

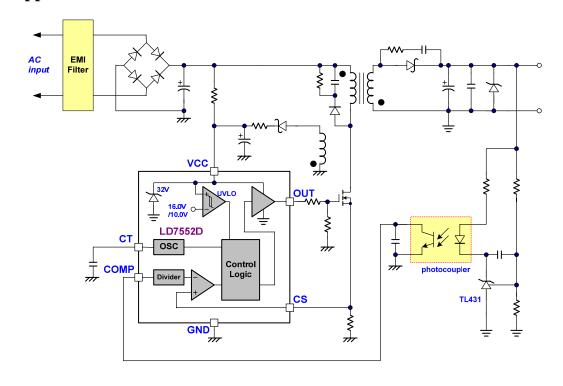
Green-Mode PWM Controller with Integrated Protections and Adjustable OLP Delay Time

REV: 00

General Description

The LD7552D are specifically designed for the low total system cost by integrating many functions, protections, and the EMI-improved solution in a SOP-8 package which usually need a lot of extra components or circuits on the general designs.

The implemented functions include low startup current, green-mode power-saving operation, leading-edge blanking of the current sensing and internal slope compensation. And the LD7552D features more protections like OLP (Over Load Protection) and OVP (Over Voltage Protection) to prevent the circuit damage from the abnormal conditions.


Features

- High-Voltage CMOS Process with Excellent ESD protection
- Very Low Startup Current (<20μA)
- Current Mode Control
- Non-audible-noise Green Mode Control
- UVLO (Under Voltage Lockout)
- LEB (Leading-Edge Blanking) on CS Pin
- Adjustable OLP Delay Time.
- Internal Slope Compensation
- OVP (Over Voltage Protection) on Vcc Pin
- OLP (Over Load Protection)
- 500mA Driving Capability

Applications

- Switching AC/DC Adaptor and Battery Charger
- Open Frame Switching Power Supply


Typical Application

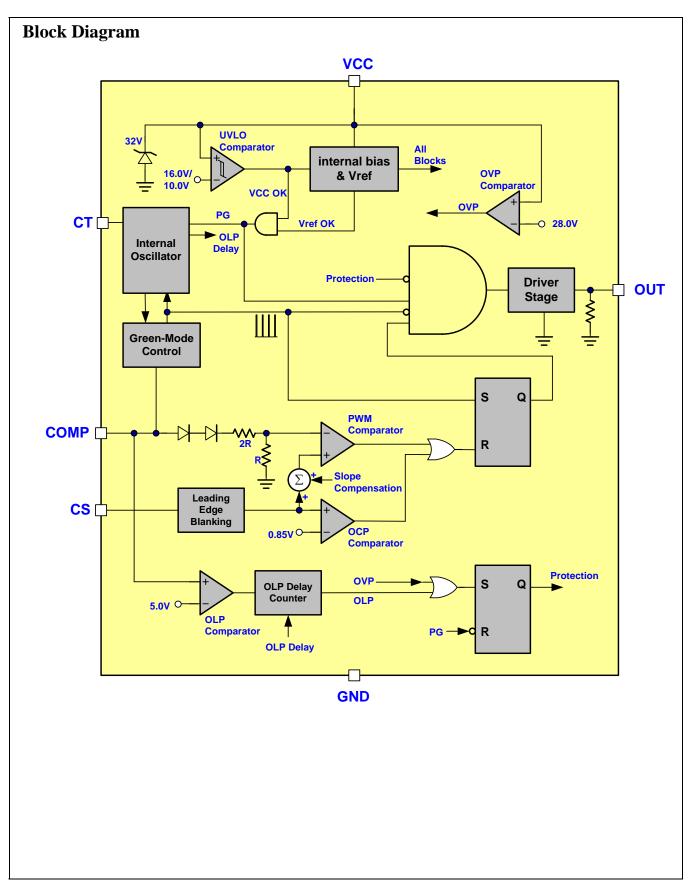
Pin Configuration

SOP-8 / DIP-8 (TOP VIEW)

YY : Year code (D: 2004, E: 2005.....) WW : Week code

WW : Week code## : Production code

Ordering Information


Part number	Package		TOP MARK	Shipping
LD7552D PS	SOP-8	PB Free	LD7552DPS	2500 /tape & reel
LD7552D GS	SOP-8	Green Package	LD7552DGS	2500 /tape & reel
LD7552D PN	DIP-8	DIP-8	LD7552DPN	3600/tube /carton

The LD7552D is ROHS Complaint/ Green Package.

Pin Descriptions

PIN	NAME	FUNCTION	
1	GND	Ground	
2	COMP	Voltage feedback pin (same as the COMP pin in UC384X), By connecting a photo-coupler to close the control loop and achieve the regulation.	
3	VCC	Supply voltage pin	
4	СТ	This pin is to program the frequency of the low frequency timer. By connecting a capacitor to ground to set the OLP delay time.	
5	NC	Unconnected pin	
6	cs	Current sense pin, connect to sense the MOSFET current	
7	VCC	Supply voltage pin	
8	OUT	Gate drive output to drive the external MOSFET	

Absolute Maximum Ratings

Supply Voltage VCC	30V
COMP, CT, CS	-0.3 ~7V
OUT	Vcc+0.3V
Junction Temperature	150°C
Operating Ambient Temperature	-40°C to 85°C
Storage Temperature Range	-65°C to 150°C
Package Thermal Resistance (SOP-8)	160°C/W
Package Thermal Resistance (DIP-8)	100°C/W
Power Dissipation (SOP-8, at Ambient Temperature = 85°C)	400mW
Power Dissipation (DIP-8, at Ambient Temperature = 85°C)	650mW
Lead temperature (Soldering, 10sec)	260°C
ESD Voltage Protection, Human Body Model	3.0 KV
ESD Voltage Protection, Machine Model	300 V
Gate Output Current	500mA

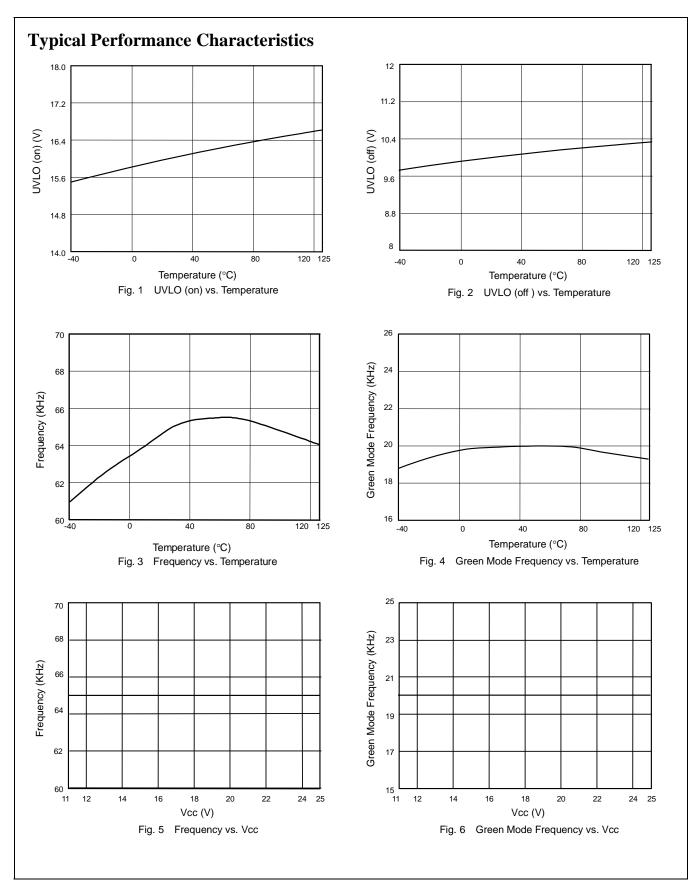
Caution:

Stresses beyond the ratings specified in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

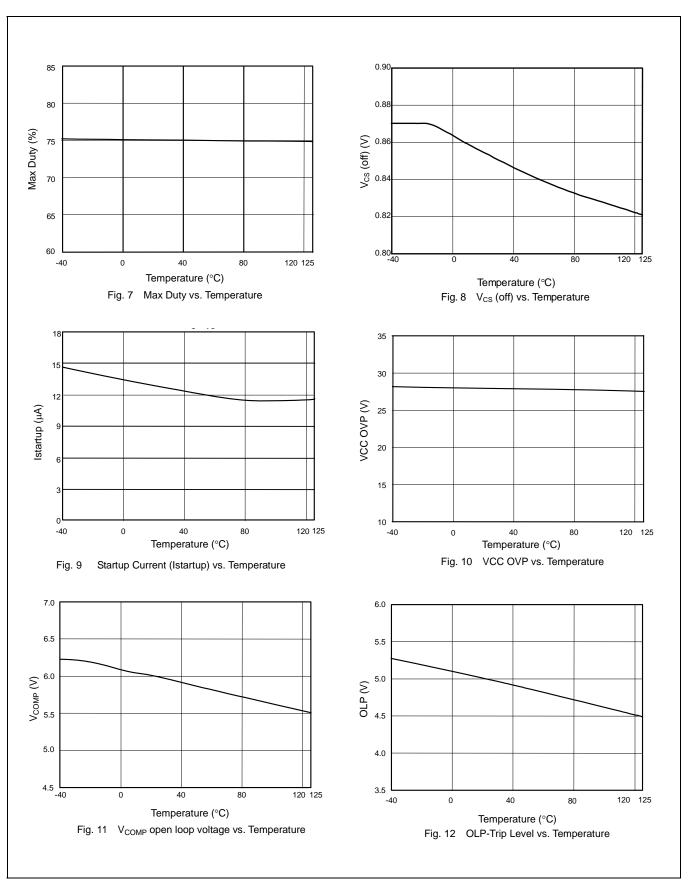
Recommended Operating Conditions

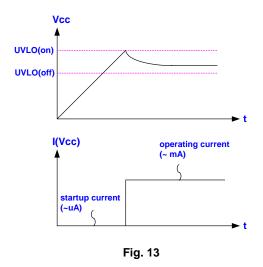
Item	Min.	Max.	Unit
Supply Voltage Vcc	11	25	V
CT Value	0.047	0.1	μF
Start-up resistor	1.2	1.4	$M\Omega$

Electrical Characteristics


 $(T_A = +25^{\circ}C \text{ unless otherwise stated, } V_{CC}=15.0V)$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage (Vcc Pin)					
Startup Current			12	20	μΑ
	V _{COMP} =0V		2.5		mA
Operating Current	V _{COMP} =3V		3.0		mA
(with 1nF load on OUT pin)	Protection tripped (OVP)		0.5		mA
UVLO (off)		9.0	10.0	11.0	V
UVLO (on)		15.0	16.0	17.0	V
OVP Level		26.8	28.0	29.2	V
Voltage Feedback (COMP Pin)	·				
Short Circuit Current	V _{COMP} =0V		1.5		mA
Open Loop Voltage	COMP pin open		6.0		V
Green Mode Threshold V _{COMP}			2.35		V
Current Sensing (CS Pin)					
Maximum Input Voltage, Vcs(off)		0.80	0.85	0.90	V
Leading Edge Blanking Time			240		nS
Input impedance		1			MΩ
Delay to Output			60		nS
Oscillator for Switching Frequence	у				
Frequency	Internal Fixed	60	65	70	KHz
Green Mode Frequency			20		KHz
Trembling Frequency			±4		KHz
Temp. Stability	(-40°C ~105°C)			5	%
Voltage Stability	(VCC=11V-25V)			1	%
Low Frequency Timer (CT pin)					
Low Frequency Period	CT=0.047μF		4.7		mS
Gate Drive Output (OUT Pin)					
Output Low Level	VCC=15V, Io=20mA			1	V
Output High Level	VCC=15V, Io=20mA	8			V
Rising Time	Load Capacitance=1000pF		50	160	nS
Falling Time	Load Capacitance=1000pF		30	60	nS
OLP (Over Load Protection)	-				
OLP Trip Level	V _{COMP} (OLP)		5.0		V
	CT=0.047μF		40		mS


CT value is in proportion to OLP delay time.

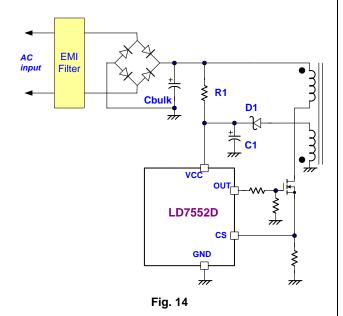

Application Information

Operation Overview

The LD7552D meet the green-power requirement and is intended for the use in those modern switching power suppliers and adaptors which demand higher power efficiency and power-saving. It integrated more functions to reduce the external components counts and the size. Its major features are described as below.

Under Voltage Lockout (UVLO)

An UVLO comparator is implemented in it to detect the voltage on the VCC pin. It would assure the supply voltage enough to turn on the LD7552D PWM controllers and further to drive the power MOSFET. As shown in Fig. 13, a hysteresis is built in to prevent the shutdown from the voltage dip during startup. The turn-on and turn-off threshold level are set at 16.0V and 10.0V, respectively.

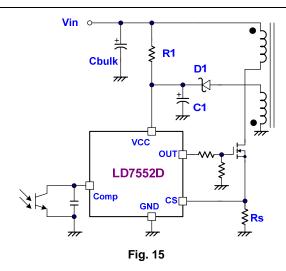


Startup Current and Startup Circuit

The typical startup circuit to generate the LD7552D Vcc is shown in Fig. 14. During the startup transient, the Vcc is lower than the UVLO threshold thus there is no gate pulse produced from LD7552D to drive power MOSFET. Therefore, the current through R1 will provide the startup current and to charge the capacitor C1. Whenever the Vcc voltage is high enough to turn on the LD7552D and further to deliver the gate drive signal, the supply current is provided from the auxiliary winding of the transformer. Lower startup current requirement on the PWM controller

will help to increase the value of R1 and then reduce the power consumption on R1. By using CMOS process and the special circuit design, the maximum startup current of LD7552D is only 20μ A.

If a higher resistance value of the R1 is chosen, it usually takes more time to start up. To carefully select the value of R1 and C1 will optimize the power consumption and startup time.



Current Sensing and Leading-Edge Blanking

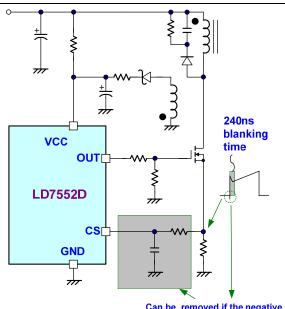
The typical current mode of PWM controller feedbacks both current signal and voltage signal to close the control loop and achieve regulation. As shown in Fig. 15, the LD7552D detect the primary MOSFET current from the CS pin, which is not only for the peak current mode control but also for the pulse-by-pulse current limit. The maximum voltage threshold of the current sensing pin is set at 0.85V. From above, the MOSFET peak current can be obtained from below.

$$I_{PEAK(MAX)} = \frac{0.85V}{R_S}$$

A 240nS leading-edge blanking (LEB) time is included in the input of CS pin to prevent the false-trigger from the current spike. In the low power application, if the total pulse width of the turn-on spikes is less than 240nS and the negative spike on the CS pin doesn't exceed -0.3V, it could eliminated the R-C filter (as shown in the figure16).

However, the total pulse width of the turn-on spike is decided by the output power, circuit design and PCB layout. It is strongly recommended to adopt a smaller R-C filter (as shown in figure 17) for higher power application to avoid the CS pin being damaged by the negative turn-on spike.

Output Stage and Maximum Duty-Cycle


An output stage of a CMOS buffer, with typical 500mA driving capability, is incorporated to drive a power MOSFET directly. And the maximum duty-cycle of LD7552D is limited to 75% to avoid the transformer saturation.

Voltage Feedback Loop

The voltage feedback signal is provided from the TL431 at the secondary side through the photo-coupler to the COMP pin of the LD7552D. Similar to UC3842, the LD7552D would carry 2 diodes voltage offset at the stage to feed the voltage divider at the ratio of 1/3, that is,

$$V_{-(PWM_{COMPARATOR})} = \frac{1}{3} \times (V_{COMP} - 2V_F)$$

A pull-high resistor is embedded internally and can be eliminated externally.

Can be removed if the negative spike is not over spec. (-0.3V).

Fig. 16

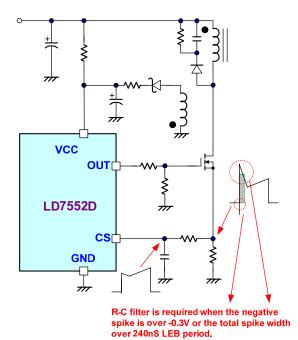


Fig. 17

Oscillator and Switching Frequency

The switching frequency of LD7552D is fixed as 65 KHz internally to provide the optimized operations by considering the EMI performance, thermal treatment, component sizes and transformer design.

Internal Slope Compensation

In the conventional application, the problem of the stability is a critical issue for current mode controlling, when it operates in higher than 50% of the duty-cycle. As UC384X, It takes slope compensation from injecting the ramp signal of the RT/CT pin through a coupling capacitor. It therefore requires no extra design for the LD7552D since it has integrated it already.

On/Off Control

The LD7552D can be turned off by pulling COMP pin lower than 1.2V. The gate output pin of the LD7552D will be disabled immediately under such condition. The off-mode can be released when the pull-low signal is removed.

Dual-Oscillator Green-Mode Operation

There are many different topologies has been implemented in different chips for the green-mode or power saving requirements such as "burst-mode control", "skipping-cycle mode", "variable off-time control "...etc. The basic operation theory of all these approaches intended to reduce the switching cycles under light-load or no-load condition either by skipping some switching pulses or reduce the switching frequency.

What LD7552D use to implement the power-saving operation is Leadtrend Technology's own IP. By using this dual-oscillator control, the green-mode frequency can be well controlled and further to avoid the generation of audible noise.

OVP (Over Voltage Protection) on Vcc

The V_{GS} ratings of the nowadays power MOSFETs are often limited up to max. 30V. To prevent the V_{GS} from the fault condition, LD7552D are implemented an OVP function on Vcc. Whenever the Vcc voltage is higher than the OVP threshold voltage, the output gate drive circuit will be shutdown simultaneously thus to stop the switching of the power MOSFET until the next UVLO(on).

The Vcc OVP function in LD7552D is an auto-recovery type protection. If the OVP condition, usually caused by the feedback loop opened, is not released, the Vcc will tripped the OVP level again and re-shutdown the output. The Vcc is working as a hiccup mode. The figure 18 shows its operation.

On the other hand, if the OVP condition is removed, the Vcc level will get back to normal level and the output will automatically return to the normal operation.

Fig. 18

Over Load Protection (OLP)

To protect the circuit from being damaged under over load condition or short condition, a smart OLP function is implemented in the LD7552D. The figure 19 shows the waveforms of the OLP operation. In this case, the feedback system will force the voltage loop proceed toward the saturation and then pull up the voltage on COMP pin (V_{COMP}). Whenever the V_{COMP} trips up to the OLP threshold 5V and stays longer than the OLP delay time, the protection will activate and then turn off the gate output to stop the switching of power circuit. The OLP delay time, set by CT pin, is to prevent the false trigger from the power-on and turn-off transient. Higher CT value will generate longer OLP delay time. For the recommended CT value, the OLP delay time is around 90mS when CT=0.1 μ F and will be around 50mS if CT=0.047 μ F.

By such protection mechanism, the average input power can be reduced to very low level so that the component temperature and stress can be controlled within the safe operating area.

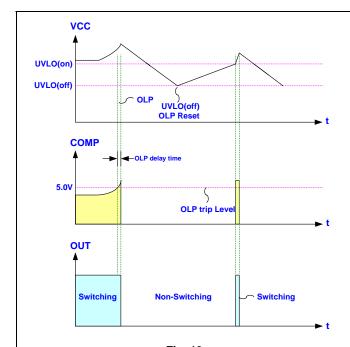
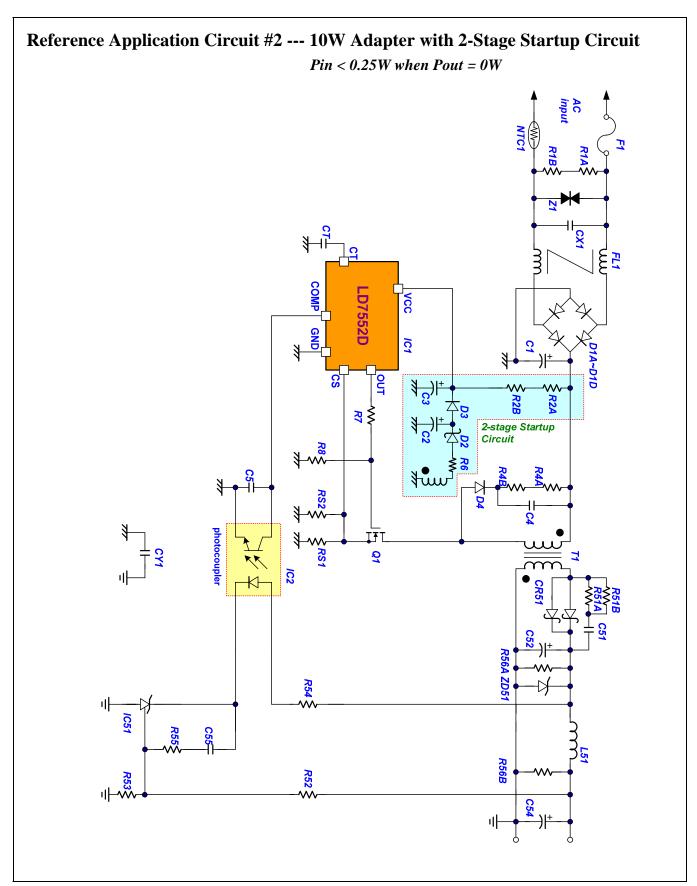


Fig. 19

Reference Application Circuit --- 10W (5V/2A) Adapter **Schematic** C1 photocoupler 2 <u>C2</u>


Reference Application Circuit --- 10W (5V/2A) Adapter

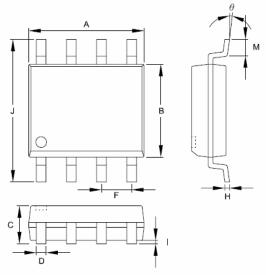
BOM

P/N	Component Value	Original
R1A	N/A	
R1B	N/A	
R2A	750KΩ, 1206	
R2B	750KΩ, 1206	
R4A	39ΚΩ, 1206	
R4B	39ΚΩ, 1206	
R6	10Ω, 1206	
R7	10Ω, 1206	
R8	10ΚΩ, 1206	
RS1	2.70Ω, 1206, 1%	
RS2	2.70Ω, 1206, 1%	
R51A	100Ω, 1206	
R51B	100Ω, 1206	
R52	2.49ΚΩ, 0805, 1%	
R53	2.49ΚΩ, 0805, 1%	
R54	220Ω, 0805	
R55	10ΚΩ, 0805	
R56A	510Ω, 1206	
R56B	N/A	
NTC1	08SP005	
FL1	20mH	UU9.8
T1	EI-22	
L51	2.7μΗ	

P/N	Component Value	Note
C1	22μF, 400V	L-tec
C2	10μF, 50V	
C4	1000pF, 1000V, 1206	Holystone
C5	0.01μF, 16V, 0805	
C51	1000pF, 50V, 0805	
C52	1000μF, 10V	L-tec
C54	470μF, 10V	L-tec
C55	0.01μF, 16V, 0805	
СТ	0.047μF, 16V, 0805	X7R
CX1	0.1μF	X-cap
CY1	2200pF	Y-cap
D1A	1N4007	
D1B	1N4007	
D1C	1N4007	
D1D	1N4007	
D2	PS102R	
D4	1N4007	
Q1	2N60B	600V/2A
CR51	SB540	
ZD51	6V2C	
IC1	LD7552D	SOP-8
IC2	EL817B	
IC51	TL431	1%
F1	250V, 1A	
Z1	N/A	

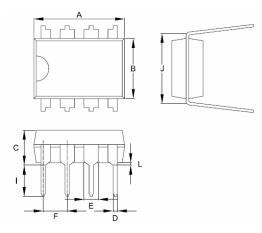
Reference Application Circuit #2 --- 10W Adapter with 2-Stage Startup Circuit

BOM


P/N	Component Value	Original		
R1A	N/A			
R1B	N/A			
R2A	2.2ΜΩ, 1206			
R2B	2.2MΩ, 1206			
R4A	39ΚΩ, 1206			
R4B	39ΚΩ, 1206			
R6	2.2Ω, 1206			
R7	10Ω, 1206			
R8	10ΚΩ, 1206			
RS1	2.70Ω, 1206, 1%			
RS2	2.70Ω, 1206, 1%			
R51A	100Ω, 1206			
R51B	100Ω, 1206			
R52	2.49ΚΩ, 0805, 1%			
R53	2.49ΚΩ, 0805, 1%			
R54	220Ω, 0805			
R55	10ΚΩ, 0805			
R56A	1ΚΩ, 1206			
R56B	N/A			
NTC1	5Ω, 3A 08SP005			
FL1	20mH	UU9.8		
T1	EI-22			
L51	2.7μΗ			

P/N	Component Value	Note
C1	22μF, 400V	L-tec
C2	10μF, 50V	L-tec
C3	2.2μF, 50V	
C4	1000pF, 1000V, 1206	Holystone
C5	0.01μF, 16V, 0805	
C51	1000pF, 50V, 0805	
C52	1000μF, 10V	L-tec
C54	470μF, 10V	L-tec
C55	0.01μF, 16V, 0805	
СТ	0.047μF, 16V, 0805	X7R
CX1	0.1μF	X-cap
CY1	2200pF	Y-cap
D1A	1N4007	
D1B	1N4007	
D1C	1N4007	
D1D	1N4007	
D2	PS102R	
D3	1N4148	
D4	1N4007	
Q1	2N60B	600V/2A
CR51	SB540	
ZD51	6V2C	
IC1	LD7552D	SOP-8
IC2	EL817B	
IC51	TL431	1%
F1	250V, 1A	
Z1	N/A	

Package Information


SOP-8

Cumbal	Dimension in Millimeters		Dimensions in Inches	
Symbol	Min	Max	Min	Max
А	4.801	5.004	0.189	0.197
В	3.810	3.988	0.150	0.157
С	1.346	1.753	0.053	0.069
D	0.330	0.508	0.013	0.020
F	1.194	1.346	0.047	0.053
Н	0.178	0.229	0.007	0.009
I	0.102	0.254	0.004	0.010
J	5.791	6.198	0.228	0.244
М	0.406	1.270	0.016	0.050
θ	0°	8°	0°	8°

Package Information DIP-8

Symbol	Dimension	Dimension in Millimeters		ons in Inches
Symbol	Min	Max	Min	Max
А	9.017	10.160	0.355	0.400
В	6.096	7.112	0.240	0.280
С		5.334		0.210
D	0.356	0.584	0.014	0.023
Е	1.143	1.778	0.045	0.070
F	2.337	2.743	0.092	0.108
I	2.921	3.556	0.115	0.140
J	7.366	8.255	0.290	0.325
L	0.381		0.015	

Important Notice

Leadtrend Technology Corp. reserves the right to make changes or corrections to its products at any time without notice. Customers should verify the datasheets are current and complete before placing order.

Revision History

Rev.	Date	Change Notice
00	12/19/07	Original Specification