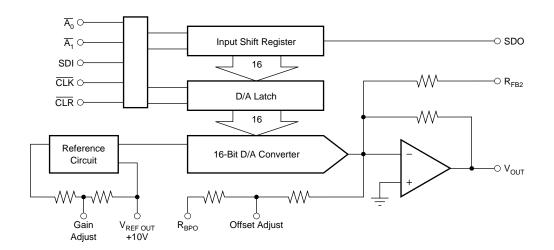


SBAS032A - JULY 1997 - REVISED NOVEMBER 2005

16-Bit DIGITAL-TO-ANALOG CONVERTER With Serial Data Interface

FEATURES:


- SERIAL DIGITAL INTERFACE
- VOLTAGE OUTPUT: ±10V, ±5V, 0 to +10V
- ±1 LSB INTEGRAL LINEARITY
- 16-BIT MONOTONIC OVER TEMPERATURE
- PRECISION INTERNAL REFERENCE
- LOW NOISE: 120nV/√Hz Including Reference
- 16-LEAD PLASTIC AND CERAMIC SKINNY DIP AND PLASTIC SO PACKAGES

DESCRIPTION

The DAC714 is a complete monolithic digital-toanalog (D/A) converter including a +10V temperature compensated reference, current-to-voltage amplifier, a high-speed synchronous serial interface, a serial output which allows cascading multiple converters, and an asynchronous clear function which immediately sets the output voltage to midscale.

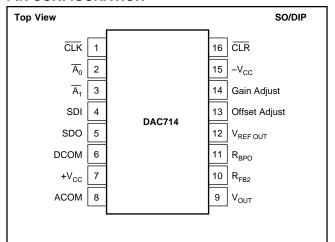
The output voltage range is $\pm 10V$, $\pm 5V$, or 0 to $\pm 10V$ while operating from $\pm 12V$ or $\pm 15V$ supplies. The gain and bipolar offset adjustments are designed so that they can be set via external potentiometers or external D/A converters. The output amplifier is protected against short circuit to ground.

The 16-pin DAC714 is available in a plastic 0.3" DIP, ceramic 0.3" CERDIP, and wide-body plastic SO package. The DAC714P, U, HB, and HC are specified over the -40°C to +85°C temperature range while the DAC714HL is specified over the 0°C to +70°C range.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

All trademarks are the property of their respective owners.

ABSOLUTE MAXIMUM RATINGS(1)


+V _{CC} to Common
−V _{CC} to Common
+V _{CC} to -V _{CC}
ACOM to DCOM
Digital Inputs to Common
External Voltage Applied to BPO and Range Resistors ±V _{CC}
V _{REF OUT} Indefinite Short to Common
V _{OUT} Indefinite Short to Common
SDO Indefinite Short to Common
Power Dissipation
Storage Temperature60°C to +150°C
Lead Temperature (soldering, 10s)+300°C

NOTE: (1) Stresses above those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods may affect device reliability.

PACKAGE/ORDERING INFORMATION

For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

PIN CONFIGURATION

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PIN DESCRIPTIONS

PIN	LABEL	DESCRIPTION
1	CLK	Serial Data Clock
2	$\overline{A_0}$	Enable for Input Register (Active Low)
3	$\overline{A_1}$	Enable for D/A Latch (Active Low)
4	SDI	Serial Data Input
5	SDO	Serial Data Output
6	DCOM	Digital Ground
7	+V _{CC}	Positive Power Supply
8	ACOM	Analog Ground
9	V _{OUT}	D/A Output
10	R _{FB2}	±10V Range Feedback Output
11	R_{BPO}	Bipolar Offset
12	V _{REF OUT}	Voltage Reference Output
13	Offset Adjust	Offset Adjust
14	Gain Adjust	Gain Adjust
15	-V _{CC}	Negative Power Supply
16	CLR	Clear

ELECTRICAL CHARACTERISTICS

At T_A = +25°C, +V_{CC} = +12V and +15V, -V_{CC} = -12V, and -15V, unless otherwise noted.

TRANSPER CHARACTERISTICS ACCURACY Lineary Farro Tray Tray To Tagy Differential Lineary Force Tray Tray To Tagy Differential Lineary Force Tray Tray To Tagy Differential Lineary Tray To Tagy Differential Lineary Tray Tray Tray Tray Tray Tray Tray T		[DAC714P, I	U		DAC714HE	3		DAC714HC	:		DAC714HL	L	
ACCURACY	PARAMETER	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Linearing Fibro	TRANSFER CHARACTERISTICS													
Tag. to Tag. T	ACCURACY													
2-4 1-4 1-5	Linearity Error						1			1				
Taylo Taxo	T_{MIN} to T_{MAX}			±8			±4			±2			±2	LSB
Microtocicity Microtocicit	Differential Linearity Error			±4			±2			±1			±1	LSB
Monatonicoly Over Spec Temp Range 33	T_{MIN} to T_{MAX}			±8			±4			±2			±1	LSB
29.1 29.1 29.1 29.1 29.1 29.1 29.1 29.1 29.1 29.2	Monotonicity	14			15			16			16			Bits
Tags 0 Tags 10 Tags	Monotonicity Over Spec Temp Range	13			14			15			16			Bits
Unique property Comparison	Gain Error ⁽³⁾			±0.1			±0.1			±0.1				
1902 1902 1902 1902 1902 1902 1902 1902 1902 1903 1900	T _{MIN} to T _{MAX}									1				
Prover Stapply Sensitivity of Gain										1				
DYNAMIC PERFORMANCE										1				
DVAMMOR PERFORMANCE Setting Time 10 - 90.035 Setting Time 10 -	Power Supply Sensitivity of Gain						1			1				
16	DYNAMIC PERFORMANCE						200			200			-500	ppiii i Oi v /o v
2300 Cuptus Step 6	Settling Time													
1.5.8 Output SlepPi Outpu	(to $\pm 0.003\%$ FSR, $5k\Omega$ $500pF$ Load) ⁽⁴⁾													
Output Disconting Discon	20V Output Step		6	10		6	10		6	10		6	10	μs
Total Hammonic Distortion 0.005	1LSB Output Step ⁽⁵⁾		4			4			4			4		μs
0.08 ± 0.01+z, f ₁ = 100k+z − 0.005	Output Slew Rate		10			10			10			10		V/μs
-2-08B, 001Hz, fg = 1000Hz	Total Harmonic Distortion													
Second Continue 1	0dB, 1001Hz, $f_S = 100kHz$		1		1			l	1		1		[
SINAD: 1001Hz, fg. = 1000Hz 2	-20 dB, 1001Hz, $f_S = 100$ kHz		1						1					
Digital Federthrough Pilo Digital Federthrough Pilo Digital Federthrough Pilo Digital Federthrough Pilo Digital Federate Pilo P	-60 dB, 1001Hz, $f_S = 100$ kHz		3.0			3.0			3.0			3.0		%
15	SINAD: 1001 Hz, $f_S = 100$ kHz		87			87			87			87		dB
120 120	Digital Feedthrough ⁽⁵⁾		2			2			2			2		nV–s
ANALOG OUTPUT Output Voltage Range **Voc Voc. = 114.4	Digital-to-Analog Glitch Impulse ⁽⁵⁾		15			15			15			15		
Output Voltage Range + Voltage Range + Voc - Voc = ±11.4V ±10	Output Noise Voltage (includes reference)		120			120			120			120		nV/√Hz
Ψ _{CC} = ±11.4/V ±10 ±15 0.1 mA mA Output Impedance 49.975 +10.000 +10.025 +9.975 +10.000 +10.025 +9.975 +10.000 +10.025 +9.975 +10.000 +10.025 +9.975 +10.000 +10.025 +9.975 +10.000 +10.025 +9.975 +10.000 +10.025 +9.975 +10.000 +10.025 +9.975 +10.000 +10.025 +9.975 +10.000 +10.025 +9.975 +10.000 +10.025 +9.975 +10.000 +10.025 NOTHING 10	ANALOG OUTPUT													
Output Current Output Impedance Short Circuit to ACOM Duration ±5 Indefinite 0.1 Indefinite ±5 0.1 Indefinite 0.1 Indefinite ±5 0.1 Indefinite 0.1 Indefinite mA 0.1 Indefinite REFERENCE VOLTAGE Voltage +9.975 +19.960 +10.000 +10.025 +9.975 +10.000 +10.040 +10.000 +9.960 +10.000 1 1 2 Indefinite +10.000 1 2 Indefinite +10.000 2 Indefinite +10.000 2 Indefinite +10.000 2 Indefinite +10.000 2 Indefinite <td>Output Voltage Range</td> <td></td>	Output Voltage Range													
Output Impedance Output Imp	$+V_{CC}$, $-V_{CC} = \pm 11.4V$	±10			±10			±10			±10			V
Indefinite In	Output Current	±5			±5			±5			±5			mA
Page	Output Impedance		0.1			0.1			0.1			0.1		Ω
Voltage	Short Circuit to ACOM Duration		Indefinite			Indefinite			Indefinite			Indefinite		
T _{MIN} To T _{MAX} Output Resistance Source Current Short Circuit to ACOM Duration 1 2 Indefinite 2 Indefinite 1 1 2 Indefinite 2 Indefinite 2 Indefinite 3 Indefinite 4 +10.040 +9.960 1 +10.040 +9.960 1 2 Indefinite 3 Indefinite 4 +10.040 +9.960 1 +10.040 +9.960 1 1 0 Ω Ω Ω Ω Ω Ω Ω Ω Ω	REFERENCE VOLTAGE													
Court Cou	Voltage	+9.975	+10.000	+10.025	+9.975	+10.000	+10.025	+9.975	+10.000	+10.025	+9.975	+10.000	+10.025	V
Source Current Short Circuit to ACOM Duration 2 Indefinite 2 Indefinite 2 Indefinite 2 Indefinite 2 Indefinite 2 Indefinite	T _{MIN} to T _{MAX}	+9.960		+10.040	+9.960		+10.040	+9.960		+10.040	+9.960		+10.040	V
Indefinite In	Output Resistance		1			1			1			1		Ω
Temperary Temp	Source Current	2			2			2			2			mA
Temperature Resolution Temperature Resolution Temperature Resolution Temperature Resolution Temperature Resolution Temperature Resolution Temperature Ranges Tem	Short Circuit to ACOM Duration		Indefinite			Indefinite			Indefinite			Indefinite		
DIGITAL INPUTS Serial Data Input Code Logic Levels(1)			10	1	1	10	1	1	10	1	1	10	1	D:4-
Serial Data Input Code Logic Levels(1)			16			16			16			16		DIIS
Logic Levels(1) Sinary Two's Complement V _{IH}														
V _{IH}			1	1	•	' B	ı inarv Two's	Compleme	nt	1	!	1	1	
V _{IL} 0 +0.8 0 +0.8 0 +0.8 0 +0.8 0 +0.8 V I _{IH} (V _I = +2.7V) ±10 ±10 ±10 ±10 ±10 ±10 ±10 μA DIGITAL OUTPUT Serial Data V _{OL} (I _{SINK} = 1.6mA) V _{OH} (I _{SOURCE} = 500μA), T _{MIN} to T _{MAX} +2.4 +5 +2.4 +5 +2.4 +5 V POWER SUPPLY REQUIREMENTS Voltage +V _{CC} +11.4 +15 +16.5 +11.4 +15 +16.5 +11.4 +15 +16.5 +11.4 +15 +16.5 V -V _{CC} -11.4 -15 -16.5 -11.4 -15 -16.5 -11.4 -15 -16.5 -11.4 -15 -16.5 V Current (No Load, ±15V Supplies)(6) +V _{CC} 2 26 22 26 22 26 mA Power Dissipation(7) 625 mW TEMPERATURE RANGES Specification All Grades -40 +85 -40 +85 -40 +85 0 +70 °C Storage -60 +150 -60 +150 -60 +150 -60 +150 -60 +150 -60 +150 °C		+2.0	1	(V _{cc} -1.4)	+2.0					(V _{CC} -1.4)	+2.0	1	(V _{cc} -1.4)	V
th (V ₁ = +2.7V) th (V ₁ = +2.7V) th (V ₁ = +0.4V) th (V ₂ = +0.4V) th (V ₂ = +0.4V) th (V ₃ = +0.4V) th (V ₄ =														
±10		ľ			ľ			ľ	1		ľ			
DIGITAL OUTPUT Serial Data														
Serial Data V_{OL} ($I_{SINK} = 1.6 \text{mA}$) 0 $+0.4$ 0 0 $+0.4$ 0 0 $+0.4$ 0 0 0 0 0 0 0 0 0 0				±10			±10			±10			±10	μΑ
V _{OL} (I _{SINK} = 1.6mA)	DIGITAL OUTPUT													
V _{OH} (I _{SOURCE} = 500μA), T _{MIN} to T _{MAX} +2.4 +5 +2.4 +5 +2.4 +5 +2.4 +5 V POWER SUPPLY REQUIREMENTS Voltage +V _{CC} +11.4 +15 +16.5 +11.4 +15 +16.5 +11.4 +15 +16.5 +11.4 +15 +16.5 V -V _{CC} -11.4 -15 -16.5 -11.4 -15 -16.5 -11.4 -15 -16.5 V Current (No Load, ±15V Supplies) ⁽⁶⁾ +V _{CC} 13 16 13 16 13 16 13 16 13 16 mA -V _{CC} 22 26 22 26 22 26 mA Power Dissipation(7) Power Dissipation(7) FIEMPERATURE RANGES Specification All Grades -40 +85 -40 +85 -40 +85 0 +70 °C Storage -60 +150 -60 +150 -60 +150 -60 +150 -60 +150 -60 +150 -60		_		104	l ,		104	l ,	1	104	_		10.4	.,
POWER SUPPLY REQUIREMENTS Voltage +V _{CC} -V _{CC} -11.4 -15 -16.5 -11.4 +15 +16.5 +11.4 +15 +16.5 +11.4 +15 +16.5 V Current (No Load, ±15V Supplies) ⁽⁶⁾ +V _{CC} -V _{CC} 22 26 22 26 22 26 mA Power Dissipation ⁽⁷⁾ TEMPERATURE RANGES Specification All Grades -40 +85 -40 +85 -40 +85 0 +70 °C Storage -60 +150 -60 +150 -60 +150 -60 +150 -60 +150 -60 +150 -60							1	1		1				
Voltage +V _{CC} +11.4 +15 +16.5 +11.4 +15 +16.5 +11.4 +15 +16.5 +11.4 +15 +16.5 V -V _{CC} -V _{CC} -11.4 -15 -16.5 -11.4 -15 -16.5 -11.4 -15 -16.5 V Current (No Load, ±15V Supplies)(6) +V _{CC} -22 26 22 26 22 26 mA Power Dissipation(7) 625 625 625 625 mW TEMPERATURE RANGES Specification All Grades -40 +85 -40 +85 -40 +85 0 +70 °C Storage -60 +150 -60 +150 -60 +150 -60 +150 -60 +150 -60 +150 -60 +150 -60 +150 -60		+2.4		+5	+2.4		+5	+2.4	1	+5	+2.4		+5	V V
+V _{CC} +11.4 +15 +16.5 +11.4 +15 +16.5 +11.4 +15 +16.5 +16.5 +11.4 +15 +16.5 V Current (No Load, ±15V Supplies)(6) +V _{CC} 13 16 13 16 13 16 13 16 13 16 13 16 MA Power Dissipation(7) TEMPERATURE RANGES Specification All Grades -40 +85 -40 +85 -40 +85 -60 +150 -6					1			1			1			
-V _{CC} Current (No Load, ±15V Supplies) ⁽⁶⁾ +V _{CC} +V _{CC} -V _{CC} 13 16 13 16 13 16 13 16 13 16 13 16 mA -V _{CC} Power Dissipation ⁽⁷⁾ TEMPERATURE RANGES Specification All Grades -40 +85 -40 +85 -40 +85 0 +70 °C Storage -60 +150 -60 +150 -60 +150 -60 +150 -60 +150 -60 +150 -60	· ·	.	1	10-	 			l		10.5	 		1	l .,
Current (No Load, ±15V Supplies) ⁽⁶⁾ +V _{CC}			1					1		1		1		
+V _{CC}		-11.4	-15	-16.5	-11.4	-15	−16.5	-11.4	-15	-16.5	-11.4	-15	-16.5	۷ ا
-V _{CC} 22 26 22 26 22 26 22 26 mA Power Dissipation(7) 625 625 625 625 625 625 mW TEMPERATURE RANGES Specification All Grades -40 +85 -40 +85 0 +70 °C Storage -60 +150 -60 +150 -60 +150 -60 +150 -60			40	100	1	40	40	l	1 ,,	1 40	1	1 ,,	40	
Power Dissipation(7) 625 625 625 625 mW TEMPERATURE RANGES Specification All Grades -40 +85 -40 +85 0 +70 °C Storage -60 +150 -60 +150 -60 +150 -60 +150 °C			1		1	1	1	l		1	1			
TEMPERATURE RANGES Specification All Grades -40 +85 -40 +85 -40 +85 0 +70 °C Storage -60 +150 -60 +150 -60 +150 -60 +150 °C			22			22	1		22	1		22		
Specification -40 +85 -40 +85 -40 +85 0 +70 °C Storage -60 +150 -60 +150 -60 +150 -60 +150 °C				020			020			020			020	11100
All Grades														
Storage -60 +150 -60 +150 -60 +150 -60 +150 -60 +150 °C	•	_40		T 0 E	_40		182	_40		105				∘∩
								l .		1				
	Storage Thermal Coefficient, θ_{JA}	_00	75	7130		75	7130		75	+130		75	7130	°C/W

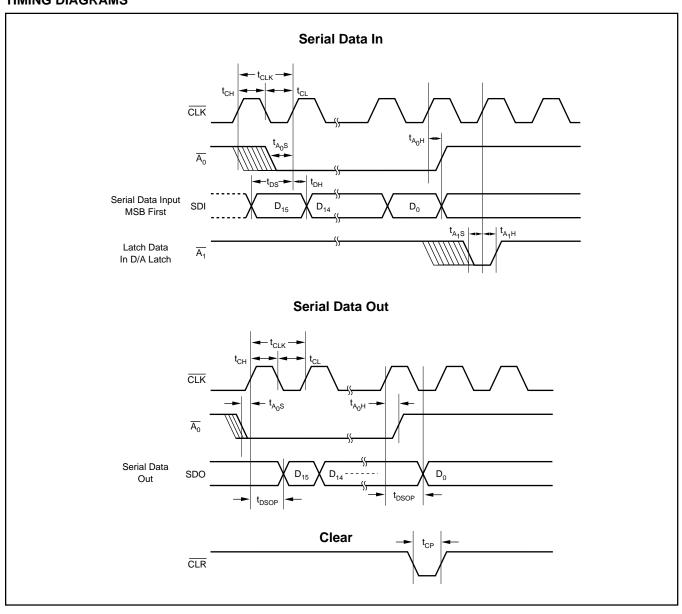
NOTES: (1) Digital inputs are TTL and \pm 5V CMOS compatible over the specification temperature range. (2) FSR means Full Scale Range. For example, for \pm 10V output, FSR = 20V. (3) Errors externally adjustable to zero. (4) Maximum represents the 3σ limit. Not \pm 100% tested for this parameter. (5) For the worst-case Binary Two's Complement code changes: FFFF_H to \pm 0000_H and \pm 0000_H to FFFF_H. (6) During power supply turn on, the transient supply current may approach \pm 1 the maximum quiescent specification. (7) Typical (i.e. rated) supply voltages times maximum currents.

TEXAS INSTRUMENTS

www.ti.com

TIMING SPECIFICATIONS

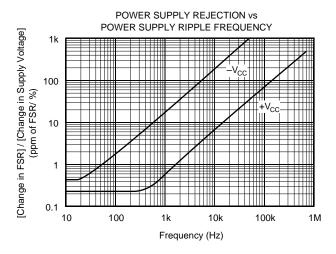
 $T_A = -40^{\circ}C$ to +85°C, +V_{CC} = +12V or +15V, -V_{CC} = -12V or -15V.

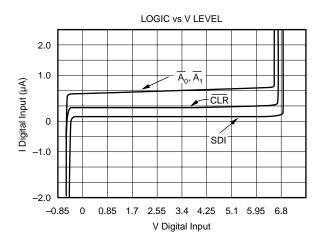

SYMBOL	PARAMETER	MIN	MAX	UNITS
t _{CLK}	Data Clock Period	100		ns
t _{CL}	Clock LOW	50		ns
t _{CH}	Clock HIGH	50		ns
t _{AOS}	Setup Time for $\overline{A_0}$	50		ns
t _{A1S}	Setup Time for $\overline{A_1}$	50		ns
t _{AOH}	Hold Time for $\overline{A_0}$	0		ns
t _{A1H}	Hold Time for $\overline{A_1}$	0		ns
t _{DS}	Setup Time for DATA	50		ns
t _{DH}	Hold Time for DATA	10		ns
t _{DSOP}	Output Propagation Delay		140	ns
t _{CP}	Clear Pulsewidth	200		ns

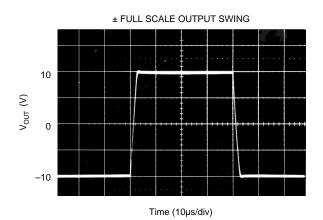
TRUTH TABLE

$\overline{A_0}$	A ₁	CLK	CLR	DESCRIPTION
0	1	$1 \rightarrow 0 \rightarrow 1$	1	Shift Serial Data into SDI
1	0	$1 \rightarrow 0 \rightarrow 1$	1	Load D/A Latch
1	1	$1 \rightarrow 0 \rightarrow 1$	1	No Change
0	0	$1 \rightarrow 0 \rightarrow 1$	Two Wire Operation ⁽¹⁾	
Х	Х	1	1	No Change
Х	Х	Х	0	Reset D/A Latch
NOTEO	· -	l: 0 (4) All		

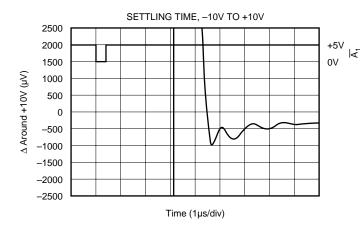
NOTES: X = Don't Care. (1) All digital input changes will appear at the output

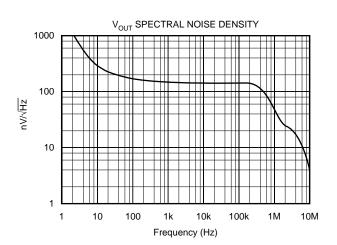

TIMING DIAGRAMS





TYPICAL CHARACTERISTICS


At $T_A = +25^{\circ}C$, $V_{CC} = \pm 15V$, unless otherwise noted.



DISCUSSION OF SPECIFICATIONS

LINEARITY ERROR

Linearity error is defined as the deviation of the analog output from a straight line drawn between the end points of the transfer characteristic.

DIFFERENTIAL LINEARITY ERROR

Differential linearity error (DLE) is the deviation from 1LSB of an output change from one adjacent state to the next. A DLE specification of $\pm 1/2$ LSB means that the output step size can range from 1/2LSB to 3/2LSB when the digital input code changes from one code word to the adjacent code word. If the DLE is more positive than -1LSB, the D/A is said to be monotonic.

MONOTONICITY

A D/A converter is monotonic if the output either increases or remains the same for increasing digital input values. Monotonicity of the C and L grades is assured over the specification temperature range to 16 bits.

SETTLING TIME

Settling time is the total time (including slew time) for the D/A output to settle to within an error band around its final value after a change in input. Settling times are specified to within $\pm 0.003\%$ of Full Scale Range (FSR) for an output step change of 20V and 1LSB. The 1LSB change is measured at the Major Carry (FFFF $_{\rm H}$ to $0000_{\rm H}$, and $0000_{\rm H}$ to FFFF $_{\rm H}$: BTC codes), the input transition at which worst-case settling time occurs.

TOTAL HARMONIC DISTORTION

Total harmonic distortion is defined as the ratio of the square root of the sum of the squares of the values of the harmonics to the value of the fundamental frequency. It is expressed in % of the fundamental frequency amplitude at sampling rate f_S .

SIGNAL-TO-NOISE AND DISTORTION RATIO (SINAD)

SINAD includes all the harmonic and outstanding spurious components in the definition of output noise power in addition to quantizing and internal random noise power. SINAD is expressed in dB at a specified input frequency and sampling rate, f_s .

DIGITAL-TO-ANALOG GLITCH IMPULSE

The amount of charge injected into the analog output from the digital inputs when the inputs change state. It is measured at half scale at the input codes where as many as possible switches change state—from $0000_{\rm H}$ to FFFF_H.

DIGITAL FEEDTHROUGH

When the A/D is not selected, high frequency logic activity on the digital inputs is coupled through the device and shows up as output noise. This noise is digital feedthrough.

OPERATION

The DAC714 is a monolithic integrated-circuit 16-bit D/A converter complete with 16-bit D/A switches and ladder network, voltage reference, output amplifier and a serial interface.

INTERFACE LOGIC

The DAC714 has double-buffered data latches. The input data latch holds a 16-bit data word before loading it into the second latch, the D/A latch. This double-buffered organization permits simultaneous update of several D/A converters. All digital control inputs are active low. Refer to the block diagram shown in Figure 1.

All latches are level-triggered. Data present when the enable inputs are logic "0" will enter the latch. When the enable inputs return to logic "1", the data is latched.

The \overline{CLR} input resets both the input latch and the D/A latch to $0000_{\rm H}$ (midscale).

LOGIC INPUT COMPATIBILITY

The DAC714 digital inputs are TTL compatible (1.4V switching level), low leakage, and high impedance. Thus, the inputs are suitable for being driven by any type of 5V logic family, such as CMOS. An equivalent circuit for the digital inputs is shown in Figure 2.

The inputs will float to logic "0" if left unconnected. It is recommended that any unused inputs be connected to DCOM to improve noise immunity.

Digital inputs remain high impedance when power is off.

INPUT CODING

The DAC714 is designed to accept binary two's complement (BTC) input codes with the MSB first which are compatible with bipolar analog output operation. For this configuration, a digital input of $7FFF_H$ produces a plus full scale output, 8000_H produces a minus full scale output, and 0000_H produces bipolar zero output.

INTERNAL REFERENCE

The DAC714 contains a +10V reference. The reference output may be used to drive external loads, sourcing up to 2mA. The load current should be constant; otherwise, the gain and bipolar offset of the converter will vary.

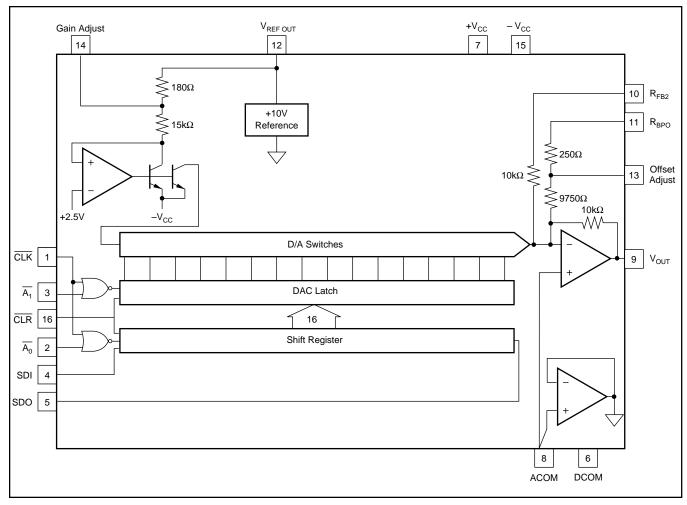


FIGURE 1. DAC714 Block Diagram.

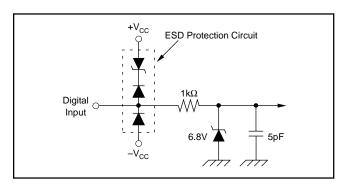


FIGURE 2. Equivalent Circuit of Digital Inputs.

OUTPUT VOLTAGE SWING

The output amplifier of the DAC714 is designed to achieve a $\pm 10V$ output range while operating on $\pm 11.4V$ or higher power supplies.

GAIN AND OFFSET ADJUSTMENTS

Figure 3 illustrates the relationship of offset and gain adjustments for a bipolar connected D/A converter. Offset should be adjusted first to avoid interaction of adjustments. See Table I for calibration values and codes. These adjustments have a minimum range of $\pm 0.3\%$.

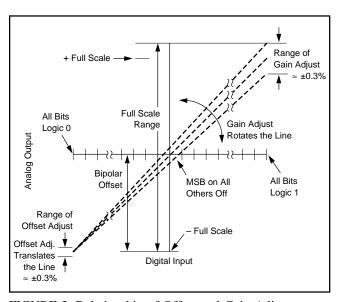


FIGURE 3. Relationship of Offset and Gain Adjustments.

Offset Adjustment

Apply the digital input code, 8000_H , that produces the maximum negative output voltage and adjust the offset potentiometer or the offset adjust D/A converter for -10V (or 0V unipolar).

DAC	DAC714 CALIBRATION VALUES											
DIGITAL INPUT CODE BINARY TWO'S COMPLEMENT, BTC	ANALOG O BIPOLAR 20V RANGE	UTPUT (V) UNIPOLAR 10V RANGE	DESCRIPTION									
7FFF _H	+9.999695	+9.999847	+ Full Scale -1LSB									
4000 _H	+5.000000	+7.500000	3/4 Scale									
0001 _H	+0.000305	+5.000153	BPZ + 1LSB									
0000 _H	0.000000	+5.000000	Bipolar Zero (BPZ)									
FFFF _H	-0.000305	+4.999847	BPZ – 1LSB									
C000 _H	-5.000000	+2.500000	1/4 Scale									
8000 _H	-10.00000	0.000000	Minus Full Scale									

TABLE I. Digital Input and Analog Output Voltage Calibration Values.

Gain Adjustment

Apply the digital input that gives the maximum positive voltage output. Adjust the gain potentiometer or the gain adjust D/A converter for this positive full scale voltage.

INSTALLATION

GENERAL CONSIDERATIONS

Due to the high accuracy of the DAC714 system design, problems such as grounding and contact resistance become very important. A 16-bit converter with a 20V full-scale range has a 1LSB value of 305 μ V. With a load current of 5mA, series wiring and connector resistance of only 60m Ω will cause a voltage drop of 300 μ V. To understand what this means in terms of a system layout, the resistivity of a typical 1 ounce copper-clad printed circuit board is 1/2 m Ω per square. For a 5mA load, a 10 milliinch wide printed circuit conductor 60 milliinches long will result in a voltage drop of 150 μ V.

The analog output of DAC714 has an LSB size of $305\mu V$ (-96dB) in the bipolar mode. The rms noise floor of the D/A should remain below this level in the frequency range of interest. The DAC714's output noise spectral density (which includes the noise contributed by the internal reference,) is shown in the Typical Characteristic section.

Wiring to high-resolution D/A converters should be routed to provide optimum isolation from sources of RFI and EMI. The key to elimination of RF radiation or pickup is small loop area. Signal leads and their return conductors should be kept close together such that they present a small capture cross-section for any external field. Wire-wrap construction is not recommended.

POWER SUPPLY AND REFERENCE CONNECTIONS

Power supply decoupling capacitors should be added as shown in Figure 4. Best performance occurs using a 1 to $10\mu F$ tantalum capacitor at $-V_{CC}$. Applications with less

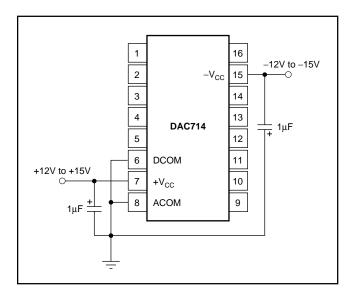


FIGURE 4. Power Supply Connections.

critical settling time may be able to use $0.01\mu F$ at $-V_{CC}$ as well as at $+V_{CC}$. The capacitors should be located close to the package.

The DAC714 has separate ANALOG COMMON and DIGITAL COMMON pins. The current through DCOM is mostly switching transients and are up to 1mA peak in amplitude. The current through ACOM is typically 5µA for all codes.

Use separate analog and digital ground planes with a single interconnection point to minimize ground loops. The analog pins are located adjacent to each other to help isolate analog from digital signals. Analog signals should be routed as far as possible from digital signals and should cross them at right angles. A solid analog ground plane around the D/A package, as well as under it in the vicinity of the analog and power supply pins, will isolate the D/A from switching currents. It is recommended that DCOM and ACOM be connected directly to the ground planes under the package.

If several DAC714s are used or if DAC714 shares supplies with other components, connecting the ACOM and DCOM lines to together once at the power supplies rather than at each chip may give better results.

LOAD CONNECTIONS

Since the reference point for V_{OUT} and $V_{REF\ OUT}$ is the ACOM pin, it is important to connect the D/A converter load directly to the ACOM pin. Refer to Figure 5.

Lead and contact resistances are represented by R_1 through R_3 . As long as the load resistance R_L is constant, R_1 simply introduces a gain error and can be removed by gain adjustment of the D/A or system-wide gain calibration. R_2 is part of R_L if the output voltage is sensed at ACOM.

In some applications it is impractical to return the load to the ACOM pin of the D/A converter. Sensing the output voltage at the SYSTEM GROUND point is reasonable, because there is no change in DAC714 ACOM current, provided that R₃ is a low-resistance ground plane or conductor. In this case you may wish to connect DCOM to SYSTEM GROUND as well.

GAIN AND OFFSET ADJUST

Connections Using Potentiometers

GAIN and OFFSET adjust pins provide for trim using external potentiometers. 15-turn potentiometers provide sufficient resolution. Range of adjustment of these trims is at least $\pm 0.3\%$ of Full Scale Range. Refer to Figure 6.

Using D/A Converters

The GAIN ADJUST and OFFSET ADJUST circuits of the DAC714 have been arranged so that these points may be easily driven by external D/A converters. Refer to Figure 7. 12-bit D/A converters provide an OFFSET adjust resolution and a GAIN adjust resolution of $30\mu V$ to $50\mu V$ per LSB step.

Nominal values of GAIN and OFFSET occur when the D/A converters outputs are at approximately half scale, +5V.

OUTPUT VOLTAGE RANGE CONNECTIONS

The DAC714 output amplifier is connected internally to provide a 20V output range. For other ranges and configurations, see Figures 6 and 7.

DIGITAL INTERFACE

SERIAL INTERFACE

The DAC714 has a serial interface with two data buffers which can be used for either synchronous or asynchronous updating of multiple D/A converters. $\overline{A0}$ is the enable control for the input shift register. $\overline{A1}$ is the enable for the D/A Latch. \overline{CLK} is used to strobe data into the latches enabled by $\overline{A0}$ and $\overline{A1}$. A \overline{CLR} function is also provided and when enabled it sets the shift register and the D/A Latch to 0000_H (output voltage is midscale).

Multiple DAC714s can be connected to the same $\overline{\text{CLK}}$ and data lines in two ways. The output of the serial shift register is available as SDO so that any number of DAC714s can be cascaded on the same input bit stream as shown in Figures 8 and 9. This configuration allows all D/A converters to be updated simultaneously and requires a minimum number of control signals. These configurations do require 16N $\overline{\text{CLK}}$ cycles to load any given D/A converter, where N is the number of D/A converters.

The DAC714 can also be connected in parallel as shown in Figure 10. This configuration allows any D/A converter in the system to be updated in a maximum of 16 CLK cycles.

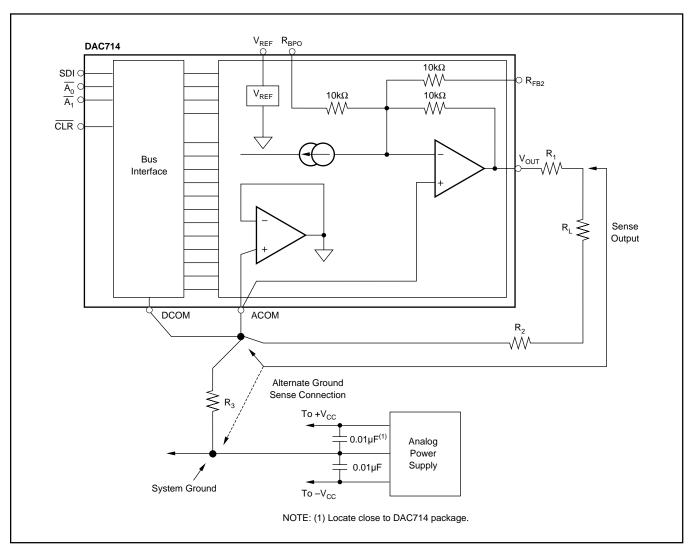


FIGURE 5. System Ground Considerations for High-Resolution D/A Converters.

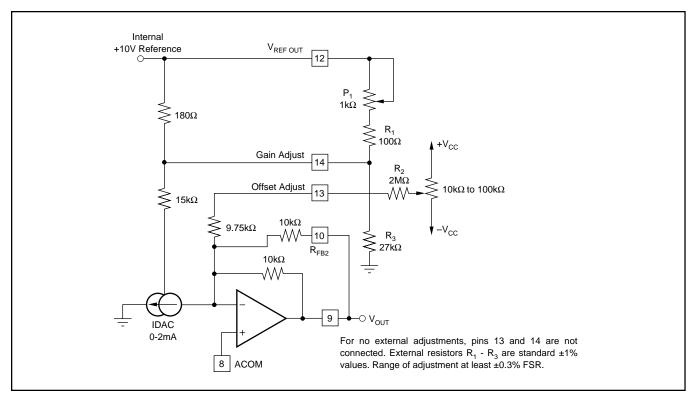


FIGURE 6a. Manual Offset and Gain Adjust Circuits; Unipolar Mode (0V to +10V output range).

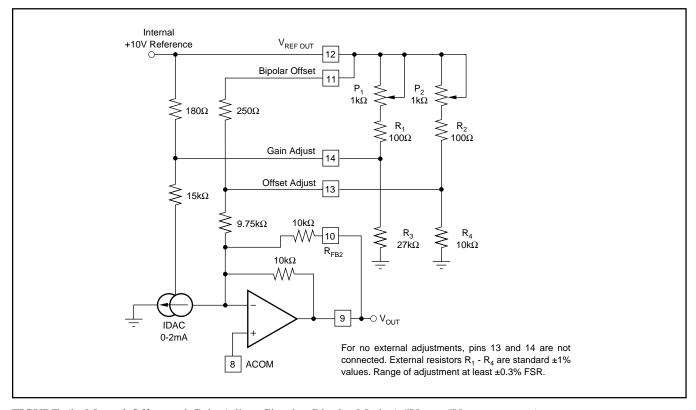


FIGURE 6b. Manual Offset and Gain Adjust Circuits; Bipolar Mode (-5V to +5V output range).

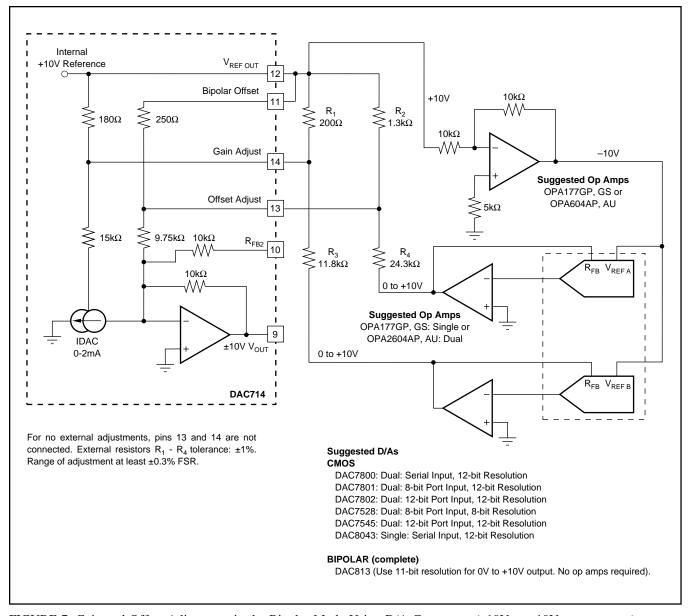


FIGURE 7. Gain and Offset Adjustment in the Bipolar Mode Using D/A Converters (-10V to +10V output range).

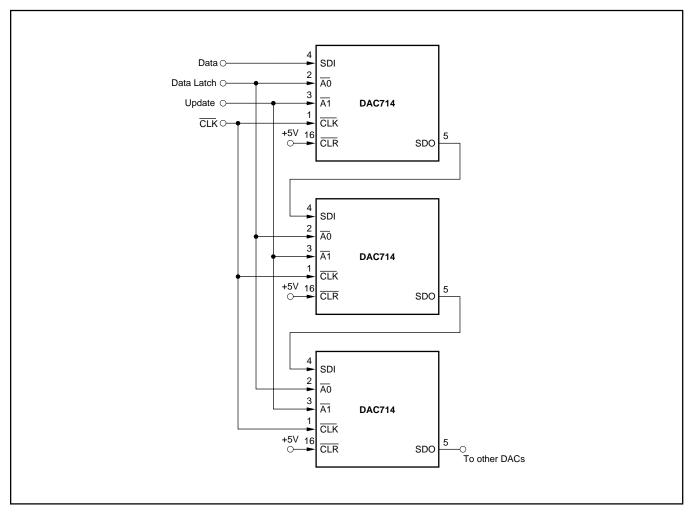


FIGURE 8a. Cascaded Serial Bus Connection with Synchronous Update.

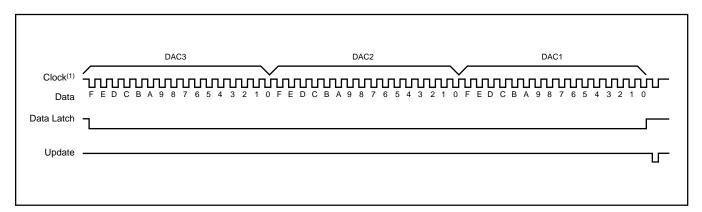


FIGURE 8b. Timing Diagram For Figure 8a.

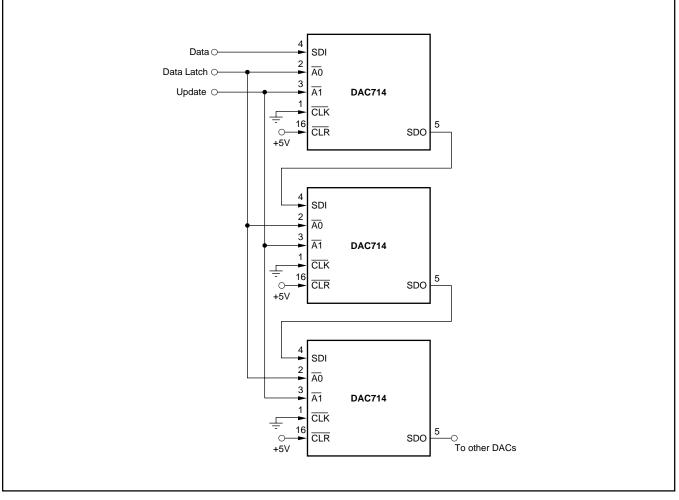


FIGURE 9a. Cascaded Serial Bus Connection with Asynchronous Update.

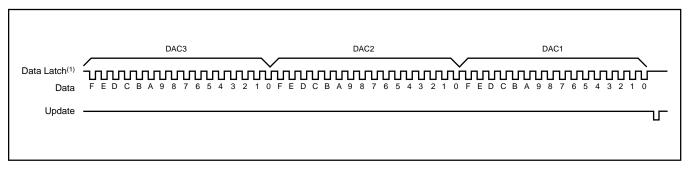


FIGURE 9b. Timing Diagram For Figure 9a.

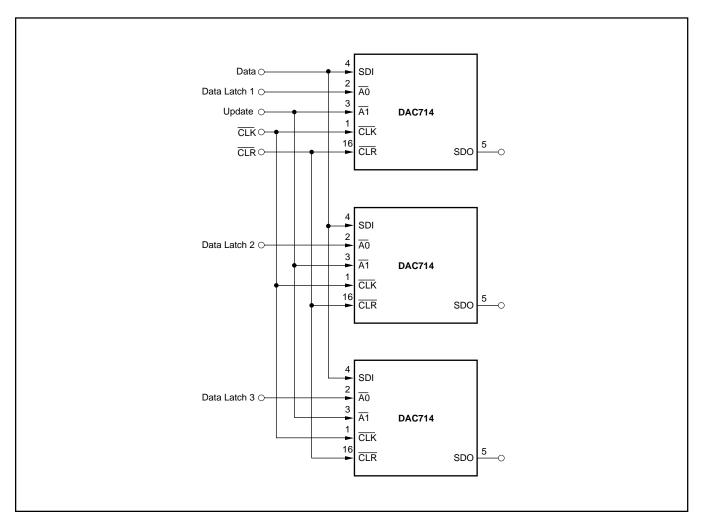


FIGURE 10a. Parallel Bus Connection.

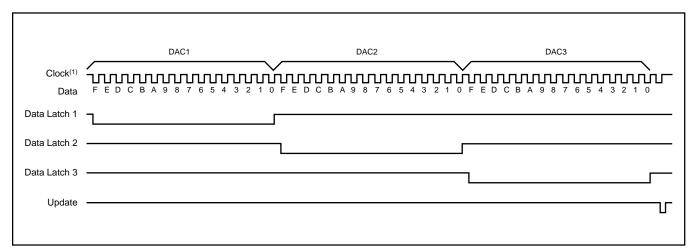


FIGURE 10b. Timing Diagram For Figure 10a.

15-Apr-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
DAC714P	NRND	PDIP	N	16	25	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	-40 to 85	DAC714P	
DAC714PG4	NRND	PDIP	N	16	25	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	-40 to 85	DAC714P	
DAC714U	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	DAC714U	Samples
DAC714U/1K	ACTIVE	SOIC	DW	16	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	DAC714U	Samples
DAC714U/1KG4	ACTIVE	SOIC	DW	16	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	DAC714U	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

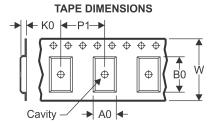
⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

PACKAGE OPTION ADDENDUM

15-Apr-2017

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

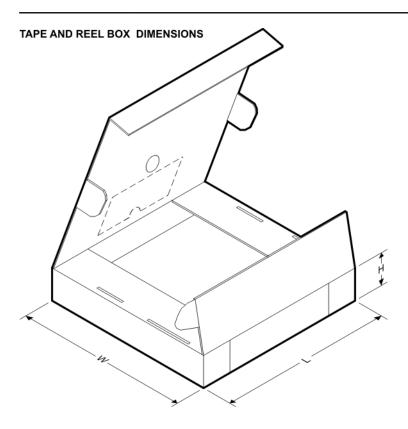

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 26-Jan-2013

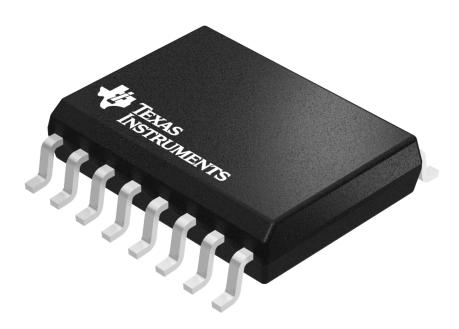
TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

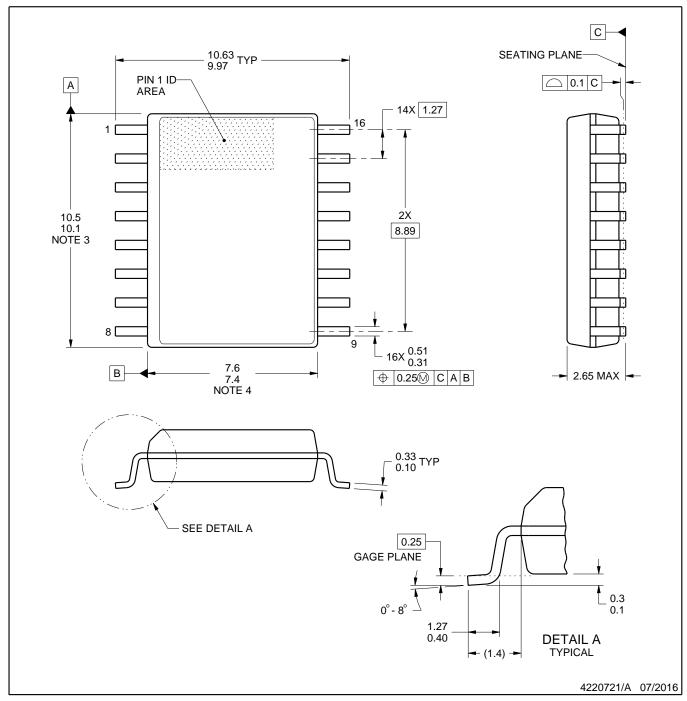
Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
DAC714U/1K	SOIC	DW	16	1000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1


www.ti.com 26-Jan-2013

*All dimensions are nominal

I	Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
I	DAC714U/1K	SOIC	DW	16	1000	367.0	367.0	38.0	

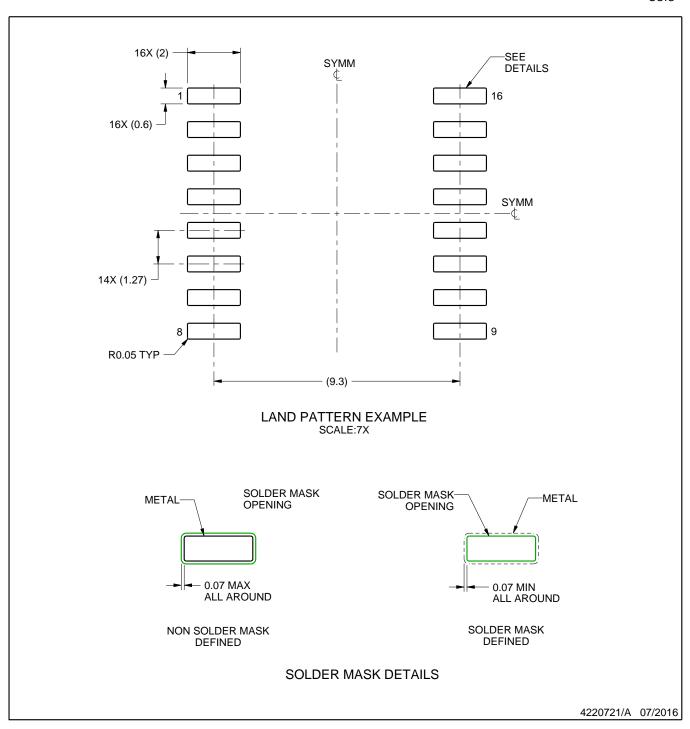
SMALL OUTLINE INTEGRATED CIRCUIT


Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4040000-2/H

SOIC

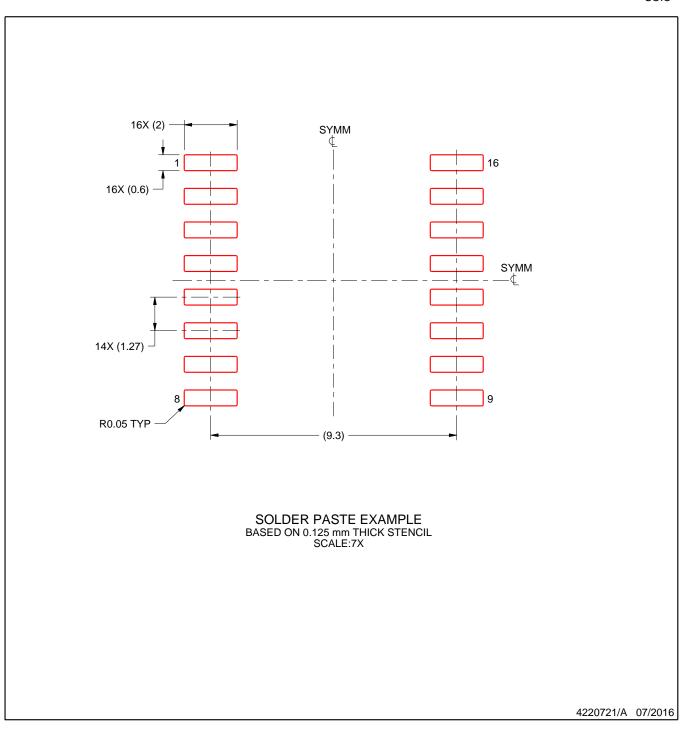
NOTES:


- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing
- per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.
- 5. Reference JEDEC registration MS-013.

SOIC


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOIC

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.