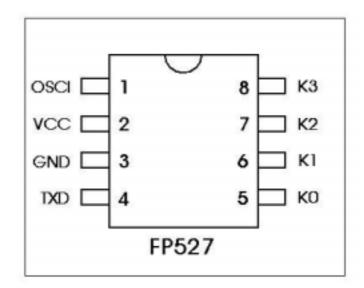
Rato

DESCRIPTION

FP527 is a one time programmable Encoder Utilizing CMOS technology process. FP527 has a maximum of 20 bits providing up to 1 million codes. It can reduce code collision and unauthorized code scanning possibilities.


FEATURES

- 1. CMOS technology.
- 2. Low stand by current < 1μ A.
- 3. Wide range of Operating Voltage: $Vcc = 1.8V \sim 13V$.
- 4. Up to 4 data pins.
- 5. Total 1048576 address codes.
- 6. Single Resistor Oscillator.

APPLICATIONS

- 1. Car and Motorcycle Security system.
- 2. Wireless Door Bell.
- 3. Home Security System.

PIN OUT

PIN DESCRIPTION

Symbol	DESCRIPTION	PIN	I/O
OSCI	Single resistor oscillator pin. Connected R to VCC.	1	Ι
VCC	Positive power supply.	2	_
GND	Ground.	3	—
TXD	Transmission data output pin.	4	0
КО	Data input with pull-low R. Active High.	5	I
K1	Data input with pull-low R. Active High.	6	I
К2	Data input with pull-low R. Active High.	7	I
КЗ	Data input with pull-low R. Active High.	8	I

FUNCTIONAL DESCRIPTION

When data pin (K0~K3) set to "1", FP527 will transmit serial data waveform from C0~C19 to D0~D3 by radio frequency (RF) modulation. This can be use in most of the remote control application.

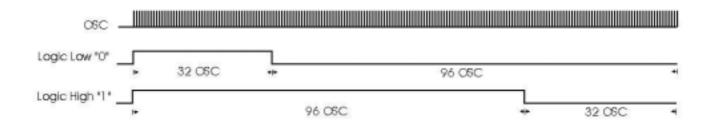
Data Transmission

Code Frame

A code frame period is depended on data pin active period. When data pin is active the code word transmit continuously until data pin inactive. Format is as follow:

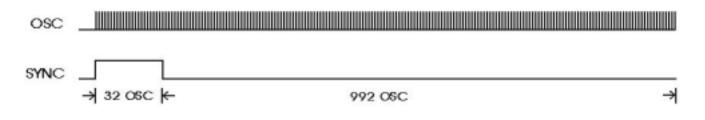
CODE Word

Code word consists of full set of serial data format. The combination is as follow:

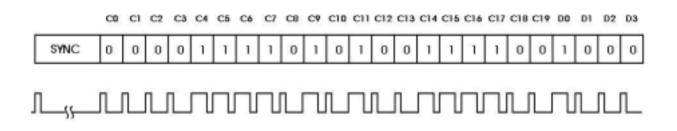

Sync. 20 Address Bits (C0~C19)	4 Data Bits (D0~D3)
--------------------------------	---------------------

Each code word consists of 20 address bits, 4 data bits and a synchronous bit. The transmission sequence is as the diagram shown:

Sync C0 C1 C2		C6 C7 C8 C9	10 C11 C12 C13 C14 (C15 C16 C17 C18	C19 D0 D1	D2 D3
---------------	--	-------------	----------------------	-----------------	-----------	-------


CODE BIT

Code bit is the combination of address and data bits, FP527 transmit a serial of waveform is consist of code bits and sync. Code bit can be defined into 2 states: Logic low ("0") and Logic high ("1"). Each length of code bit is equal to 128 oscillation pulse. Please refer to the diagram shown below:


SYNC BIT

The synchronous bit length is equal to 1024 oscillation pulse.

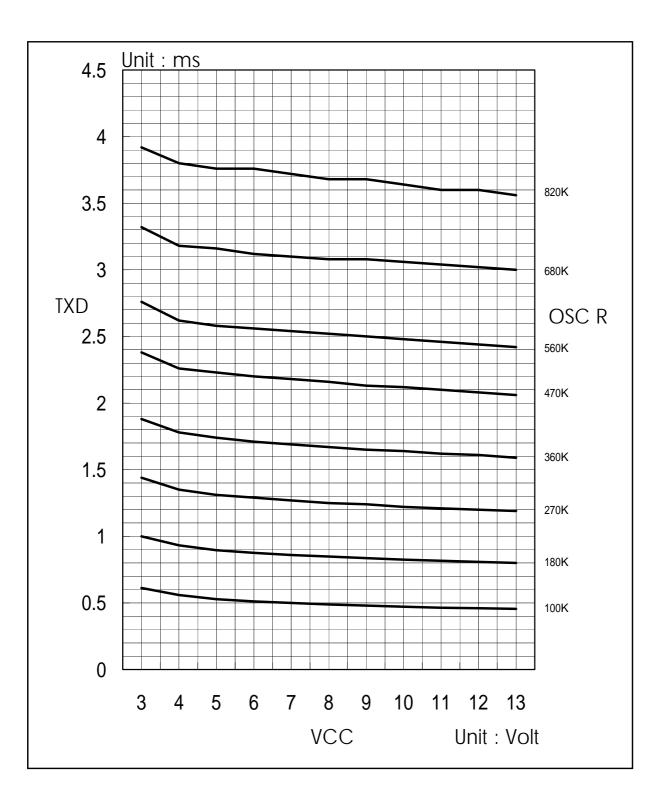
EXAMPLE: SERIAL DATA OUT

Transmission address code is : "3CAF0"; Data code is : "1".

DATA COMBINATION TABLE(K3~K0)

K3	K2	K1	KO	D3	D2	D1	DO
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	1
0	0	1	1	0	0	1	0
0	1	0	0	1	1	0	0
0	1	0	1	1	1	0	1
0	1	1	0	1	1	1	1
0	1	1	1	1	1	1	0
1	0	0	0	1	1	1	1
1	0	0	1	1	1	1	1
1	0	1	0	1	1	1	1
1	0	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	1	0	1	1	1	1	1
1	1	1	0	1	1	1	1
1	1	1	1	1	1	1	1

ABOSOLUTE MAXIMUM RATINGS


Symbol	Parameter	Condition	Rating	Unit
VCC	supply voltage		-0.3 ~ 15	V
VI	input voltage	-0.3 ~ Vcc +0.3		V
VO	output voltage	-0.3 ~ Vcc +0.3		V
Tst	storage Temp.	-40 ~ 125		
Тор	operating Temp.		-20 ~ 70	
Pdis	Max. power dissipation	Vcc=12V	300	mW

DC ELECTRICAL CHARACTERISTICS:

Symbol	Parameter	Condition	min.	Туре	Max.	Unit
VCC	operating voltage		1.8	_	13	V
lsb	stand by current	OSC STOP output unloaded			1	μΑ
lop	operating current	VCC = 12V, OSC = 80KHZ		0.5	1	mA
loh	source current	VCC = 12V, Voh = 6V	3			mA
lol	skin current	VCC = 12V, $Vol = 6V$	3			mA

OSCILLATION RESISTANCE AND FREQUENCY

