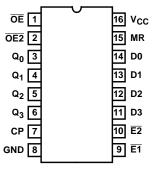


CD54HC173, CD74HC173, CD54HCT173

Data sheet acquired from Harris Semiconductor SCHS158E

February 1998 - Revised October 2003


High-Speed CMOS Logic Quad D-Type Flip-Flop, Three-State

Features

- Three-State Buffered Outputs
- · Gated Input and Output Enables
- Fanout (Over Temperature Range)
 - Standard Outputs......10 LSTTL Loads
 - Bus Driver Outputs 15 LSTTL Loads
- Wide Operating Temperature Range . . . -55°C to 125°C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- HC Types
 - 2V to 6V Operation
 - High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC} at V_{CC} = 5V
- HCT Types
 - 4.5V to 5.5V Operation
 - Direct LSTTL Input Logic Compatibility, V_{IL}= 0.8V (Max), V_{IH} = 2V (Min)
 - CMOS Input Compatibility, II \leq 1 μA at VOL, VOH

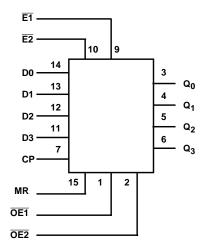
Pinout

CD54HC173, CD54HCT173 (CERDIP) CD74HC173 (PDIP, SOIC, SOP, TSSOP) CD74HCT173 (PDIP, SOIC) TOP VIEW

Description

The 'HC173 and 'HCT173 high speed three-state quad D-type flip-flops are fabricated with silicon gate CMOS technology. They possess the low power consumption of standard CMOS Integrated circuits, and can operate at speeds comparable to the equivalent low power Schottky devices. The buffered outputs can drive 15 LSTTL loads. The large output drive capability and three-state feature make these parts ideally suited for interfacing with bus lines in bus oriented systems.

The four D-type flip-flops operate synchronously from a common clock. The outputs are in the three-state mode when either of the two output disable pins are at the logic "1" level. The input ENABLES allow the flip-flops to remain in their present states without having to disrupt the clock If either of the 2 input ENABLES are taken to a logic "1" level, the Q outputs are fed back to the inputs, forcing the flip-flops to remain in the same state. Reset is enabled by taking the MASTER RESET (MR) input to a logic "1" level. The data outputs change state on the positive going edge of the clock.


The 'HCT173 logic family is functionally, as well as pin compatible with the standard LS logic family.

Ordering Information

PART NUMBER	TEMP. RANGE (°C)	PACKAGE
CD54HC173F3A	-55 to 125	16 Ld CERDIP
CD54HCT173F3A	-55 to 125	16 Ld CERDIP
CD74HC173E	-55 to 125	16 Ld PDIP
CD74HC173M	-55 to 125	16 Ld SOIC
CD74HC173MT	-55 to 125	16 Ld SOIC
CD74HC173M96	-55 to 125	16 Ld SOIC
CD74HC173NSR	-55 to 125	16 Ld SOP
CD74HC173PW	-55 to 125	16 Ld TSSOP
CD74HC173PWR	-55 to 125	16 Ld TSSOP
CD74HC173PWT	-55 to 125	16 Ld TSSOP
CD74HCT173E	-55 to 125	16 Ld PDIP
CD74HCT173M	-55 to 125	16 Ld SOIC
CD74HCT173MT	-55 to 125	16 Ld SOIC
CD74HCT173M96	-55 to 125	16 Ld SOIC

NOTE: When ordering, use the entire part number. The suffixes 96 and R denote tape and reel. The suffix T denotes a small-quantity reel of 250.

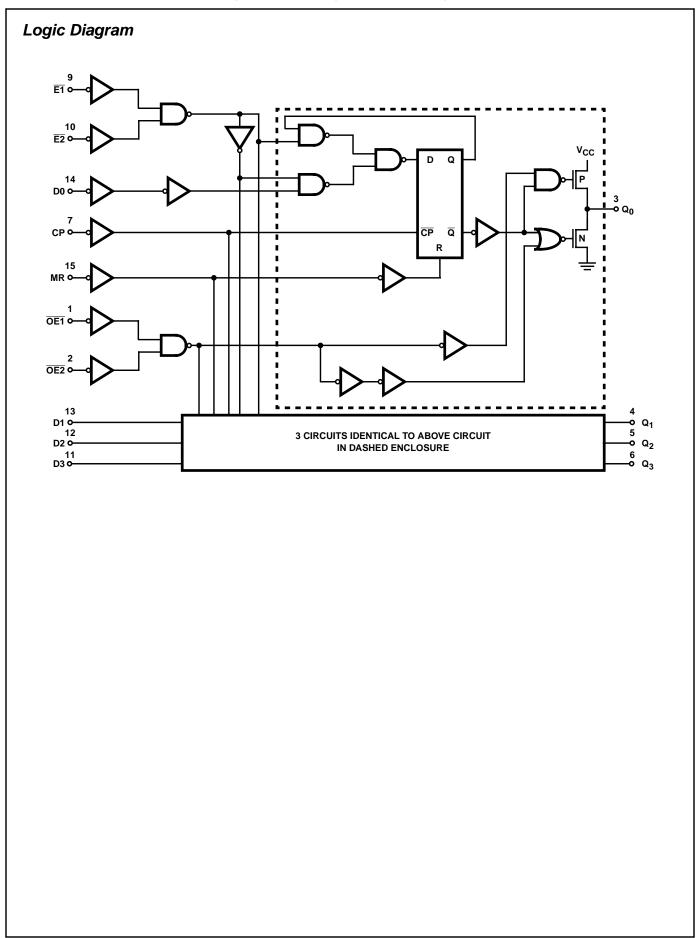
Functional Diagram

TRUTH TABLE

	INP				
		DATA E	NABLE	DATA	OUTPUT
MR	СР	E1	E2	D	Q _n
Н	Х	X	Х	Х	L
L	L	Х	Х	Х	Q_0
L	1	Н	Х	Х	Q_0
L	1	Х	Н	Х	Q_0
L	1	L	L	L	L
L	1	L	L	Н	Н

H= High Voltage Level

L = Low Voltage Level


X= Irrelevant

↑= Transition from Low to High Level

 $\mathbf{Q}_0\mathbf{=}$ Level Before the Indicated Steady-State Input Conditions Were Established

NOTE:

When either OE1 or OE2 (or both) is (are) high, the output is disabled to the high-impedance state, however, sequential operation of the flip-flops is not affected.

Absolute Maximum Ratings

DC Supply Voltage, V _{CC}	-0.5V to 7V
DC Input Diode Current, I _{IK}	
For $V_I < -0.5V$ or $V_I > V_{CC} + 0.5V$	±20mA
DC Output Diode Current, IOK	
For $V_O < -0.5V$ or $V_O > V_{CC} + 0.5V$	±20mA
DC Output Source or Sink Current per Output Pin, IO	
For $V_O > -0.5V$ or $V_O < V_{CC} + 0.5V$	±25mA
DC V _{CC} or Ground Current, I _{CC}	

Thermal Information

Package Thermal Impedance, θ _{JA} (see Note 2):
E (PDIP) Package
M (SOIC) Package73°C/W
NS (SOP) Package 64°C/W
PW (TSSOP) Package 108°C/W
Maximum Junction Temperature
Maximum Storage Temperature Range65°C to 150°C
Maximum Lead Temperature (Soldering 10s)300°C
(SOIC - Lead Tips Only)

Operating Conditions

Temperature Range (T _A)55°C to 125°C
Supply Voltage Range, V _{CC}
HC Types2V to 6V
HCT Types
DC Input or Output Voltage, V _I , V _O
Input Rise and Fall Time
2V
4.5V 500ns (Max)
6V

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

2. The package thermal impedance is calculated in accordance with JESD 51-7.

DC Electrical Specifications

			TEST CONDITIONS		25°C			-40°C TO 85°C		-55°C TO 125°C		
PARAMETER	SYMBOL	V _I (V)	I _O (mA)	V _{CC} (V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
HC TYPES				-		-				-	-	
High Level Input	V _{IH}	-	-	2	1.5	-	-	1.5	-	1.5	-	V
Voltage				4.5	3.15	-	-	3.15	-	3.15	-	V
				6	4.2	-	-	4.2	-	4.2	-	V
Low Level Input	V _{IL}	-	-	2	-	-	0.5	-	0.5	-	0.5	V
Voltage				4.5	-	-	1.35	ı	1.35	-	1.35	V
				6	-	-	1.8	-	1.8	-	1.8	V
High Level Output Voltage CMOS Loads	Voн	V _{IH} or	-0.02	2	1.9	-	-	1.9	-	1.9	-	V
		V _{IL}	-0.02	4.5	4.4	-	-	4.4	-	4.4	-	٧
			-0.02	6	5.9	-	-	5.9	-	5.9	-	V
High Level Output	1		-6	4.5	3.98	-	-	3.84	-	3.7	-	V
Voltage TTL Loads			-7.8	6	5.48	-	-	5.34	-	5.2	-	٧
Low Level Output	V _{OL}	V _{IH} or	0.02	2	-	-	0.1	=	0.1	-	0.1	٧
Voltage CMOS Loads		V _{IL}	0.02	4.5	-	-	0.1	-	0.1	-	0.1	٧
			0.02	6	-	-	0.1	-	0.1	-	0.1	V
Low Level Output	1		6	4.5	-	-	0.26	-	0.33	-	0.4	٧
Voltage TTL Loads			7.8	6	-	-	0.26	-	0.33	-	0.4	٧
Input Leakage Current	lι	V _{CC} or GND	-	6	-	-	±0.1	-	±1	-	±1	μА
Quiescent Device Current	I _{CC}	V _{CC} or GND	0	6	-	-	8	-	80	-	160	μА

DC Electrical Specifications (Continued)

		TEST CONDITIONS				25°C		-40°C T	O 85°C	-55°C TO 125°C		
PARAMETER	SYMBOL	V _I (V)	I _O (mA)	v _{cc} (v)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
Three-State Leakage Current	loz	V _{IL} or V _{IH}	-	6	-	-	±0.5	-	±0.5	-	±10	μА
HCT TYPES												
High Level Input Voltage	V _{IH}	-	-	4.5 to 5.5	2	-	-	2	-	2	-	V
Low Level Input Voltage	V _{IL}	-	-	4.5 to 5.5	-	-	0.8	-	0.8	-	0.8	V
High Level Output Voltage CMOS Loads	V _{ОН}	V _{IH} or V _{IL}	-0.02	4.5	4.4	-	-	4.4	-	4.4	-	V
High Level Output Voltage TTL Loads			-6	4.5	3.98	-	-	3.84	-	3.7	-	V
Low Level Output Voltage CMOS Loads	V _{OL}	V _{IH} or V _{IL}	0.02	4.5	-	-	0.1	-	0.1	-	0.1	V
Low Level Output Voltage TTL Loads			6	4.5	-	-	0.26	-	0.33	-	0.4	V
Input Leakage Current	lı	V _{CC} to GND	0	5.5	-	-	±0.1	-	±1	-	±1	μА
Quiescent Device Current	Icc	V _{CC} or GND	0	5.5	-	-	8	-	80	-	160	μА
Additional Quiescent Device Current Per Input Pin: 1 Unit Load	ΔI _{CC} (Note 3)	V _{CC} -2.1	-	4.5 to 5.5	-	100	360	-	450	-	490	μА
Three-State Leakage Current	l _{OZ}	V _{IL} or V _{IH}	-	5.5	-	-	±0.5	-	±5.0	-	±10	μА

NOTE:

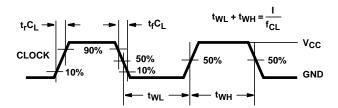
HCT Input Loading Table

INPUT	UNIT LOADS					
D0-D3	0.15					
E1 and E2	0.15					
СР	0.25					
MR	0.2					
OE1 and OE2	0.5					

NOTE: Unit Load is ΔI_{CC} limit specified in DC Electrical Specifications table, e.g., 360 μA max at 25°C.

^{3.} For dual-supply systems theoretical worst case (V_I = 2.4V, V_{CC} = 5.5V) specification is 1.8mA.

Switching Specifications Input t_r , $t_f = 6ns$


		TEST		25	°C	-40°C TO 85°C	-55°C TO 125°C	
PARAMETER	SYMBOL	CONDITIONS	V _{CC} (V)	TYP	MAX	MAX	MAX	UNITS
HC TYPES		•			!	!	!	
Propagation Delay, Clock to	t _{PLH} , t _{PHL}	C _L = 50pF	2	-	200	250	300	ns
Output			4.5	-	40	50	60	ns
		C _L = 15pF	5	17	-	-	-	ns
		CL = 50pF	6	-	34	43	51	ns
Propagation Delay, MR to	t _{PHL}	C _L = 50pF	2	-	175	220	265	ns
Output			4.5	-	35	44	53	ns
		C _L = 15pF	5	12	-	-	-	ns
		CL = 50pF	6	-	30	37	45	ns
Propagation Delay Output	t _{PLZ} , t _{PHZ}	CL = 50pF	2		150	190	225	ns
Enable to Q (Figure 6)	^t PZL ^{, t} PZH	C _L = 50pF	4.5		30	38	45	ns
		C _L = 15pF	5	12	-	-	-	ns
		CL = 50pF	6		26	33	38	ns
Output Transition Times	t _{TLH} , t _{THL}	C _L = 50pF	2	-	60	75	90	ns
			4.5	-	12	15	18	ns
			6	-	10	13	15	ns
Maximum Clock Frequency	f _{MAX}	C _L = 15pF	5	60	-	-	-	MHz
Input Capacitance	C _{IN}	-	-	-	10	10	10	pF
Three-State Output Capacitance	c _o	-	-	-	10	10	10	pF
Power Dissipation Capacitance (Notes 4, 5)	C _{PD}	-	5	29	-	-	-	pF
HCT TYPES								
Propagation Delay, Clock to	t _{PLH} , t _{PHL}	$C_L = 50pF$	4.5	-	40	50	60	ns
Output		C _L = 15pF	5	17	-	-	-	ns
Propagation Delay, MR to	t _{PHL}	$C_L = 50pF$	4.5	-	44	55	66	ns
Output		C _L = 15pF	5	18	-	-	-	ns
Propagation Delay Output	t _{PZL} , t _{PZH}	CL = 50pF	2		150	190	225	ns
Enable to Q (Figure 6)		C _L = 50pF	4.5		30	38	45	ns
		C _L = 15pF	5	14	-	-	-	ns
		CL = 50pF	6		26	33	38	ns
Output Transition Times	t _{TLH} , t _{THL}	C _L = 50pF	4.5	-	15	19	22	ns
Maximum Clock Frequency	f _{MAX}	C _L = 15pF	5	60	-	-	-	MHz
Input Capacitance	C _{IN}	-	-	-	10	10	10	pF
Power Dissipation Capacitance (Notes 4, 5)	C _{PD}	-	5	34	-	-	-	pF

 ^{4.} C_{PD} is used to determine the dynamic power consumption, per package.
 5. P_D = V_{CC}² f_i + ∑ (C_L V_{CC}² + f_O) where f_i = Input Frequency, f_O = Input Frequency, C_L = Output Load Capacitance, V_{CC} = Supply Voltage.

Prerequisite For Switching Specifications

			25	oc	-40°C T	O 85°C	-55°C T	O 125 ⁰ C	
PARAMETER	SYMBOL	V _{CC} (V)	MIN	MAX	MIN	MAX	MIN	MAX	UNITS
HC TYPES				•					
Maximum Clock Frequency	f _{MAX}	2	6	-	5	-	4	-	MHz
		4.5	30	-	24	-	20	-	MHz
		6	35	-	28	-	24	-	MHz
MR Pulse Width	t _w	2	80	-	100	-	120	-	ns
		4.5	16	-	20	-	24	-	ns
		6	14	-	17	-	20	-	ns
Clock Pulse Width	t _w	2	80	-	100	-	120	-	ns
		4.5	16	-	20	-	24	-	ns
		6	14	-	17	-	20	-	ns
Set-up Time, Data to Clock	t _{SU}	2	60	-	75	-	90	-	ns
and Ē to Clock		4.5	12	-	15	-	18	-	ns
		6	10	-	13	-	15	-	ns
Hold Time, Data to Clock	t _H	2	3	-	3	-	3	-	ns
		4.5	3	-	3	-	3	-	ns
		6	3	-	3	-	3	-	ns
Hold Time, E to Clock	t _H	2	0	-	0	-	0	-	ns
		4.5	0	-	0	-	0	-	ns
		6	0	-	0	-	0	-	ns
Removal Time, MR to Clock	t _{REM}	2	60	-	75	-	90	-	ns
		4.5	12	-	15	-	18	-	ns
		6	10	-	13	-	15	-	ns
HCT TYPES						<u> </u>			
Maximum Clock Frequency	f _{MAX}	4.5	20	-	16	-	13	-	MHz
MR Pulse Width	t _w	4.5	15	-	19	-	22	-	ns
Clock Pulse Width	t _w	4.5	25	-	31	-	38	-	ns
Set-up Time, $\overline{\overline{E}}$ to Clock	t _{SU}	4.5	12	-	15	-	18	-	ns
Set-up Time, Data to Clock	t _{SU}	4.5	18	-	23	-	27	-	ns
Hold Time, Data to Clock	t _H	4.5	0	-	0	-	0	-	ns
Hold Time, E to Clock	t _H	4.5	0	-	0	-	0	-	ns
Removal Time, MR to Clock	t _{REM}	4.5	12	-	15	-	18	-	ns

Test Circuits and Waveforms

NOTE: Outputs should be switching from 10% V $_{CC}$ to 90% V $_{CC}$ in accordance with device truth table. For f $_{MAX}$, input duty cycle = 50%.

FIGURE 1. HC CLOCK PULSE RISE AND FALL TIMES AND PULSE WIDTH

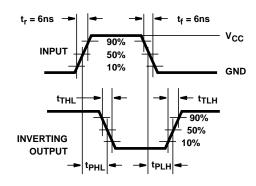


FIGURE 3. HC AND HCU TRANSITION TIMES AND PROPAGA-TION DELAY TIMES, COMBINATION LOGIC

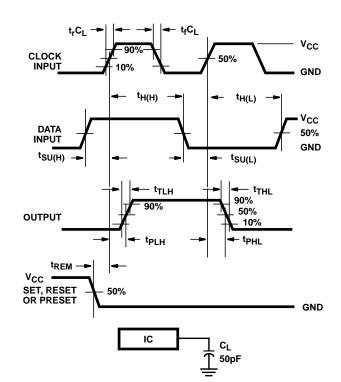
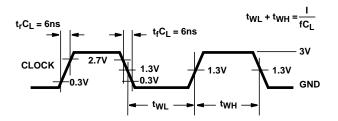



FIGURE 5. HC SETUP TIMES, HOLD TIMES, REMOVAL TIME, AND PROPAGATION DELAY TIMES FOR EDGE TRIGGERED SEQUENTIAL LOGIC CIRCUITS

NOTE: Outputs should be switching from 10% V $_{CC}$ to 90% V $_{CC}$ in accordance with device truth table. For f $_{MAX}$, input duty cycle = 50%.

FIGURE 2. HCT CLOCK PULSE RISE AND FALL TIMES AND PULSE WIDTH

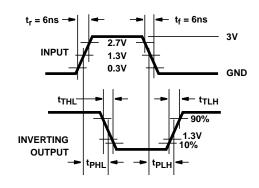


FIGURE 4. HCT TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC

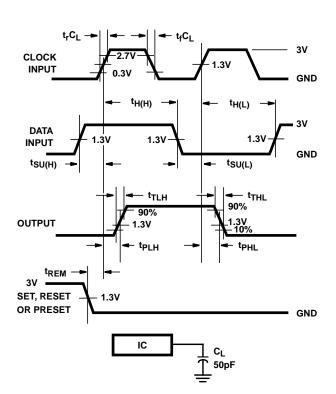


FIGURE 6. HCT SETUP TIMES, HOLD TIMES, REMOVAL TIME, AND PROPAGATION DELAY TIMES FOR EDGE TRIGGERED SEQUENTIAL LOGIC CIRCUITS

Test Circuits and Waveforms (Continued) 6ns 3V V_{CC} OUTPUT OUTPUT 90% DISABLE 50% DISABLE 10% 0.3 GND GND t_{PZL} → - t_{PLZ} → t_{PZL} ► t_{PLZ} → **OUTPUT LOW** OUTPUT LOW 50% TO OFF TO OFF 1.3V 10% 10% ◆ t_{PHZ} ◆ - t_{PZH} · t_{PHZ} → tpzh -90% 90% **OUTPUT HIGH OUTPUT HIGH** 50% TO OFF TO OFF 1.3V

OUTPUTS

ENABLED

FIGURE 7. HC THREE-STATE PROPAGATION DELAY WAVEFORM

OUTPUTS

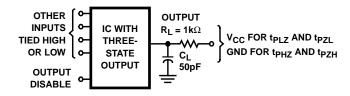
DISABLED

OUTPUTS

ENABLED

FIGURE 8. HCT THREE-STATE PROPAGATION DELAY WAVEFORM

OUTPUTS


DISABLED

OUTPUTS

ENABLED

OUTPUTS

ENABLED

NOTE: Open drain waveforms t_{PLZ} and t_{PZL} are the same as those for three-state shown on the left. The test circuit is Output $R_L = 1k\Omega$ to V_{CC} , $C_L = 50pF$.

FIGURE 9. HC AND HCT THREE-STATE PROPAGATION DELAY TEST CIRCUIT

24-Sep-2015

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
5962-8682501EA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-8682501EA CD54HC173F3A	Samples
5962-8875901EA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-8875901EA CD54HCT173F3A	Samples
CD54HC173F	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	CD54HC173F	Samples
CD54HC173F3A	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-8682501EA CD54HC173F3A	Samples
CD54HCT173F3A	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-8875901EA CD54HCT173F3A	Samples
CD74HC173E	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD74HC173E	Samples
CD74HC173EE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD74HC173E	Samples
CD74HC173M	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC173M	Samples
CD74HC173M96	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC173M	Samples
CD74HC173M96G4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC173M	Samples
CD74HC173MG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC173M	Samples
CD74HC173PW	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HJ173	Samples
CD74HC173PWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HJ173	Samples
CD74HC173PWRE4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HJ173	Samples
CD74HCT173E	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD74HCT173E	Samples
CD74HCT173M	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT173M	Samples
CD74HCT173M96	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT173M	Samples

PACKAGE OPTION ADDENDUM

24-Sep-2015

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
CD74HCT173ME4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT173M	Samples
CD74HCT173MG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	HCT173M	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

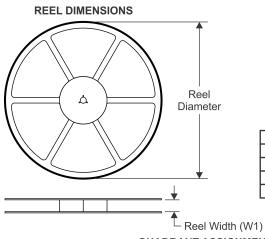
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

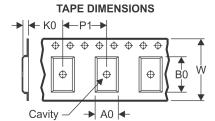
24-Sep-2015

OTHER QUALIFIED VERSIONS OF CD54HC173, CD54HC173, CD74HC173, CD74HC173:

● Catalog: CD74HC173, CD74HCT173

• Military: CD54HC173, CD54HCT173


NOTE: Qualified Version Definitions:

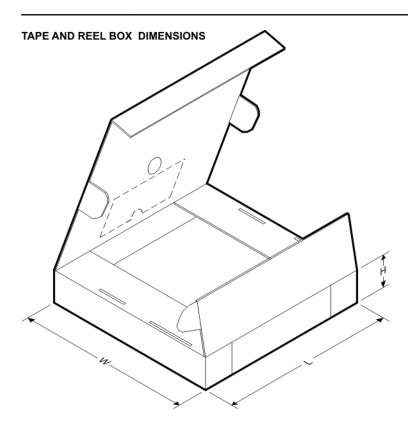

- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

PACKAGE MATERIALS INFORMATION

www.ti.com 18-Aug-2014

TAPE AND REEL INFORMATION

_	_	
		3
	B0	Dimension designed to accommodate the component length
	K0	Dimension designed to accommodate the component thickness
	W	Overall width of the carrier tape
	P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CD74HC173M96	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
CD74HC173PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
CD74HCT173M96	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1

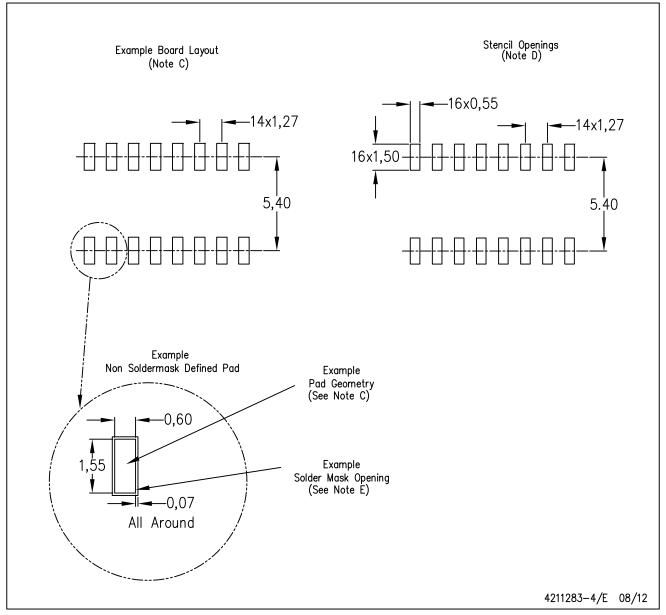
www.ti.com 18-Aug-2014

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
CD74HC173M96	SOIC	D	16	2500	333.2	345.9	28.6	
CD74HC173PWR	TSSOP	PW	16	2000	367.0	367.0	35.0	
CD74HCT173M96	SOIC	D	16	2500	333.2	345.9	28.6	

D (R-PDS0-G16)

PLASTIC SMALL OUTLINE

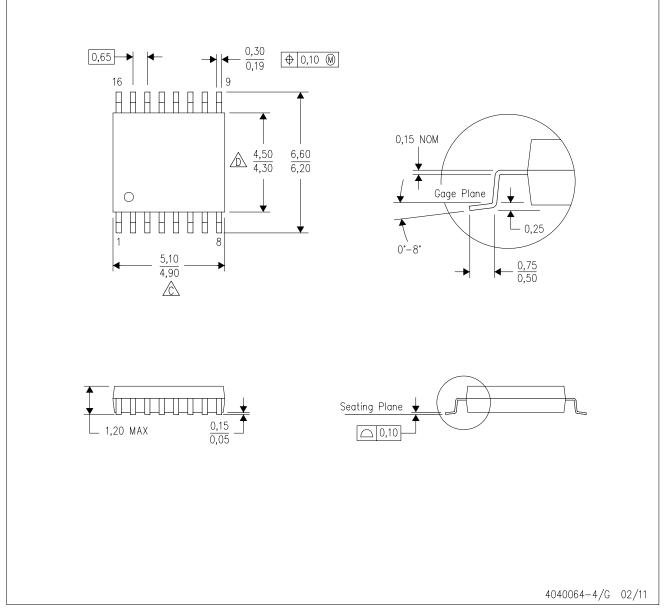


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

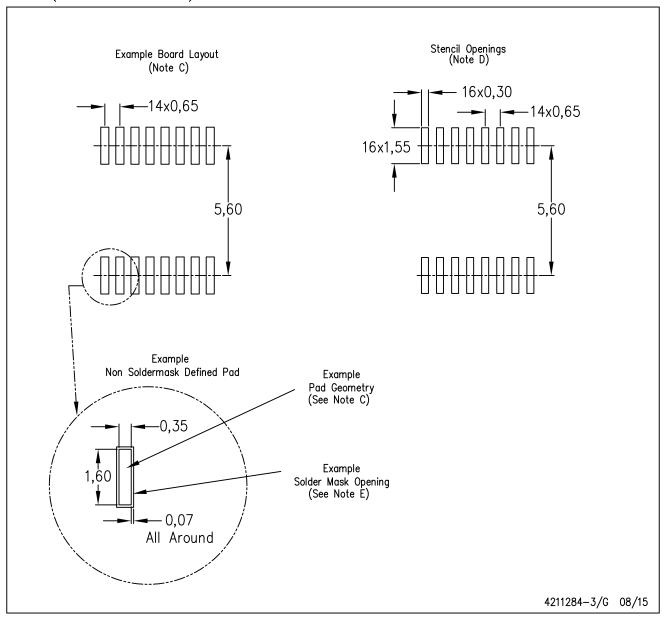
- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.


14 LEADS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.