

SN54LV165A, SN74LV165A

SCLS402O - APRIL 1998-REVISED NOVEMBER 2016

SNx4LV165A Parallel-Load 8-Bit Shift Registers

1 Features

- 2-V to 5.5-V V_{CC} Operation
- Max t_{pd} of 10.5 ns at 5 V
- Support Mixed-Mode Voltage Operation on All Ports
- I_{off} Supports Partial-Power-Down Mode Operation
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

2 Applications

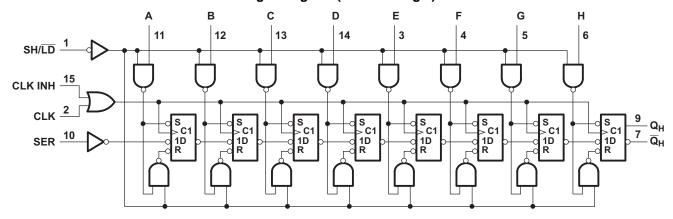
- IP Routers
- Enterprise Switches
- Access Control and Security: Access Keypads and Biometrics
- Smart Meters: Power Line Communication

3 Description

The 'LV165A devices are parallel-load, 8-bit shift registers designed for 2-V to 5.5-V V_{CC} operation.

When the devices are clocked, data is shifted toward the serial output Q_H . Parallel-in access to each stage is provided by eight individual direct data inputs that are enabled by a low level at the shift/load (SH/ \overline{LD}) input. The 'LV165A devices feature a clock-inhibit function and a complemented serial output, \overline{Q}_H .

Clocking is accomplished by a low-to-high transition of the clock (CLK) input while SH/LD is held high and clock inhibit (CLK INH) is held low. The functions of CLK and CLK INH are interchangeable. Since a low CLK and a low-to-high transition of CLK INH accomplishes clocking, CLK INH must be changed to the high level only while CLK is high. Parallel loading is inhibited when SH/LD is held high. The parallel inputs to the register are enabled while SH/LD is held low, independently of the levels of CLK, CLK INH, or SER.


These devices are fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
SNx4LV165AD	SOIC (16)	9.90 mm × 3.91 mm
SNx4LV165ADB	SSOP (16)	6.20 mm × 5.30 mm
SNx4LV165ANS	SO (16)	10.30 mm × 5.30 mm
SNx4LV165APW	TSSOP (16)	5.00 mm × 4.40 mm
SNx4LV165ADGV	TVSOP (16)	3.60 mm × 4.40 mm
SNx4LV165ARGY	VQFN (16)	4.00 mm × 3.50 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Logic Diagram (Positive Logic)

Table of Contents

Features 1		8.1 Overview	15
Applications 1		8.2 Functional Block Diagram	15
Description 1		8.3 Feature Description	16
Revision History		8.4 Device Functional Modes	17
Pin Configuration and Functions	9	Application and Implementation	18
Specifications 4		9.1 Application Information	18
•		9.2 Typical Application	18
6.1 Absolute Maximum Ratings	10	Power Supply Recommendations	
3		Layout	
6.3 Recommended Operating Conditions		11.1 Layout Guidelines	
6.5 Electrical Characteristics 6		11.2 Layout Example	
6.6 Timing Requirements—V _{CC} = 2.5 V ± 0.2 V		Device and Documentation Support	
6.7 Timing Requirements— $V_{CC} = 2.3 \text{ V} \pm 0.2 \text{ V}$		12.1 Related Documentation	
6.8 Timing Requirements— $V_{CC} = 5.5 \text{ V} \pm 0.5 \text{ V}$		12.2 Related Links	
6.9 Switching Characteristics— $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V} 10$		12.3 Receiving Notification of Documentation Update	
6.10 Switching Characteristics— $V_{CC} = 2.3 \text{ V} \pm 0.2 \text{ V} 11$		12.4 Community Resources	
6.11 Switching Characteristics— $V_{CC} = 5.3 \text{ V} \pm 0.5 \text{ V} 12$		12.5 Trademarks	
6.12 Operating Characteristics—V _{CC} = 3 V ± 0.3 V 12		12.6 Electrostatic Discharge Caution	
. •		_	
		•	
			21
Detailed Description 15			
	6.13 Typical Characteristics	6.13 Typical Characteristics	6.13 Typical Characteristics

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

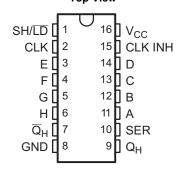
Changes from Revision N (July 2013) to Revision O

Page

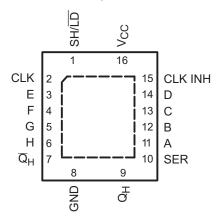
Added Applications section, Device Information table, Table of Contents, Pin Configuration and Functions section,
Specifications section, ESD Ratings table, Thermal Information table, Typical Characteristics section, Detailed
Description section, Application and Implementation section, Power Supply Recommendations section, Layout
section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section......

Changes from Revision M (December 2010) to Revision N

Page


Extended maximum temperature operating range from 85°C to 125°C......

Submit Documentation Feedback



5 Pin Configuration and Functions

SN74LV165A: D, DB, DGV, NS or PW Package SN54LV165A: J or W Package 16-Pin SOIC, SSOP, TVSOP, SOP, TSSOP Top View

SN74LV165A: RGY Package 16-Pin VQFN Top View

Pin Functions

F	PIN		DECODIDATION
NAME NO.		I/O	DESCRIPTION
A	11	I	Serial input A
В	12	1	Serial input B
С	13	1	Serial input C
CLK	2	1	Storage clock
CLK INH	15	I	Storage clock
D	14	I	Serial input D
E	3	1	Serial input E
F	4	1	Serial input F
G	5	I	Serial input G
GND	8	_	Ground pin
Н	6	I	Serial input H
	7	0	Output H
Q _H	9	O	Ουιραί Η
SH/LD	1	I	Load Input
SER	10	I	Serial input
V _{CC}	16	_	Power pin

6 Specifications

6.1 Absolute Maximum Ratings

see (1)

			MIN	MAX	UNIT
	Supply voltage		-0.5	7	V
	Input voltage ⁽²⁾			7	V
	Voltage range applied to any output in the high-impedance or power	-0.5	7	V	
	Output voltage (2)(3)				V
	Input clamp current	V _I < 0		-20	mA
	Output clamp current	V _O < 0		- 50	mA
	Continuous output current	$V_O = 0$ to V_{CC}		±25	mA
	Continuous current through V _{CC} or GND	•		±50	mA
T _{jmax}	Maximum virtual junction temperature			150	°C
T _{stg}	Storage temperature		-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
V	Electrostatic dischause	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	2000	\/
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	1000	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

⁽²⁾ The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

⁽³⁾ This value is limited to 5.5 V maximum.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
V _{CC}	Supply voltage		2	5.5	V
		V _{CC} = 2 V	1.5		
	High lavel construction	V _{CC} = 2.3 V to 2.7 V	V _{CC} × 0.7		
V_{IH}	High-level input voltage	V _{CC} = 3 V to 3.6 V	V _{CC} × 0.7		V
		V _{CC} = 4.5 V to 5.5 V	V _{CC} × 0.7		
		V _{CC} = 2 V		0.5	
. /	Low lovel input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	V	_{CC} × 0.3	V
V_{IL}	Low-level input voltage	V _{CC} = 3 V to 3.6 V	V	_{CC} × 0.3	V
		V _{CC} = 4.5 V to 5.5 V	V	_{CC} × 0.3	
V _I	Input voltage		0	5.5	V
Vo	Output voltage		0	V _{CC}	V
•0		V _{CC} = 2 V		-50	μA
	Library and and an annual an annual and an annual an a	V _{CC} = 2.3 V to 2.7 V		-2	
Іон	High-level output current	V _{CC} = 3 V to 3.6 V		-6	mΑ
		V _{CC} = 4.5 V to 5.5 V		-12	
		V _{CC} = 2 V		50	μA
	Low lovel output ourrent	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		2	
l _{OL}	Low-level output current	V _{CC} = 3 V to 3.6 V		6	mΑ
		V _{CC} = 4.5 V to 5.5 V		12	
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		200	
Δt/Δν	Input transition rise or fall rate	V _{CC} = 3 V to 3.6 V		100	ns/\
		V _{CC} = 4.5 V to 5.5 V		20	
т	Operating free air temperature	SN54LV165A	-55	125	°C
T _A	Operating free-air temperature	SN74LV165A	-40	125	

⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. See the *Implications of Slow or Floating CMOS Inputs* application report.

6.4 Thermal Information

		SN74LV165A						
т	THERMAL METRIC ⁽¹⁾		DB (SSOP)	NS (SO)	PW (TSSOP)	DGV (TVSOP)	RGY (VQFN)	UNIT
		16 PINS	16 PINS	16 PINS	16 PINS	16 PINS	16 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	86.2	102.8	89.4	113.3	125.9	48.8	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	46.1	53.3	47.9	48.3	51	46.7	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	43.8	53.5	49.8	58.4	57.7	24.9	°C/W
ΨЈТ	Junction-to-top characterization parameter	13.2	16.6	16.6	6.4	5.7	2	°C/W
ΨЈВ	Junction-to-board characterization parameter	43.5	52.9	49.5	57.8	57.2	24.9	°C/W
R _θ JC(bot)	Junction-to-case (bottom) thermal resistance	N/A	N/A	N/A	N/A	N/A	11.7	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Product Folder Links: SN54LV165A SN74LV165A

6.5 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted). Recommended $T_A = -40$ °C to +125 °C

	PARAMETER	V _{cc}	T _A	MIN	TYP	MAX	UNIT
			-55°C to +125°C	V _{CC} - 0.1			
	$I_{OH} = -50 \text{ mA}$	2 V to 5.5 V	-40°C to +85°C	_{CC} - 0.1			
			-40°C to +125°C	V _{CC} - 0.1			
			-55°C to +125°C	2			
	$I_{OH} = -2 \text{ mA}$	2.3 V	-40°C to +85°C	2			
.,			-40°C to +125°C	2			
V _{OH}			-55°C to +125°C	2.48			V
	$I_{OH} = -6 \text{ mA}$	3 V	-40°C to +85°C	2.48			
			-40°C to +125°C	2.48			
			-55°C to +125°C	3.8			
	$I_{OH} = -12 \text{ mA}$	4.5 V	-40°C to +85°C	3.8			
			-40°C to +125°C	3.8			
			-55°C to +125°C			0.1	
	$I_{OL} = 50 \text{ mA}$	2 V to 5.5 V	-40°C to +85°C			0.1	
			-40°C to +125°C			0.1	
	I _{OL} = 2 mA	2.3 V	-55°C to +125°C			0.4	
			-40°C to +85°C			0.4	
			-40°C to +125°C			0.4	.,
/ _{OL}		3 V	-55°C to +125°C			0.44	V
	I _{OL} = 6 mA		-40°C to +85°C			0.44	
			-40°C to +125°C			0.44	
			-55°C to +125°C			0.55	
	I _{OL} = 12 mA	4.5 V	-40°C to +85°C			0.55	
			-40°C to +125°C			0.55	
			-55°C to +125°C			±1	
ı	$V_I = 5.5 \text{ V or GND}$	0 V to 5.5 V	-40°C to +85°C			±1	μΑ
			-40°C to +125°C			±1	
			-55°C to +125°C			20	
СС	$V_I = V_{CC}$ or GND, $I_O = 0$	5.5 V	-40°C to +85°C			20	μΑ
			-40°C to +125°C			20	
			-55°C to +125°C			5	
off	V_I or $V_O = 0$ to 5.5 V	0	-40°C to +85°C			5	μΑ
			-40°C to +125°C			5	
			-55°C to +125°C		1.7		
C_{i}	$V_I = V_{CC}$ or GND	$V_{I} = V_{CC} \text{ or GND}$ 3.3 V $-40^{\circ}\text{C to } +85^{\circ}\text{C}$ 1.7		pF			
			-40°C to +125°C		1.7		•

Submit Documentation Feedback

6.6 Timing Requirements— $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$

over recommended operating free-air temperature range, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 2)

	PARAMETER	TEST CONDITION	T _A	MIN	MAX	UNIT
			25°C	8.5		
		CLK high or low	−55°C to +125°C	9		
		CLK high or low	-40°C to +85°C	9		
		-40°C to +125°C	9			
w	Pulse duration		25°C	11		ns
		0.1/25	−55°C to +125°C	13		
		SH/LD low	-40°C to +85°C	13		
			-40°C to +125°C	13		
			25°C	7		
		CIVID bink before CIVA	−55°C to +125°C	8.5		
		SH/LD high before CLK↑	-40°C to +85°C	8.5		
			-40°C to +125°C	8.5		
			25°C	8.5		
		050 1 (0146	−55°C to +125°C	9.5		
		SER before CLK↑	-40°C to +85°C	9.5		
			-40°C to +125°C	9.5		
su Setup time		25°C	7		ns	
		CLK INH before CLK↑	−55°C to +125°C	7		
			-40°C to +85°C	7		
			-40°C to +125°C	7		
			25°C	11.5		
			−55°C to +125°C	12		
		Data before SH/LD↑	-40°C to +85°C	12		
			-40°C to +125°C	12		
			25°C	-1		
		255 1	−55°C to +125°C	0		
		SER data after CLK↑	-40°C to +85°C	0		
			-40°C to +125°C	0		
			25°C	0		
			-55°C to +125°C	0.5		
t _h Hold time	Parallel data after SH/ LD ↑	-40°C to +85°C	0.5		ns	
			-40°C to +125°C	0.5		
			25°C	0		
			−55°C to +125°C	0		
		SH/ LD high after CLK↑	-40°C to +85°C	0		
			-40°C to +125°C	0		

6.7 Timing Requirements— $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$

over recommended operating free-air temperature range, $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ (unless otherwise noted) (see Figure 2)

	PARAMETER	TEST CONDITION	T _A	MIN	MAX	UNIT
			25°C	6		
		CLK high or law	−55°C to +125°C	7		
	CLK high or low	-40°C to	-40°C to +85°C	7		
	Dulas duration		-40°C to +125°C	7		
t _w	Pulse duration		25°C	7.5		ns
		CIVITE Issue	−55°C to +125°C	9		
		SH/LD low	-40°C to +85°C	-40°C to +85°C 9		
			-40°C to +125°C	9		

Product Folder Links: SN54LV165A SN74LV165A

Timing Requirements— $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ (continued)

over recommended operating free-air temperature range, $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ (unless otherwise noted) (see Figure 2)

PARAMETER	TEST CONDITION	T _A	MIN	MAX	UNIT
		25°C	5		
	SH/LD high before CLK↑	−55°C to +125°C	6		
	SH/LD nigh before CLK?	-40°C to +85°C	6		
		-40°C to +125°C	6		
		25°C	5		
	CED hafara CLIVA	−55°C to +125°C	6		
	SER before CLK↑	-40°C to +85°C	6		
Oaton time		-40°C to +125°C	6		
u Setup time		25°C	5		ns
		-55°C to +125°C	5		
	CLK INH before CLK↑	-40°C to +85°C	5		
		-40°C to +125°C	5		
		25°C	7.5		
	Data before SH/ LD ↑	-55°C to +125°C	8.5		
		-40°C to +85°C	8.5		
		-40°C to +125°C	8.5		
		25°C	0		
	CED data after OLIVA	−55°C to +125°C	0		
	SER data after CLK↑	-40°C to +85°C	0		
		-40°C to +125°C	0		
		25°C	0.5		
11.11.6	D	−55°C to +125°C	0.5		
Hold time	Parallel data after SH/ LD ↑	-40°C to +85°C	0.5		ns
		-40°C to +125°C	0.5		
		25°C	0		
	01/10	−55°C to +125°C	0		
	SH/LD high after CLK↑	-40°C to +85°C	0		
		-40°C to +125°C	0		

6.8 Timing Requirements— $V_{cc} = 5 V \pm 0.5 V$

over recommended operating free-air temperature range, V_{CC} = 5 V ± 0.5 V (unless otherwise noted) (see Figure 2)

	PARAMETER	TEST CONDITION	T _A	MIN	MAX	UNIT		
			25°C	4				
		OLK birth and law	-55°C to +125°C	4				
		CLK high or low -40°C to +85°C 4 -40°C to +125°C 4 25°C 5 -55°C to +125°C 5 -40°C to +85°C 6 -40°C to +125°C 6	CLK nigh or low	-40°C to +85°C	-40°C to +85°C	4		
	Dulas duration		-40°C to +125°C	4				
ι _w	Pulse duration		25°C	5		ns		
			–55°C to +125°C	5				
			6					
			-40°C to +125°C	6				

Submit Documentation Feedback

Timing Requirements— $V_{CC} = 5 \text{ V} \pm 0.5 \text{ V}$ (continued)

over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 2)

PARAMETER	TEST CONDITION	T _A	MIN	MAX	UNIT
		25°C	4		
	01/15	−55°C to +125°C	4		
	SH/LD high before CLK↑	-40°C to +85°C	4		
		-40°C to +125°C	4		
		25°C	4		
	OFD before OLIVA	−55°C to +125°C	4		
u Setup time	SER before CLK↑	-40°C to +85°C	4		
		-40°C to +125°C	4		
		25°C	3.5		ns
	OLIK BULL (OLIK	−55°C to +125°C	3.5		
	CLK INH before CLK↑	-40°C to +85°C	3.5		
		-40°C to +125°C			
		25°C	5		
	D	−55°C to +125°C	5		
	Data before SH/ LD ↑	-40°C to +85°C	5		
		-40°C to +125°C	5		
		25°C	0.5		
	OFD data affect OLIVA	−55°C to +125°C	0.5		
	SER data after CLK↑	-40°C to +85°C	0.5		
		-40°C to +125°C	0.5		
		25°C	1		
11.112	D	−55°C to +125°C	1		
h Hold time	Parallel data after SH/LD↑	-40°C to +85°C	1		ns
		-40°C to +125°C	1		
		25°C 0.5			
	011/10	-55°C to +125°C			
	SH/LD high after CLK↑	-40°C to +85°C	0.5		
		-40°C to +125°C	0.5		

6.9 Switching Characteristics— V_{CC} = 2.5 V ± 0.2 V

over operating free-air temperature range, $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$ (unless otherwise noted), (see Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	LOAD CAP	T _A	MIN	TYP	MAX	UNIT
				25°C	50 ⁽¹⁾	80 ⁽¹⁾		
			0 45 - 5	-55°C to +125°C	45 ⁽¹⁾			
			C _L = 15 pF	-40°C to +85°C	45			
,				-40°C to +125°C	45			
f _{max}				25°C	40	65		MHz
			0 50 5	-55°C to +125°C	35			
			C _L = 50 pF	-40°C to +85°C	35			
				-40°C to +125°C	35			
				25°C		12.2 ⁽¹⁾	19.8 ⁽¹⁾	
	0114			-55°C to +125°C	1 ⁽¹⁾		22 ⁽¹⁾	
	CLK			-40°C to +85°C	1		22	
				-40°C to +125°C	1		22	
	SH/LD	Q_H or \overline{Q}		25°C		13.1 ⁽¹⁾	21.5 ⁽¹⁾	
				-55°C to +125°C	1 ⁽¹⁾		23.5 ⁽¹⁾	
t _{pd}			C _L = 15 pF	-40°C to +85°C	1		23.5	ns
				-40°C to +125°C	1		23.5	
				25°C		12.9 ⁽¹⁾	21.7 ⁽¹⁾	
				-55°C to +125°C	1 ⁽¹⁾		24 ⁽¹⁾	
	Н			-40°C to +85°C	1		24	
				-40°C to +125°C	1		24	
				25°C		15.3	23.3	
	0114			-55°C to +125°C	1		26	
	CLK			-40°C to +85°C	1		26	
				-40°C to +125°C	1		26	
				25°C		16.1	25.1	
	0.1/5	<u> </u>	0 50 5	-55°C to +125°C	1		28	
t _{pd}	SH/LD	Q_H or \overline{Q}	C _L = 50 pF	-40°C to +85°C	1		28	ns
				-40°C to +125°C	1		28	
		1		25°C		15.9	25.3	
				−55°C to +125°C	1		28	
	Н			-40°C to +85°C	1		28	
				-40°C to +125°C	1		28	

⁽¹⁾ On products compliant to MIL-PRF-38535, this parameter is not production tested.

Submit Documentation Feedback

6.10 Switching Characteristics— V_{CC} = 3.3 V ± 0.3 V

over operating free-air temperature range, $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ (unless otherwise noted), (see Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	LOAD CAP	T _A	MIN	TYP	MAX	UNIT
				25°C	65 ⁽¹⁾	115 ⁽¹⁾		
			0 45 -5	-55°C to +125°C	55 ⁽¹⁾			
			$C_L = 15 \text{ pF}$	-40°C to +85°C	55			
£				-40°C to +125°C	55			N 41 1-
f _{max}				25°C	60	90		MHz
			0 50 - 5	-55°C to +125°C	50			
			C _L = 50 pF	-40°C to +85°C	50			
				-40°C to +125°C	50			
				25°C		8.6 ⁽¹⁾	15.4 ⁽¹⁾	
	OL K			-55°C to +125°C	1 (1)		18 ⁽¹⁾	
	CLK			-40°C to +85°C	1		18	
				-40°C to +125°C	1		18	
t _{pd}	SH/LD	Q_H or \overline{Q}		25°C		9.1 ⁽¹⁾	15.8 ⁽¹⁾	
			C _L = 15 pF	-55°C to +125°C	1 (1)		18.5 ⁽¹⁾	
				-40°C to +85°C	1		18.5	ns
				-40°C to +125°C	1		18.5	
				25°C		8.9 ⁽¹⁾	14.1 ⁽¹⁾	
	н			-55°C to +125°C	1 (1)		16.5 ⁽¹⁾	
				-40°C to +85°C	1		16.5	
				-40°C to +125°C	1		16.5	
				25°C		10.9	14.9	
	CLK			-55°C to +125°C	1		16.9	
	CLK			-40°C to +85°C	1		16.9	
				-40°C to +125°C	1		16.9	
				25°C		11.3	19.3	
	SH/LD	0 0	0 50 - 5	-55°C to +125°C	1		22	
t_{pd}	SH/LD	Q_H or \overline{Q}	C _L = 50 pF	-40°C to +85°C	1		22	ns
				-40°C to +125°C	1		22	
				25°C		11.1	17.6	
	н			-55°C to +125°C	1		20	
	П			-40°C to +85°C	1		20	
				-40°C to +125°C	1		20	

⁽¹⁾ On products compliant to MIL-PRF-38535, this parameter is not production tested.

Copyright © 1998–2016, Texas Instruments Incorporated

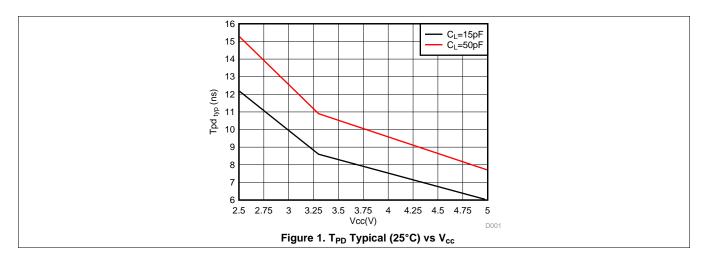
6.11 Switching Characteristics— $V_{cc} = 5 V \pm 0.5 V$

over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (see Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	LOAD CAP	T _A	MIN	TYP	MAX	UNIT	
				25°C	110 ⁽¹⁾	165 ⁽¹⁾			
			0 45 -5	-55°C to +125°C	90 ⁽¹⁾	·			
			$C_L = 15 pF$	-40°C to +85°C	90	·			
£				-40°C to +125°C	90	·		MHz	
f _{max}				25°C	95	125		IVIHZ	
			C _L = 50 pF	-55°C to +125°C	85				
			C _L = 50 pr	-40°C to +85°C	85				
				-40°C to +125°C	85	·			
				25°C		6 ⁽¹⁾	9.9 ⁽¹⁾		
	OL K			-55°C to +125°C	1 ⁽¹⁾	·	11.5 ⁽¹⁾		
	CLK			-40°C to +85°C	1	·	11.5		
				-40°C to +125°C	1	·	11.5		
	SH/LD	Q_H or \overline{Q}		25°C		6 ⁽¹⁾	9.9 ⁽¹⁾		
			C _L = 15 pF	-55°C to +125°C	1 ⁽¹⁾	·	11.5 ⁽¹⁾		
t _{pd}				-40°C to +85°C	1	·	11.5	ns	
				-40°C to +125°C	1	·	11.5		
	н			25°C		6 ⁽¹⁾	9.9 ⁽¹⁾		
				-55°C to +125°C	1 ⁽¹⁾	·	10.5 ⁽¹⁾		
				-40°C to +85°C	1	·	10.5		
				-40°C to +125°C	1	·	10.5		
				25°C		7.7	11.9		
	OL K			-55°C to +125°C	1	·	13.5		
	CLK			-40°C to +85°C	1	·	13.5		
				-40°C to +125°C	1	·	13.5		
				25°C		7.7	11.9		
	SH/LD	0 0	C 50F	-55°C to +125°C	1	·	13.5		
t _{pd}	2U/LD	Q_H or \overline{Q}	$C_L = 50 \text{ pF}$	-40°C to +85°C	1		13.5	ns	
				-40°C to +125°C	1	·	13.5		
			25°C 7.6		7.6	11			
					-55°C to +125°C	1		12.5	
	H			-40°C to +85°C	1		12.5		
				-40°C to +125°C	1	·	12.5		

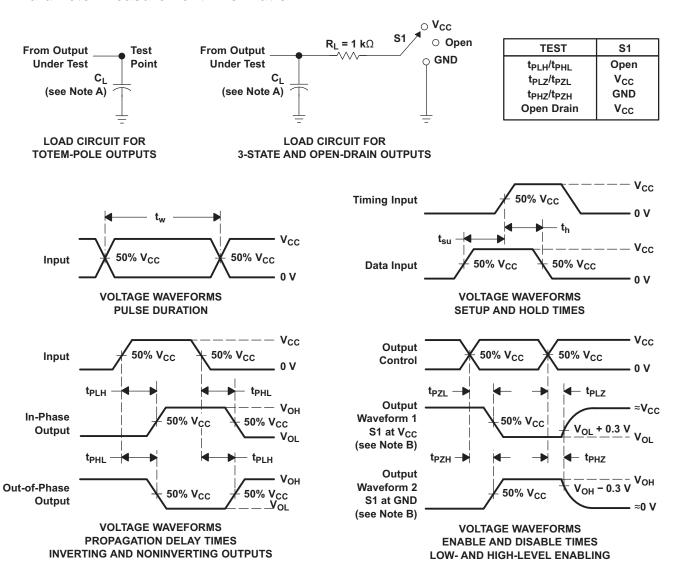
⁽¹⁾ On products compliant to MIL-PRF-38535, this parameter is not production tested.

6.12 Operating Characteristics


 $T_A = 25^{\circ}C$

	PARAMETER	TEST CO	ONDITIONS	V _{CC}	TYP	UNIT
0	Dower dissination conscitons	C	f 40 MH=	3.3 V	36.1	۲
C_{pd}	Power dissipation capacitance	$C_L = 50 \text{ pF}$	f = 10 MHz	5 V	37.5	p⊦

Product Folder Links: SN54LV165A SN74LV165A

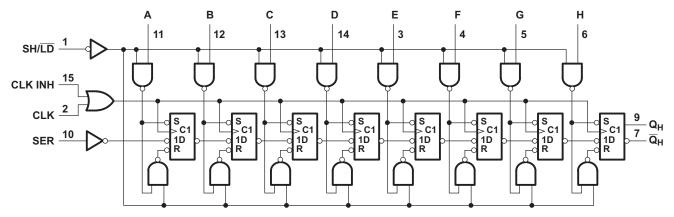


6.13 Typical Characteristics

7 Parameter Measurement Information

- A. C_L includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.
 - Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \Omega$, $t_r \leq$ 3 ns, $t_f \leq$ 3 ns.
- D. The outputs are measured one at a time, with one input transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis}.
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. t_{PHL} and t_{PLH} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

Figure 2. Load Circuit and Voltage Waveforms


8 Detailed Description

8.1 Overview

The 'LV165A devices are parallel-load, 8-bit shift registers designed for 2-V to 5.5-V V_{CC} operation.

When the devices are clocked, data is shifted toward the serial output Q_H . Parallel-in access to <u>each</u> stage is provided by eight individual direct data inputs that are enabled by a low level at the <u>shift/load (SH/LD)</u> input. The 'LV165A devices feature a clock-inhibit function and a complemented serial output, \overline{Q}_H .

8.2 Functional Block Diagram

Pin numbers shown are for the D, DB, DGV, J, NS, PW, RGY, and W packages.

Figure 3. Logic Diagram (Positive Logic)

Product Folder Links: SN54LV165A SN74LV165A

Functional Block Diagram (continued)

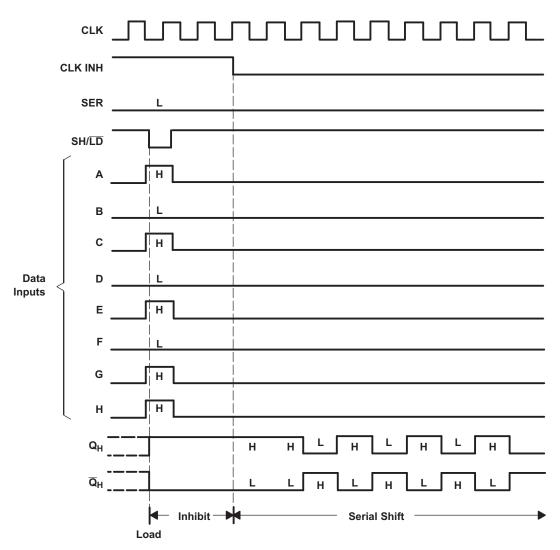


Figure 4. Typical Shift, Load, and Inhibit Sequences

8.3 Feature Description

The wide operating range allows the device to be used in a variety of systems that use different logic levels. The low propagation delay allows fast switching and higher speeds of operation. In addition, the low ground bounce stabilizes the performance of non-switching outputs while another output is switching.

8.4 Device Functional Modes

Table 1 lists the functional modes of SNx4LV165A.

Table 1. Device Functional Modes

	INPUTS		OPERATION
SH/LD	CLK	OPERATION	
L	X	X	Parallel load
Н	Н	X	Q_0
Н	X	Н	Q_0
Н	L	1	Shift
Н	1	L	Shift

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The SN74LV165A is a low drive CMOS device that can be used for a multitude of bus interface type applications where output ringing is a concern. The low-drive and slow-edge rates minimize overshoot and undershoot on the outputs.

9.2 Typical Application

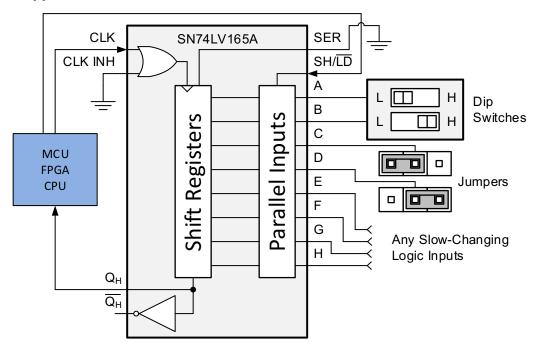


Figure 5. Input Expansion with Shift Registers

9.2.1 Design Requirements

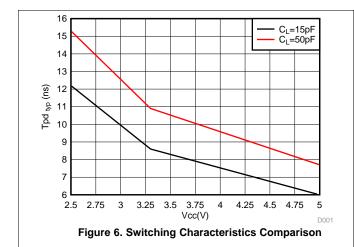
This device uses CMOS technology and has balanced output drive. Take care to avoid bus contention because it can drive currents that can exceed maximum limits. The high drive also creates fast edges into light loads so consider routing and load conditions to prevent ringing.

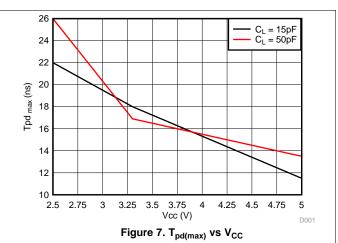
9.2.2 Detailed Design Procedure

Recommended input conditions:

- Rise time and fall time specs. See the Recommended Operating Conditions section, (Δt/ΔV)
- Specified high and low level. See the Recommended Operating Conditions section, (V_{IH} and V_{II})
- Inputs are overvoltage tolerant allowing them to go as high as 5.5 V at any valid V_{CC}

Recommended output conditions:


- Load currents must not exceed 25 mA per output and 50 mA total for the part.
- Outputs must not be pulled above V_{CC}.


Submit Documentation Feedback

Typical Application (continued)

9.2.3 Application Curves

10 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in the Absolute Maximum Ratings section. Each V_{CC} terminal must have a good bypass capacitor to prevent power disturbance. For devices with a single supply, TI recommends a 0.1-μF capacitor and if there are multiple V_{CC} terminals then TI recommends a 0.01-μF or 0.022-μF capacitor for each power terminal. Multiple bypass capacitors can be paralleled to reject different frequencies of noise. Frequencies of 0.1 µF and 1 µF are commonly used in parallel. The bypass capacitor must be installed as close as possible to the power terminal for best results.

Layout

11.1 Layout Guidelines

When using multiple bit logic devices inputs must never float.

In many cases, functions or parts of functions of digital logic devices are unused, for example, when only two inputs of a triple-input AND gate are used or only three of the four buffer gates are used. Such input pins must not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. Specified below are the rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that must be applied to any particular unused input depends on the function of the device. Generally they are tied to GND or V_{CC} whichever make more sense or is more convenient. Floating outputs is generally acceptable, unless the part is a transceiver. If the transceiver has an output enable pin it disables the outputs section of the part when asserted. This does not disable the input section of the IOs so they also cannot float when disabled.

11.2 Layout Example

Figure 8. Layout Example

12 Device and Documentation Support

12.1 Related Documentation

For related documentation see the following:

- Power-Up Behavior of Clocked Devices
- Introduction to Logic

12.2 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 2. Related Links

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
SN54LV165A	Click here	Click here	Click here	Click here	Click here
SN74LV165A	N74LV165A Click here		Click here	Click here	Click here

12.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates—including silicon errata—go to the product folder for your device on ti.com. In the upper right-hand corner, click the *Alert me* button. This registers you to receive a weekly digest of product information that has changed (if any). For change details, check the revision history of any revised document.

12.4 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Lise

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.5 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.6 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.7 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

10-Jun-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SN74LV165AD	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV165A	Samples
SN74LV165ADBR	ACTIVE	SSOP	DB	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV165A	Samples
SN74LV165ADE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV165A	Samples
SN74LV165ADG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV165A	Samples
SN74LV165ADGVR	ACTIVE	TVSOP	DGV	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV165A	Samples
SN74LV165ADR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	-40 to 125	LV165A	Samples
SN74LV165ADRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV165A	Samples
SN74LV165ADRG3	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	LV165A	Samples
SN74LV165ADRG4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV165A	Samples
SN74LV165ANSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	74LV165A	Samples
SN74LV165APW	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV165A	Samples
SN74LV165APWG4	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV165A	Samples
SN74LV165APWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	-40 to 125	LV165A	Samples
SN74LV165APWRE4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV165A	Samples
SN74LV165APWRG3	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	LV165A	Samples
SN74LV165APWRG4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV165A	Samples
SN74LV165APWT	ACTIVE	TSSOP	PW	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LV165A	Samples

PACKAGE OPTION ADDENDUM

10-Jun-2014

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SN74LV165ARGYR	ACTIVE	VQFN	RGY	16	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	LV165A	Samples
SN74LV165ARGYRG4	ACTIVE	VQFN	RGY	16	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 125	LV165A	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

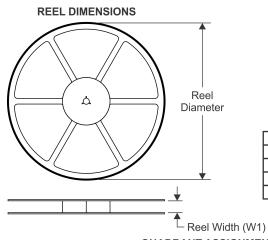
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE OPTION ADDENDUM

10-Jun-2014

OTHER QUALIFIED VERSIONS OF SN74LV165A:

● Enhanced Product: SN74LV165A-EP


NOTE: Qualified Version Definitions:

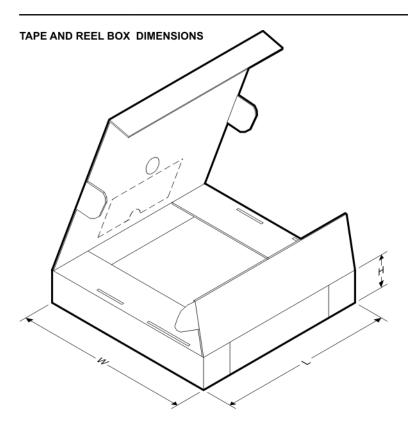
• Enhanced Product - Supports Defense, Aerospace and Medical Applications

PACKAGE MATERIALS INFORMATION

www.ti.com 4-May-2018

TAPE AND REEL INFORMATION

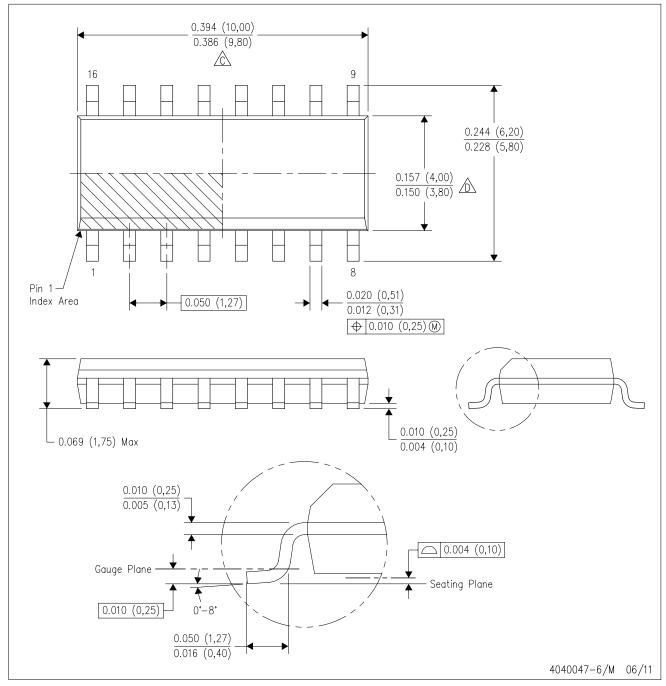
	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LV165ADBR	SSOP	DB	16	2000	330.0	16.4	8.2	6.6	2.5	12.0	16.0	Q1
SN74LV165ADGVR	TVSOP	DGV	16	2000	330.0	12.4	6.8	4.0	1.6	8.0	12.0	Q1
SN74LV165ADR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74LV165ADR	SOIC	D	16	2500	330.0	16.8	6.5	10.3	2.1	8.0	16.0	Q1
SN74LV165ADRG3	SOIC	D	16	2500	330.0	16.8	6.5	10.3	2.1	8.0	16.0	Q1
SN74LV165ADRG4	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74LV165ANSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
SN74LV165APWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74LV165APWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74LV165APWRG3	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74LV165APWRG4	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74LV165APWT	TSSOP	PW	16	250	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74LV165ARGYR	VQFN	RGY	16	3000	330.0	12.4	3.8	4.3	1.5	8.0	12.0	Q1

www.ti.com 4-May-2018

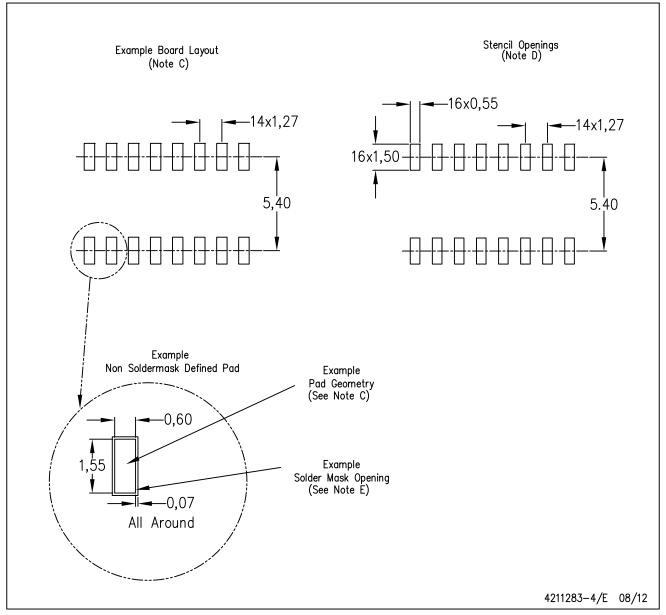


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LV165ADBR	SSOP	DB	16	2000	367.0	367.0	38.0
SN74LV165ADGVR	TVSOP	DGV	16	2000	367.0	367.0	35.0
SN74LV165ADR	SOIC	D	16	2500	333.2	345.9	28.6
SN74LV165ADR	SOIC	D	16	2500	364.0	364.0	27.0
SN74LV165ADRG3	SOIC	D	16	2500	364.0	364.0	27.0
SN74LV165ADRG4	SOIC	D	16	2500	333.2	345.9	28.6
SN74LV165ANSR	SO	NS	16	2000	367.0	367.0	38.0
SN74LV165APWR	TSSOP	PW	16	2000	367.0	367.0	35.0
SN74LV165APWR	TSSOP	PW	16	2000	364.0	364.0	27.0
SN74LV165APWRG3	TSSOP	PW	16	2000	364.0	364.0	27.0
SN74LV165APWRG4	TSSOP	PW	16	2000	367.0	367.0	35.0
SN74LV165APWT	TSSOP	PW	16	250	367.0	367.0	35.0
SN74LV165ARGYR	VQFN	RGY	16	3000	355.0	350.0	50.0

D (R-PDS0-G16)

PLASTIC SMALL OUTLINE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

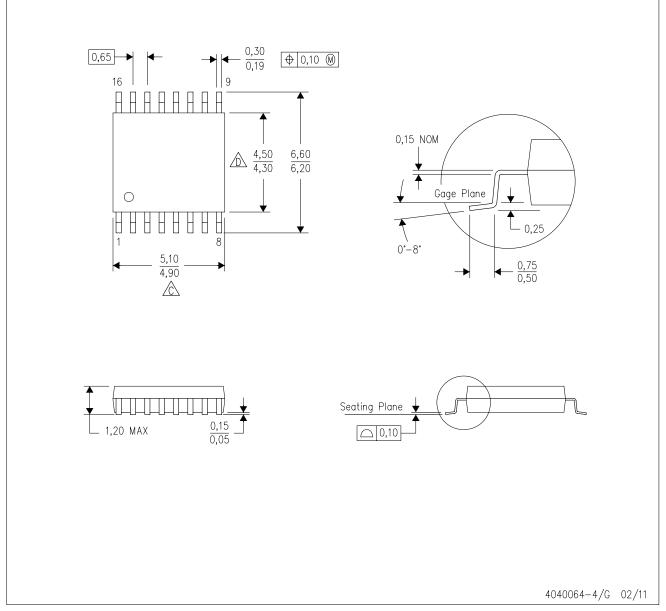
- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

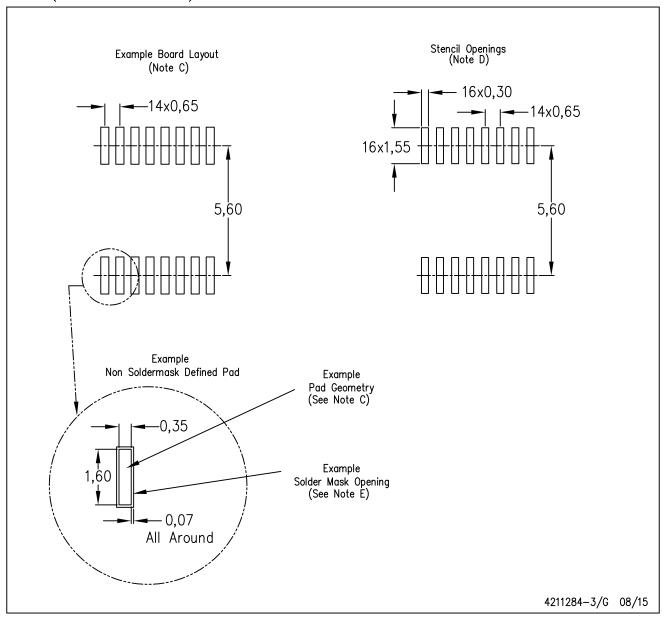
PLASTIC SMALL-OUTLINE PACKAGE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

PW (R-PDSO-G16)

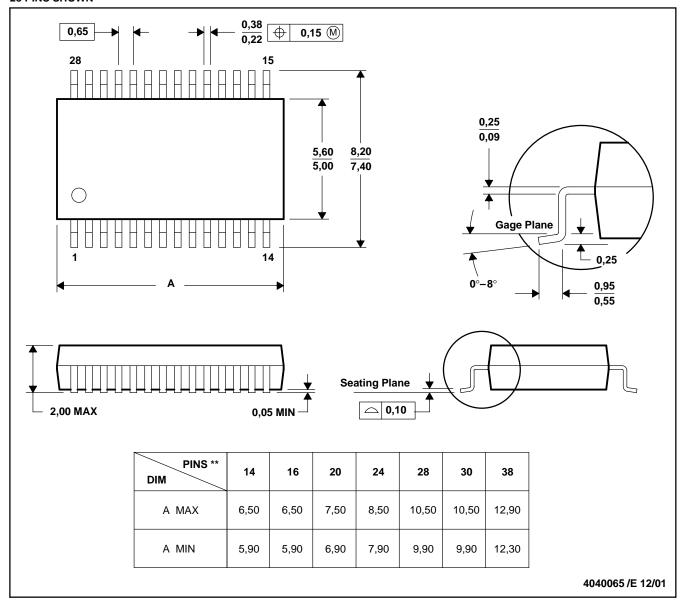
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

PW (R-PDSO-G16)

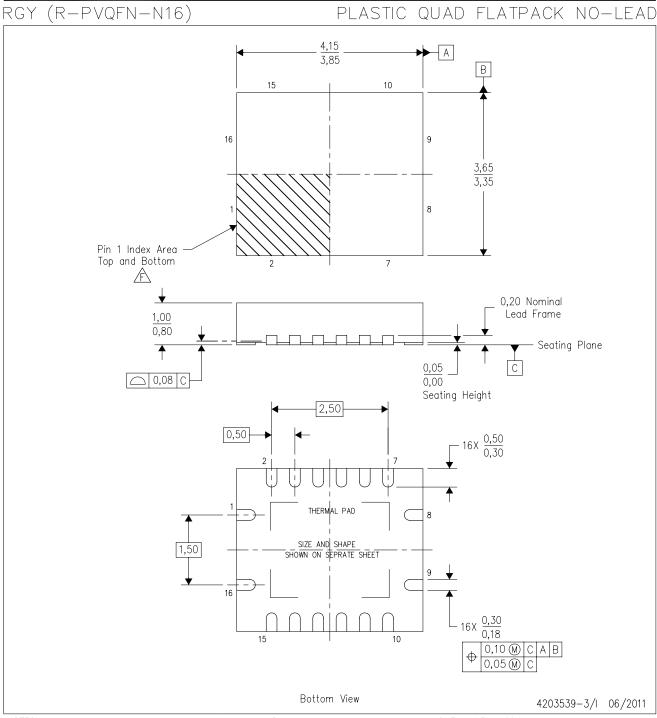
PLASTIC SMALL OUTLINE


- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN



NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

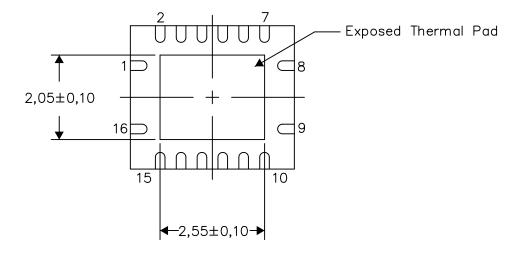
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-150

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. QFN (Quad Flatpack No-Lead) package configuration.
- D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- Pin 1 identifiers are located on both top and bottom of the package and within the zone indicated. The Pin 1 identifiers are either a molded, marked, or metal feature.
- G. Package complies to JEDEC MO-241 variation BA.

RGY (R-PVQFN-N16)


PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

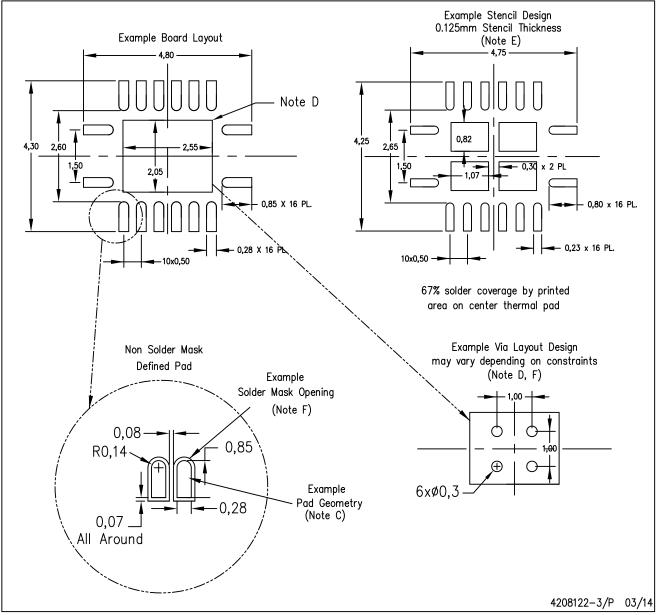
This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Bottom View

Exposed Thermal Pad Dimensions


4206353-3/P 03/14

NOTE: All linear dimensions are in millimeters

RGY (R-PVQFN-N16)

PLASTIC QUAD FLATPACK NO-LEAD

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat—Pack QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.