

SANYO Semiconductors DATA SHEET

LA4636

For General Audio Use 11W 2-Channel BTL AF Power Amplifier

Overview

The LA4636 is a BTL power amplifier that is pin-compatible with the LA4635A and LA4635B single-end power amplifier. It represents a new concept in devices of this type by allowing design editing based on common circuit board pin compatibility for products of different power ranks. The LA4636 also incorporates several protection circuits.

Specifications

Maximum Ratings at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max	No signal	24	V
Maximum output current	I _O peak	Per channel	2.5	Α
Allowable power dissipation	Pd max	Infinite heat sink	25	W
Operating temperature	Topr		-20 to +75	°C
Storage temperature	Tstg		-40 to +150	°C

Operating Conditions at $Ta = 25^{\circ}C$

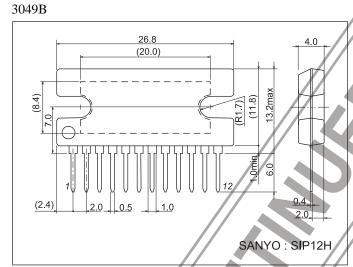
Parameter	Symbol	Conditions	Ratings	Unit
Recommended supply voltage	Vcc		12	V
Recommended load resistance	R _L op		4 to 8	Ω
Allowable operating voltage range	V _{CC} op	$R_L = 8\Omega$	5.5 to 20	V
*1		$R_L = 6\Omega$	5.5 to 17	V
		$R_L = 4\Omega$	5.5 to 13	V

Set V_{CC}, R_L, and output level such that Pd max. is not exceeded for the size of heat sink used.

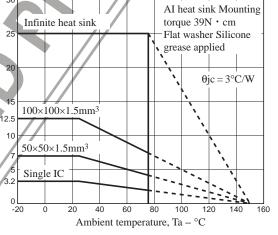
- Any and all "ANYC Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application" intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office requipment, industrial equipment etc.). The products mentioned herein shall not be intended in use or any "special application" (medical equipment whose purpose is to sustain life, aerospace instructors, repeat control device, burning appliances, transportation machine, traffic signal system, safety extended to the shall require extremely high level of reliability and can directly threaten human lives in case a failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee the reof. You should intend to use our products for applications outside the standard applications of our custor, if who is considering such use and/or outside the scope of our intended standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

SANYO Semiconductor Co., Ltd.

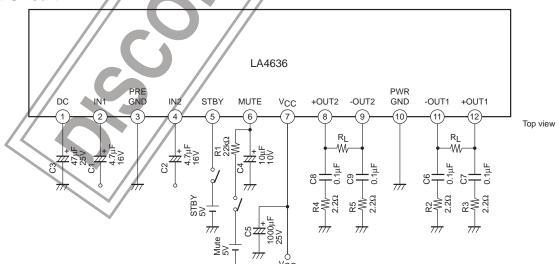
^{*1:} Assuming two-channel output with an I_O peak per channel exceeding 1.0A. If the I_O peak per channel is 1.0A or less, the allowable operating voltage range, is 5.5 to 20V (range not exceeding Pd max.) for all R_L values.


Electrical Characteristics at $Ta=25^{\circ}C,\ V_{CC}=12V,\ R_{L}=4\Omega,\ f=1kHz,\ Rg=600\Omega$

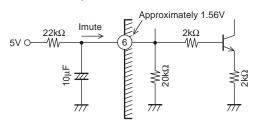
Parameter	Symbol	Conditions	Ratings			1.1
			min	typ	max	Unit
Quiescent current	Icco	Rg = 0	40	70	150	mA
Standby current	Ist			0	10	μА
Voltage gain	VG	$V_O = 0$ dBm	33	35	37	dB
Total harmonic distortion	THD	$P_0 = 1W$		0.06	0.2	%
Output power	P _O 1	THD = 10%	8	11	/	W
	P _O 2	THD = 10%, $R_L = 6\Omega$		9	/	W
Output noise voltage	V _{NO}	Rg = 0, BPF = 20Hz to 20kHz		0.14	0.3	mV
Ripple rejection	SVRR	$Rg = 0, f_R = 100Hz, V_R = 0dBm$	50	60		dB
Channel separation	CHsep	$Rg = 10k\Omega$, $V_O = 0dBm$	50	60		dΒ
Input resistance	Ri		14	20	26	kΩ
Output offset voltage	V _N offset	Rg = 0	-300		+300	mV
Standby pin voltage	V _{ST}	Amplifier on (pin 5 voltage)	2.5		10	V
Mute pin voltage	V _M	Mute on (pin 6 voltage)	1.5		3	V
Mute attenuation	ATTM	V _O = 1Vrms, BPF = 20Hz to 20kHz	80	90		dB


max --

Package Dimensions



Test Circuit

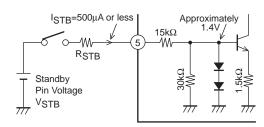


Note: The LA4636 is basically pin-compatible with the LA4635, but there are partial differences in operation and usage, including with regard to externally connected parts.

Signal Mute Function

- Connecting a CR of the recommended value ($10\mu F$, $22k\Omega$) to pin 6 of the IC and applying +5V turns signal mute on. This function mutes low-frequency popping noises.
- The CR is for smoothing during attack and recovery. The 10µF capacitor also performs smoothing after the starting time, so it is necessary even if the signal mute function is not used.

Pin 6 Equivalent Circuit Inside IC



If a $22k\Omega$ external resistor is used, the pin 6 inflow current (Imute) will be approximately $160\mu A$ when +5V is applied.

It is possible to change the external resistance value if the voltage applied is changed or to match the capacity of the microprocessor, but the popping noise level could rise if the pin 6 inflow current increases too much. It is therefore important to check the inflow current whenever the resistance value is changed.

Standby Function

Pin 5 Equivalent Circuit Inside IC

The IC's pin 5 is the standby pin, and the amplifier turns on when approximately 2V or more is applied to it.

If +5V is applied directly to pin 5 the inflow current of pin 5 is approximately $240\mu A$.

$$I_{STB} = \frac{5V - 1.4V}{15k\Omega} = 240\mu A$$

If the microprocessor is used, an external current limiting resistor (RSTB) should be inserted if necessary (to reduce the inflow current).

If a voltage other than that supplied by the microprocessor is applied, the pin 5 inflow current should be limited to $500\mu A$ or less using the applied VSTB value by calculating RSTB using the following equation and inserting a resistor if necessary.

$$R_{STB} = \frac{\text{Applied Voltage (V}_{STB}) - 1.4V}{500\mu\text{A}} - 15k\Omega$$

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of Nobember, 2008. Specifications and information herein are subject to change without notice.