br>1: enable contrast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |       |           |      |      |      |  |  |
| 4                           | D          | OUTY0    | LCD duty selection bit (Combination control with DUTY[2:1])<br>Refer to DUTY[2:1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |       |           |      |      |      |  |  |
| 3-0                         | Vo         | DL[3:0]  | LCD contrast control bits<br>$0000: V_{LCD} = 0.531V_{DD}$<br>$0001: V_{LCD} = 0.563V_{DD}$<br>$0010: V_{LCD} = 0.594V_{DD}$<br>$0011: V_{LCD} = 0.625V_{DD}$<br>$0100: V_{LCD} = 0.656V_{DD}$<br>$0101: V_{LCD} = 0.688V_{DD}$<br>$0110: V_{LCD} = 0.719V_{DD}$<br>$0111: V_{LCD} = 0.750V_{DD}$<br>$1000: V_{LCD} = 0.781V_{DD}$<br>$1001: V_{LCD} = 0.813V_{DD}$<br>$1010: V_{LCD} = 0.844V_{DD}$<br>$1011: V_{LCD} = 0.875V_{DD}$<br>$1100: V_{LCD} = 0.906V_{DD}$<br>$1101: V_{LCD} = 0.938V_{DD}$<br>$1110: V_{LCD} = 0.969V_{DD}$<br>$1111: V_{LCD} = 1.000V_{DD}$ |                                       |       |           |      |      |      |  |  |

**Note:** SH79F3283 has LCD and LED driver, but cannot work at the same time. When DISPSEL = 1, LCD is disabled, when DISPSEL = 0, LED is disable.



# Table 8.2 LCD Control Register 1

| ADH, Bank0                       | Bit7  | Bit6  | Bit5  | Bit4 | Bit3   | Bit2   | Bit1 | Bit0 |
|----------------------------------|-------|-------|-------|------|--------|--------|------|------|
| DISPCON1                         | MODSW | DUTY2 | DUTY1 | RLCD | FCCTL1 | FCCTL2 | MOD1 | MOD0 |
| R/W                              | R/W   | R/W   | R/W   | R/W  | R/W    | R/W    | R/W  | R/W  |
| Reset Value<br>(POR/WDT/LVR/PIN) | 0     | 0     | 0     | 0    | 0      | 0      | 0    | 0    |

| Bit Number | Bit Mnemonic | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7          | MODSW        | LCD/LED shared control bit<br>0: P0SS is valid<br>1: all the LCD/LED Pins worked as IO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6-5        | DUTY[2:1]    | LCD duty selection bit (Combination control with DUTY0)<br>000: 1/4 duty, 1/3 bias (4 COM X 28 SEG)<br>COM: COM1-4<br>SEG: SEG1-28<br>001: 1/8 duty, 1/4 bias (8 COM X 24 SEG)<br>COM: COM1-8<br>SEG: SEG1-24<br>010: 1/4 duty, 1/3 bias (4 COM X 28 SEG)<br>COM: COM5-8 shared as COM1-4<br>SEG: SEG1-24, COM1-4 shared as SEG25-28<br>011: 1/5 duty, 1/3 bias (5 COM X 27 SEG)<br>COM: COM1-5<br>SEG: SEG1-24, COM6-8 shared as SEG25-27<br>100: 1/6 duty, 1/3 bias (6 COM X 26 SEG)<br>COM: COM1-6<br>SEG: SEG1-24, COM7-8 shared as SEG25-SEG26<br>101: 1/6 duty, 1/4 bias (6 COM X 26 SEG)<br>COM: COM1-6<br>SEG: SEG1-24, COM7-8 shared as SEG25-SEG26<br>101: 1/6 duty, 1/3 bias (4 COM X 28 SEG)<br>COM: COM1-6<br>SEG: SEG1-24, COM7-8 shared as SEG25-SEG26<br>others: 1/4 duty, 1/3 bias (4 COM X 28 SEG)<br>COM: COM1-4<br>SEG: SEG1-28 |
| 4          | RLCD         | LCD bias resistor control bit<br>0: LCD bias resistor sum is 225k<br>1: LCD bias resistor sum is 900k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3-2        | FCCTL[1:0]   | Fast charge time control bits<br>00: 1/8LCD com period<br>01: 1/16 LCD com period<br>10: 1/32 LCD com period<br>11: 1/64 LCD com period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1-0        | MOD[1:0]     | LCD driver mode control bits<br>00: traditional mode, bias resistor sum is 225k/900k<br>01: traditional mode, bias resistor sum is 60k<br>10: fast charge mode, bias resistor sum between 60k and 225k/900k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

**Note:** When MODSW = 1, set  $OP\_MODSW$  to keep LCD counter data or not. When  $OP\_MODSW = 0$ , the LCD counter data scan continue, when  $OP\_MODSW = 1$ , the LCD counter data scan stop, keep the data, continue scan when MODSW = 0.



## Table 8.3 LCD Clock Control Register

| ACH, Bank0                      | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|---------------------------------|------|------|------|------|------|------|------|------|
| DISPCLK0                        | -    | -    | -    | -    | -    | -    | DCK1 | DCK0 |
| R/W                             | -    | -    | -    | -    | -    | -    | R/W  | R/W  |
| Reset Value<br>(POR/WDT/LVR/PIN | -    | -    | -    | -    | -    | -    | 0    | 0    |

| Bit Number | Bit Mnemonic | Description                                                                                                                                                                        |
|------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1-0        | DCK[1:0]     | LCD clock prescaler select bit<br>00: 1/4 prescaler<br>01: 1/3 prescaler<br>10: 1/2 prescaler<br>11: 1/1 prescaler<br>Note: this register is valid when LCD clock is 128K RC only. |

Note:

(1) When OP\_OSC[3:0] is 1010, 1011 or 1101, LCD clock source is 32.768kHz, DISPCLK0 register is invalid, LCD frame is 64Hz.

(2) When OP\_OSC[3:0] is others, LCD clock source is 128kHz, set DCK[1:0] bits in DISPCLK0 register, select 1/4, 1/3, 1/2, 1/1, prescaler, so that the LCD frame is 256/4Hz, 256/3Hz, 256/2Hz, 256/1Hz.

Table 8.4 Px Mode Select Register

| B6H, Bank0                       | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|----------------------------------|------|------|------|------|------|------|------|------|
| POSS                             | P4S7 | P4S6 | P4S5 | P5S5 | P5S4 | P0S2 | P0S1 | P0S0 |
| R/W                              | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  |
| Reset Value<br>(POR/WDT/LVR/PIN) | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

| Bit Number | Bit Mnemonic | Description                                                                                        |
|------------|--------------|----------------------------------------------------------------------------------------------------|
| 7-5        | P4S[7:5]     | P4 mode select bit<br>0: P4.5-P4.7 is I/O<br>1: P4.5-P4.7 shared as Segment (SEG22-24)             |
| 4-3        | P5S[5:4]     | <b>P5 mode select bit</b><br>0: P5.4-P5.5 is I/O<br>1: P5.4-P5.5 shared as Segment (SEG20 - SEG21) |
| 2-0        | P0S[2:0]     | <b>P0 mode select bit</b><br>0: P0.0-P0.2 is I/O<br>1: P0.0-P0.2 shared as Segment (SEG17 - SEG19) |



# Table 8.5 P1 mode select register

| 9CH, Bank0                       | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|----------------------------------|------|------|------|------|------|------|------|------|
| P1SS                             | P1S7 | P1S6 | P1S5 | P1S4 | P1S3 | P1S2 | P1S1 | P1S0 |
| R/W                              | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  |
| Reset Value<br>(POR/WDT/LVR/PIN) | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

| Bit Number | Bit Mnemonic | Description                                                                               |
|------------|--------------|-------------------------------------------------------------------------------------------|
| 7-0        | P1S[7:0]     | P1 mode select bit<br>0: P1.0-P1.7 is I/O<br>1: P1.0-P1.7 shared as Segment (SEG1 - SEG8) |

Table 8.6 P2 mode select register

| 9DH, Bank0                       | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|----------------------------------|------|------|------|------|------|------|------|------|
| P2SS                             | P2S7 | P2S6 | P2S5 | P2S4 | P2S3 | P2S2 | P2S1 | P2S0 |
| R/W                              | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  |
| Reset Value<br>(POR/WDT/LVR/PIN) | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

| Bit Number | Bit Mnemonic | Description                                                                                |
|------------|--------------|--------------------------------------------------------------------------------------------|
| 7-0        | P2S[7:0]     | P2 mode select bit<br>0: P2.0-P2.7 is I/O<br>1: P2.0-P2.7 shared as Segment (SEG9 - SEG16) |

Table 8.7 P3 mode select register

| 9EH, Bank0                       | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|----------------------------------|------|------|------|------|------|------|------|------|
| P3SS                             | P3S7 | P3S6 | P3S5 | P3S4 | P3S3 | P3S2 | P3S1 | P3S0 |
| R/W                              | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  |
| Reset Value<br>(POR/WDT/LVR/PIN) | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

| Bit Number | Bit Mnemonic | Description                                                                                                    |  |  |  |  |  |
|------------|--------------|----------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 7-0        | P3S[7:0]     | P3 mode select bit<br>0: P3.0-P3.7 is I/O<br>1: P8.0-P8.7 share as Segment (SEG25-SEG28) or Common (COM1-COM8) |  |  |  |  |  |



# 8.1.2 Configuration of LCD RAM

LCD 1/4 duty, 1/3 bias (COM1 - 4, SEG1 - 28)

|         | 7 | 6 | 5 | 4 | 3     | 2     | 1     | 0     |
|---------|---|---|---|---|-------|-------|-------|-------|
| Address | - | - | - | - | COM4  | COM3  | COM2  | COM1  |
| 500H    | - | - | - | - | SEG1  | SEG1  | SEG1  | SEG1  |
| 501H    | - | - | - | - | SEG2  | SEG2  | SEG2  | SEG2  |
| 502H    | - | - | - | - | SEG3  | SEG3  | SEG3  | SEG3  |
| 503H    | - | - | - | - | SEG4  | SEG4  | SEG4  | SEG4  |
| 504H    | - | - | - | - | SEG5  | SEG5  | SEG5  | SEG5  |
| 505H    | - | - | - | - | SEG6  | SEG6  | SEG6  | SEG6  |
| 506H    | - | - | - | - | SEG7  | SEG7  | SEG7  | SEG7  |
| 507H    | - | - | - | - | SEG8  | SEG8  | SEG8  | SEG8  |
| 508H    | - | - | - | - | SEG9  | SEG9  | SEG9  | SEG9  |
| 509H    | - | - | - | - | SEG10 | SEG10 | SEG10 | SEG10 |
| 50AH    | - | - | - | - | SEG11 | SEG11 | SEG11 | SEG11 |
| 50BH    | - | - | - | - | SEG12 | SEG12 | SEG12 | SEG12 |
| 50CH    | - | - | - | - | SEG13 | SEG13 | SEG13 | SEG13 |
| 50DH    | - | - | - | - | SEG14 | SEG14 | SEG14 | SEG14 |
| 50EH    | - | - | - | - | SEG15 | SEG15 | SEG15 | SEG15 |
| 50FH    | - | - | - | - | SEG16 | SEG16 | SEG16 | SEG16 |
| 510H    | - | - | - | - | SEG17 | SEG17 | SEG17 | SEG17 |
| 511H    | - | - | - | - | SEG18 | SEG18 | SEG18 | SEG18 |
| 512H    | - | - | - | - | SEG19 | SEG19 | SEG19 | SEG19 |
| 513H    | - | - | - | - | SEG20 | SEG20 | SEG20 | SEG20 |
| 514H    | - | - | - | - | SEG21 | SEG21 | SEG21 | SEG21 |
| 515H    | - | - | - | - | SEG22 | SEG22 | SEG22 | SEG22 |
| 516H    | - | - | - | - | SEG23 | SEG23 | SEG23 | SEG23 |
| 517H    | - | - | - | - | SEG24 | SEG24 | SEG24 | SEG24 |
| 518H    | - | - | - | - | SEG25 | SEG25 | SEG25 | SEG25 |
| 519H    | - | - | - | - | SEG26 | SEG26 | SEG26 | SEG26 |
| 51AH    | - | - | - | - | SEG27 | SEG27 | SEG27 | SEG27 |
| 51BH    | - | - | - | - | SEG28 | SEG28 | SEG28 | SEG28 |



# LCD 1/8 duty, 1/4 bias (COM1 - 8, SEG1 - 24)

| A       | 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0     |
|---------|-------|-------|-------|-------|-------|-------|-------|-------|
| Address | COM8  | COM7  | COM6  | COM5  | COM4  | COM3  | COM2  | COM1  |
| 500H    | SEG1  |
| 501H    | SEG2  |
| 502H    | SEG3  |
| 503H    | SEG4  |
| 504H    | SEG5  |
| 505H    | SEG6  |
| 506H    | SEG7  |
| 507H    | SEG8  |
| 508H    | SEG9  |
| 509H    | SEG10 |
| 50AH    | SEG11 |
| 50BH    | SEG12 |
| 50CH    | SEG13 |
| 50DH    | SEG14 |
| 50EH    | SEG15 |
| 50FH    | SEG16 |
| 510H    | SEG17 |
| 511H    | SEG18 |
| 512H    | SEG19 |
| 513H    | SEG20 |
| 514H    | SEG21 |
| 515H    | SEG22 |
| 516H    | SEG23 |
| 517H    | SEG24 |



# LCD 1/5 duty, 1/3 bias (COM1 - 5, SEG1 - 27)

| Address | 7 | 6 | 5 | 4     | 3     | 2     | 1     | 0     |
|---------|---|---|---|-------|-------|-------|-------|-------|
| Address | - | - | - | COM5  | COM4  | COM3  | COM2  | COM1  |
| 500H    | - | - | - | SEG1  | SEG1  | SEG1  | SEG1  | SEG1  |
| 501H    | - | - | - | SEG2  | SEG2  | SEG2  | SEG2  | SEG2  |
| 502H    | - | - | - | SEG3  | SEG3  | SEG3  | SEG3  | SEG3  |
| 503H    | - | - | - | SEG4  | SEG4  | SEG4  | SEG4  | SEG4  |
| 504H    | - | - | - | SEG5  | SEG5  | SEG5  | SEG5  | SEG5  |
| 505H    | - | - | - | SEG6  | SEG6  | SEG6  | SEG6  | SEG6  |
| 506H    | - | - | - | SEG7  | SEG7  | SEG7  | SEG7  | SEG7  |
| 507H    | - | - | - | SEG8  | SEG8  | SEG8  | SEG8  | SEG8  |
| 508H    | - | - | - | SEG9  | SEG9  | SEG9  | SEG9  | SEG9  |
| 509H    | - | - | - | SEG10 | SEG10 | SEG10 | SEG10 | SEG10 |
| 50AH    | - | - | - | SEG11 | SEG11 | SEG11 | SEG11 | SEG11 |
| 50BH    | - | - | - | SEG12 | SEG12 | SEG12 | SEG12 | SEG12 |
| 50CH    | - | - | - | SEG13 | SEG13 | SEG13 | SEG13 | SEG13 |
| 50DH    | - | - | - | SEG14 | SEG14 | SEG14 | SEG14 | SEG14 |
| 50EH    | - | - | - | SEG15 | SEG15 | SEG15 | SEG15 | SEG15 |
| 50FH    | - | - | - | SEG16 | SEG16 | SEG16 | SEG16 | SEG16 |
| 510H    | - | - | - | SEG17 | SEG17 | SEG17 | SEG17 | SEG17 |
| 511H    | - | - | - | SEG18 | SEG18 | SEG18 | SEG18 | SEG18 |
| 512H    | - | - | - | SEG19 | SEG19 | SEG19 | SEG19 | SEG19 |
| 513H    | - | - | - | SEG20 | SEG20 | SEG20 | SEG20 | SEG20 |
| 514H    | - | - | - | SEG21 | SEG21 | SEG21 | SEG21 | SEG21 |
| 515H    | - | - | - | SEG22 | SEG22 | SEG22 | SEG22 | SEG22 |
| 516H    | - | - | - | SEG23 | SEG23 | SEG23 | SEG23 | SEG23 |
| 517H    | - | - | - | SEG24 | SEG24 | SEG24 | SEG24 | SEG24 |
| 518H    | - | - | - | SEG25 | SEG25 | SEG25 | SEG25 | SEG25 |
| 519H    | - | - | - | SEG26 | SEG26 | SEG26 | SEG26 | SEG26 |
| 51AH    | - | - | - | SEG27 | SEG27 | SEG27 | SEG27 | SEG27 |



| Addamaaa | 7 | 6 | 5     | 4     | 3     | 2     | 1     | 0     |
|----------|---|---|-------|-------|-------|-------|-------|-------|
| Address  | - | - | COM6  | COM5  | COM4  | COM3  | COM2  | COM1  |
| 500H     | - | - | SEG1  | SEG1  | SEG1  | SEG1  | SEG1  | SEG1  |
| 501H     | - | - | SEG2  | SEG2  | SEG2  | SEG2  | SEG2  | SEG2  |
| 502H     | - | - | SEG3  | SEG3  | SEG3  | SEG3  | SEG3  | SEG3  |
| 503H     | - | - | SEG4  | SEG4  | SEG4  | SEG4  | SEG4  | SEG4  |
| 504H     | - | - | SEG5  | SEG5  | SEG5  | SEG5  | SEG5  | SEG5  |
| 505H     | - | - | SEG6  | SEG6  | SEG6  | SEG6  | SEG6  | SEG6  |
| 506H     | - | - | SEG7  | SEG7  | SEG7  | SEG7  | SEG7  | SEG7  |
| 507H     | - | - | SEG8  | SEG8  | SEG8  | SEG8  | SEG8  | SEG8  |
| 508H     | - | - | SEG9  | SEG9  | SEG9  | SEG9  | SEG9  | SEG9  |
| 509H     | - | - | SEG10 | SEG10 | SEG10 | SEG10 | SEG10 | SEG10 |
| 50AH     | - | - | SEG11 | SEG11 | SEG11 | SEG11 | SEG11 | SEG11 |
| 50BH     | - | - | SEG12 | SEG12 | SEG12 | SEG12 | SEG12 | SEG12 |
| 50CH     | - | - | SEG13 | SEG13 | SEG13 | SEG13 | SEG13 | SEG13 |
| 50DH     | - | - | SEG14 | SEG14 | SEG14 | SEG14 | SEG14 | SEG14 |
| 50EH     | - | - | SEG15 | SEG15 | SEG15 | SEG15 | SEG15 | SEG15 |
| 50FH     | - | - | SEG16 | SEG16 | SEG16 | SEG16 | SEG16 | SEG16 |
| 510H     | - | - | SEG17 | SEG17 | SEG17 | SEG17 | SEG17 | SEG17 |
| 511H     | - | - | SEG18 | SEG18 | SEG18 | SEG18 | SEG18 | SEG18 |
| 512H     | - | - | SEG19 | SEG19 | SEG19 | SEG19 | SEG19 | SEG19 |
| 513H     | - | - | SEG20 | SEG20 | SEG20 | SEG20 | SEG20 | SEG20 |
| 514H     | - | - | SEG21 | SEG21 | SEG21 | SEG21 | SEG21 | SEG21 |
| 515H     | - | - | SEG22 | SEG22 | SEG22 | SEG22 | SEG22 | SEG22 |
| 516H     | - | - | SEG23 | SEG23 | SEG23 | SEG23 | SEG23 | SEG23 |
| 517H     | - | - | SEG24 | SEG24 | SEG24 | SEG24 | SEG24 | SEG24 |
| 518H     | - | - | SEG25 | SEG25 | SEG25 | SEG25 | SEG25 | SEG25 |
| 519H     | - | - | SEG26 | SEG26 | SEG26 | SEG26 | SEG26 | SEG26 |

# LCD 1/6 duty, 1/3 or 1/4 bias (COM1 - 6, SEG1 - 26)



# 8.2 LED Driver

The LED driver contains a controller, a duty generator with 3-8 Common signal pins and 8 Segment driver pins. Support 1/3-1/8 duty voltage driver mode, the 1/3-1/8 duty is adjustable. Set DISPSEL bit can select the LED driver mode.

LED SEG1-SEG8 can be shared as I/O. When DISPSEL = 1, LCD is disable and LED is enable. The POSS and P2SS registers are invalid, select the mode of LED\_SEG 1-8 and LED\_C1-LED\_C8 is controlled by P1SS, P3SS registers.

The DISPSEL bit must be set to 1 before enable LED driver.

The Common Ports integrated large current sink ability, when  $OP_P37P34 = 0$  and  $OP_P33P.0 = 1$ , the Port3 large current sink ability is enable. (Refer to Code Option)

During the Power in Reset, Pin Reset, LVR Reset and Watchdog Reset, the LED driver will be turned off.

## 8.2.1 Register

Table 8.8 LED Control Register

| ABH, Bank0                       | Bit7    | Bit6  | Bit5 | Bit4  | Bit3 | Bit2 | Bit1 | Bit0 |
|----------------------------------|---------|-------|------|-------|------|------|------|------|
| DISPCON                          | DISPSEL | LEDON | -    | DUTY0 | -    | -    | -    | -    |
| R/W                              | R/W     | R/W   | -    | R/W   | -    | -    | -    | -    |
| Reset Value<br>(POR/WDT/LVR/PIN) | 0       | 0     | -    | 0     | -    | -    | -    | -    |

| Bit Number | Bit Mnemonic       | Description                                                                       |
|------------|--------------------|-----------------------------------------------------------------------------------|
| 7          | DISPSEL            | LCD/LED control bit<br>0: select LCD driver<br>1: select LED driver               |
| 6          | LEDON              | LED control bit<br>0: turn off LED driver<br>1: turn on LED driver                |
| 4          | DUTY0<br>DUTY[2:1] | LED duty selection bit (Combination control with DUTY[2:1])<br>Refer to DUTY[2:1] |

**Note:** SH79F3283 has LCD and LED driver, but cannot work at the same time. When DISPSEL = 1, LCD is disabled, when DISPSEL = 0, LED is disable.



# Table 8.9 LED Control Register 1

| ADH, Bank0                       | Bit7  | Bit6  | Bit5  | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|----------------------------------|-------|-------|-------|------|------|------|------|------|
| DISPCON1                         | MODSW | DUTY2 | DUTY1 | -    | -    | -    | -    | -    |
| R/W                              | R/W   | R/W   | R/W   | -    | -    | -    | -    | -    |
| Reset Value<br>(POR/WDT/LVR/PIN) | 0     | 0     | 0     | -    | -    | -    | -    | -    |

| Bit Number | Bit Mnemonic       | Description                                                                                                                                                                                                                                                                                                                   |
|------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6-5        | DUTY0<br>DUTY[2:1] | LED duty selection bit (Combination control with DUTY0)<br>000: 1/4 duty<br>001: 1/8 duty<br>010: 1/3 duty<br>011: 1/5 duty<br>100: 1/6 duty<br>101: 1/7 duty<br>others: 1/4 duty                                                                                                                                             |
| 7          | MODSW              | LCD/LED shared control bit<br>0: P0SS is valid<br>1: all the LCD/LED Pins worked as IO<br>Note: When MODSW = 1, set OP_MODSW to keep LCD counter data or not.<br>When OP_MODSW = 0, the LCD counter data scan continue, when<br>OP_MODSW = 1, the LCD counter data scan stop, keep the data, continue<br>scan when MODSW = 0. |

## Table 8.10 LED Clock Control Register

| ACH, Bank0                       | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1   | Bit0   |
|----------------------------------|------|------|------|------|------|------|--------|--------|
| DISPCLK0                         | -    | -    | -    | -    | -    | -    | DCK0.1 | DCK0.0 |
| R/W                              | -    | -    | -    | -    | -    | -    | R/W    | R/W    |
| Reset Value<br>(POR/WDT/LVR/PIN) | -    | -    | -    | -    | -    | -    | 0      | 0      |

| Bit Number | Bit Mnemonic | Description                                                                                                                                                                        |
|------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1-0        | DCK[1:0]     | LED clock prescaler select bit<br>00: 1/4 prescaler<br>01: 1/3 prescaler<br>10: 1/2 prescaler<br>11: 1/1 prescaler<br>Note: this register is valid when LCD clock is 128K RC only. |

## Note:

(1) When OP\_OSC[3:0] is 1010, 1011 or 1101, LCD clock source is 32.768kHz, DISPCLK0 register is invalid, LCD frame is 64Hz.

(2) When OP\_OSC[3:0] is others, LCD clock source is 128kHz, set DCK[1:0] bits in DISPCLK0 register, select 1/4, 1/3, 1/2, 1/1, prescaler, so that the LCD frame is 256/4Hz, 256/3Hz, 256/2Hz, 256/1Hz.



# Table 8.11 P1 mode select register

| 9CH, Bank0                       | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|----------------------------------|------|------|------|------|------|------|------|------|
| P1SS                             | P1S7 | P1S6 | P1S5 | P1S4 | P1S3 | P1S2 | P1S1 | P1S0 |
| R/W                              | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  |
| Reset Value<br>(POR/WDT/LVR/PIN) | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

| Bit Number | Bit Mnemonic | Description                                                                                   |
|------------|--------------|-----------------------------------------------------------------------------------------------|
| 7-0        | P1S[7:0]     | P1 mode select bit<br>0: P1.0-P1.7 is I/O<br>1: P1.0-P1.7 shared as Segment (LED_S1 - LED_S8) |

Table 8.12 P3 mode select register

| 9EH, Bank0                       | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|----------------------------------|------|------|------|------|------|------|------|------|
| P3SS                             | P3S7 | P3S6 | P3S5 | P3S4 | P3S3 | P3S2 | P3S1 | P3S0 |
| R/W                              | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  |
| Reset Value<br>(POR/WDT/LVR/PIN) | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

| Bit Number | Bit Mnemonic | Description                                                                                         |  |  |  |  |  |  |
|------------|--------------|-----------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 7-0        | P3S[7:0]     | <b>P3 mode select bit</b><br>0: P3.0-P3.7 is I/O<br>1: P3.0-P3.7 shared as Common (LED_C1 - LED_C8) |  |  |  |  |  |  |

# 8.2.2 Configuration of LED RAM

LED 1/3 duty (LED\_C1 - 3, LED\_S1 - 8)

| Add  | ress | 7    | 6    | 5    | 4    | 3    | 2    | 1    | 0    |
|------|------|------|------|------|------|------|------|------|------|
| 500H | COM1 | SEG8 | SEG7 | SEG6 | SEG5 | SEG4 | SEG3 | SEG2 | SEG1 |
| 501H | COM2 | SEG8 | SEG7 | SEG6 | SEG5 | SEG4 | SEG3 | SEG2 | SEG1 |
| 502H | COM3 | SEG8 | SEG7 | SEG6 | SEG5 | SEG4 | SEG3 | SEG2 | SEG1 |

# LED 1/4 duty (LED\_C1 - 4, LED\_S1 - 8)

| Add  | ress | 7    | 6    | 5    | 4    | 3    | 2    | 1    | 0    |
|------|------|------|------|------|------|------|------|------|------|
| 500H | COM1 | SEG8 | SEG7 | SEG6 | SEG5 | SEG4 | SEG3 | SEG2 | SEG1 |
| 501H | COM2 | SEG8 | SEG7 | SEG6 | SEG5 | SEG4 | SEG3 | SEG2 | SEG1 |
| 502H | COM3 | SEG8 | SEG7 | SEG6 | SEG5 | SEG4 | SEG3 | SEG2 | SEG1 |
| 503H | COM4 | SEG8 | SEG7 | SEG6 | SEG5 | SEG4 | SEG3 | SEG2 | SEG1 |

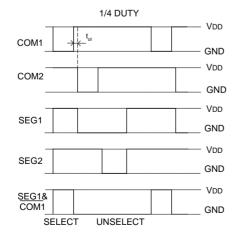
# LED 1/5 duty (LED\_C1 - 5, LED\_S1 - 8)

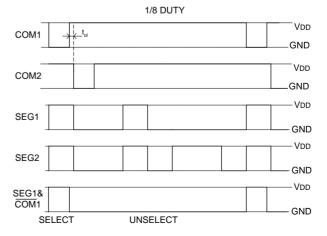
| Add  | ress | 7    | 6    | 5    | 4    | 3    | 2    | 1    | 0    |
|------|------|------|------|------|------|------|------|------|------|
| 500H | COM1 | SEG8 | SEG7 | SEG6 | SEG5 | SEG4 | SEG3 | SEG2 | SEG1 |
| 501H | COM2 | SEG8 | SEG7 | SEG6 | SEG5 | SEG4 | SEG3 | SEG2 | SEG1 |
| 502H | COM3 | SEG8 | SEG7 | SEG6 | SEG5 | SEG4 | SEG3 | SEG2 | SEG1 |
| 503H | COM4 | SEG8 | SEG7 | SEG6 | SEG5 | SEG4 | SEG3 | SEG2 | SEG1 |
| 504H | COM5 | SEG8 | SEG7 | SEG6 | SEG5 | SEG4 | SEG3 | SEG2 | SEG1 |



# LED 1/6 duty (LED\_C1 - 6, LED\_S1 - 8)

| Add  | ress | 7    | 6    | 5    | 4    | 3    | 2    | 1    | 0    |
|------|------|------|------|------|------|------|------|------|------|
| 500H | COM1 | SEG8 | SEG7 | SEG6 | SEG5 | SEG4 | SEG3 | SEG2 | SEG1 |
| 501H | COM2 | SEG8 | SEG7 | SEG6 | SEG5 | SEG4 | SEG3 | SEG2 | SEG1 |
| 502H | COM3 | SEG8 | SEG7 | SEG6 | SEG5 | SEG4 | SEG3 | SEG2 | SEG1 |
| 503H | COM4 | SEG8 | SEG7 | SEG6 | SEG5 | SEG4 | SEG3 | SEG2 | SEG1 |
| 504H | COM5 | SEG8 | SEG7 | SEG6 | SEG5 | SEG4 | SEG3 | SEG2 | SEG1 |
| 505H | COM6 | SEG8 | SEG7 | SEG6 | SEG5 | SEG4 | SEG3 | SEG2 | SEG1 |


# LED 1/7 duty (LED\_C1 -7, LED\_S1 - 8)


| Add  | lress | 7    | 6    | 5    | 4    | 3    | 2    | 1    | 0    |
|------|-------|------|------|------|------|------|------|------|------|
| 500H | COM1  | SEG8 | SEG7 | SEG6 | SEG5 | SEG4 | SEG3 | SEG2 | SEG1 |
| 501H | COM2  | SEG8 | SEG7 | SEG6 | SEG5 | SEG4 | SEG3 | SEG2 | SEG1 |
| 502H | COM3  | SEG8 | SEG7 | SEG6 | SEG5 | SEG4 | SEG3 | SEG2 | SEG1 |
| 503H | COM4  | SEG8 | SEG7 | SEG6 | SEG5 | SEG4 | SEG3 | SEG2 | SEG1 |
| 504H | COM5  | SEG8 | SEG7 | SEG6 | SEG5 | SEG4 | SEG3 | SEG2 | SEG1 |
| 505H | COM6  | SEG8 | SEG7 | SEG6 | SEG5 | SEG4 | SEG3 | SEG2 | SEG1 |
| 506H | COM7  | SEG8 | SEG7 | SEG6 | SEG5 | SEG4 | SEG3 | SEG2 | SEG1 |

# LED 1/8 duty (LED\_C1 - 8, LED\_S1 - 8)

| Add  | ress | 7    | 6    | 5    | 4    | 3    | 2    | 1    | 0    |
|------|------|------|------|------|------|------|------|------|------|
| 500H | COM1 | SEG8 | SEG7 | SEG6 | SEG5 | SEG4 | SEG3 | SEG2 | SEG1 |
| 501H | COM2 | SEG8 | SEG7 | SEG6 | SEG5 | SEG4 | SEG3 | SEG2 | SEG1 |
| 502H | COM3 | SEG8 | SEG7 | SEG6 | SEG5 | SEG4 | SEG3 | SEG2 | SEG1 |
| 503H | COM4 | SEG8 | SEG7 | SEG6 | SEG5 | SEG4 | SEG3 | SEG2 | SEG1 |
| 504H | COM5 | SEG8 | SEG7 | SEG6 | SEG5 | SEG4 | SEG3 | SEG2 | SEG1 |
| 505H | COM6 | SEG8 | SEG7 | SEG6 | SEG5 | SEG4 | SEG3 | SEG2 | SEG1 |
| 506H | COM7 | SEG8 | SEG7 | SEG6 | SEG5 | SEG4 | SEG3 | SEG2 | SEG1 |
| 507H | COM8 | SEG8 | SEG7 | SEG6 | SEG5 | SEG4 | SEG3 | SEG2 | SEG1 |

## **LED Waveform**









## 8.3 12-bit PWM0 (Pulse Width Modulation)

## 8.3.1 Feature

- Three complementary output with dead time control
- Provided overflow and duty interrupt function on every PWM period
- Selectable output polarity
- Fault detect function provided to disable PWM output immediately
- Lock register provided to avoid PWM control register to be unexpected change

The SH79F3283 has one 12-bit PWM module, which can provide the pulse width modulation waveform with the period and the duty being controlled individually by corresponding register.

PWM timer can be turned to inactive state by the input of FLT pin automatically if EFLT is set

PWM timer also provides 1 interrupts for PWM0. This makes it possible to change period or duty of next cycle in every PWM period. **8.3.2 PWM Module Enable** 

## Table 8.13 PWM Module Enable Register

| CFH                              | Bit7  | Bit6 | Bit5     | Bit4     | Bit3     | Bit2    | Bit1    | Bit0    |
|----------------------------------|-------|------|----------|----------|----------|---------|---------|---------|
| PWMEN                            | EPWM0 | EFLT | PWM01COE | PWM01BOE | PWM01AOE | PWM0COE | PWM0BOE | PWM0AOE |
| R/W                              | R/W   | R/W  | R/W      | R/W      | R/W      | R/W     | R/W     | R/W     |
| Reset Value<br>(POR/WDT/LVR/PIN) | 0     | 0    | 0        | 0        | 0        | 0       | 0       | 0       |

| Bit Number | Bit Mnemonic                     | Description                                                                                                                |
|------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| 7          | EPWM0                            | <b>12 bit PWM0 output enable bit</b><br>0: disable PWM0, shared as I/O<br>1: enable PWM0                                   |
| 6          | EFLT                             | FLT pin configuration<br>0: general purpose I/O or SS pin<br>1: PWM Fault Detect input pin                                 |
| 5-3        | PWM01COE<br>PWM01BOE<br>PWM01AOE | <b>12 bit PWM output PWM01x enable</b><br>0: PWM01x (x = A, B, C) output disable, shared as I/O<br>1: PWM01x output enable |
| 2-0        | PWM0COE<br>PWM0BOE<br>PWM0AOE    | <b>12 bit PWM output PWM0x enable</b><br>0: PWM0x (x = A, B, C) output disable, shared as I/O<br>1: PWM0x output enable    |

PWM output will be disabled at the same time when the PWM Enable register is clear to 0.

The main purpose of the FLT pin is to inactivate the PWM output signals and driver them into an inactive state. The action of the FLT is performed directly in hardware so that when a fault occurs, it can be managed quickly and the PWM output are put into an inactive state to save the power devices connected to the PWM. The FLT pin has no internal pull-high resistor. If EFLT is set to 0, it means the level on FLT pin has no effect on PWM timer.

## 8.3.3 PWM Timer Lock Register

This register is used to control the change of PWM timer enable register, PWM control register and PWM period register and PWM duty register. Only when the data in this register is #55h, it is possible to change these register. Otherwise they cannot be changed. This register is to enhance the anti-noise ability of SH79F3283.

| E7H                              | Bit7    | Bit6    | Bit5    | Bit4    | Bit3    | Bit2    | Bit1    | Bit0    |
|----------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|
| PWMLO                            | PWMLO.7 | PWMLO.6 | PWMLO.5 | PWMLO.4 | PWMLO.3 | PWMLO.2 | PWMLO.1 | PWMLO.0 |
| R/W                              | R/W     | R/W     | R/W     | R/W     | R/W     | R/W     | R/W     | R/W     |
| Reset Value<br>(POR/WDT/LVR/PIN) | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |

Table 8.14 PWM Timer Lock Register

| Bit Number | Bit Mnemonic | Description                                                                                                              |
|------------|--------------|--------------------------------------------------------------------------------------------------------------------------|
| 7-0        | PWMLO[7:0]   | <b>PWM lock register</b><br>55h: enable to change PWM related registers<br>else: disable to change PWM related registers |





## 8.3.4 12-bit PWM Timer

The SH79F3283 has one 12-bit PWM module. The PWM module can provide the pulse width modulation waveform with the period and the duty being controlled, individually. The PWMC is used to control the PWM module operation with proper clocks. The PWMPH/L is used to control the period cycle of the PWM module output. PWMDH/L is used to control the duty in the waveform of the PWM module output.

It is acceptable to change these 3 registers during PWM output Enable. All the change will take affect at the next PWM period.

#### Table 8.15 12-bit PWM Control Register

| D2H                              | Bit7          | Bit6          | Bit5   | Bit4 | Bit3 | Bit2  | Bit1   | Bit0   |
|----------------------------------|---------------|---------------|--------|------|------|-------|--------|--------|
| PWM0C                            | <b>PWM0IE</b> | <b>PWM0IF</b> | TnCK02 | FLTS | FLTC | PWM0S | TnCK01 | TnCK00 |
| R/W                              | R/W           | R/W           | R/W    | R/W  | R/W  | R/W   | R/W    | R/W    |
| Reset Value<br>(POR/WDT/LVR/PIN) | 0             | 0             | 0      | 0    | 0    | 0     | 0      | 0      |

| Bit Number | Bit Mnemonic | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7          | PWM0IE       | PWM0 interrupt enable bit (When EPWM bit in IEN1 is set)<br>0: Disable PWM0 interrupt<br>1: Enable PWM0 interrupt                                                                                                                                                                                                                                                                                                                                                                              |
| 6          | PWM0IF       | <b>PWM0 interrupt flag bit</b><br>0: Clear by software<br>1: Set by hardware to indicate that the PWM0 period counter overflow                                                                                                                                                                                                                                                                                                                                                                 |
| 5          | TnCK02       | 12 bit PWM clock source select bit (Combination control with TnCK0[1:0])<br>Refer to TnCK0[1:0]                                                                                                                                                                                                                                                                                                                                                                                                |
| 4          | FLTS         | FLT states bit<br>0: PWM is normal states, cleared by software<br>1: PWM is in inactive states, set automatically by hardware                                                                                                                                                                                                                                                                                                                                                                  |
| 3          | FLTC         | FLT pin configuration<br>0: inactivate the PWM output when FLT is low level<br>1: inactivate the PWM output when FLT is high level                                                                                                                                                                                                                                                                                                                                                             |
| 2          | PWM0S        | <ul> <li>PWM0 output normal mode of duty cycle</li> <li>0: high active, PWM0 output high during duty time, output low during remain period time</li> <li>1: low active, PWM0 output low during duty time, output high during remain period time</li> </ul>                                                                                                                                                                                                                                     |
| 1-0        | TnCK0[1:0]   | 12 bit PWM clock source select bit (Combination control with TnCK02])<br>000: oscillator clock/2<br>001: oscillator clock/4<br>010: oscillator clock/8<br>011: oscillator clock/16<br>100: oscillator clock/12<br>110: oscillator clock/32<br>110: oscillator clock/256<br>Note: when OP_OSC is 0000, 0011 or 1010, PWM clock is internal RC; when<br>OP_OSC is 1110, PWM clock is crystal/ceramic from XTAL pin; when OP_OSC<br>is 0110 or 1101, PWM clock is crystal/ceramic from XTALX pin. |

## Note:

(1) Inactivate PWM here means PWM0 outputs keep Low (if PWM0S = 0) or High (if PWM0S = 1).

(2) The PWM output will remain in the inactive states as soon as the high/low level of FLT pin is detected

(3) Clearing FLTS bit when a FAULT input is coming will not success.



7-0

| D3H                             | Bit7  | Bit6  | Bit5  | Bit4     | Bit3  | Bit2  | Bit1  | Bit0  |
|---------------------------------|-------|-------|-------|----------|-------|-------|-------|-------|
| PWM0PL                          | PP0.7 | PP0.6 | PP0.5 | PP0.4    | PP0.3 | PP0.2 | PP0.1 | PP0.0 |
| R/W                             | R/W   | R/W   | R/W   | R/W      | R/W   | R/W   | R/W   | R/W   |
| Reset Value<br>(POR/WDT/LVR/PIN | 0     | 0     | 0     | 0        | 0     | 0     | 0     | 0     |
| Bit Number Bit                  |       |       |       | Descript | on    |       |       |       |

#### Table 8.16 PWM Period Control Register (PWM0PL)

PP0[7:0] Table 8.17 PWM Period Control Register (PWM0PH)

| D4H                              | Bit7 | Bit6 | Bit5 | Bit4 | Bit3   | Bit2   | Bit1  | Bit0  |
|----------------------------------|------|------|------|------|--------|--------|-------|-------|
| PWM0PH                           | -    | -    | -    | -    | PP0.11 | PP0.10 | PP0.9 | PP0.8 |
| R/W                              | -    | -    | -    | -    | R/W    | R/W    | R/W   | R/W   |
| Reset Value<br>(POR/WDT/LVR/PIN) | -    | -    | -    | -    | 0      | 0      | 0     | 0     |

| Bit Number | Bit Mnemonic | Description                             |
|------------|--------------|-----------------------------------------|
| 3-0        | PP0[11:8]    | 12-bit PWM period high 4 bits registers |

PWM output period cycle = [PP0.11, PP0.0] X PWM clock.

When [PP0.11, PP0.0] = 000H, If PWM0S = 0, regardless of the PWM duty cycle, PWM0x(x = A, B, C) output low.

12-bit PWM period low 8 bits registers

When [PP0.11, PP0.0] = 000H, If PWM0S = 1, regardless of the PWM duty cycle, PWM0x(x = A, B, C) output high.

Table 8.18 PWM Duty Control Register (PWM0DL)

| D5H                              | Bit7  | Bit6  | Bit5  | Bit4  | Bit3  | Bit2  | Bit1  | Bit0  |
|----------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| PWM0DL                           | PD0.7 | PD0.6 | PD0.5 | PD0.4 | PD0.3 | PD0.2 | PD0.1 | PD0.0 |
| R/W                              | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   |
| Reset Value<br>(POR/WDT/LVR/PIN) | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

| Bit Number | Bit Mnemonic | Description                          |
|------------|--------------|--------------------------------------|
| 7-0        | PD0[7:0]     | 12-bit PWM duty low 8 bits registers |

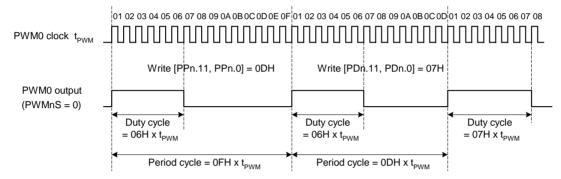
Table 8.19 PWM Duty Control Register (PWM0DH)

| D6H                              |       | Bit7    | Bit6        | Bit5 | Bit4 | Bit3   | Bit2   | Bit1  | Bit0  |
|----------------------------------|-------|---------|-------------|------|------|--------|--------|-------|-------|
| PWM0DH                           |       | -       | -           | -    | -    | PD0.11 | PD0.10 | PD0.9 | PD0.8 |
| R/W                              |       | -       | -           | -    | -    | R/W    | R/W    | R/W   | R/W   |
| Reset Value<br>(POR/WDT/LVR/PIN) |       | -       | -           | -    | -    | 0      | 0      | 0     | 0     |
| Bit Number                       | Bit M | nemonic | Description |      |      |        |        |       |       |
|                                  |       |         |             |      |      |        |        |       |       |

| 3-0 | PD0[11:8] | 12-bit PWM duty high 4 bits registers |
|-----|-----------|---------------------------------------|
|-----|-----------|---------------------------------------|

PWM output duty cycle = [PD0.11, PD0.0] X PWM clock.

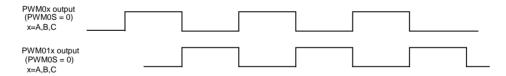
If [PP0.11, PP0.0]  $\leq$  [PD0.11, PD0.0], PWM0x(x = A, B, C) outputs high level when the PWM0S bit is set to "0".


If [PP0.11, PP0.0]  $\leq$  [PD0.11, PD0.0], PWM0x(x = A, B, C) outputs GND level when the PWM0S bit is set to "1".



## Programming Note:

(1) Set PWMLO register to 55H and select the PWM module system clock.


- (2) Set the PWM period/duty cycle by writing proper value to the PWM period control register (PWMP) or PWM duty control register (PWMD). First set the low Byte, then the high Byte. Note that even if the high constant value keeps unchanged, it also needs to rewrite once, otherwise, the low modify is invalid.
- (3) Select the PWM output mode (high level valid or low level valid) by writing the PWM0S bit in the PWM control register (PWMC).
- (4) In order to output the desired PWM waveform, enable the PWM module by writing "1" to the EPWM0x (x = A, B, C) or EPWM01x (x = A, B, C) bit in the PWM control register (PWMC).
- (5) If the PWM period cycle or duty cycle is to be changed, the writing flow should be followed as described in step 2 or step 3. The modified reloading counter value will take effect in the next period.
- (6) Change the data in PWMLO register not equal to 55h in order to enhance the anti-noise ability.



PWM0 Output Period or Duty Cycle Changing Example

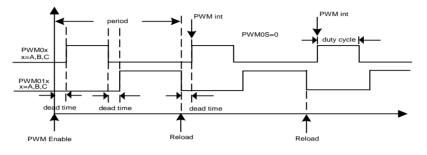
## 8.3.5 PWM01x (x = A, B, C)

Generally PWM0x(x = A, B, C) have a 180 degree phase delay with PWM01x (x = A, B, C) as shown below when there is no dead time inserted. It is automatically generated by hardware when EPWM01x (x = A, B, C) in PWM timer enable register is set.

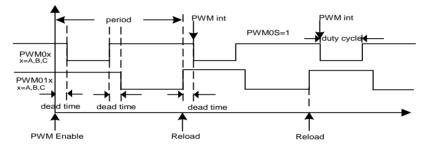


# PWM0 and PWM01 Output Waveform

Note:


(1) That even if PWM0x(x = A, B, C) are disable, PWM01x(x = A, B, C) can also work if enable.

(2) If EFLT is set, when a valid event occurs on FLT pin, PWM0x(x = A, B, C) and PWM01x(x = A, B, C) are both LOW (PWMS = 0) or both HIGH (PWMS = 1).




## 8.3.6 Dead time

SH79F3283 provides dead time function on-chip. When PWMOS = 0, the dead time is generated as below.



When PWM0S = 1, the dead time is generated as below.



By writing PWM0 dead time control register, a dead time can be generated between PWM0x (x = A, B, C) and PWM01x (x = A, B, C).

PWM01x (x = A, B, C) has the same period as PWM0x (x = A, B, C) *Note:* 

- (1) The dead time must be set before PWM output enable. Otherwise, dead time will not change. So in order to change dead time, please disable PWM output first (While PWMLO is #55H), then change the dead time, enable PWM output. Finally, change the data in PWMLO not equal to #55H in order to make sure the PWM registers would not be changed by noise.
- (2) In order to generate dead time, please make sure that (PWM0x Period-PWM0x Duty) > 2 X PWM01x dead time control. Otherwise the output of PWM01x is high level when PWMS = 1 or GND when PWMS = 0.
- (3) PWMDT is to used to control Dead Time, the step value is fixed oscillator clock time, but period and duty value is refer to TnCK2-0. 2 oscillator clocks at least.
- (4) If dead time is needed, any time when PWM is disabled, before enable PWM again, dead time register must be clear to 0 at first, and then set the proper value.

| D1H                              | Bit7  | Bit6  | Bit5  | Bit4  | Bit3  | Bit2  | Bit1  | Bit0  |
|----------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| PWM0DT                           | DT0.7 | DT0.6 | DT0.5 | DT0.4 | DT0.3 | DT0.2 | DT0.1 | DT0.0 |
| R/W                              | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   |
| Reset Value<br>(POR/WDT/LVR/PIN) | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |

Table 8.20 PWM0 Dead Time Control Register

| Bit Number | Bit Mnemonic | Description                                                                                       |
|------------|--------------|---------------------------------------------------------------------------------------------------|
| 7-0        | DT0[7:0]     | <b>12 bit PWM0 dead time control</b><br>The dead time period = (DT0.7 - DT0.0) X t <sub>OSC</sub> |



## 8.4 12-bit PWM1 (Pulse Width Modulation)

## 8.4.1 Feature

- 8 bit resolution ratio, provide prescaler function
- Provided overflow and duty interrupt function on every PWM period
- Selectable output polarity, can be use as normal timer when the enable bit is set to 0

The SH79F3283 has one 8-bit PWM module, which can provide the pulse width modulation waveform with the period and the duty being controlled individually by corresponding register. The PWM module clock source or pin output selection is controlled by PWM1C register. The PWM module Period selection is controlled by PWM1P register. The PWM module Duty selection is controlled by PWM1D register.

## 8.4.2 Register

Table 8.21 PWM1 Control Register

| D9H, Bank0                       | Bit7   | Bit6  | Bit5   | Bit4   | Bit3 | Bit2   | Bit1   | Bit0   |
|----------------------------------|--------|-------|--------|--------|------|--------|--------|--------|
| PWM1C                            | PWM1EN | PWM1S | TnCK11 | TnCK10 | -    | PWM1IE | PWM1IF | PWM10E |
| R/W                              | R/W    | R/W   | R/W    | R/W    | -    | R/W    | R/W    | R/W    |
| Reset Value<br>(POR/WDT/LVR/PIN) | 0      | 0     | 0      | 0      | -    | 0      | 0      | 0      |

| Bit Number | Bit Mnemonic | Description                                                                                                                                                                                                                                                                                                                                                                                           |
|------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7          | PWM1EN       | <b>PWM1 module enable control bit</b><br>0: disable PWM1 module<br>1: enable PWM1 module                                                                                                                                                                                                                                                                                                              |
| 6          | PWM1S        | <ul> <li>PWM1 output normal mode of duty cycle</li> <li>0: high active, PWM1 output high during duty time, output low during remain period time</li> <li>1: low active, PWM1 output low during duty time, output high during remain period time</li> </ul>                                                                                                                                            |
| 5-4        | TnCK1[1:0]   | PWM1 clock select bit<br>00: system clock/1<br>01: system clock/8<br>10: system clock/64<br>11: system clock/256                                                                                                                                                                                                                                                                                      |
| 2          | PWM1IE       | PWM1 interrupt enable bit (When EPWM bit in IEN1 is set)<br>0: Disable PWM1interrupt<br>1: Enable PWM1 interrupt                                                                                                                                                                                                                                                                                      |
| 1          | PWM1IF       | <b>PWM1 interrupt flag bit</b><br>0: Clear by software<br>1: Set by hardware to indicate that the PWM1 period counter overflow                                                                                                                                                                                                                                                                        |
| 0          | PWM10E       | PWM1 output control bit<br>0: PWM1 is disable, shared as I/O<br>Note: This bit is set to 0, but PWM1EN = 1, so that PWM1 module is still<br>working, just no waveform output. PWM1 can be use as normal timer<br>1: PWM1 is enable<br>Note: If this bit is set to 1 and PWM1EN = 0, so that PWM1 output inactive<br>level (Select high level output low level, select low level output high<br>level) |



# Table 8.22 PWM1 Period Control Register (PWM1PL)

| DAH, Bank0                       | Bit7    | Bit6    | Bit5    | Bit4    | Bit3    | Bit2    | Bit1    | Bit0    |
|----------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|
| PWM1P                            | PWM1P.7 | PWM1P.6 | PWM1P.5 | PWM1P.4 | PWM1P.3 | PWM1P.2 | PWM1P.1 | PWM1P.0 |
| R/W                              | R/W     | R/W     | R/W     | R/W     | R/W     | R/W     | R/W     | R/W     |
| Reset Value<br>(POR/WDT/LVR/PIN) | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |

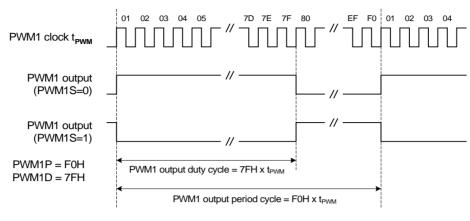
| Bit Number | Bit Mnemonic | Description                                                                                                                                         |
|------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 7-0        | PWM1P[7:0]   | <b>PWM1output Period = PWM1P * PWM clock</b><br>When PWM1P = 00H, if PWM1S = 0, PWM1 output low<br>When PWM1P = 00H, if PWM1S = 1, PWM1 output high |

Table 8.23 PWM1 Duty Control Register (PWM1DL)

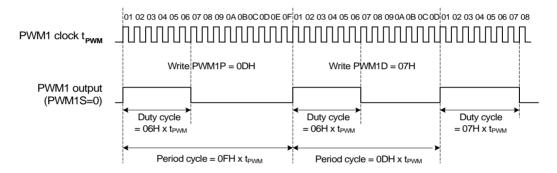
| DBH, Bank0                       | Bit7    | Bit6    | Bit5    | Bit4    | Bit3    | Bit2    | Bit1    | Bit0    |
|----------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|
| PWM1D                            | PWM1D.7 | PWM1D.6 | PWM1D.5 | PWM1D.4 | PWM1D.3 | PWM1D.2 | PWM1D.1 | PWM1D.0 |
| R/W                              | R/W     | R/W     | R/W     | R/W     | R/W     | R/W     | R/W     | R/W     |
| Reset Value<br>(POR/WDT/LVR/PIN) | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |

| Bit Number | Bit Mnemonic | Description                                                                                                                                                                                                                                         |
|------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7-0        | PWM1D[7:0]   | PWM1 Duty control bit<br>Special Case:<br>1 When PWM1P ≤ PWM1D:<br>If PWM1S = 0, PWM1 output high level<br>If PWM1S = 1, PWM1 output low level<br>2 WhenPWM1D = 00H:<br>If PWM1S = 0, PWM1 output low level<br>If PWM1S = 1, PWM1 output high level |

Note:


(1) PWM1EN bit control PWM1 disable or enable

(2) PWM10E bit control P4.5 is IO or PWM1 output port


(3) EPWM bit in IEN1 register control PWM1 interrupt disable or enable

(4) If PWM1EN = 1, PWM1 module enable, but PWM1OE = 0, PWM1 output disable, PWM1 can be used as a 8-bit timer.





**PWM1 Output Example** 



PWM1 Output Period or Duty Cycle Changing Example



# 8.5 EUART

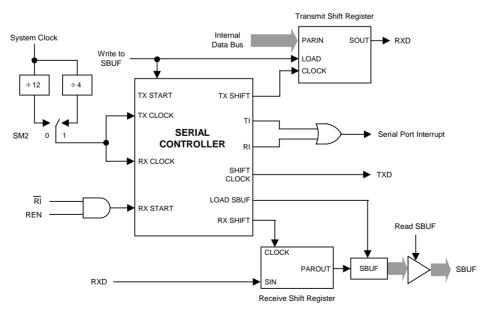
## 8.5.1 Feature

- The SH79F3283 has two enhanced EUART (EUART0/1) which are compatible with the conventional 8051
- The EUART0 baud rate can be selected from the divided clock of the system clock, or Timer4/2 overflow rate, The Euart1 baud rate generator is an 15-bit up-counting timer
- Enhancements over the standard 8051 the EUART include Framing Error detection and automatic address recognition
- The EUART can be operated in four modes

## 8.5.2 EUART0

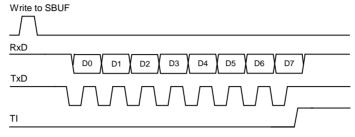
The EUART0 can be operated in 4 modes. Users must initialize the SCON before any communication can take place. This involves selection of the Mode and the baud rate. The Timer4/2 should also be initialized if the mode 1 or the mode 3 is used. In all of the 4 modes, transmission is initiated by any instruction that uses SBUF as a destination register. Reception is initiated in Mode 0 by the condition RI = 0 and REN = 1. This will generate a clock on the TXD0 pin and shift in 8 bits on the RxD0 pin. Reception is initiated in the other modes by the input start bit if REN = 1. The external transmitter will start the communication by transmitting the start bit.

#### **EUART Mode Summary**


| SM0 | SM1 | Mode | Туре   | Baud Rate                             | Frame Size | Start Bit | Stop Bit | 9th bit |
|-----|-----|------|--------|---------------------------------------|------------|-----------|----------|---------|
| 0   | 0   | 0    | Synch  | f <sub>SYS</sub> /(4 or 12)           | 8 bits     | NO        | NO       | None    |
| 0   | 1   | 1    | Asynch | Timer 4 or 2 overflow rate/(16 or 32) | 10 bits    | 1         | 1        | None    |
| 1   | 0   | 2    | Asynch | f <sub>SYS</sub> /(32 or 64)          | 11 bits    | 1         | 1        | 0, 1    |
| 1   | 1   | 3    | Asynch | Timer 4 or 2 overflow rate/(16 or 32) | 11 bits    | 1         | 1        | 0, 1    |

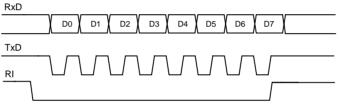
## Mode0: Synchronous Mode, Half duplex

This mode provides synchronous communication with external devices. In this mode serial data is transmitted and received on the RXD pin. TXD is used to output the shift clock. The TXD clock is provided by the 3283 whether the device is transmitting or receiving. Therefore, this mode is a half duplex mode of serial communication. In this mode, 8 bits are transmitted or received per frame. The LSB is transmitted / received first.


The baud rate is programmable to either 1/12 or 1/4 of the system clock. This baud rate is determined in the SM2 bit (SCON.5). When this bit is set to 0, the serial port runs at 1/12 of the system clock. When set to 1, the serial port runs at 1/4 of the system clock. The only difference from standard 8051 is that SH79F3283 in the mode 0 has variable baud rate.

The functional block diagram is shown below. Data enters and exits the serial port on the RXD pin. The TXD pin is used to output the SHIFT CLOCK. The SHIFT CLOCK is used to shift data into and out of the SH79F3283.

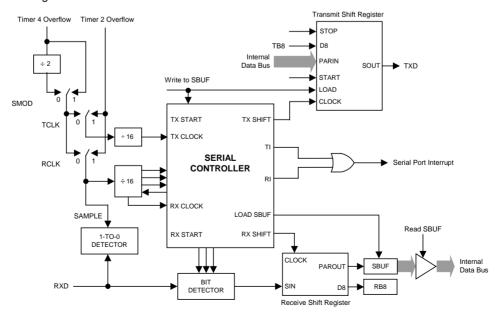





Any instruction that uses SBUF as a destination register ("write to SBUF" signal) will start the transmission. The next system clock tells the Tx control block to commence a transmission. The data shift occurs at the falling edge of the SHIFT CLOCK, and the contents of the transmit shift register is shifted one position from left to the right. As data bits shift to the right, zeros come in from the left. After transmission of all 8 bits in the transmit shift register, the Tx control block will deactivates SEND and sets TI (SCON.1) at the rising edge of the next system clock.

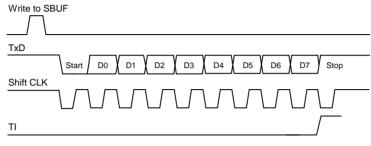


Send Timing of Mode 0


Reception is initiated by the condition REN (SCON.4) = 1 and RI (SCON.0) = 0. The next system clock activates RECEIVE. The data latch occurs at the rising edge of the SHIFT CLOCK, and the contents of the receive shift register are shifted one position to the left. After the receiving of all 8 bits into the receive shift register, the RX control block will deactivates RECEIVE and sets RI at the rising edge of the next system clock, and the reception will not be enabled till the RI is cleared by software.



**Receive Timing of Mode 0** 


## Mode1: 8-Bit EUART, Variable Baud Rate, Asynchronous Full-Duplex

This mode provides the 10 bits full duplex asynchronous communication. The 10 bits consist of a start bit (logical 0), 8 data bits (LSB first), and a stop bit (logical 1). When receiving, the eight data bits are stored in SBUF and the stop bit goes into RB8 (SCON.2). The serial receive and transmit baud rate is 1/16 of the Timer4/2 overflow (Refer to **Baud Rate** Section for details). The functional block diagram is shown below.



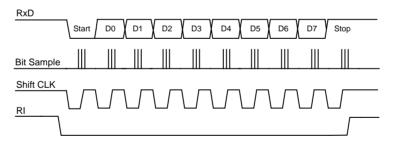


Transmission begins with a "write to SBUF" signal, and it actually commences at the next system clock following the next rollover in the divide-by-16 counter (divide baud-rate by 16), thus, the bit times are synchronized to the divide-by-16 counter, not to the "write to SUBF" signal. The start bit is firstly put out on TXD pin, then the 8 bits of data is the next. After all 8 bits of data in the transmit shift register are transmitted, the stop bit is put out on the TXD pin, and the TI flag is set at the same time that the stop is send.



Send Timing of Mode 1

Reception is enabled only if REN is high. The serial port actually starts the receiving of serial data with the detection of a falling edge on the RXD pin. For this purpose RXD is sampled at the rate of 16 times baud rate. When a falling edge is detected, the divide-by-16 counter is immediately reset. This helps the divide-by-16 counter to synchronize with the serial data of RXD pin.

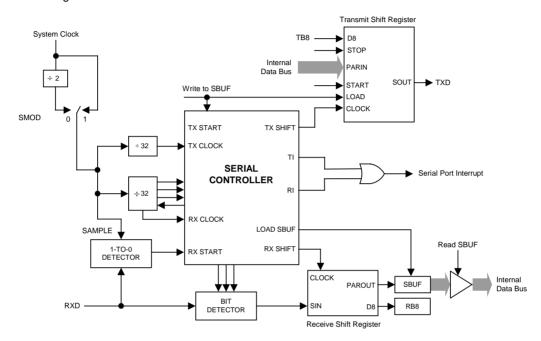

The divide-by-16 counter divides each bit time into 16 states. The bit detector samples the value of RXD at the 7<sup>th</sup>, 8<sup>th</sup> and 9<sup>th</sup> counter states of each bit time. At least 2 the sampling values have no difference in the state of the three samples, data can be received This is done for noise rejection. If the first bit after the falling edge of RXD pin is not 0, which indicates an invalid start bit, and the reception is immediately aborted. The receive circuits are reset and again waiting for a falling edge in the RXD pin. If a valid start bit is detected, then the rest of the bits are also detected and shifted into the shift register. After shifting in 8 data bits and the stop bit, the SBUF and RB8 are loaded and RI is set, if the following conditions are met:

#### 1. RI must be 0

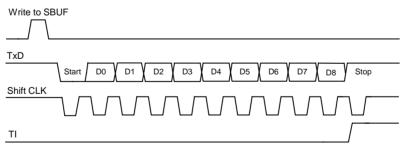
2. Either SM2 = 0, or the received stop bit = 1

If these conditions are met, then the stop bit goes to RB8, the 8 data bits go into SBUF and RI is set. Otherwise the received frame may be lost.

At the time, the receiver goes back to looking for another falling edge on the RXD pin. And the user should clear RI by software for further reception.




Receive Timing of Mode 1




## Mode2: 9-Bit EUART, Fixed Baud Rate, Asynchronous Full-Duplex

This mode provides the 11 bits full duplex asynchronous communication. The 11 bit consists of one start bit (logical 0), 8 data bits (LSB first), a programmable 9<sup>th</sup> data bit, and a stop bit (logical 1). Mode 2 supports multiprocessor communications and hardware address recognition (Refer to Multiprocessor Communication Section for details). When data is transmitted, the 9<sup>th</sup> data bit (TB8 in SCON) can be assigned the value of 0 or 1, for example, the parity bit P in the PSW or used as data/address flag in multiprocessor communications. When data is received, the 9<sup>th</sup> data bit goes into RB8 and the stop bit is not saved. The baud rate is programmable to either 1/32 or 1/64 of the system working frequency, as determined by the SMOD bit in PCON. The functional block diagram is shown below:



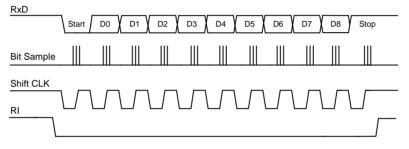
Transmission begins with a "write to SBUF" signal, the "write to SBUF" signal also loads TB8 into the 9<sup>th</sup> bit position of the transmit shift register. Transmission actually commences at the next system clock following the next rollover in the divide-by-16 counter (thus, the bit times are synchronized to the divide-by-16 counter, not to the "write to SUBF" signal). The start bit is firstly put out on TXD pin, then the 9 bits of data is the next. After all 9 bits of data in the transmit shift register are transmitted, the stop bit is put out on the TXD pin, and the TI flag is set at the same time.



Send Timing of Mode 2



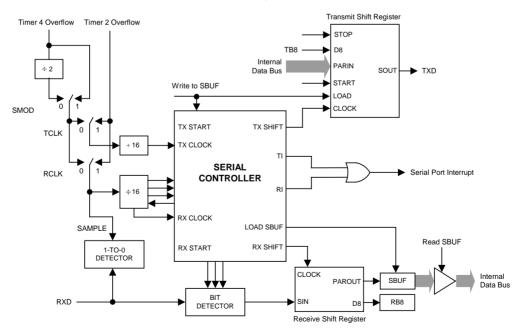
Reception is enabled only if REN is high. The serial port actually starts the receiving of serial data, with the detection of a falling edge on the RXD pin. For this purpose RXD is sampled at the rate of 16 times baud rate. When a falling edge is detected, the divide-by-16 counter is immediately reset. This helps the divide-by-16 counter to synchronize with the serial data of RXD pin.


The divide-by-16 counter divides each bit time into 16 states. The bit detector samples the value of RXD at the 7<sup>th</sup>, 8<sup>th</sup> and 9<sup>th</sup> counter state of each bit time. At least 2 the sampling values have no difference in the state of the three samples, data can be received. This is done for noise rejection. If the first bit detected after the falling edge of RXD pin is not 0, which indicates an invalid start bit, and the reception is immediately aborted. The receive circuits are reset and again waiting for a falling edge in the RXD pin. If a valid start bit is detected, then the rest of the bits are also detected and shifted into the shift register. After shifting in 9 data bits and the stop bit, the SBUF and RB8 are loaded and RI is set, if the following conditions are met:

#### 1. RI must be 0

2. Either SM2 = 0, or the received  $9^{th}$  bit = 1 and the received byte accords with Given Address

If these conditions are met, then the 9<sup>th</sup> bit goes to RB8, the 8 data bits go into SBUF and RI is set. Otherwise the received frame may be lost.


At the time, the receiver goes back to looking for another falling edge on the RXD pin. And the user should clear RI by software for further reception.



#### Receive Timing of Mode 2

## Mode3: 9-Bit EUART, Variable Baud Rate, Asynchronous Full-Duplex

Mode3 uses transmission protocol of the Mode2 and baud rate generation of the Mode1.





## Baud Rate Generate

In Mode0, the baud rate is programmable to either 1/12 or 1/4 of the system clock. This baud rate is determined by SM2 bit. When set to 0, the serial port runs at 1/12 of the system clock. When set to 1, the serial port runs at 1/4 of the system clock.

In Mode1 & Mode3, the baud rate can be selected from Timer4/2 overflow rate.

Individually set TCLK (T2CON.4) and RCLK (T2CON.5) to 1 to select Timer2 as baud clock source of TX & RX (Refer to "Timer" section for details). Whether TCLK or RCLK is set to logic 1, Timer2 is baud rate generator mode. If TCLK and RCLK are logic 0, Timer4 will be used as the baud clock source of TX & RX.

The Mode1 & 3 baud rate equations are shown below. [RCAP2H, RCAP2L] is the 16-bit auto-reload register for Timer2, and [TH4, TL4] is the 16-bit reload register for Timer4.

 $BaudRate = \frac{1}{2 \times 16} \times \frac{f_{_{SYS}}}{65536 - [RCAP 2 H, RCAP 2 L]}$ , Baud Rate using Timer2, the clock source of Timer2 is system clock.

 $BaudRate = \frac{1}{16} \times \frac{f_{T2}}{65536 - [RCAP2H, RCAP2L]}$ , Baud Rate using Timer2, the clock source of T2 input pin.

 $BaudRate = \frac{2^{SMOD}}{2 \times 16} \times \frac{f_{T,4}/PRESCALER}{65536 - [TH4, TL4]}, Baud Rate using Timer4, Timer4 works in Mode1.$ 

In Mode2, the baud rate is programmable to either 1/32 or 1/64 of the system clock. This baud rate is determined by the SMOD bit (PCON.7). When this bit is set to 0, EUART runs at 1/64 of the system clock. When set to 1, EUART runs at 1/32 of the system clock.

BaudRate = 
$$2^{\text{SMOD}} \times (\frac{f_{\text{SYS}}}{64})$$

## **Multi-Processor Communication**

## **Software Address Recognition**

Modes2 and 3 of the EUART have a special function for multi-processor communication. In these modes, 9 data bits are received. The 9th bit goes into RB8. Then a stop bit follows. The EUART can be programmed such that when the stop bit is received, the serial port interrupt will be activated (i.e. the request flag RI is set) only if RB8 = 1. This feature is enabled by setting the bit SM2 in SCON.

A way to use this feature in multiprocessor communications is as follows. If the master processor wants to transmit a block of data to one of the several slaves, it first sends out an address byte which identifies the target slave. An address byte differs from a data byte by using the 9th bit. The 9<sup>th</sup> bit is 1 in an address byte, the 9<sup>th</sup> bit is 0 in a data byte.

If SM2 is 1, slave will not respond to data byte interrupt. An address byte, however, will interrupt all slaves, so that each slave can examine the received byte and see if it is being addressed. The addressed slave will clear its SM2 bit and prepare to receive the data bytes that will be coming. After having received a complete message, the slave sets SM2 again. The slaves that were not addressed keep their SM2 setting and go on with their business, ignoring the incoming data bytes.

**Note:** In Mode0, SM2 is used to select baud rate doubling. In Mode1, SM2 can be used to check the validity of the stop bit. If SM2 = 1, the receive interrupt will not be activated unless a valid stop bit is received.

## Automatic (Hardware) Address Recognition

In Mode2 & 3, setting the SM2 bit will configure EUART act as following: when a stop bit is received, EUART will generate an interrupt only if the 9<sup>th</sup> bit that goes into RB8 is logic 1 (address byte) and the received data byte matches the EUART slave address. Following the received address interrupt, the slave should clear its SM2 bit to enable interrupts to receive the following data byte(s).

The 9-bit mode requires that the 9<sup>th</sup> information bit is 1 to indicate that the received information is address rather than data. When the master processor wants to transmit a block of data to one of the slaves, it must first send out the address of the targeted slave (or slaves). All the slave processors should have their SM2 bit set high when waiting for an address byte, which ensures that they will be interrupted only by the reception of an address byte. The Automatic address recognition feature further ensures that only the address matching slave will be interrupted. The address comparison is done by hardware not software.

After being interrupted, the address matching slave clears the SM2 bit to receive data bytes. The un-addressed slaves will be unaffected, they will be still waiting for their address. Once the entire message is received, the addressed slave should set its SM2 bit to ignore all not address byte in transmission until it receives the next address byte.

The Automatic Address Recognition feature allows a master to selectively communicate with one or more slaves by invoking the Given Address. All of the slaves may be contacted by using the Broadcast address. Two special Function Registers are used to define the slave's address (SADDR) and the address shield (SADEN). The slave address is an 8-bit byte stored in the SADDR register. The SADEN register is actually used to define whether the byte value in SADDR is valid or not. If a bit position in SADEN is 0, then the corresponding bit position in SADDR is i. Only those bit positions in SADDR whose corresponding bits in SADEN are 1 are used to obtain the Given Address. This gives the user flexibility to address multiple slaves without changing the slave address in SADDR. Use of the Given Address allows multiple slaves to be recognized while excluding others.



|                                    | Slave 1  | Slave 2  |
|------------------------------------|----------|----------|
| SADDR                              | 10100100 | 10100111 |
| SADEN (bit = 0 will be ignored)    | 11111010 | 11111001 |
| Given Address                      | 10100x0x | 10100xx1 |
| Broadcast Address (SADDR or SADEN) | 1111111x | 1111111  |

The given address for slave 1 and 2 differs in the LSB. For slave 1, it is ignore LSB, while for slave 2 LSB is 1. Thus to communicate only with slave 1, the master must send an address with LSB = 0 (10100000). Similarly the bit 1 is 0 for slave 1 and ignores the bit 1 for slave 2. Hence to communicate only with slave 2, the master has to transmit an address with bit 1 = 1 (1010 0011). If the master wishes to communicate with both slaves simultaneously, then the address must have bit 0 = 1 and bit 1 = 0. The bit 2 position is ignored for both the slaves. This allows two different addresses to select both slaves (1010 0001 and 1010 0101).

The master can communicate with all the slaves simultaneously with the Broadcast Address. This address is formed from the logical OR of the SADDR and SADEN. The zeros in the result are defined as neglect. In most cases, the Broadcast Address is FFh, this address will be responded by all slaves.

On reset, the SADDR and SADEN are initialized to 00h. The two results set Given Address and Broadcast Address to XXXXXXXX (all bits are ignored). This effectively removes the multiprocessor communications feature, since any selectivity is disabled. This ensures that the EUART will reply to any address, which it is compatible with the 80C51 microcontrollers that do not support automatic address recognition. So the user may implement multiprocessor communication by software recognition address according to the above mentioned method.

## Frame Error Detection

Frame error detection is available when the SSTAT bit in register PCON is set to logic 1.All the 3 error falg bits should be cleared by software after they are set, even when the following frames received without any error will not be cleared automatically.

**Note:** The SSTAT bit must be logic 1 to access any of the status bits (FE, RXOV, and TXCOL). The SSTAT bit must be logic 0 to access the Mode Select bits (SM0, SM1, and SM2).

#### **Transmit Collision**

The Transmit Collision bit (TXCOL bit in register SCON) set '1' when a transmission is still in progress and user software writes data to the SBUF register. If collision occurs, the new data will be ignored and the transmit buffer will not be written.

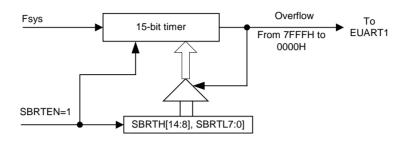
## **Receive Overflow**

The Receive Overflow bit (RXOV in register SCON) set '1' if a new data byte is latched into the receive buffer before software has read the previous byte. The previous data is lost when this happen.

## Frame Error

The Frame Error bit (FE in register SCON) set '1' if an invalid (low) STOP bit is detected.

#### **Break Detection**


A break is detected when any 11 consecutive bits are detected as low. Since a break condition also satisfies the requirements for a framing error, a break condition will also result in reporting a framing error. Once a break condition has been detected, the UART will go into an idle state and remain in this idle state until a valid stop bit (rising edge on RxD pin) has been received.



# 8.5.3 EUART1

The control and operate mode of EUART1 is similar to EUART0, the different is EUART1 has a baud rate generator is an 15-bit up-counting timer.

Otherwise, the baud rate generator of EURART1 has baud rate fine adjustment function by set BFINE register.



#### **Baudrate Generator for EUART**

SBRToverflowrate =  $\frac{\text{Fsys}}{32768 - \text{SBRT}}$ , SBRT = [SBRTH, SBRTL]

So that, the baud rate computational formula of EUART1 in different modes as shown below.

## Mode0:

In Mode0, the baud rate is programmable to either 1/12 or 1/4 of the system frequency. This baud rate is determined by SM2 bit. When set to 0, the serial port runs at 1/12 of the system clock. When set to 1, the serial port runs at 1/4 of the system clock.

## Mode1 and Mode3:

In Mode1 & Mode3, the baud rate can be fine adjusted.

The Mode1 & 3 baud rate equations are shown below,

 $BaudRate = \frac{Fsys}{16 \times (32768 - SBRT) + BFINE}$ 

For example: Fsys = 8MHz, to get 115200Hz baud rate, computing method of SBRT and SFINE as shown below:

8000000/16/115200 = 4.34 SBRT = 32768 - 4 = 32764

115200 = 8000000/(16 X 4 + BFINE)

 $\mathsf{BFINE} = 5.4 \approx 5$ 

This fine tuning method to calculate the actual baud rate is 115942Hz and the error is 0.64%, but the error is 8.5% In the past computing method.

## Mode2:

In Mode2, the baud rate is programmable to either 1/32 or 1/64 of the system clock. This baud rate is determined by the SMOD bit (PCON.7). When this bit is set to 0, the serial port runs at 1/64 of the clock. When set to 1, the serial port runs at 1/32 of the clock.

$$BaudRate = 2^{SMOD} \times (\frac{F_{SYS}}{64})$$

**Note:** TF3 cleared by hardware, and the interrupt vector address is as the same as Uart1. Please pay attention to the interrupt flag, when use both Timer3 and Uart1.



# 8.5.4 Register

Table 8.24 EUART0 Control & Status Register

| 98H, Bank(                  | )     | Bit7       | Bit6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bit5                                                                                                                                                    | Bit4                                                                | Bit3                       | Bit2           | Bit1          | Bit0     |  |
|-----------------------------|-------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------|----------------|---------------|----------|--|
| SCON                        |       | SM0<br>/FE | SM1<br>/RXOV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SM2<br>/TXCOL                                                                                                                                           | REN                                                                 | TB8                        | RB8            | TI            | RI       |  |
| R/W                         |       | R/W        | R/W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R/W                                                                                                                                                     | R/W                                                                 | R/W                        | R/W            | R/W           | R/W      |  |
| Reset Value<br>(POR/WDT/LVR |       | 0          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                       | 0                                                                   | 0                          | 0              | 0             | 0        |  |
| Bit Number                  | Bit N | Inemonic   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                         |                                                                     | Description                |                |               |          |  |
| 7-6                         | S     | M[0:1]     | EUARTO Serial mode control bit, when SSTAT = 0<br>00: mode 0, Synchronous Mode, fixed baud rate<br>01: mode 1, 8 bit Asynchronous Mode, variable baud rate<br>10: mode 2, 9 bit Asynchronous Mode, fixed baud rate<br>11: mode 3, 9 bit Asynchronous Mode, variable baud rate                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                         |                                                                     |                            |                |               |          |  |
| 7                           |       | FE         | 0: No Fra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EUART0 Frame Error flag, when FE bit is read, SSTAT bit must be set 1<br>0: No Frame Error, clear by software<br>1: Frame error occurs, set by hardware |                                                                     |                            |                |               |          |  |
| 6                           | ł     | RXOV       | EUART0 Receive Over flag, when RXOV bit is read, SSTAT bit must be set 1<br>0: No Receive Over, clear by software<br>1: Receive over occurs, set by hardware                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                         |                                                                     |                            |                |               | e set 1  |  |
| 5                           |       | SM2        | <ul> <li>EUART0 Multi-processor communication enable bit (9<sup>th</sup> bit '1' checker), when SSTAT = 0</li> <li>0: In Mode0, baud-rate is 1/12 of system clock<br/>In Mode1, disable stop bit validation check, any stop bit will set RI to generate interrupt<br/>In Mode2 &amp; 3, any byte will set RI to generate interrupt</li> <li>1: In Mode0, baud-rate is 1/4 of system clock<br/>In Mode1, Enable stop bit validation check, only valid stop bit (1) will set RI to generate interrupt<br/>In Mode2 &amp; 3, only address byte (9<sup>th</sup> bit = 1) will set RI to generate interrupt</li> </ul> |                                                                                                                                                         |                                                                     |                            |                |               |          |  |
| 5                           | т     | XCOL       | <b>set 1</b><br>0: No Tra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ansmit Collis                                                                                                                                           | <b>ision flag, w</b><br>ion, clear by<br>occurs, set b              | software                   | bit is read,   | SSTAT bit r   | nust be  |  |
| 4                           |       | REN        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e <b>ceiver enat</b><br>/e Disable<br>/e Enable                                                                                                         | ole bit                                                             |                            |                |               |          |  |
| 3                           |       | TB8        | The 9th bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | to be transr                                                                                                                                            | nitted in Mo                                                        | de2 & 3 of E               | UART0, set     | or clear by   | software |  |
| 2                           |       | RB8        | In Mode(<br>In Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ), RB8 is not<br>I, if receive i                                                                                                                        | red in Mode1<br>used<br>nterrupt occu<br>e 9 <sup>th</sup> bit that | ırs, RB8 is th             | e stop bit tha | at was receiv | ed       |  |
| 1                           |       | ТІ         | <ul> <li>Transmit interrupt flag of EUART0</li> <li>0: cleared by software</li> <li>1: Set by hardware at the end of the 8<sup>th</sup> bit time in Mode0, or at the beginning of the stop bit in other modes</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                         |                                                                     |                            |                |               |          |  |
| 0                           |       | RI         | 1: Set by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d by softwar                                                                                                                                            | e0<br>t the end of t                                                | he 8 <sup>th</sup> bit tim | e in Mode0, o  | or during the | stop bit |  |



# Table 8.25 EUART0 Data Buffer Register

| 99H, Bank0                       | Bit7   | Bit6   | Bit5   | Bit4   | Bit3   | Bit2   | Bit1   | Bit0   |
|----------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|
| SBUF                             | SBUF.7 | SBUF.6 | SBUF.5 | SBUF.4 | SBUF.3 | SBUF.2 | SBUF.1 | SBUF.0 |
| R/W                              | R/W    | R/W    | R/W    | R/W    | R/W    | R/W    | R/W    | R/W    |
| Reset Value<br>(POR/WDT/LVR/PIN) | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
|                                  |        |        |        |        |        |        |        |        |

| Bit Number | Bit Mnemonic | Description                                                                                                                                                                                                                                                  |
|------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7-0        | SBUF[7:0]    | This SFR accesses two registers; a transmit shift register and a receive latch register<br>A write of SBUF will send the byte to the transmit shift register and then initiate a<br>transmission<br>A read of SBUF returns the contents of the receive latch |

Table 8.26 Power Control Register

| 87H, Bank0                       | Bit7 | Bit6  | Bit5   | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|----------------------------------|------|-------|--------|------|------|------|------|------|
| PCON                             | SMOD | SSTAT | SSTAT1 | -    | GF1  | GF0  | PD   | IDL  |
| R/W                              | R/W  | R/W   | R/W    | -    | R/W  | R/W  | R/W  | R/W  |
| Reset Value<br>(POR/WDT/LVR/PIN) | 0    | 0     | 0      | -    | 0    | 0    | 0    | 0    |

| Bit Number | Bit Mnemonic | Description                                                                                                                                                                                                                |
|------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7          | SMOD         | Baud rate doubler<br>Set SMOD in Mode1 & 3, the baud-rate of EUART0is doubled if using time4 as<br>baud-rate generator(Fit EUART0)<br>set SMOD in Mode2, the baud-rate of EUART is doubled<br>(Both fit EUART0 and EUART0) |
| 6          | SSTAT        | SCON[7:5] function select bit<br>0: SCON[7:5] operates as SM0, SM1, SM2<br>1: SCON[7:5] operates as FE, RXOV, TXCOL                                                                                                        |
| 5          | SSTAT1       | SCON1[7:5] function select bit<br>0: SCON1[7:5] operates as SM10, SM11, SM12<br>1: SCON1[7:5] operates as FE1, RXOV1, TXCOL1                                                                                               |
| 3-0        | -            | Other: See "Power Management" chapter                                                                                                                                                                                      |

 Table 8.27
 EUART0
 Slave
 Address
 & Address
 Mask
 Register

| 9AH-9BH, Bank0                   | Bit7    | Bit6    | Bit5    | Bit4    | Bit3    | Bit2    | Bit1    | Bit0    |
|----------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|
| SADDR                            | SADDR.7 | SADDR.6 | SADDR.5 | SADDR.4 | SADDR.3 | SADDR.2 | SADDR.1 | SADDR.0 |
| SADEN                            | SADEN.7 | SADEN.6 | SADEN.5 | SADEN.4 | SADEN.3 | SADEN.2 | SADEN.1 | SADEN.0 |
| R/W                              | R/W     | R/W     | R/W     | R/W     | R/W     | R/W     | R/W     | R/W     |
| Reset Value<br>(POR/WDT/LVR/PIN) | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |

| Bit Number | Bit Mnemonic | Description                                                                                                                                                                                                                  |
|------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7-0        | SADDR[7:0]   | SFR SADDR defines the EUART0's slave address                                                                                                                                                                                 |
| 7-0        | SADEN[7:0]   | SFR SADEN is a bit mask to determine which bits of SADDR are checked<br>against a received address<br>0: Corresponding bit in SADDR is a "don't care"<br>1: Corresponding bit in SADDR is checked against a received address |



# Table 8.28 EUART1 Control & Status Register

| 98H, Bank <sup>2</sup>     | 1                                                                                                                                                                                                                                                                                      | Bit7         | Bit6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Bit5                                                                 | Bit4                  | Bit3                       | Bit2           | Bit1          | Bit0     |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------|----------------------------|----------------|---------------|----------|
| SCON1                      |                                                                                                                                                                                                                                                                                        | SM10<br>/FE1 | SM11<br>/RXOV1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SM12<br>/TXCOL1                                                      | REN1                  | TB18                       | RB18           | TI1           | RI1      |
| R/W                        |                                                                                                                                                                                                                                                                                        | R/W          | R/W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | R/W                                                                  | R/W                   | R/W                        | R/W            | R/W           | R/W      |
| Reset Valu<br>(POR/WDT/LVR |                                                                                                                                                                                                                                                                                        | 0            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                    | 0                     | 0                          | 0              | 0             | 0        |
| Bit Number                 | Bit N                                                                                                                                                                                                                                                                                  | Inemonic     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |                       | Description                |                |               |          |
| 7-6                        | SM1[0:1]EUART1 Serial mode control bit, when SSTAT1 = 0<br>00: mode 0, Synchronous Mode, fixed baud rate<br>01: mode 1, 8 bit Asynchronous Mode, variable baud rate<br>10: mode 2, 9 bit Asynchronous Mode, fixed baud rate<br>11: mode 3, 9 bit Asynchronous Mode, variable baud rate |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |                       |                            |                |               |          |
| 7                          |                                                                                                                                                                                                                                                                                        | FE1          | EUART1 Frame Error flag, when FE bit is read, SSTAT1 bit must be set 1<br>0: No Frame Error, clear by software<br>1: Frame error occurs, set by hardware                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      |                       |                            |                |               |          |
| 6                          | R                                                                                                                                                                                                                                                                                      | XOV1         | EUART1 Receive Over flag, when RXOV bit is read, SSTAT1 bit must be set 1<br>0: No Receive Over, clear by software<br>1: Receive over occurs, set by hardware                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                      |                       |                            |                |               | be set 1 |
| 5                          |                                                                                                                                                                                                                                                                                        | SM12         | <ul> <li>EUART0 Multi-processor communication enable bit (9<sup>th</sup> bit '1' checker), when</li> <li>SSTAT = 1</li> <li>O: In Mode0, baud-rate is 1/12 of system clock</li> <li>In Mode1, disable stop bit validation check, any stop bit will set RI to generate interrupt</li> <li>In Mode2 &amp; 3, any byte will set RI to generate interrupt</li> <li>1: In Mode0, baud-rate is 1/4 of system clock</li> <li>In Mode1, Enable stop bit validation check, only valid stop bit (1) will set RI to generate interrupt</li> <li>In Mode2 &amp; 3, only address byte (9<sup>th</sup> bit = 1) will set RI to generate interrupt</li> </ul> |                                                                      |                       |                            |                |               |          |
| 5                          | т                                                                                                                                                                                                                                                                                      | XCOL1        | be set 1<br>0: No Tra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ansmit Collision                                                     | ion, clear by         | software                   | .1 bit is read | i, SSTAT1 k   | oit must |
| 4                          |                                                                                                                                                                                                                                                                                        | REN1         | 0: Receiv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e <b>ceiver enab</b><br>ve Disable<br>ve Enable                      | le bit                |                            |                |               |          |
| 3                          |                                                                                                                                                                                                                                                                                        | TB18         | The 9th bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | to be transn                                                         | nitted in Mo          | de2 & 3 of E               | UART1, set     | or clear by   | software |
| 2                          |                                                                                                                                                                                                                                                                                        | RB18         | In Mode(<br>In Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | to be receiv<br>), RB8 is not<br>1, if receive ii<br>s2 & 3 it is th | used<br>nterrupt occu | ırs, RB8 is tł             | e stop bit tha | at was receiv | ved      |
| 1                          |                                                                                                                                                                                                                                                                                        | TI1          | <ul> <li>Transmit interrupt flag of EUART1</li> <li>0: cleared by software</li> <li>1: Set by hardware at the end of the 8<sup>th</sup> bit time in Mode0, or at the beginning of the stop bit in other modes</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      |                       |                            |                |               |          |
| 0                          |                                                                                                                                                                                                                                                                                        | RI1          | 0: cleare<br>1: Set by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | errupt flag o<br>d by software<br>hardware at<br>o other mode        | e0<br>t the end of t  | he 8 <sup>th</sup> bit tim | e in Mode0, o  | or during the | stop bit |



# Table 8.29 EUART1 Data Buffer Register

| 99H, Bank1                    | Bit7         | Bit6        | Bit5    | Bit4    | Bit3    | Bit2    | Bit1    | Bit0    |
|-------------------------------|--------------|-------------|---------|---------|---------|---------|---------|---------|
| SBUF1                         | SBUF1.7      | SBUF1.6     | SBUF1.5 | SBUF1.4 | SBUF1.3 | SBUF1.2 | SBUF1.1 | SBUF1.0 |
| R/W                           | R/W          | R/W         | R/W     | R/W     | R/W     | R/W     | R/W     | R/W     |
| Reset Value<br>(POR/WDT/LVR/P | 0 (NIY       | 0           | 0       | 0       | 0       | 0       | 0       | 0       |
| Bit Number                    | Bit Mnemonic | Description |         |         |         |         |         |         |

| 7-0 | SBUF1[7:0] | This SFR accesses two registers; a transmit shift register and a receive latch register<br>A write of SBU1F will send the byte to the transmit shift register and then initiate a<br>transmission<br>A read of SBUF1 returns the contents of the receive latch |
|-----|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

Table 8.30 EUART1 Slave Address & Address Mask Register

| 9AH-9BH, Bank1                   | Bit7     | Bit6     | Bit5     | Bit4     | Bit3     | Bit2     | Bit1     | Bit0     |
|----------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|
| SADDR1                           | SADDR1.7 | SADDR1.6 | SADDR1.5 | SADDR1.4 | SADDR1.3 | SADDR1.2 | SADDR1.1 | SADDR1.0 |
| SADEN1                           | SADEN1.7 | SADEN1.6 | SADEN1.5 | SADEN1.4 | SADEN1.3 | SADEN1.2 | SADEN1.1 | SADEN1.0 |
| R/W                              | R/W      | R/W      | R/W      | R/W      | R/W      | R/W      | R/W      | R/W      |
| Reset Value<br>(POR/WDT/LVR/PIN) | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |

| Bit Number | Bit Mnemonic | Description                                                                                                                                                                                                                      |  |  |  |  |  |
|------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 7-0        | SADDR1[7:0]  | SFR SADDR defines the EUART1's slave address                                                                                                                                                                                     |  |  |  |  |  |
| 7-0        | SADEN1[7:0]  | SFR SADEN1 is a bit mask to determine which bits of SADDR1 are checked<br>against a received address<br>0: Corresponding bit in SADDR1 is a "don't care"<br>1: Corresponding bit in SADDR1 is checked against a received address |  |  |  |  |  |

Table 8.31 EUART1 Baud rate generator register

| 9DH-9CH, Bank1                   | Bit7   | Bit6    | Bit5    | Bit4    | Bit3    | Bit2    | Bit1   | Bit0   |
|----------------------------------|--------|---------|---------|---------|---------|---------|--------|--------|
| SBRTH                            | SBRTEN | SBRT.14 | SBRT.13 | SBRT.12 | SBRT.11 | SBRT.10 | SBRT.9 | SBRT.8 |
| SBRTL                            | SBRT.7 | SBRT.6  | SBRT.5  | SBRT.4  | SBRT.3  | SBRT.2  | SBRT.1 | SBRT.0 |
| R/W                              | R/W    | R/W     | R/W     | R/W     | R/W     | R/W     | R/W    | R/W    |
| Reset Value<br>(POR/WDT/LVR/PIN) | 0      | 0       | 0       | 0       | 0       | 0       | 0      | 0      |

| Bit Number | Bit Mnemonic | Description                                                              |
|------------|--------------|--------------------------------------------------------------------------|
| 7          | SBRTEN       | EUART1 Baud rate enable control bit<br>0: disable (default)<br>1: enable |
| 6-0, 7-0   | SBRT[14:0]   | EUART1 Baud rate bits                                                    |

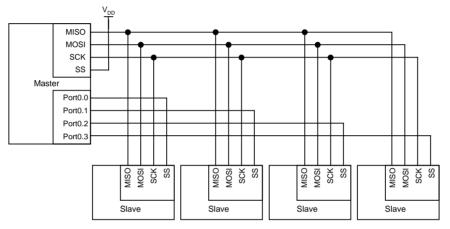
Table 8.32 EUART1 Baud rate generator fine-tune register

| 9EH, Bank1                      | Bit7     | Bit6    | Bit5    | Bit4    | Bit3        | Bit2 | Bit1 | Bit0 |
|---------------------------------|----------|---------|---------|---------|-------------|------|------|------|
| BFINE                           | BFINE.7  | BFINE.6 | BFINE.5 | BFINE.4 | -           | -    | -    | -    |
| R/W                             | R/W      | R/W     | R/W     | R/W     | -           | -    | -    | -    |
| Reset Value<br>(POR/WDT/LVR/PIN | 0        | 0       | 0       | 0       | -           | -    | -    | -    |
| Bit Number Bit                  | Mnemonic |         |         |         | Description |      |      |      |

| Bit Number | Bit Mnemonic | Description                                   |
|------------|--------------|-----------------------------------------------|
| 7-4        | BFINE[7:4]   | EUART0 Baud rate generator fine-tune register |






## 8.6 Serial Peripheral Interface (SPI)

## 8.6.1 Features

- Full-duplex, three-wire synchronous transfers
- Master or slave operation
- Six programmable master clock rates
- Serial clock with programmable polarity and phase
- Master mode fault error flag with MCU interrupt capability
- Write collision flag protection
- Selectable LSB or MSB transfer

The Serial Peripheral Interface (SPI) Module allows full-duplex, synchronous, serial communication between the MCU and peripheral devices, including other MCUs.

The following diagram shows a typical SPI bus configuration using one master controller and many slave peripherals. The bus is made of three wires connecting all the devices. The master device selects the individual slave devices by using four pins of a parallel port to control the four SS pins of the Slave devices.



## 8.6.2 Signal Description

(1) Master Output Slave Input (MOSI)

This 1-bit signal is directly connected between the master device and slave devices. The MOSI line is used to transfer data in series from the master to the slave. Therefore, it is an output signal from the master, and an input signal to a slave.

(2) Master Input Slave Output (MISO)

This 1-bit signal is directly connected between the slave devices and master device. The MISO line is used to transfer data in series from the slave to the master. Therefore, it is an output signal from the slave, and an input signal to the master. The MISO pin is placed in a high-impedance state when the SPI operates as a slave that is not selected ( $\overline{SS}$  high).

A static high level on the  $\overline{SS}$  pin puts the MISO line of a slave in a high-impedance state.

(3) SPI Serial Clock (SCK)

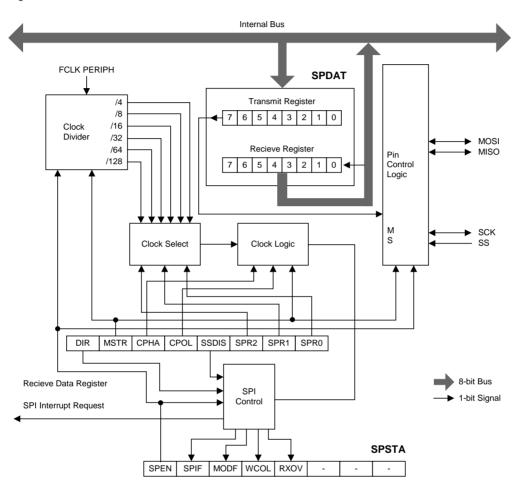
This signal is used to synchronize the data movement both in and out of the devices through their MOSI and MISO lines. It is driven by the master for eight clock cycles, which allows exchanging one byte on the serial lines. The SCK signal is ignored by a SPI slave when the slave is not selected ( $\overline{SS}$  high).

(4) Slave Select (SS)

Each slave peripheral is selected by one slave select pin (SS). This signal must stay low for any active slave. It is obvious that only one master ( $\overline{SS}$  high) can drive the network. The master may select each slave device by software through port pins. To prevent bus conflicts on the MISO line, only one slave should be selected at a time by the master for a transmission. In a master configuration, the  $\overline{SS}$  line can be used in conjunction with the MODF flag in the SPI status register to prevent multiple masters from driving MOSI and SCK.

The  $\overline{SS}$  pin could be used as a general IO if the following conditions are met:

- (a) The device is configured as a master and the SSDIS control bit in SPCON is set. This kind of configuration can happen when only one master is driving the network. Therefore, the MODF flag in the SPSTA will never be set.
- (b) The device is configured as a slave with CPHA and SSDIS control bits set. This kind of configuration can happen when the network comprises only one master and one slave only. Therefore, the device should always be selected and the master will never use the slave's  $\overline{SS}$  pin to select the target communication slave.
- **Note:** When CPHA = '0', a falling edge of  $\overline{SS}$  pin is used to start the transmission.




## 8.6.3 Baud Rate

In master mode, the baud rate is chosen from one of the six clock rates by the division of the internal clock by 4, 8, 16, 32, 64 or 128 set by the three bits SPR[2:0] in the SPCON register.

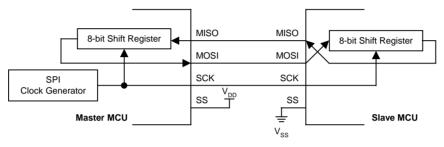
## 8.6.4 Functional Description

The following diagram shows a detailed structure of the SPI module.



SPI Module Block Diagram






## 8.6.5 Operating Modes

The Serial Peripheral Interface can be configured as one of the two modes, master mode or slave mode. The configuration and initialization of the SPI module is made through SPCON (the serial peripheral control register) and SPSTA (the serial peripheral status register). Once the SPI is configured, the data exchange is made using SPCON, SPSTA and SPDAT (the serial peripheral data register).

During an SPI transmission, data is simultaneously transmitted (shifted out serially) and received (shifted in serially). A serial clock line (SCK) synchronizes shifting and sampling on the two serial data lines (MOSI and MISO). A slave select line  $(\overline{SS})$  allows individual selection of a SPI slave; SPI slaves that are not selected do not interfere with SPI bus activities.

When the SPI master transmits data to the SPI slave via the MOSI line, the SPI slave responds by sending data to the SPI master via the MISO line. This implies full-duplex transmission with both data out and data in synchronized with the same clock. Both transmit shift register and receive shift register uses the same SFR Address, a write operation to SPDAT will write to the transmit shift register, and a read operation from SPDAT will retrieve the data in receive shift register.



Full-Duplex Master-Slave Interconnection Diagram

## Master Mode

#### (1) Enable

A SPI master device initiates all data transfers on a SPI bus. The SPI operates in master mode when the MSTR is set in SPCON register. Only one master can initiate transmission.

## (2) Transmit

When in SPI master mode, writing a byte of data to the SPI data register (SPDAT) will write to the transmit shift buffer. If the transmit shift register already contains data, the SPI master will generate a WCOL signal to indicate writing too fast. But the data in transmit shift register will not be affected, and the transmission continues uninterrupted. Else if the transmit shift register is empty, the SPI master will immediately shifts out the data serially on the MOSI line while providing the serial clock on SCK. The SPIF flag in SPSTA register is set to logic '1' at the end of the transfer. If interrupts are enabled, an interrupt request is generated when the SPIF flag is set.

## (3) Receive

While the master transfers data to a slave on the MOSI line, the addressed slave simultaneously transfers the contents of its transmit shift register to the master's receive shift register on the MISO line in a full-duplex operation. Therefore, the SPIF flag serves as both a transmit-complete and receive-data-ready flag. The data byte received from the slave is transferred MSB-first or LSB-first into the master's shift register. When a byte is fully shifted into the register, it is moved to the receive buffer where it can be read by the processor by reading SPDAT. If an overrun occurs, RXOV signal will be set to indicate data over-run occurs, and the receive shift register keep the byte that SPIF was lastly set, also the SPI master will not receive any further data until SPIF was cleared.



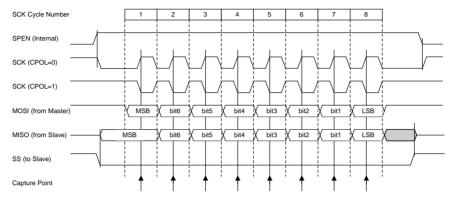
# Slave Mode

## (1) Enable

The SPI operates in slave mode when the MSTR is cleared in the SPCON register. Before a data transmission occurs, the slave select  $(\overline{SS})$  pin of the Slave device must be set to '0'. The  $\overline{SS}$  pin must remain low until the 1-byte transmission is complete.

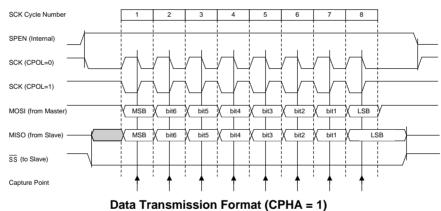
## (2) Transmit & Receive

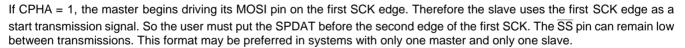
When in SPI slave mode, bytes are shifted in through the MOSI pin and out through the MISO pin by a master device controlling the SCK signal. A bit counter counts SCK edges. When 8 bits have been shifted in the receive shift register and another 8 bits have been shifted out the transmit shift register, the SPIF flag is set to logic '1'. Data is read from the receive shift register by reading SPDAT. If interrupts are enabled, an interrupt request is generated when the SPIF flag is set. To prevent an overflow condition, the SPI slave software must clear the SPIF bit in SPSTA register before another byte

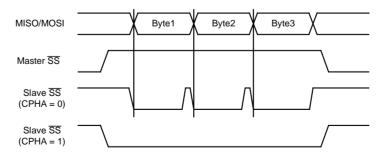

enters the receive shift register. Else a RXOV signal will be set to indicate data over-run occurs, and the receive shift register keep the byte that SPIF was lastly set, also the SPI slave will not receive any further data until SPIF was cleared.

A SPI slave cannot initiate transfers. Data to be transferred to the master device is pre-loaded into the shift register by writing to SPDAT. Writes to SPDAT are placed in the transmit buffer first. So a SPI slave must complete the write to the SPDAT (transmit shift register) in one SPI clock before the master starts a new transmission. If the write to SPDAT is late in the first transmission, the SPI slave will transmit a '0x00' byte in the following transmission. If the write operation occurs during this time, a WCOL signal will be set. If the transmit shift register already contains data, the SPI slave will generate a WCOL signal to indicate writing too fast. But the data in transmit shift register will not be affected, and the transmission continues uninterrupted.




## 8.6.6 Transmission Formats


Software can select any of four combinations of serial clock (SCK) phase and polarity using two bits in the SPCON, the clock polarity CPOL and the clock phase CPHA. CPOL defines the default SCK line level in idle state. It has no significant effect on the transmission format. CPHA defines the edges on which the input data are sampled and the edges on which the output data are shifted. The clock phase and polarity should be identical for the master and the communicating slave.




Data Transmission Format (CPHA = 0)

If CPHA = 0, the first SCK edge is the capture strobe. Therefore the slave must begin driving its data before the first SCK edge, and a falling edge on the  $\overline{SS}$  pin is used to start the transmission. The  $\overline{SS}$  pin must be toggled high and then low between each byte transmitted. So SSDIS bit is invalid when CPHA = 0.







## **CPHA/SS** Timing

**Note:** Before SPI is configured as Slave mode and CPOL bit in SPCON is cleared, the P2.4SCK pin must be set to input mode and enable pull-high resistor before SPEN bit in SPSTA is set to logic '1'.



## 8.6.7 Error Conditions

The following flags in the SPSTA signal SPI error conditions:

## (1) Mode Fault (MODF)

Mode fault error in master mode SPI indicates that the level on the  $\overline{SS}$  pin is inconsistent with the actual mode of the device. MODF is set to warn that there may be a multi-master conflict for system control. In this case, the SPI system is affected in the following ways:

- An SPI receiver/error CPU interrupt request is generated;
- The SPEN bit in SPSTA is cleared. This disables the SPI;
- The MSTR bit in SPCON is cleared.

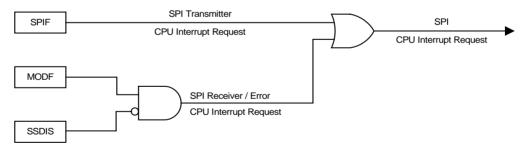
When  $\overline{SS}$  Disable (SSDIS bit in the SPCON register) is cleared, the MODF flag is set when the  $\overline{SS}$  signal becomes '0'. However, as stated before, for a system with one Master, if the  $\overline{SS}$  pin of the master device is pulled low, there is no way that another master attempts to drive the network. In this case, to prevent the MODF flag from being set, software can set the SSDIS bit in the SPCON register and therefore making the  $\overline{SS}$  pin as a general-purpose I/O pin.

The user must clear the MODF bit by software, and enable SPEN in SPCON register again for further communication, and enable MSTR bit to continue master mode.

#### (2) Write Collision (WCOL)

A write collision (WCOL) flag in the SPSTA is set when a write to the SPDAT register is done during a transmit sequence. WCOL does not cause an interruption, and the transfer continues uninterrupted. The WCOL bit is cleared by software.

#### (3) Overrun Condition (RXOV)


An overrun condition occurs when the master or slave tries to send several data bytes and the slave or master has not cleared the SPIF bit issuing from the previous data byte transmitted. In this case, the receive shift register keep the byte that SPIF was lastly set, also the SPI device will not receive any further data until SPIF was cleared. The SPIF still keep on invoke interrupt before it is cleared, though the transmission can still be driven by SCK. RXOV does not generate an interruption, the RXOV bit is cleared by software.

#### 8.6.8 Interrupts

Two SPI status flags can generate a CPU interrupt requests SPIF & MODF.

Serial Peripheral data transfer flag: SPIF. This bit is set by hardware when a transfer has been completed.

Mode Fault flag: MODF. This bit becomes set to indicate that the level on the  $\overline{SS}$  pin is inconsistent with the mode of the SPI. MODF with SSDIS reset will generate receiver/error CPU interrupt requests. When SSDIS is set, no MODF interrupt request is generated.



SPI Interrupt Requests Generation



# 8.6.9 Registers

Table 8.33 Serial Peripheral Control Register

| A2H, Bank0 |                                                                                                        | Bit7     | Bit6                                                                                                                                                                                                                                                      | Bit5                                                                              | Bit4 | Bit3  | Bit2 | Bit1 | Bit0 |  |  |
|------------|--------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------|-------|------|------|------|--|--|
| SPCON      |                                                                                                        | DIR      | MSTR                                                                                                                                                                                                                                                      | CPHA                                                                              | CPOL | SSDIS | SPR2 | SPR1 | SPR0 |  |  |
| R/W        | R/W                                                                                                    |          | R/W                                                                                                                                                                                                                                                       | R/W                                                                               | R/W  | R/W   | R/W  | R/W  | R/W  |  |  |
|            | Reset Value<br>(POR/WDT/LVR/PIN)                                                                       |          | 0                                                                                                                                                                                                                                                         | 0                                                                                 | 0    | 0     | 0    | 0    | 0    |  |  |
| Bit Number | Bit N                                                                                                  | Inemonic | Description                                                                                                                                                                                                                                               |                                                                                   |      |       |      |      |      |  |  |
| 7          |                                                                                                        | DIR      | Transfer Direction Selection<br>0: MSB first<br>1: LSB first                                                                                                                                                                                              |                                                                                   |      |       |      |      |      |  |  |
| 6          | 6 MSTR Serial Peripheral Master<br>0: Configure the SPI as a Slave<br>1: Configure the SPI as a Master |          |                                                                                                                                                                                                                                                           |                                                                                   |      |       |      |      |      |  |  |
| 5          | (                                                                                                      | СРНА     | Clock Phase<br>0: Data sampled on first edge of SCK period<br>1: Data sampled on second edge of SCK period                                                                                                                                                |                                                                                   |      |       |      |      |      |  |  |
| 4          |                                                                                                        | CPOL     | 0: SCK li                                                                                                                                                                                                                                                 | Clock Polarity<br>0: SCK line low in idle state<br>1: SCK line high in idle state |      |       |      |      |      |  |  |
| 3          | 5                                                                                                      | SSDIS    | SS Disable         0: Enable SS pin in both Master and Slave modes         1: Disable SS pin in both master and slave modes         MODF interrupt request will not generate, if SSDIS is set.         In Slave mode, this bit has no effect if CPHA = 0. |                                                                                   |      |       |      |      |      |  |  |
| 2-0        | SI                                                                                                     | PR[2:0]  | Serial Peripheral Clock Rate<br>000: f <sub>SYS</sub> /4<br>001: f <sub>SYS</sub> /8<br>010: f <sub>SYS</sub> /16<br>011: f <sub>SYS</sub> /32<br>100: f <sub>SYS</sub> /64<br>Others: f <sub>SYS</sub> /128                                              |                                                                                   |      |       |      |      |      |  |  |



# Table 8.34 Serial Peripheral Status Register

| F8H, Bank0                       | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|----------------------------------|------|------|------|------|------|------|------|------|
| SPSTA                            | SPEN | SPIF | MODF | WCOL | RXOV | -    | -    | -    |
| R/W                              | R/W  | R/W  | R/W  | R/W  | R/W  | -    | -    | -    |
| Reset Value<br>(POR/WDT/LVR/PIN) | 0    | 0    | 0    | 0    | 0    | -    | -    | -    |

| Bit Number | Bit Mnemonic | Description                                                                                                                                                                                  |
|------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7          | SPEN         | SPI Enable<br>0: Disable the SPI interface<br>1: Enable the SPI interface                                                                                                                    |
| 6          | SPIF         | Serial Peripheral data transfer flag<br>0: Clear by software<br>1: Set by hardware to indicate that the data transfer has been completed                                                     |
| 5          | MODF         | Mode Fault         0: Cleared by software         1: Set by hardware to indicate that the SS pin is at inappropriate logic level                                                             |
| 4          | WCOL         | <ul><li>Write Collision flag</li><li>0: Cleared by software to indicate write collision has be processed</li><li>1: Set by hardware to indicate that a collision has been detected</li></ul> |
| 3          | RXOV         | Receive Overrun<br>0: Cleared by software to indicate receive overrun has be processed<br>1: Set by hardware to indicate that a receive overrun has been detected                            |

# Table 8.35 Serial Peripheral Data Register

| A3H, Bank0                       |       | Bit7     | Bit6                                                                                                                                                    | Bit5   | Bit4   | Bit3        | Bit2   | Bit1   | Bit0   |
|----------------------------------|-------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|-------------|--------|--------|--------|
| SPDAT                            |       | SPDAT7   | SPDAT6                                                                                                                                                  | SPDAT5 | SPDAT4 | SPDAT3      | SPDAT2 | SPDAT1 | SPDAT0 |
| R/W                              |       | R/W      | R/W                                                                                                                                                     | R/W    | R/W    | R/W         | R/W    | R/W    | R/W    |
| Reset Value<br>(POR/WDT/LVR/PIN) |       | 0        | 0                                                                                                                                                       | 0      | 0      | 0           | 0      | 0      | 0      |
| Bit Number                       | Bit N | Inemonic |                                                                                                                                                         |        |        | Description |        |        |        |
| 7-0                              | SPE   | DAT[7:0] | A write to SPDAT places data directly into the transfer shift register.<br>A Read of the SPDAT returns the value located in the receive shift register. |        |        |             |        |        |        |

Note: When SPI is disabled, the data of SPDAT is invalid.

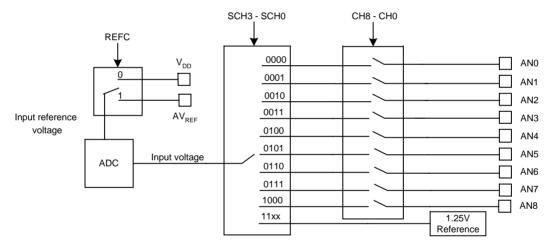


# 8.7 Analog Digital Converter (ADC)

#### 8.7.1 Feature

- 12-bit Resolution
- Build in V<sub>REF</sub>
- Selectable external or built-in V<sub>REF</sub>
- 9 analog Channels input

The SH79F3283 includes a single ended, 12-bit SAR Analog to Digital Converter (ADC) with build in reference voltage connected to the  $V_{DD}$ , users also can select the AVREF port input reference voltage. The 10 ADC channels are shared with 1 ADC module; each channel can be programmed to connect with the analog input individually. Only one channel can be


available at one time. GO/DONE signal is available to start convert, and indicate end of convert. When conversion is completed, the data in AD convert data register will be updated and ADCIF bit in ADCON register will be set. If ADC Interrupt is enabled, the ADC interrupt will be generated.

The ADC integrates a digital compare function to compare the value of analog input and the digital value in the AD converter. If this function is enabled (set EC bit in ADCON register) and ADC module is enabled (set ADON bit in ADCON register). When the corresponding digital value of analog input is larger than the compare value in register (ADDH/L), the ADC interrupt

will occur, otherwise no interrupt will be generated. The digital comparator can work continuously when GO/DONE bit is set until software clear, which behaviors different with the AD converter operation mode.

The ADC module including digital compare module can wok in Idle mode and the ADC interrupt will wake up the Idle mode, but is disabled in Power-Down mode.

#### 8.7.2 ADC Diagram



ADC Diagram



# 8.7.3 Register

Table 8.36 ADC Control Register

| 93H, Bank0                  | )     | Bit7         | Bit6                                                                                                                                                                                                                                                                                                                                                | Bit5                                | Bit4                                    | Bit3        | Bit2 | Bit1 | Bit0     |
|-----------------------------|-------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------|-------------|------|------|----------|
| ADCON                       |       | ADON         | ADCIF                                                                                                                                                                                                                                                                                                                                               | EC                                  | REFC                                    | SCH2        | SCH1 | SCH0 | GO/DONE  |
| <b>R/W</b> R/W              |       | R/W          | R/W                                                                                                                                                                                                                                                                                                                                                 | R/W                                 | R/W                                     | R/W         | R/W  | R/W  | R/W      |
| Reset Value<br>(POR/WDT/LVR | -     | 0            | 0                                                                                                                                                                                                                                                                                                                                                   | 0                                   | 0                                       | 0           | 0    | 0    | 0        |
| Bit Number                  | Bit N | Inemonic     |                                                                                                                                                                                                                                                                                                                                                     |                                     |                                         | Description |      |      |          |
| 7                           | A     | ADON         |                                                                                                                                                                                                                                                                                                                                                     | e bit<br>e the ADC n<br>e the ADC m |                                         |             |      |      |          |
| 6                           | Ą     | <b>ADCIF</b> | <ul> <li>ADC Interrupt Flag bit</li> <li>0: No ADC interrupt, cleared by software.</li> <li>1: Set by hardware to indicate that the AD Convert has been completed, or analog input is larger than ADDATH/L if compare is enabled</li> </ul>                                                                                                         |                                     |                                         |             |      |      |          |
| 5                           |       | EC           | Compare Function Enable bit<br>0: Compare function disabled<br>1: Compare function enabled                                                                                                                                                                                                                                                          |                                     |                                         |             |      |      |          |
| 4                           | F     | REFC         |                                                                                                                                                                                                                                                                                                                                                     | erence volta                        | ect bit<br>ge connecte<br>ge input fron |             |      |      |          |
| 3-1                         | sc    | CH[2:0]      | ADC channel Select bits (Combination control with SCH3)<br>0000: ADC channel AN0<br>0001: ADC channel AN1<br>0010: ADC channel AN2<br>0011: ADC channel AN3<br>0100: ADC channel AN4<br>0101: ADC channel AN5<br>0110: ADC channel AN5<br>0110: ADC channel AN6<br>0111: ADC channel AN7<br>1000: ADC channel AN8<br>11xx: internal 1.25V Reference |                                     |                                         |             |      |      |          |
| 0                           | GC    | )/DONE       | <ul> <li>ADC status flag bit</li> <li>0: Automatically cleared by hardware when AD convert is completed. Clearing this bit during converting time will stop current conversion. If Compare function is enabled, this bit will not be cleared by hardware until software clear.</li> <li>1: Set to start AD convert or digital compare.</li> </ul>   |                                     |                                         |             |      |      | function |

Note:

(1) When select the reference voltage input from  $V_{REF}$  pin (REFC = 1), the P4.4 is shared as  $V_{REF}$  input.

(2) After set ADON to 1, please set a 10us delay, then set GO/DONE to 1 to ensure the ADC normal operate.



# Table 8.37 ADC Control Register 1

| 92H, Bank0                       | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|----------------------------------|------|------|------|------|------|------|------|------|
| ADCON1                           | -    | -    | -    | -    | -    | RESO | CH8  | SCH3 |
| R/W                              | -    | -    | -    | -    | -    | R/W  | R/W  | R/W  |
| Reset Value<br>(POR/WDT/LVR/PIN) | -    | -    | -    | -    | -    | 0    | 0    | 0    |

| Bit Number | Bit Mnemonic | Description                                                                                                                                                                         |
|------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2          | RESO         | ADC Resolution select bit<br>0: Resolution is 12bit, ADDH is the high byte, ADDL[3:0] is the low 4 bit<br>1: Resolution is 10bit, ADDH is the high byte, ADDL[1:0] is the low 2 bit |
| 1          | СН8          | Channel Configuration bits<br>0: P4.4 is I/O port<br>1: P4.4 is ADC input port<br>Note: If REFC = 1, P4.4 is AVREF input pin, this bit is invalid.                                  |
| 0          | SCH3         | ADC channel Select bits (Combination control with SCH[2:0])<br>1000: ADC channel AN8<br>11xx: internal 1.25V Reference<br>Note: set up time < 12us                                  |

Table 8.38 ADC Time Configuration Register

| 94H, Bank0                       | Bit7  | Bit6  | Bit5  | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|----------------------------------|-------|-------|-------|------|------|------|------|------|
| ADT                              | TADC2 | TADC1 | TADC0 | CDIR | TS3  | TS2  | TS1  | TS0  |
| R/W                              | R/W   | R/W   | R/W   | R/W  | R/W  | R/W  | R/W  | R/W  |
| Reset Value<br>(POR/WDT/LVR/PIN) | 0     | 0     | 0     | 0    | 0    | 0    | 0    | 0    |

| Bit Number | Bit Mnemonic | Description                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7-5        | TADC[2:0]    | $\begin{array}{l} \textbf{ADC Clock Period Select bits} \\ 000: ADC Clock Period t_{AD} = 2 t_{SYS} \\ 001: ADC Clock Period t_{AD} = 4 t_{SYS} \\ 010: ADC Clock Period t_{AD} = 6 t_{SYS} \\ 011: ADC Clock Period t_{AD} = 8 t_{SYS} \\ 100: ADC Clock Period t_{AD} = 12 t_{SYS} \\ 101: ADC Clock Period t_{AD} = 16 t_{SYS} \\ 101: ADC Clock Period t_{AD} = 24 t_{SYS} \\ 110: ADC Clock Period t_{AD} = 32 t_{SYS} \end{array}$ |
| 4          | CDIR         | ADC compare polarity select bit(EC = 1)<br>0: Analog input > ADDATH/L, set ADCIF to1<br>1: Analog input < ADDATH/L, set ADCIF to1                                                                                                                                                                                                                                                                                                        |
| 3-0        | TS[3:0]      | Sample time select bits<br>2 $t_{AD} \le$ Sample time = (TS [3:0]+1) X $t_{AD} \le$ 15 $t_{AD}$                                                                                                                                                                                                                                                                                                                                          |

## Note:

(1) Make sure that  $t_{AD} \ge 1 \mu s$ ;

(2) The minimum sample time is 2  $t_{AD}$ , even TS[3:0] = 0000;

(3) The maximum sample time is  $15 t_{AD}$ , even TS[3:0] = 1111;

(4) Evaluate the series resistance connected with ADC input pin before set TS[3:0];

(5) Be sure that the series resistance connected with ADC input pin is no more than  $10k\Omega$  when 2 t<sub>AD</sub> sample time is selected;

(6) Total conversion time is:  $12 t_{AD}$  + sample time.



For Example

| System Clock<br>(SYSCLK) | TADC[2:0] | t <sub>AD</sub> | TS[3:0] | Sample Time    | Conversion Time                          |
|--------------------------|-----------|-----------------|---------|----------------|------------------------------------------|
|                          | 000       | 30.5 *2=61µs    | 0000    | 2*61=122µs     | 12*61+122=854µs                          |
|                          | 000       | 30.5 *2=61µs    | 0111    | 8*61=488µs     | 12*61+488=1220μs                         |
|                          | 000       | 30.5 *2=61µs    | 1111    | 15*61=915µs    | 12*61+915=1647µs                         |
| 32.768kHz                | 111       | 30.5 *32=976µs  | 0000    | 2*976=1952µs   | 12*976+1952=13664µs                      |
|                          | 111       | 30.5 *32=976µs  | 0111    | 8*976=7808μs   | 12*976+7808=19520µs                      |
|                          | 111       | 30.5 *32=976µs  | 1111    | 15*976=14640μs | 12*976+14640=26352µs                     |
|                          | 000       | 0.25 *2=0.5µs   | -       | -              | $(t_{AD} < 1\mu s, Not recommended)$     |
|                          | 001       | 0.25 *4=1µs     | 0000    | 2*1=2µs        | 12*1+2=14µs                              |
|                          | 001       | 0.25 *4=1µs     | 0111    | 8*1=8μs        | 12*1+8=20µs                              |
| 4MHz                     | 001       | 0.25 *4=1μs     | 1111    | 15*1=15µs      | 12*1+15=27μs                             |
|                          | 111       | 0.25 *32=8μs    | 0000    | 2*8=16µs       | 12*8+16=112µs                            |
|                          | 111       | 0.25 *32=8μs    | 0111    | 8*8=64µs       | 12*8+64=160µs                            |
|                          | 111       | 0.25 *32=8μs    | 1111    | 15*8=120μs     | 12*8+120=216µs                           |
|                          | 000       | 0.083*2=0.166µs | -       | -              | ( $t_{AD}$ < 1 $\mu$ s, Not recommended) |
|                          | 100       | 0.083*12=1µs    | 0000    | 2*1=2µs        | 12*1+2=14µs                              |
|                          | 100       | 0.083*12=1µs    | 0111    | 8*1=8μs        | 12*1+8=20μs                              |
| 12MHz                    | 100       | 0.083*12=1µs    | 1111    | 15*1=15μs      | 12*1+15=27μs                             |
|                          | 111       | 0.083*32=2.7µs  | 0000    | 2*2.7=5.4µs    | 12*2.7+5.4=37.8μs                        |
|                          | 111       | 0.083*32=2.7µs  | 0111    | 8*2.7=21.6μs   | 12*2.7+21.6=54µs                         |
|                          | 111       | 0.083*32=2.7µs  | 1111    | 15*2.7=40.5μs  | 12*2.7+40.5=72.9µs                       |

# Table 8.39 ADC Channel Configure Register

| 95H, Bank0                      |       | Bit7 Bit6 Bit5 Bit4 Bit3 |                                                                                                                  |     |     |             | Bit2 | Bit1 | Bit0 |
|---------------------------------|-------|--------------------------|------------------------------------------------------------------------------------------------------------------|-----|-----|-------------|------|------|------|
| ADCH                            |       | CH7                      | CH6                                                                                                              | CH5 | CH4 | CH3         | CH2  | CH1  | CH0  |
| R/W                             |       | R/W                      | R/W                                                                                                              | R/W | R/W | R/W         | R/W  | R/W  | R/W  |
| Reset Value 0 (POR/WDT/LVR/PIN) |       | 0                        | 0                                                                                                                | 0   | 0   | 0           | 0    | 0    | 0    |
| Bit Number                      | Bit N | Inemonic                 |                                                                                                                  |     | I   | Description |      |      |      |
| 7-0                             | С     | H[7:0]                   | Channel Configuration bits<br>0: P4.0-P4.3, P3.4-P3.7 are I/O port<br>1: P4.0-P4.3, P3.4-P3.7 are ADC input port |     |     |             |      |      |      |



| 96H, Bank0                       | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|----------------------------------|------|------|------|------|------|------|------|------|
| ADDL                             | -    | -    | -    | -    | A3   | A2   | A1   | A0   |
| R/W                              | -    | -    | -    | -    | R/W  | R/W  | R/W  | R/W  |
| Reset Value<br>(POR/WDT/LVR/PIN) | -    | -    | -    | -    | 0    | 0    | 0    | 0    |
| 97H, Bank0                       | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
| ADDH                             | A11  | A10  | A9   | A8   | A7   | A6   | A5   | A4   |
| R/W                              | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  |
| Reset Value<br>(POR/WDT/LVR/PIN) | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

Table 8.40 AD Converter Data Register (Compare Value Register)

| Bit Number | Bit Mnemonic | t Mnemonic Description                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 3-0<br>7-0 | A11-A0       | <ul> <li>ADC Data register</li> <li>Digital Value of sampled analog voltage, updated when conversion is completed If ADC Compare function is enabled (EC = 1), this is the value to be compared with the analog input</li> <li>Note:</li> <li>RESO = 0, Resolution is 12 bit, [A11:A4] is the high 8 bit, [A3:A0] is the low 4 bit.</li> <li>RESO = 1, Resolution is 12 bit, [A11:A4] is the high 8 bit, [A1:A0] is the low 2 bit</li> </ul> |  |  |  |  |

# The Approach for AD Conversion:

(1) Select the analog input channels and reference voltage.

- (2) Enable the ADC module with the selected analog channel.
- (3) Delay 10us
- (4) Set  $GO/\overline{DONE} = 1$  to start the AD conversion.
- (5) Wait until GO/DONE = 0 or ADCIF = 1, if the ADC interrupt is enabled, the ADC interrupt will occur, user need clear ADCIF by software.
- (6) Acquire the converted data from ADDH/ADDL.
- (7) Repeat step 3-5 if another conversion is required.

## The Approach for Digital Compare Function:

- (1) Select the analog input channels and reference voltage.
- (2) Write ADDH/ADDL to set the compare value.
- (3) Delay 10us
- (4) Set EC = 1 to enable compare function.
- (5) Enable the ADC module with the selected analog channel.
- (6) Set  $GO/\overline{DONE} = 1$  to start the compare function.
- (7) If the analog input is lager than compare value set in ADDH/ADDL, the ADCIF will be set to 1. if the ADC interrupt is enabled, the ADC interrupt will occur, user need clear ADCIF by software.
- (8) The compare function will continue work until the GO/DONE bit is cleared to 0.



# 8.8 Buzzer

# 8.8.1 Feature

- Output a signal (square wave) used for tones such as confirmation tone
   Selectable whether to output one of 8 output frequencies or to disable the output

## 8.8.2 Register

Table 8.41 Buzzer Output Control Register

| BDH, Bank0                       | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|----------------------------------|------|------|------|------|------|------|------|------|
| BUZCON                           | -    | -    | -    | -    | BCA2 | BCA1 | BCA0 | BZEN |
| R/W                              | -    | -    | -    | -    | R/W  | R/W  | R/W  | R/W  |
| Reset Value<br>(POR/WDT/LVR/PIN) | -    | -    | -    | -    | 0    | 0    | 0    | 0    |

| Bit Number | Bit Mnemonic | Description                                                                                                                                                                                                                                          |
|------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3-1        | BCA[2:0]     | Buzzer output carrier frequency control bits<br>000: system clock/8192<br>001: system clock/4096<br>010: system clock/2048<br>011: system clock/1024<br>100: system clock/512<br>101: system clock/32<br>110: system clock/16<br>111: system clock/8 |
| 0          | BZEN         | Enable buzzer output control bit<br>0: P5.3 is I/O port<br>1: P5.3 is buzzer output port                                                                                                                                                             |



#### 8.9 Low Power Detect (LPD)

#### 8.9.1 Feature

- Low power detect and generate interrupt
- LPD detect voltage is selectable
- LPD de-bounce timer T<sub>LPD</sub> is about 30-60µs

The low power detect (LPD) is used to monitor the supply voltage and generate an internal flag if the voltage decrease below the specified value. It is used to inform CPU whether the power is shut off or the battery is used out, so the software may do some protection action before the voltage drop down to the minimal operation voltage.

The LPD interrupt can wake the power down mode up.

#### 8.9.2 Register

Table 8.42 Low Power Detection Control Register

| B3H                              | Bit7  | Bit6 | Bit5  | Bit4  | Bit3  | Bit2  | Bit1  | Bit0  |
|----------------------------------|-------|------|-------|-------|-------|-------|-------|-------|
| LPDCON                           | LPDEN | LPDF | LPDMD | LPDIF | LPDS3 | LPDS2 | LPDS1 | LPDS0 |
| R/W                              | R/W   | R*   | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   |
| Reset Value<br>(POR/WDT/LVR/PIN) | 0     | 0    | 0     | 0     | 0     | 0     | 0     | 0     |

| Bit Number | Bit Mnemonic | Description                                                                                                                                                                                                                                                            |
|------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7          | LPDEN        | LPD Enable bit<br>0: Disable lower power detection<br>1: Enable lower power detection                                                                                                                                                                                  |
| 6          | LPDF         | LPD status Flag bit<br>0: No LPD happened, clear by hardware,<br>1: LPD happened, set by hardware                                                                                                                                                                      |
| 5          | LPDMD        | LPD mode select bit<br>0: When V <sub>DD</sub> below LPD voltage, LPDF is set<br>1: When V <sub>DD</sub> above LPD voltage, LPDF is set                                                                                                                                |
| 4          | LPDIF        | LPD interrupt flag bit<br>0: No LPD happened, clear by software<br>1: LPD happened, set by hardware                                                                                                                                                                    |
| 3-0        | LPDS[3:0]    | LPD Voltage Select bit<br>0000: 2.40V<br>0001: 2.55V<br>0010: 2.70V<br>0011: 2.85V<br>0100: 3.00V<br>0111: 3.15V<br>0110: 3.30V<br>0111: 3.45V<br>1000: 3.60V<br>1001: 3.75V<br>1001: 3.75V<br>1010: 3.90V<br>1011: 4.05V<br>1110: 4.20V<br>1110: 4.50V<br>1111: 4.65V |





## 8.10 Low Voltage Reset (LVR)

## 8.10.1 Feature

- Enabled by the code option and V<sub>LVR</sub> is 4.1V, 3.7V, 2.8V or 2.1V
- LVR de-bounce timer T<sub>LVR</sub> is 30-60µs
- When the power supply voltage is lower than the set voltage V<sub>LVR</sub>, it will cause the internal reset

The LVR function is used to monitor the supply voltage and generate an internal reset in the device when the supply voltage below the specified value  $V_{LVR}$ . The LVR de-bounce timer  $T_{LVR}$  is about  $30\mu$ s- $60\mu$ s.

The LVR circuit has the following feature when the LVR function is enabled: (t means the time of the supply voltage below  $V_{LVR}$ )

Generates a system reset when  $V_{DD} \leq V_{LVR}$  and  $t \geq T_{LVR}$ ;

Cancels the system reset when  $V_{DD} > V_{LVR}$  or  $V_{DD} < V_{LVR}$ , but  $t < T_{LVR}$ .

The LVR function is enabled by the code option.

It is typically used in AC line or large capacity battery applications, where heavy loads may be switched on and cause the MCU supply-voltage temporarily falls below the minimum specified operating voltage.

Low voltage reset can be applied to this, protecting system generates valid reset in the below set voltages.



#### 8.11 Watchdog Timer (WDT) and Reset State

#### 8.11.1 Feature

- Auto detect Program Counter (PC) over range, and generate OVL Reset
- WDT runs even in the Power-Down mode
- Selectable different WDT overflow frequency

#### **OVL** Reset

To enhance the anti-noise ability, SH79F3283 built in Program Counter (PC) over range detect circuit, if program counter value is larger than flash Rom size, or detect operation code equal to A5H which is not exist in 8051 instruction set, a OVL reset will be generate to reset CPU, and set WDOF bit. So, to make use of this feature, you should fill unused flash Rom with A5H.

#### Watchdog Timer

The watchdog timer is a down counter, and its clock source is an independent built-in RC oscillator, so it always runs even in the Power-Down mode. The watchdog timer will generate a device reset when it overflows. It can be enabled or disabled by the code option.

The watchdog timer control bits (WDT.2-0) are used to select different overflow time. The watchdog timer overflow flag (WDOF) will be automatically set to "1" by hardware when overflow happens. To prevent overflow happen, by reading or writing the WDT register RSTSTAT, the watchdog timer should re-count before the overflow happens.

There are also some reset flags in this register as below:

#### 8.11.2 Register

 Table 8.43
 Reset Control Register

| B1H, Bank0        | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2  | Bit1  | Bit0  |
|-------------------|------|------|------|------|------|-------|-------|-------|
| RSTSTAT           | WDOF | -    | PORF | LVRF | CLRF | WDT.2 | WDT.1 | WDT.0 |
| R/W               | R/W  | -    | R/W  | R/W  | R/W  | R/W   | R/W   | R/W   |
| Reset Value (POR) | 0    | -    | 1    | 0    | 0    | 0     | 0     | 0     |
| Reset Value (WDT) | 1    | -    | u    | u    | u    | 0     | 0     | 0     |
| Reset Value (LVR) | u    | -    | u    | 1    | u    | 0     | 0     | 0     |
| Reset Value (PIN) | u    | -    | u    | u    | 1    | 0     | 0     | 0     |

| Bit Number | Bit Mnemonic | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7          | WDOF         | <ul> <li>Watch Dog Timer Overflow or OVL Reset Flag</li> <li>Set by hardware when WDT overflow or OVL reset happened, cleared by software or Power On Reset</li> <li>0: Watch Dog not overflows or no OVL reset generated</li> <li>1: Watch Dog overflow or OVL reset occurred</li> </ul>                                                                                                                                                                                                                                                                                                                                                                              |
| 5          | PORF         | Power On Reset Flag<br>Set only by Power On Reset, cleared only by software<br>0: No Power On Reset.<br>1: Power On Reset occurred.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4          | LVRF         | Low Voltage Reset Flag<br>Set only by Low Voltage Reset, cleared by software or Power On Reset<br>0: No Low Voltage Reset occurs<br>1: Low Voltage Reset occurred                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3          | CLRF         | Pin Reset Flag<br>Set only by pin reset, cleared by software or Power On Reset<br>0: No Pin Reset occurs<br>1: Pin Reset occurred                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2-0        | WDT[2:0]     | WDT Overflow period control bit         000: Overflow period minimal value= 4096 ms         001: Overflow period minimal value= 1024 ms         010: Overflow period minimal value= 256 ms         011: Overflow period minimal value = 256 ms         011: Overflow period minimal value = 128 ms         100: Overflow period minimal value = 64ms         101: Overflow period minimal value = 16ms         110: Overflow period minimal value = 4ms         111: Overflow period minimal value = 1ms         Notes: If WDT_OPT is enabled in application, you must clear WatchDog periodically, and the interval must be less than the minimum value listed above. |



### 8.12 CRC verification module

#### 8.12.1 Feature

- Generate CRC check code of the Flash Rom Code, verify the Flash Rom Code whether changed or not
- CRC generator polynomial adopt the CRC-CCITT Standard: X<sup>16</sup>+X<sup>12</sup>+X<sup>5</sup>+1, high bit first
- Two mode: High speed CRC mode and Normal CRC speed mode

To improve the system reliability, the SH79F3283 has one CRC verification module built-in, CRC check code can be used to generate real-time code, using the generation polynomial:  $X^{16}+X^{12}+X^5+1$ , which adopt the CRC-CCITT Standard. Users can use this check code compared with the theory value, whether the changes in Flash content monitoring. The last two byte can be stored in the ROM region of the CRC theoretical value (not involved in CRC check), or other location (such as class EEPROM region, sequence number area user identification code area, etc.)

Set CRCADR[3:0] bits can select the CRC check size, set CRC\_GO bit to 1 to enable CRC module. After CRC check is done, CRC\_GO will be cleared automatically by hardware, and set CRCIF to 1, if interrupt enable bit SCM\_LPD\_CRC and ECRC are both set to 1, the CRC interrupt will generated in CPU, and the interrupt flag CRCIF will be cleared by software.

Normal CRC mode: the time of CPU operating is not influenced by the CRC check operating, but the time of CRC check is long and uncontrollable.

High speed CRC mode: in order to improve the time of CRC check, there is a way which makes CPU into IDLE mode, the time of CRC check will be reduced, and CRC interrupt can wake up IDLE mode.

**Note:** In Power-Down mode, and CRC is operating, this can make the CRC check code incorrectness. So please make sure system not in the Power-Down mode before CRC is done.

#### 8.12.2 Register

 Table 8.44 CRC Control Register

| FDH, Bank0                       | Bit7   | Bit6  | Bit5 | Bit4 | Bit3    | Bit2    | Bit1    | Bit0    |
|----------------------------------|--------|-------|------|------|---------|---------|---------|---------|
| CRCCON                           | CRC_GO | CRCIF | -    | -    | CRCADR3 | CRCADR2 | CRCADR1 | CRCADR0 |
| R/W                              | R/W    |       | -    | -    | R/W     | R/W     | R/W     | R/W     |
| Reset Value<br>(POR/WDT/LVR/PIN) | 0      | 0     | -    | -    | 0       | 0       | 0       | 0       |

| Bit Number | Bit Mnemonic | Description                                                                                                                        |
|------------|--------------|------------------------------------------------------------------------------------------------------------------------------------|
| 7          | CRC_GO       | CRC GO_DONE Control bit<br>0: disable CRC module<br>1: enable CRC module, cleared when CRC check is done                           |
| 6          | CRCIF        | CRC interrupt flag bit<br>0: CRC check is not done, clear by software<br>1: CRC check is done, set by hardware                     |
| 3-0        | CRCADR[3:0]  | CRC Check address bits<br>0000: Check address is 0000 - 07FDH (2K - 2Byte)<br>0001: Check address is 0000 - 0FFDH (4K - 2Byte)<br> |



# Table 8.45 CRC Check Data Register

| 87H                              |       | Bit7     | Bit6                                                                          | Bit5        | Bit4   | Bit3        | Bit2   | Bit1  | Bit0  |  |
|----------------------------------|-------|----------|-------------------------------------------------------------------------------|-------------|--------|-------------|--------|-------|-------|--|
| CRCDL (F9H, Ba                   | ank0) | CRCD7    | CRCD6                                                                         | CRCD5       | CRCD4  | CRCD3       | CRCD2  | CRCD1 | CRCD0 |  |
| CRCDH (FAH, B                    | ank0) | CRCD15   | CRCD14                                                                        | CRCD13      | CRCD12 | CRCD11      | CRCD10 | CRCD9 | CRCD8 |  |
| R/W                              |       | R/W      | R/W                                                                           | R/W         | R/W    | R/W         | R/W    | R/W   | R/W   |  |
| Reset Value<br>(POR/WDT/LVR/PIN) |       | 0        | 0                                                                             | 0 0 0 0 0 0 |        |             |        |       |       |  |
| Bit Number                       | Bit N | Inemonic |                                                                               |             |        | Description |        |       |       |  |
| 7-0                              | CR    | CD[15:0] | CRC check data register<br>CRC Check Code updated when CRC Check is completed |             |        |             |        |       |       |  |

#### Note:

(1) Need a initial value in CRC check data register before CRC enable.

(2) Cannot set CRCADR[3:0] bits and CRCDL/CRCDH when CRC is operating.

(3) The last two bytes in the CRC check region is dropped out of CRC check, so can store the CRC check theoretical value.



#### 8.13 Power Management

#### 8.13.1 Feature

- Two power saving modes: Idle mode and Power-Down mode
- Two ways to exit Idle and Power-Down mode: interrupt and reset

To reduce power consumption, SH79F3283 supplies two power saving modes: Idle mode and Power-Down mode. These two modes are controlled by PCON & SUSLO register.

#### 8.13.2 Idle Mode

In this mode, the clock of CPU is frozen, the program execution is halted, and the CPU will stop at a defined state. But the peripherals continue to be clocked. When entering idle mode, all the CPU status before entering will be preserved. Such as: PSW, PC, SFR & RAM are all retained.

By two consecutive instructions: setting SUSLO register as 0x55, and immediately followed by setting the IDL bit in PCON register, will make SH79F3283 enter Idle mode. If the consecutive instruction sequence requirement is not met, the CPU will clear either SUSLO register or IDL bit in the next machine cycle. And the CPU will not enter Idle mode. The setting of IDL bit will be the last instruction that CPU executed.

There are two ways to exit Idle mode:

- (1) An interrupt generated. After warm-up time, the clock of the CPU will be restored, and the hardware will clear SUSLO register and IDL bit in PCON register. Then the program will execute the interrupt service routine first, and then jumps to the instruction immediately following the instruction that activated Idle mode.
- (2) Reset signal (logic low on the RESET pin, WDT RESET if enabled, LVR RESET if enabled), this will restore the clock of the CPU, the SUSLO register and the IDL bit in PCON register will be cleared by hardware, finally the SH79F3283 will be reset. And the program will execute from address 0000H. The RAM will keep unchanged and the SFR value might be changed according to different function module.

#### 8.13.3 Power-Down Mode

The Power-Down mode places the SH79F3283 in a very low power state.

When single clock signal input (OP\_OSC[3:0] is 0000 or 1110), Power-Down mode will stop all the clocks including CPU and peripherals. When double clock signal input (OP\_OSC[3:0] is 0011, 0110, 1010 or 1101), if system clock is 32.768kHz or 128kHzRC, Power-Down mode will stop all the clocks including CPU and peripherals. If high frequency oscillator is used as system clock, 32.768kHz or 128kHzRC clock used in Timer3 will be opened in Power-Down mode. In Power-Down mode, if WDT is enabled, WDT block will keep on working. When entering Power-Down mode, all the CPU status before entering will be preserved. Such as: PSW, PC, SFR & RAM are all retained.

By two consecutive instructions: setting SUSLO register as 0x55, and immediately followed by setting the PD bit in PCON register, will make SH79F3283 enter Power-Down mode. If the consecutive instruction sequence requirement is not met, the CPU will clear either SUSLO register or PD bit in the next machine cycle. And the CPU will not enter Power-Down mode.

The setting of PD bit will be the last instruction that CPU executed.

**Note:** If IDL bit and PD bit are set simultaneously, the SH79F3283 enters Power-Down mode. The CPU will not go in Idle mode when exiting from Power-Down mode, and the hardware will clear both IDL & PD bit after exit form Power-Down mode. There are three ways to exit the Power-Down mode:

- (1) An active external Interrupt (such as INT2, INT3 & INT4) and LPD interrupt will make SH79F3283 exit Power-Down mode. The oscillator will start after interrupt happens, after warm-up time, the clocks of the CPU and peripheral will be restored, the SUSLO register and PD bit in PCON register will be cleared by hardware. Program execution resumes with the interrupt service routine. After completion of the interrupt service routine, the instructions which jumped to enter Power-Down mode will continue to run.
- (2) Timer3 interrupt will make SH79F3283 exit Power-Down mode when 32.768kHz or 128kHz RC is the clock source. The oscillator will start after interrupt happens, after warm-up time, the clocks of the CPU and peripheral will be restored, the SUSLO register and PD bit in PCON register will be cleared by hardware. Program execution resumes with the interrupt service routine. After completion of the interrupt service routine, the instructions which jumped to enter Power-Down mode will continue to run.
- (3) Reset signal (logic low on the RESET pin, WDT RESET if enabled, LVR RESET if enabled). This will restore the clock of the CPU after warm-up time, the SUSLO register and the PD bit in PCON register will be cleared by hardware, finally the SH79F3283 will be reset. And the program will execute from address 0000H. The RAM will keep unchanged and the SFR value might be changed according to different function module.

Note: In order to entering Idle/Power-Down, it is necessary to add 3 NOPs after setting IDL/PD bit in PCON.



# 8.13.4 Register

 Table 8.46
 Power Control Register

| 87H                              | Bit7 | Bit6  | Bit5   | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|----------------------------------|------|-------|--------|------|------|------|------|------|
| PCON                             | SMOD | SSTAT | SSTAT1 | -    | GF1  | GF0  | PD   | IDL  |
| R/W                              | R/W  | R/W   | R/W    | -    | R/W  | R/W  | R/W  | R/W  |
| Reset Value<br>(POR/WDT/LVR/PIN) | 0    | 0     | 0      | -    | 0    | 0    | 0    | 0    |

| Bit Number | Bit Mnemonic | Description                                                                                                                                   |
|------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 7          | SMOD         | Baud rate double bit                                                                                                                          |
| 6          | SSTAT        | SCON[7:5] function selection bit                                                                                                              |
| 5          | SSTAT1       | SCON1[7:5] function selection bit                                                                                                             |
| 3-2        | GF[1:0]      | General purpose flags for software use                                                                                                        |
| 1          | PD           | Power-Down mode control bit<br>0: Cleared by hardware when an interrupt or reset occurs<br>1: Set by software to activate the Power-Down mode |
| 0          | IDL          | Idle mode control bit<br>0: Cleared by hardware when an interrupt or reset occurs<br>1: Set by software to activate the Idle mode             |

Table 8.47 Suspend Mode Control Register

| 8EH                              | Bit7    | Bit6    | Bit5    | Bit4    | Bit3    | Bit2    | Bit1    | Bit0    |
|----------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|
| SUSLO                            | SUSLO.7 | SUSLO.6 | SUSLO.5 | SUSLO.4 | SUSLO.3 | SUSLO.2 | SUSLO.1 | SUSLO.0 |
| R/W                              | R/W     | R/W     | R/W     | R/W     | R/W     | R/W     | R/W     | R/W     |
| Reset Value<br>(POR/WDT/LVR/PIN) | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |

| Bit Number | Bit Mnemonic | Description                                                                                                                                                                                                                                                     |
|------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7-0        | SUSLO[7:0]   | This register is used to control the CPU enter suspend mode (Idle or Power-Down).<br>Only consecutive instructions like below will make CPU enter suspend mode.<br>Otherwise the SUSLO, IDL or PD bit will be cleared by hardware in the next<br>machine cycle. |

Example

| IDLE_MODE:<br>MOV<br>ORL<br>NOP<br>NOP<br>NOP | SUSLO, #55H<br>PCON, #01H          |
|-----------------------------------------------|------------------------------------|
| POWERDOWN_<br>MOV<br>ORL<br>NOP<br>NOP<br>NOP | MODE:<br>SUSLO, #55H<br>PCON, #02H |



#### 8.14 Warm-up Timer

#### 8.14.1 Feature

- Built-in power on warm-up counter to eliminate unstable state of power on
- Built-in oscillator warm-up counter to eliminate unstable state when oscillation start up

SH79F3283 has a built-in power warm-up counter; it is designed to eliminate unstable state after power on or to do some internal initial operation such as read internal customer code option etc.

SH79F3283 has also a built-in oscillator warm-up counter, it is designed to eliminate unstable state when oscillator starts oscillating in the following conditions: Power-on reset, Pin reset, LVR reset, Watchdog Reset and Wake up from low power consumption mode.

After power-on, SH79F3283 will start power warm-up procedure first, and then oscillator warm-up procedure. Begin to run the program after the overflow.

#### Power Warm-up Time

| Pin F   | en Reset/<br>Reset/<br>age Reset | WDT Reset<br>(Not in Power-Down Mode)<br>WDT Reset<br>(Wakeup from Power-Down<br>Mode) |                 | Wakeup from Power-Do<br>own Mode<br>(Only for interrupt) |                 |            |                 |
|---------|----------------------------------|----------------------------------------------------------------------------------------|-----------------|----------------------------------------------------------|-----------------|------------|-----------------|
| TPWRT** | OSC<br>Warm up*                  | TPWRT**                                                                                | OSC<br>Warm up* | TPWRT**                                                  | OSC<br>Warm up* | TPWRT**    | OSC<br>Warm up* |
| 11ms    | YES                              | pprox1ms                                                                               | NO              | pprox1ms                                                 | YES             | pprox500us | YES             |

#### OSC Warm-up Time

| Option:<br>OP_WMT<br>Oscillator Type | 00                     | 01                     | 10                     | 11                    |  |
|--------------------------------------|------------------------|------------------------|------------------------|-----------------------|--|
| Ceramic/Crystal                      | 2 <sup>17</sup> X Tosc | 2 <sup>14</sup> X Tosc | 2 <sup>11</sup> X Tosc | 2 <sup>8</sup> X Tosc |  |
| 32kHz crystal                        | 2 <sup>13</sup> X Tosc |                        |                        |                       |  |
| Internal RC                          | 2 <sup>7</sup> X Tosc  |                        |                        |                       |  |



## 8.15 Code Option

#### **OP\_WDT**:

0: Enable WDT function (default)1: Disable WDT function

#### **OP\_WDTPD**:

0: Disable WDT function in Power-Down mode (default)

1: Enable WDT function in Power-Down mode

#### OP\_RST:

0: P5.2 used as RST pin (default)

1: P5.2 used as I/O pin

#### OP\_WMT: (unavailable for 32k oscillator or Internal RC)

00: longest warm up time (default)

01: longer warm up time

10: shorter warm up time

11: shortest warm up time

#### OP\_OSC:

0000: Oscillator1 is internal 12M RC, oscillator2 is disabled 0001: Oscillator1 is internal 8M RC, oscillator2 is disabled 0010: Oscillator1 is internal 16M RC, oscillator2 is disabled 0011: Oscillator1 is internal 128k RC, oscillator2 is internal 12M RC 0100: Oscillator1 is internal 128k RC, oscillator2 is internal 8M RC 0110: Oscillator1 is internal 128k RC, oscillator2 is 2M-12M crystal/ceramic oscillator 1010: Oscillator1 is 32.768k crystal oscillator, oscillator2 is internal 12M RC 1011: Oscillator1 is 32.768k crystal oscillator, oscillator2 is internal 12M RC 1011: Oscillator1 is 32.768k crystal oscillator, oscillator2 is internal 8M RC 1101: Oscillator1 is 32.768k crystal oscillator, oscillator2 is internal 8M RC 1101: Oscillator1 is 32.768k crystal oscillator, oscillator2 is 2M-12M crystal/ceramic oscillator 1110: Oscillator1 is 2M-12M crystal/ceramic oscillator, oscillator2 is disabled Others: Oscillator1 is internal 12M RC, oscillator2 is disabled **Note:** No external oscillator pin in 20 PIN package, OP OSC only can be set 0000 and 0011.

# OP\_LVREN:

0: Disable LVR function (default) 1: Enable LVR function

# OP LVRLE:

00: 4.1V LVR level 1 (default) 01: 3.7V LVR level 2 10: 2.8V LVR level 3 11: 2.1V LVR level 4

## OP\_SCM:

0: SCM is invalid in warm up period (default) 1: SCM is valid in warm up period

## **OP\_OSCDRIVE:**

- 011: 8M-16M crystal (default)
- 001: 4M crystal
- 111: 12M ceramic
- 101: 8M ceramic
- 110: 4M ceramic
- 100: 2M ceramic



# OP\_P1DRIVE:

0: Port1 drive ability normal mode (default)1: Port1 drive ability large mode

# OP\_PORTDRIVE: (Except Port3)

0: Port drive ability normal mode (default)

1: Port drive ability large mode

#### OP\_P33-P30:

0: port3 [3:0] sink ability normal mode

1: port3 [3:0] sink ability large mode (default)

#### OP\_P37-P34:

0: port3 [7:4] sink ability large mode (default)

1: port3 [7:4] sink ability normal mode

#### **OP\_MODSW**:

0: when MODSW = 1, LCD/LED count timer continue work

1: when MODSW = 1, LCD/LED count timer stop work, keep the common value, when LCD/LED enable again, continue scan present Common

## **OP\_OSCRFB**:

00: set OSC feedback resister is 2M

- 01: set OSC feedback resister is 1M
- 10: set OSC feedback resister is 500K (default)
- 10: set OSC feedback resister is 300K

# OP\_TF3:

0: TF3 Cleared By Hardware

1: TF3 Cleared By Software



# 9. Instruction Set

| Орсос          | de              | Description                                 | Code      | Byte | Cycle    |
|----------------|-----------------|---------------------------------------------|-----------|------|----------|
| ADD A, Rn      |                 | Add register to accumulator                 | 0x28-0x2F | 1    | 1        |
| ADD A, direct  |                 | Add direct byte to accumulator              | 0x25      | 2    | 2        |
| ADD A, @Ri     |                 | Add indirect RAM to accumulator             | 0x26-0x27 | 1    | 2        |
| ADD A, #data   |                 | Add immediate data to accumulator           | 0x24      | 2    | 2        |
| ADDC A, Rn     |                 | Add register to accumulator with carry flag | 0x38-0x3F | 1    | 1        |
| ADDC A, direct |                 | Add direct byte to A with carry flag        | 0x35      | 2    | 2        |
| ADDC A, @Ri    |                 | Add indirect RAM to A with carry flag       | 0x36-0x37 | 1    | 2        |
| ADDC A, #data  |                 | Add immediate data to A with carry flag     | 0x34      | 2    | 2        |
| SUBB A, Rn     |                 | Subtract register from A with borrow        | 0x98-0x9F | 1    | 1        |
| SUBB A, direct |                 | Subtract direct byte from A with borrow     | 0x95      | 2    | 2        |
| SUBB A, @Ri    |                 | Subtract indirect RAM from A with borrow    | 0x96-0x97 | 1    | 2        |
| SUBB A, #data  |                 | Subtract immediate data from A with borrow  | 0x94      | 2    | 2        |
| INC A          |                 | Increment accumulator                       | 0x04      | 1    | 1        |
| INC Rn         |                 | Increment register                          | 0x08-0x0F | 1    | 2        |
| INC direct     |                 | Increment direct byte                       | 0x05      | 2    | 3        |
| INC @Ri        |                 | Increment indirect RAM                      | 0x06-0x07 | 1    | 3        |
| DEC A          |                 | Decrement accumulator                       | 0x14      | 1    | 1        |
| DEC Rn         |                 | Decrement register                          | 0x18-0x1F | 1    | 2        |
| DEC direct     |                 | Decrement direct byte                       | 0x15      | 2    | 3        |
| DEC @Ri        |                 | Decrement indirect RAM                      | 0x16-0x17 | 1    | 3        |
| INC DPTR       |                 | Increment data pointer                      | 0xA3      | 1    | 4        |
|                | 8 X 8<br>16 X 8 | Multiply A and B                            | 0xA4      | 1    | 11<br>20 |
|                | 8 / 8<br>16 / 8 | Divide A by B                               | 0x84      | 1    | 11<br>20 |
| DA A           |                 | Decimal adjust accumulator                  | 0xD4      | 1    | 1        |



| Opcode            | Description                                | Code      | Byte | Cycle |
|-------------------|--------------------------------------------|-----------|------|-------|
| ANL A, Rn         | AND register to accumulator                | 0x58-0x5F | 1    | 1     |
| ANL A, direct     | AND direct byte to accumulator             | 0x55      | 2    | 2     |
| ANL A, @Ri        | AND indirect RAM to accumulator            | 0x56-0x57 | 1    | 2     |
| ANL A, #data      | AND immediate data to accumulator          | 0x54      | 2    | 2     |
| ANL direct, A     | AND accumulator to direct byte             | 0x52      | 2    | 3     |
| ANL direct, #data | AND immediate data to direct byte          | 0x53      | 3    | 3     |
| ORL A, Rn         | OR register to accumulator                 | 0x48-0x4F | 1    | 1     |
| ORL A, direct     | OR direct byte to accumulator              | 0x45      | 2    | 2     |
| ORL A, @Ri        | OR indirect RAM to accumulator             | 0x46-0x47 | 1    | 2     |
| ORL A, #data      | OR immediate data to accumulator           | 0x44      | 2    | 2     |
| ORL direct, A     | OR accumulator to direct byte              | 0x42      | 2    | 3     |
| ORL direct, #data | OR immediate data to direct byte           | 0x43      | 3    | 3     |
| XRL A, Rn         | Exclusive OR register to accumulator       | 0x68-0x6F | 1    | 1     |
| XRL A, direct     | Exclusive OR direct byte to accumulator    | 0x65      | 2    | 2     |
| XRL A, @Ri        | Exclusive OR indirect RAM to accumulator   | 0x66-0x67 | 1    | 2     |
| XRL A, #data      | Exclusive OR immediate data to accumulator | 0x64      | 2    | 2     |
| XRL direct, A     | Exclusive OR accumulator to direct byte    | 0x62      | 2    | 3     |
| XRL direct, #data | Exclusive OR immediate data to direct byte | 0x63      | 3    | 3     |
| CLR A             | Clear accumulator                          | 0xE4      | 1    | 1     |
| CPL A             | Complement accumulator                     | 0xF4      | 1    | 1     |
| RL A              | Rotate accumulator left                    | 0x23      | 1    | 1     |
| RLC A             | Rotate accumulator left through carry      | 0x33      | 1    | 1     |
| RR A              | Rotate accumulator right                   | 0x03      | 1    | 1     |
| RRC A             | Rotate accumulator right through carry     | 0x13      | 1    | 1     |
| SWAP A            | Swap nibbles within the accumulator        | 0xC4      | 1    | 4     |



| Opcode            | Description                                | Code      | Byte | Cycle |
|-------------------|--------------------------------------------|-----------|------|-------|
| ANL A, Rn         | AND register to accumulator                | 0x58-0x5F | 1    | 1     |
| ANL A, direct     | AND direct byte to accumulator             | 0x55      | 2    | 2     |
| ANL A, @Ri        | AND indirect RAM to accumulator            | 0x56-0x57 | 1    | 2     |
| ANL A, #data      | AND immediate data to accumulator          | 0x54      | 2    | 2     |
| ANL direct, A     | AND accumulator to direct byte             | 0x52      | 2    | 3     |
| ANL direct, #data | AND immediate data to direct byte          | 0x53      | 3    | 3     |
| ORL A, Rn         | OR register to accumulator                 | 0x48-0x4F | 1    | 1     |
| ORL A, direct     | OR direct byte to accumulator              | 0x45      | 2    | 2     |
| ORL A, @Ri        | OR indirect RAM to accumulator             | 0x46-0x47 | 1    | 2     |
| ORL A, #data      | OR immediate data to accumulator           | 0x44      | 2    | 2     |
| ORL direct, A     | OR accumulator to direct byte              | 0x42      | 2    | 3     |
| ORL direct, #data | OR immediate data to direct byte           | 0x43      | 3    | 3     |
| XRL A, Rn         | Exclusive OR register to accumulator       | 0x68-0x6F | 1    | 1     |
| XRL A, direct     | Exclusive OR direct byte to accumulator    | 0x65      | 2    | 2     |
| XRL A, @Ri        | Exclusive OR indirect RAM to accumulator   | 0x66-0x67 | 1    | 2     |
| XRL A, #data      | Exclusive OR immediate data to accumulator | 0x64      | 2    | 2     |
| XRL direct, A     | Exclusive OR accumulator to direct byte    | 0x62      | 2    | 3     |
| XRL direct, #data | Exclusive OR immediate data to direct byte | 0x63      | 3    | 3     |
| CLR A             | Clear accumulator                          | 0xE4      | 1    | 1     |
| CPL A             | Complement accumulator                     | 0xF4      | 1    | 1     |
| RL A              | Rotate accumulator left                    | 0x23      | 1    | 1     |
| RLC A             | Rotate accumulator left through carry      | 0x33      | 1    | 1     |
| RR A              | Rotate accumulator right                   | 0x03      | 1    | 1     |
| RRC A             | Rotate accumulator right through carry     | 0x13      | 1    | 1     |
| SWAP A            | Swap nibbles within the accumulator        | 0xC4      | 1    | 4     |



| Opcode               | Description                                   | Code      | Byte | Cycle |
|----------------------|-----------------------------------------------|-----------|------|-------|
| MOV A, Rn            | Move register to accumulator                  | 0xE8-0xEF | 1    | 1     |
| MOV A, direct        | Move direct byte to accumulator               | 0xE5      | 2    | 2     |
| MOV A, @Ri           | Move indirect RAM to accumulator              | 0xE6-0xE7 | 1    | 2     |
| MOV A, #data         | Move immediate data to accumulator            | 0x74      | 2    | 2     |
| MOV Rn, A            | Move accumulator to register                  | 0xF8-0xFF | 1    | 2     |
| MOV Rn, direct       | Move direct byte to register                  | 0xA8-0xAF | 2    | 3     |
| MOV Rn, #data        | Move immediate data to register               | 0x78-0x7F | 2    | 2     |
| MOV direct, A        | Move accumulator to direct byte               | 0xF5      | 2    | 2     |
| MOV direct, Rn       | Move register to direct byte                  | 0x88-0x8F | 2    | 2     |
| MOV direct1, direct2 | Move direct byte to direct byte               | 0x85      | 3    | 3     |
| MOV direct, @Ri      | Move indirect RAM to direct byte              | 0x86-0x87 | 2    | 3     |
| MOV direct, #data    | Move immediate data to direct byte            | 0x75      | 3    | 3     |
| MOV @Ri, A           | Move accumulator to indirect RAM              | 0xF6-0xF7 | 1    | 2     |
| MOV @Ri, direct      | Move direct byte to indirect RAM              | 0xA6-0xA7 | 2    | 3     |
| MOV @Ri, #data       | Move immediate data to indirect RAM           | 0x76-0x77 | 2    | 2     |
| MOV DPTR, #data16    | Load data pointer with a 16-bit constant      | 0x90      | 3    | 3     |
| MOVC A, @A+DPTR      | Move code byte relative to DPTR to A          | 0x93      | 1    | 7     |
| MOVC A, @A+PC        | Move code byte relative to PC to A            | 0x83      | 1    | 8     |
| MOVX A, @Ri          | Move external RAM (8-bit address) to A        | 0xE2-0xE3 | 1    | 5     |
| MOVX A, @DPTR        | Move external RAM (16-bit address) to A       | 0xE0      | 1    | 6     |
| MOVX @Ri, A          | Move A to external RAM (8-bit address)        | 0xF2-F3   | 1    | 4     |
| MOVX @DPTR, A        | Move A to external RAM (16-bit address)       | 0xF0      | 1    | 5     |
| PUSH direct          | Push direct byte onto stack                   | 0xC0      | 2    | 5     |
| POP direct           | Pop direct byte from stack                    | 0xD0      | 2    | 4     |
| XCH A, Rn            | Exchange register with accumulator            | 0xC8-0xCF | 1    | 3     |
| XCH A, direct        | Exchange direct byte with accumulator         | 0xC5      | 2    | 4     |
| XCH A, @Ri           | Exchange indirect RAM with accumulator        | 0xC6-0xC7 | 1    | 4     |
| XCHD A, @Ri          | Exchange low-order nibble indirect RAM with A | 0xD6-0xD7 | 1    | 4     |



| Instructio                 | ons                       | Description                                     | Code      | Byte | Cycle  |
|----------------------------|---------------------------|-------------------------------------------------|-----------|------|--------|
| ACALL addr11               |                           | Absolute subroutine call                        | 0x11-0xF1 | 2    | 7      |
| LCALL addr16               |                           | Long subroutine call                            | 0x12      | 3    | 7      |
| RET                        |                           | Return from subroutine                          | 0x22      | 1    | 8      |
| RETI                       |                           | Return from interrupt                           | 0x32      | 1    | 8      |
| AJMP addr11                |                           | Absolute jump                                   | 0x01-0xE1 | 2    | 4      |
| LJMP addr16                |                           | Long jump                                       | 0x02      | 3    | 5      |
| SJMP rel                   |                           | Short jump (relative address)                   | 0x80      | 2    | 4      |
| JMP @A+DPTR                |                           | Jump indirect relative to the DPTR              | 0x73      | 1    | 6      |
| JZ rel<br>(not taken)      |                           | Jump if accumulator is zero                     | 0x60      | 2    | 3<br>5 |
| JNZ rel<br>(not taken)     |                           | Jump if accumulator is not zero                 | 0x70      | 2    | 3<br>5 |
| JC rel<br>(not taken)      |                           | Jump if carry flag is set                       | 0x40      | 2    | 2<br>4 |
| JNC rel<br>(not taken)     |                           | Jump if carry flag is not set                   | 0x50      | 2    | 2<br>4 |
| JB bit, rel<br>(not taken) |                           | Jump if direct bit is set                       | 0x20      | 3    | 4<br>6 |
| JNB bit, rel               | (not taken)<br>(taken)    | Jump if direct bit is not set                   | 0x30      | 3    | 4<br>6 |
| JBC bit, rel               | (not taken)<br>(taken)    | Jump if direct bit is set and clear bit         | 0x10      | 3    | 4<br>6 |
| CJNE A, direct, rel        | (not taken)<br>(taken)    | Compare direct byte to A and jump if not equal  | 0xB5      | 3    | 4<br>6 |
| CJNE A, #data, rel         | (not taken)<br>(taken)    | Compare immediate to A and jump if not equal    | 0xB4      | 3    | 4<br>6 |
| CJNE Rn, #data, rel        | (not taken)<br>(taken)    | Compare immediate to reg. and jump if not equal | 0xB8-0xBF | 3    | 4<br>6 |
| CJNE @Ri, #data, re        | el (not taken)<br>(taken) | Compare immediate to Ri and jump if not equal   | 0xB6-0xB7 | 3    | 4<br>6 |
| DJNZ Rn, rel               | (not taken)<br>(taken)    | Decrement register and jump if not zero         | 0xD8-0xDF | 2    | 3<br>5 |
| DJNZ direct, rel           | (not taken)<br>(taken)    | Decrement direct byte and jump if not zero      | 0xD5      | 3    | 4<br>6 |
| NOP                        |                           | No operation                                    | 0         | 1    | 1      |



| Opcode      | Description                           | Code | Byte | Cycle |
|-------------|---------------------------------------|------|------|-------|
| CLR C       | Clear carry flag                      | 0xC3 | 1    | 1     |
| CLR bit     | Clear direct bit                      | 0xC2 | 2    | 3     |
| SETB C      | Set carry flag                        | 0xD3 | 1    | 1     |
| SETB bit    | Set direct bit                        | 0xD2 | 2    | 3     |
| CPL C       | Complement carry flag                 | 0xB3 | 1    | 1     |
| CPL bit     | Complement direct bit                 | 0xB2 | 2    | 3     |
| ANL C, bit  | AND direct bit to carry flag          | 0x82 | 2    | 2     |
| ANL C, /bit | AND complement of direct bit to carry | 0xB0 | 2    | 2     |
| ORL C, bit  | OR direct bit to carry flag           | 0x72 | 2    | 2     |
| ORL C, /bit | OR complement of direct bit to carry  | 0xA0 | 2    | 2     |
| MOV C, bit  | Move direct bit to carry flag         | 0xA2 | 2    | 2     |
| MOV bit, C  | Move carry flag to direct bit         | 0x92 | 2    | 3     |



## **10. Electrical Characteristics**

| Absolute | Maximum | Ratings* |
|----------|---------|----------|
|----------|---------|----------|

| DC Supply Voltage                                                   |  |
|---------------------------------------------------------------------|--|
| Input/Output Voltage GND-0.3V to $V_{\text{DD}}\text{+}0.3\text{V}$ |  |
| Operating Ambient Temperature40 $^\circ\!C$ to +85 $^\circ\!C$      |  |
| Storage Temperature                                                 |  |
| FLASH write/erase operating 0°C to +85°C                            |  |

## \*Comments

Stresses exceed those listed under "**Absolute Maximum Ratings**" may cause permanent damage to this device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied or intended. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability.

**DC Electrical Characteristics** ( $V_{DD}$  = 2.0V - 5.5V, GND = 0V,  $T_A$  = +25°C, unless otherwise specified)

| Parameter         | Symbol           | Min. | Typ.* | Max. | Unit | Condition                                                                                                                                                                                                                    |
|-------------------|------------------|------|-------|------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Operating Voltage | $V_{\text{DD}}$  | 2.0  | 5.0   | 5.5  | V    | 32.768kHz or 2MHz $\leq f_{OSC} \leq 16 MHz$                                                                                                                                                                                 |
| Operating Current | I <sub>OP</sub>  | -    | 5     | 10   | mA   | $f_{OSC} = 12MHz$ , $V_{DD} = 5.0V$<br>All output pins unload (including all digital input<br>pins unfloating)<br>CPU on (execute NOP instruction), WDT on, all<br>other function block off                                  |
| Operating Current | I <sub>OP2</sub> | -    | 25    | 35   | μΑ   | $f_{OSC}$ = 128kHz, OSCX off, $V_{DD}$ = 5.0V<br>All output pins unload (including all digital input<br>pins unfloating)<br>CPU on (execute NOP instruction), LVR off, WDT<br>off, all other function block off              |
| Stand by Current  | I <sub>SB1</sub> | -    | 3     | 5    | mA   | $f_{OSC}$ = 12MHz, $V_{DD}$ = 5.0V<br>All output pins unload, CPU off (IDLE),<br>all digital input pins unfloating<br>LVR on, WDT off, LCD on, all other function block off                                                  |
| (IDLE)            | I <sub>SB2</sub> | -    | 15    | 25   | μΑ   | $f_{OSC}$ = 128kHz, OSCX off, $V_{DD}$ = 5.0V<br>All output pins unload (including all digital input<br>pins unfloating) (IDLE MODE)<br>LVR on, WDT off, CRC off, LCD off, all other<br>function block off                   |
| Stand by Current  | I <sub>SB3</sub> | -    | 2     | 6    | μΑ   | Osc off, $V_{DD} = 5.0V$<br>All output pins unload (including all digital input<br>pins unfloating)<br>CPU off (Power-Down),<br>LVR on, WDT off, CRC off, LCD off, all other<br>function block off                           |
| (Power-Down)      | I <sub>SB4</sub> | -    | 4     | 15   | μΑ   | $f_{OSC} = 32.768$ kHz, OSCX off, $V_{DD} = 5.0$ V<br>All output pins unload (including all digital input<br>pins unfloating)<br>CPU off (Power-Down),<br>LVR on, WDT off, CRC off, LCD off, all other<br>function block off |
| WDT Current       | I <sub>WDT</sub> | -    | 1     | 3    | μA   | All output pins unload, WDT on, $V_{DD} = 5.0V$                                                                                                                                                                              |
| LCD Current       | I <sub>LCD</sub> | -    | 6     | 7    | μA   | Traditional bias resistance mode, $V_{DD} = 5V$<br>300k $\Omega$ LCD bias resister, contrast[3:0] = 1111                                                                                                                     |
| LPD Current       | I <sub>LPD</sub> | -    | -     | 1    | μΑ   | V <sub>DD</sub> = 2.0 - 5.5V                                                                                                                                                                                                 |

(to be continued)



# (continue)

| Input Low Voltage 1                         | $V_{IL1}$        | GND                   | -   | $0.3 \ X \ V_{DD}$    | V  | I/O Ports                                                                                                       |
|---------------------------------------------|------------------|-----------------------|-----|-----------------------|----|-----------------------------------------------------------------------------------------------------------------|
| Input High Voltage 1                        | $V_{\text{IH1}}$ | $0.7 \ X \ V_{DD}$    | -   | $V_{DD}$              | V  | I/O Ports                                                                                                       |
| Input Low Voltage 2                         | $V_{\text{IL2}}$ | GND                   | -   | 0.2 X V <sub>DD</sub> | V  | RST, T2, T3, T4, INT0/1/2/3/4, T2EX, RXD0,<br>RXD1, FLT, V <sub>DD</sub> = 2.4 - 5.5V                           |
| Input High Voltage 2                        | $V_{\text{IH2}}$ | 0.8 X V <sub>DD</sub> | -   | $V_{\text{DD}}$       | V  | $\overline{\text{RST}}$ , T2, T3, T4, INT0/1/2/3/4, T2EX, RXD0, RXD1, FLT, V <sub>DD</sub> = 2.4 - 5.5V         |
| Input Leakage Current                       | I <sub>IL</sub>  | -1                    | -   | 1                     | μΑ | Input pin, $V_{IN} = V_{DD}$ or GND                                                                             |
| output Leakage Current                      | I <sub>OL</sub>  | -1                    | -   | 1                     | μA | Open-drain output, $V_{DD} = 5.0V$<br>$V_{OUT} = V_{DD}$ or GND                                                 |
| Reset pin pull-up resistor                  | $R_{RPH}$        | -                     | 30  | -                     | kΩ | $V_{DD}$ = 5.0V, $V_{IN}$ = GND                                                                                 |
| Pull-up resistor                            | $R_{PH}$         | -                     | 30  | -                     | kΩ | $V_{DD}$ = 5.0V, $V_{IN}$ = GND                                                                                 |
| Output High Voltage 1                       | $V_{OH1}$        | V <sub>DD</sub> - 0.7 | -   | -                     | V  | I/O Ports (P0, P2-P5), $I_{OH}$ = -10mA, $V_{DD}$ = 5.0V<br>Select Port drive ability normal mode (Code Option) |
| Output High Voltage 2                       | $V_{OH2}$        | V <sub>DD</sub> - 0.7 | -   | -                     | V  | I/O Ports (P0, P2-P5), $I_{OH}$ = -18mA, $V_{DD}$ = 5.0V<br>Select Port drive ability large mode (Code Option)  |
| Output High Voltage 3                       | V <sub>OH3</sub> | V <sub>DD</sub> - 0.7 | -   | -                     | V  | I/O Ports (P1), $I_{OH}$ = -10mA, $V_{DD}$ = 5.0V<br>Select Port1 drive ability normal mode (Code Option)       |
| Output High Voltage 4                       | V <sub>OH4</sub> | V <sub>DD</sub> - 0.7 | -   | -                     | V  | I/O Ports (P1), $I_{OH}$ = -18mA, $V_{DD}$ = 5.0V<br>Select Port1 drive ability large mode (Code Option)        |
| Output Low Voltage1                         | V <sub>OL1</sub> | -                     | -   | GND + 0.6             | V  | I/O Ports (P0, P1, P2, P4, P5)<br>I <sub>OL</sub> = 15mA, V <sub>DD</sub> = 5.0V                                |
| Output Low Voltage2                         | $V_{OL2}$        | -                     | -   | GND + 0.6             | V  | I/O Ports (P3), $I_{OL}$ = 15mA, $V_{DD}$ = 5.0V<br>Select Port3 drive ability normal mode (Code Option)        |
| large drive port sink<br>current capability | I <sub>OL</sub>  | 120                   | 140 | -                     | mA | I/O Ports (P3), $V_{DD}$ = 5.0V, $V_{OL}$ = GND + 1.5V<br>Select Port3 drive ability large mode (Code Option)   |
| LCD output resister                         | R <sub>ON</sub>  | -                     | 5   | -                     | kΩ | SEG1 - 28, COM1 - 8, $V_{DD}$ = 3.6V - 5.0V<br>The voltage variation of V1, V2, V3 is less than 0.2V            |

#### Note:

(1) "\*" Indicates that the typical value is measured at 5.0V, 25°C, unless otherwise noted.

(2) Maximum current value flowing through  $V_{DD}$  5.0V, 25°C must be less than 150mA.

(3) Maximum current value flowing through GND 5.0V, 25°C must be less than 200mA.



| Parameter                                            | Symbol            | Min.  | Тур. | Max.      | Unit            | Condition                                          |
|------------------------------------------------------|-------------------|-------|------|-----------|-----------------|----------------------------------------------------|
| Supply Voltage                                       | V <sub>AD</sub>   | 2.5   | 3    | 5.5       | V               |                                                    |
| Resolution                                           | N <sub>R</sub>    | -     | 12   | -         | bit             | $GND \leq V_{AIN} \leq V_{REF}$                    |
| A/D Input Voltage                                    | V <sub>AIN</sub>  | GND   | -    | $V_{REF}$ | V               |                                                    |
| A/D Input Resistor*                                  | R <sub>AIN</sub>  | 2     | -    | -         | MΩ              | V <sub>IN</sub> = 5.0V                             |
| Recommended<br>impedance of analog<br>voltage source | Z <sub>AIN</sub>  | -     | -    | 10        | kΩ              |                                                    |
| A/D conversion current                               | I <sub>AD</sub>   | -     | 1    | 3         | mA              | ADC module operating, $V_{DD} = 5.0V$              |
| A/D Input current                                    | I <sub>ADIN</sub> | -     | -    | 10        | μA              | $V_{DD} = 5.0 V$                                   |
| Differential linearity error                         | D <sub>LE</sub>   |       | -    | ±1        | LSB             | $f_{OSC} = 12MHz, V_{DD} = 5.0V$                   |
| Integral linearity error                             | ILE               | -     | -    | ±2        | LSB             | $f_{OSC} = 12MHz, V_{DD} = 5.0V$                   |
| Full scale error                                     | E <sub>F</sub>    | -     | ±1   | ±8        | LSB             | $f_{OSC} = 12MHz, V_{DD} = 5.0V$                   |
| Offset error                                         | Ez                | -     | ±0.5 | ±8        | LSB             | $f_{OSC} = 12MHz, V_{DD} = 5.0V$                   |
| Total Absolute error                                 | E <sub>AD</sub>   | -     | -    |           | LSB             | $f_{OSC} = 12MHz, V_{DD} = 5.0V$                   |
| Total Conversion time**                              | T <sub>CON</sub>  | 16    | -    | -         | t <sub>AD</sub> | 12 bit Resolution, $V_{DD}$ = 5.0V, $t_{AD}$ = 1µs |
| Internal reference                                   | VADREF            | 1.225 | 1.25 | 1.275     | V               | ±2%, T <sub>A</sub> = +25°C                        |

A/D Converter Electrical Characteristics (V<sub>DD</sub> = 5V, GND = 0V, T<sub>A</sub> = 25°C, unless otherwise specified)

## Note:

(1) "\*" Here the A/D input Resistor is the DC input-resistance of A/D itself.

(2) "\*\*" Recommendations ADC connected signal source resistance of less than  $10k\Omega$ 

| Parameter                   | Symbol             | Min. | Тур. | Max. | Unit | Condition                                                                                         |
|-----------------------------|--------------------|------|------|------|------|---------------------------------------------------------------------------------------------------|
| Oscillator start time       | T <sub>OSC</sub>   | -    | -    | 1    | s    | $f_{OSC} = 32.768 \text{kHz}$                                                                     |
| Oscillator start time       | T <sub>OSC</sub>   | -    | 1    | 2    | ms   | $f_{OSC} = 12MHz$                                                                                 |
| RESET pulse width           | t <sub>RESET</sub> | 10   | -    | -    | μs   |                                                                                                   |
| WDT RC Frequency            | $f_{WDT}$          | -    | 2    | 3    | kHz  |                                                                                                   |
|                             |                    | -    | -    | ±1   | %    | RC oscillator:<br> F - 12MHz /12MHz<br>( $V_{DD}$ = 2.0 - 5.0V, $T_A$ = +25°C)                    |
| Frequency Stability<br>(RC) | ∆ F /F             | -    | -    | ±2   | %    | RC oscillator:<br> F - 12MHz /12MHz<br>$(V_{DD} = 2.0 - 5.0V, T_A = -40^{\circ}C - +85^{\circ}C)$ |
|                             |                    | -    | -    | ±2   | %    | RC oscillator:<br> F - 128kHz /128kHz<br>$(V_{DD} = 2.0 - 5.0V, T_A = 25^{\circ}C)$               |



| Parameter                     | Symbol             | Min. | Тур. | Max. | Unit | Condition                          |
|-------------------------------|--------------------|------|------|------|------|------------------------------------|
| LVR Voltage1                  | V <sub>LVR1</sub>  | 4.0  | 4.1  | 4.2  | V    | LVR Enable, $V_{DD} = 2.0V - 5.5V$ |
| LVR Voltage2                  | $V_{LVR2}$         | 3.6  | 3.7  | 3.8  | V    | LVR Enable, $V_{DD} = 2.0V - 5.5V$ |
| LVR Voltage3                  | $V_{LVR3}$         | 2.7  | 2.8  | 2.9  | V    | LVR Enable, $V_{DD} = 2.0V - 5.5V$ |
| LVR Voltage4                  | $V_{LVR4}$         | 2.0  | 2.1  | 2.2  | V    | LVR Enable, $V_{DD} = 2.0V - 5.5V$ |
| LVR Schmidt trigger           | $V_{\text{SMTLV}}$ | -    | 50   | -    | mV   |                                    |
| Drop-Down Pulse Width for LVR | $T_{LVR}$          | -    | 60   | -    | μS   |                                    |

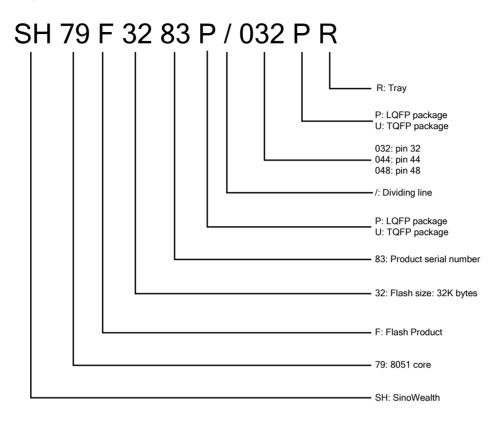
# Low Voltage Reset Electrical Characteristics (V<sub>DD</sub> = 2.0V - 5.5V, GND = 0V, T<sub>A</sub> = +25°C, unless otherwise specified)

## 12MHz Crystal Electrical Characteristics

| Parameter | Symbol           | Min. | Тур. | Max. | Unit | Condition |
|-----------|------------------|------|------|------|------|-----------|
| Frequency | F <sub>12M</sub> | -    | 12   | -    | MHz  |           |
| Capacitor | CL               | -    | 12.5 | -    | pF   |           |

# 32.768kHz crystal Electrical Characteristics

| Parameter | Symbol           | Min. | Тур.  | Max. | Unit | Condition |
|-----------|------------------|------|-------|------|------|-----------|
| Frequency | F <sub>32k</sub> | -    | 32768 | -    | Hz   |           |
| Capacitor | CL               | -    | 12.5  | -    | pF   |           |

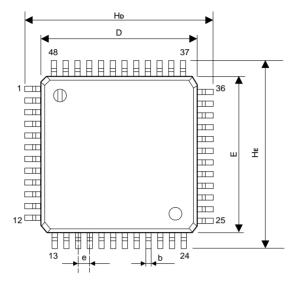


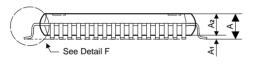

# 11 Ordering Information

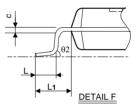
| Part No.         | Package |
|------------------|---------|
| SH79F3283P/032PR | LQFP32  |
| SH79F3283P/044PR | LQFP44  |
| SH79F3283U/048UR | TQFP48  |



# 12 Product Naming Rules





# 13 Package Information

# **TQFP48 Outline Dimensions**

unit: inch/mm





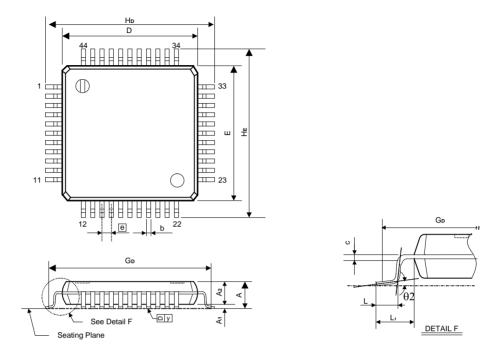


| Symbol         | Dimension | s in inches | Dimensio | ns in mm |
|----------------|-----------|-------------|----------|----------|
| Symbol         | MIN       | MAX         | MIN      | MAX      |
| А              |           | 0.047       |          | 1.2      |
| A1             | 0.002     | 0.006       | 0.05     | 0.15     |
| A2             | 0.035     | 0.041       | 0.9      | 1.05     |
| D              | 0.270     | 0.281       | 6.85     | 7.15     |
| E              | 0.270     | 0.281       | 6.85     | 7.15     |
| H <sub>D</sub> | 0.346     | 0.362       | 8.8      | 9.2      |
| H <sub>E</sub> | 0.346     | 0.362       | 8.8      | 9.2      |
| b              | 0.005     | 0.011       | 0.15     | 0.27     |
| е              | 0.020     | TYP         | 0.500    | TYP      |
| с              | 0.004     | 0.008       | 0.090    | 0.200    |
| L              | 0.018     | 0.030       | 0.45     | 0.75     |
| L1             | 0.033     | 0.045       | 0.85     | 1.15     |
| θ2             | 0°        | 10°         | 0°       | 10°      |

# Notice:

(1) Both package length and width do not include mold flash.

(2) Tolerance is ±0.1mm if not specified.


(3) Coplanarity: 0.1mm max.

(4) Controlling dimension: mm.

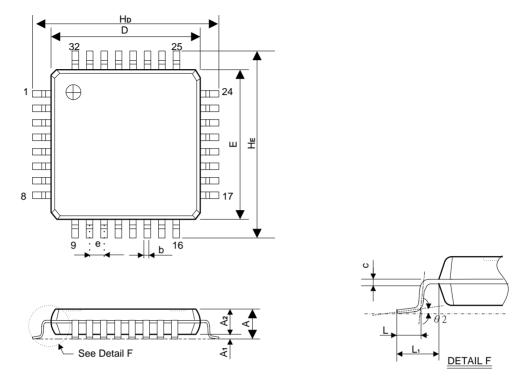


# LQFP 44 Outline Dimensions (BODY SIZE: 10\*10)

unit: inch/mm



| Symbol         | Dimension | s in inches | Dimensio | ns in mm |  |
|----------------|-----------|-------------|----------|----------|--|
| Symbol         | MIN       | MAX         | MIN      | MAX      |  |
| A              | 0.057     | 0.065       | 1.45     | 1.65     |  |
| A1             | 0.000     | 0.001       | 0.01     | 0.21     |  |
| A2             | 0.051     | 0.059       | 1.3      | 1.5      |  |
| D              | 0.388     | 0.400       | 9.85     | 10.15    |  |
| E              | 0.388     | 0.400       | 9.85     | 10.15    |  |
| H <sub>D</sub> | 0.465     | 0.480       | 11.8     | 12.2     |  |
| H <sub>E</sub> | 0.465     | 0.480       | 11.8     | 12.2     |  |
| b              | 0.010     | 0.018       | 0.25     | 0.45     |  |
| е              | 0.031     | TYP         | 0.8 TYP  |          |  |
| С              | 0.004     | 0.008       | 0.09     | 0.20     |  |
| L              | 0.017     | 0.031       | 0.42     | 0.78     |  |
| L1             | 0.037     | 0.045       | 0.95     | 1.15     |  |
| θ2             | 0 °       | 10°         | 0°       | 10°      |  |


#### Notice:

Both package length and width do not include mold flash.
 Tolerance is ±0.1mm if not specified.
 Coplanarity: 0.1mm max.
 Controlling dimension: mm.



# LQFP32 Outline Dimensions

unit: inch/mm



| Symbol         | Dimension | s in inches | Dimensio | ns in mm |  |
|----------------|-----------|-------------|----------|----------|--|
| Symbol         | MIN       | MAX         | MIN      | MAX      |  |
| А              | 0.057     | 0.065       | 1.45     | 1.65     |  |
| A1             | 0.000     | 0.008       | 0.01     | 0.21     |  |
| A2             | 0.051     | 0.059       | 1.30     | 1.50     |  |
| D              | 0.268     | 0.281       | 6.80     | 7.15     |  |
| E              | 0.268     | 0.281       | 6.80     | 7.15     |  |
| H <sub>D</sub> | 0.346     | 0.362       | 8.80     | 9.20     |  |
| HE             | 0.346     | 0.362       | 8.80     | 9.20     |  |
| b              | 0.010     | 0.018       | 0.25     | 0.45     |  |
| е              | 0.031     | TYP         | 0.8TYP   |          |  |
| С              | 0.004     | 0.008       | 0.09     | 0.20     |  |
| L              | 0.016     | 0.031       | 0.40     | 0.78     |  |
| L1             | 0.035     | 0.043       | 0.90     | 1.10     |  |
| θ2             | 0 °       | 10°         | 0°       | 10°      |  |

# Notice:

Both package length and width do not include mold flash.
 Tolerance is ±0.1mm if not specified.
 Coplanarity: 0.1mm max.
 Controlling dimension: mm.



# 14 Product SPEC. Change Notice

| Version | Content  | Date      |
|---------|----------|-----------|
| 2.0     | Original | Jun. 2021 |



# **IMPORTANT NOTICE**

This manual is the property of Sino Wealth Electronic Ltd. and its affiliates ("Company"). This manual, including all of the Company's products ("Products") described herein, is owned by the Company according to relevant laws or treaties. The Company reserves all rights under such laws and treaties, and does not grant you any license to use its patents, copyrights, trademarks and other intellectual property rights.

Any technical information in this manual, including functional descriptions and schematic diagrams, shall not be construed as a license to use or exercise any intellectual property rights. The names and brands (if any) of the relevant third parties are quoted in this manual are the property of their respective owners, for identification purposes only.

The Company does not make any warranty, expressed or implied, about this manual or any Product, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. The Company shall not be liable for any use of any of Product described in this manual out of its specifications or the Company's standard. Except for the special Products specified in the applicable agreement, the Products are designed, developed and manufactured for general commercial, industrial, personal and/or domestic applications only. In particular, the Products are prohibited to be used in following fields, such as military, national defense, nuclear energy, medical treatment and others that may cause personal injury, death or environmental damage. Users shall take all actions to ensure that the Products are used and sold in accordance with applicable laws and regulations.

The failure or malfunction of semiconductor products may occur. Users of the Products should therefore give thorough consideration to safety design, including redundancy, fire-prevention measures and etc., to prevent any accidents, fire or community damage that may ensue. Especially, the reference application circuit is not guaranteed to be suitable for the specific application of mass production.

In the event that users breach the above statement, the Company shall not be liable in whole or in part, and users shall hereby release the Company and its -agents and/or distributors from any claim, damage or other liability; At the same time, users shall indemnify the Company and its agents and/or distributors against all claims, costs, damages and other liabilities, including claims for personal injury or death, arising out of any unintended use of the Product.

The information in this manual is related to the Product only. The Company reserves the right to make changes, modifications or improvements to this manual, the Products and services described herein at any time without prior notice. Users are advised to contact our sales department before purchase.

The Company has the final right to interpret this manual.



| Content  |                                    |    |
|----------|------------------------------------|----|
| 1.       | FEATURES                           |    |
| 2.       | GENERAL DESCRIPTION                |    |
| 3.       | BLOCK DIAGRAM                      |    |
| 4.       | PIN CONFIGURATION                  |    |
| 4.1 TOF  | FP48                               |    |
| 4.2 LQF  | FP44                               |    |
| 4.3 LQF  | FP32                               |    |
| 5.       | PIN DESCRIPTION                    |    |
| 6.       | SFR MAPPING                        | 10 |
| 7.       | NORMAL FUNCTION                    | 21 |
|          | J                                  |    |
| 7.1.1    | CPU Core SFR                       |    |
|          | Enhanced CPU core SFRs             |    |
|          | Register                           |    |
|          | М                                  |    |
|          | Features                           |    |
|          | Register                           |    |
|          | SH PROGRAM MEMORY                  |    |
|          | Features                           |    |
|          | Flash Operation in ICP Mode        |    |
|          | PFUNCTION                          |    |
|          | Register                           |    |
|          | Flash Control Flow                 |    |
|          | SSP Programming Notice             |    |
|          | TEM CLOCK AND OSCILLATOR           |    |
|          | Features                           |    |
|          | Clock Definition                   |    |
|          | Description                        |    |
|          | Register<br>Oscillator Type        |    |
|          | Capacitor Selection for Oscillator |    |
|          | TEM CLOCK MONITOR (SCM)            |    |
|          | PORT                               |    |
|          | Features                           |    |
|          | Register                           |    |
|          | Port Diagram                       |    |
|          | Port Share                         |    |
|          | ER                                 |    |
|          | Features                           |    |
|          | Timer2                             |    |
|          | 1 Timer3                           |    |
| 7.8.4    | ' Timer4                           |    |
| 7.8.5    | Timer5                             |    |
| 7.9 Inte | ERRUPT                             |    |
| 7.9.1    | Feature                            |    |
| 7.9.2    | Interrupt Enable Control           |    |
| 7.9.3    | Register                           |    |
|          | Interrupt Flag                     |    |
| 7.9.5    | Interrupt Vector                   |    |
|          | Interrupt Priority                 |    |
|          | ' Interrupt Handling               |    |
|          | Interrupt Response Time            |    |
|          | External Interrupt Inputs          |    |
|          | 0 Interrupt Summary                |    |
| 8.       | ENHANCED FUNCTION                  |    |
|          | D DRIVER                           |    |
|          | Register                           |    |
|          | Configuration of LCD RAM           |    |
|          | D DRIVER                           |    |
|          | Register                           |    |
| 0.2.2    | Configuration of LED RAM           |    |



| 8.3 | 12-BIT PWM0 (PULSE WIDTH MODULATION)               | 82   |
|-----|----------------------------------------------------|------|
|     | 3.3.1 Feature                                      |      |
|     | 3.3.2 PWM Module Enable                            | 82   |
|     | 3.3.3 PWM Timer Lock Register                      | 82   |
|     | 3.3.4 12-bit PWM Timer                             | . 83 |
|     | B.3.5 PWM01x (x = A, B, C)                         | 85   |
|     | 3.3.6 Dead time                                    | 86   |
| 8.4 | 12-BIT PWM1 (PULSE WIDTH MODULATION)               | 87   |
|     | 3.4.1 Feature                                      |      |
|     | 3.4.2 Register                                     | . 87 |
| 8.5 | EUART                                              | 90   |
|     | 3.5.1 Feature                                      | 90   |
|     | 3.5.2 EUARTO                                       | 90   |
|     | 3.5.3 EUART1                                       |      |
|     | 3.5.4 Register                                     |      |
| 8.6 | SERIAL PERIPHERAL INTERFACE (SPI)                  | 102  |
|     | 3.6.1 Features                                     |      |
|     | 3.6.2 Signal Description                           | 102  |
|     | 3.6.3 Baud Rate                                    |      |
|     | 3.6.4 Functional Description                       | 103  |
|     | 3.6.5 Operating Modes                              | 104  |
|     | 8.6.6 Transmission Formats                         | 106  |
|     | 3.6.7 Error Conditions                             |      |
|     | 3.6.8 Interrupts                                   |      |
|     | 3.6.9 Registers                                    |      |
| 8.7 | ANALOG DIGITAL CONVERTER (ADC)                     | 110  |
|     | 3.7.1 Feature                                      |      |
|     | 8.7.2 ADC Diagram                                  | 110  |
|     | 3.7.3 Register                                     |      |
|     | BUZZER                                             |      |
|     | 3.8.1 Feature                                      |      |
|     | 3.8.2 Register                                     |      |
|     | Low Power Detect (LPD)                             |      |
|     | 8.9.1 Feature                                      |      |
|     | 3.9.2 Register                                     |      |
|     | 0 LOW VOLTAGE RESET (LVR)                          |      |
|     | 3.10.1 Feature                                     |      |
| 8.1 | 1 WATCHDOG TIMER (WDT) AND RESET STATE             | 118  |
|     | 3.11.1 Feature                                     |      |
|     | 8.11.2 Register                                    |      |
|     | 2 CRC VERIFICATION MODULE                          |      |
|     | 8.12.1 Feature                                     |      |
|     | 8.12.2 Register                                    |      |
|     | 3 POWER MANAGEMENT                                 |      |
|     | 8.13.1 Feature                                     |      |
|     | 8.13.2 Idle Mode                                   |      |
|     | 8.13.3 Power-Down Mode                             |      |
|     | 8.13.4 Register                                    |      |
|     | 4 WARM-UP TIMER                                    |      |
|     | 8.14.1 Feature                                     |      |
|     | 5 CODE OPTION                                      |      |
| 9.  |                                                    |      |
| 10. |                                                    |      |
| 11  |                                                    |      |
| 12  | PRODUCT NAMING RULES                               |      |
| 13  | PACKAGE INFORMATION<br>PRODUCT SPEC. CHANGE NOTICE | 100  |
| 14  |                                                    | 141  |