

DRV8833C

SLVSCP9 - AUGUST 2014

DRV8833C Dual H-Bridge Motor Driver

Features

- Dual H-Bridge Motor Driver With Current Control
 - 1 or 2 DC Motors or 1 Stepper Motor
 - Low On-Resistance: HS + LS = 1735 m Ω (Typical, 25°C)
- Output Current Capability (at $V_M = 5 \text{ V}, 25^{\circ}\text{C}$)
 - PWP (HTSSOP) Package
 - 0.7-A RMS, 1-A Peak per H-Bridge
 - 1.4-A RMS in Parallel Mode
 - RTE (QFN) Package
 - 0.6-A RMS, 1-A Peak per H-Bridge
 - 1.2-A RMS in Parallel Mode
- Wide Power Supply Voltage Range
 - 2.7 to 10.8 V
- Integrated Current Regulation
- Easy Pulse-Width-Modulation (PWM) Interface
- 1.6-µA Low-Current Sleep Mode (at 5 V)
- Small Package and Footprint
 - 16 HTSSOP (PowerPAD™) 5.00 x 6.40 mm
 - 16 QFN (PowerPAD) 3.00 x 3.00 mm
- **Protection Features**
 - V_M Undervoltage Lockout (UVLO)
 - Overcurrent Protection (OCP)
 - Thermal Shutdown (TSD)
 - Fault Indication Pin (nFAULT)

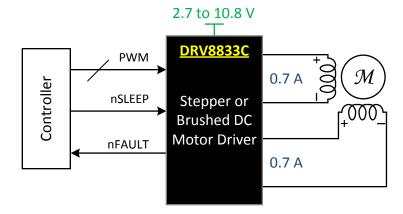
2 Applications

- Point-of-Sale Printers
- Video Security Cameras
- Office Automation Machines
- **Gaming Machines**
- Robotics
- **Battery-Powered Toys**

3 Description

The DRV8833C provides a dual-bridge motor driver solution for toys, printers, and other mechatronic applications.

The device has two H-bridges and can drive two DC brushed motors, a bipolar stepper motor, solenoids, or other inductive loads.


Each H-bridge output consists of a pair of N-channel and P-channel MOSFETs, with circuitry that regulates the winding current. With proper PCB design, each Hbridge of the DRV8833C can drive up to 700-mA RMS (or DC) continuously, at 25°C with a V_M supply of 5 V. The device can support peak currents of up to 1 A per bridge. Current capability is reduced slightly at lower V_M voltages.

Internal shutdown functions with a fault output pin are provided for overcurrent protection, short-circuit protection, UVLO, and overtemperature. A low-power sleep mode is also provided.

Device Information⁽¹⁾

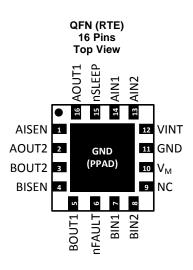
PART NUMBER	PACKAGE	BODY SIZE (NOM)	
DRV8833C	HTSSOP (16)	5.00 mm × 6.40 mm	
	QFN (16)	3.00 mm × 3.00 mm	

(1) For all available packages, see the orderable addendum at the end of the data sheet.

SLVSCP9 – AUGUST 2014 www.ti.com

Table of Contents

1	Features 1	7.3 Feature Description9
2	Applications 1	7.4 Device Functional Modes13
3	Description 1	8 Application and Implementation 14
4	Revision History2	8.1 Application Information
5	Pin Configuration and Functions	8.2 Typical Application14
6	Specifications	9 Power Supply Recommendations 17
U	6.1 Absolute Maximum Ratings	9.1 Sizing Bulk Capacitance for Motor Drive Systems . 17
	6.2 Handling Ratings	10 Layout 18
	6.3 Recommended Operating Conditions	10.1 Layout Guidelines 18
	6.4 Thermal Information	10.2 Layout Example 18
	6.5 Electrical Characteristics	11 Device and Documentation Support 19
	6.6 Typical Characteristics	11.1 Trademarks 19
7	Detailed Description 8	11.2 Electrostatic Discharge Caution
•	7.1 Overview 8	11.3 Glossary19
	7.2 Functional Block Diagram	12 Mechanical, Packaging, and Orderable Information19


4 Revision History

DATE	REVISION	NOTES
August 2014	*	Initial release.

5 Pin Configuration and Functions

HTSSOP (PWP) 16 Pins **Top View** nSLEEP 1 16 AIN1 AOUT1 2 15 AIN2 AISEN 3 14 VINT AOUT2 4 13 GND GND (PPAD) BOUT2 5 12 V_M BISEN 6 BOUT1 7 11 NC 10 BIN2 nFAULT 8 9 BIN1

Pin Functions

	PIN FUNCTIONS							
	PIN		TYPE	DESCRIPTION				
NAME	PWP	RTE	ITPE					
POWER A	ND GRO	UND						
GND	13	11	PWR	Device ground	Both the GND pin and device PowerPAD must be connected to ground			
VINT	14	12	_	Internal regulator (3.3 V)	Internal supply voltage; bypass to GND with 2.2-µF, 6.3-V capacitor			
V _M	12	10	PWR	Power supply	Connect to motor supply voltage; bypass to GND with a 10- μ F (minimum) capacitor rated for V_{M}			
CONTROL	_							
AIN1 16 14 .			II bridge A DVA/A is not	Controls the state of AOUTA and AOUTO, internal multidaying				
AIN2	15	13	1 1	H-bridge A PWM input	Controls the state of AOUT1 and AOUT2; internal pulldown			
BIN1	9	7		Li bridge D DWM input	Controls the state of DOLITA and DOLITA internal muldows			
BIN2	10	8	'	H-bridge B PWM input	Controls the state of BOUT1 and BOUT2; internal pulldown			
nSLEEP	1	15	ı	Sleep mode input Logic high to enable device; logic low to enter low-power slee internal pulldown				
STATUS				·				
nFAULT	8	6	OD	Fault indication pin	Pulled logic low with fault condition; open-drain output requires an external pullup			
OUTPUT								
AISEN	3	1	0	Bridge A sense	Sense resistor to GND sets PWM current regulation level (see <i>PWM Motor Drivers</i>)			
AOUT1	2	16	0	Dridge A systems	Pariting assessed in ACUTA ACUTO			
AOUT2	4	2	0	Bridge A output	Positive current is AOUT1 → AOUT2			
BISEN	6	4	0	Bridge B sense Sense resistor to GND sets PWM current regulation level (see PWM Motor Drivers)				
BOUT1	7	5	0	Dridge D. output	Positive current in POLITA POLITA			
BOUT2	5	3		Bridge B output	Positive current is BOUT1 → BOUT2			

Product Folder Links: DRV8833C

External Components

Component	Pin 1	Pin 2	Recommended
C _{VM}	V_{M}	GND	10-μF ⁽¹⁾ ceramic capacitor rated for V _M
C _{VINT}	VINT	GND	6.3-V, 2.2-μF ceramic capacitor
R _{nFAULT}	VINT ⁽²⁾	nFAULT	>1 kΩ
R _{AISEN}	AISEN	GND	Sense resistor, see <i>Typical Application</i> for sizing
R _{BISEN}	BISEN	GND	Sense resistor, see <i>Typical Application</i> for sizing

Proper bulk capacitance sizing depends on the motor power.

Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature (unless otherwise noted) (1)

		MIN	MAX	UNIT
	Power supply (V _M)	-0.3	11.8	V
	Internal regulator (VINT)	-0.3	3.8	V
	Control pins (AIN1, AIN2, BIN1, BIN2, nSLEEP, nFAULT)	-0.3	7	V
Voltage	Continuous phase node pins (AOUT1, AOUT2, BOUT1, BOUT2)	-0.3	$V_{M} + 0.5$	V
	Pulsed 10 µs phase node pins (AOUT1, AOUT2, BOUT1, BOUT2)	-1	V _M + 1	V
	Continuous shunt amplifier input pins (AISEN, BISEN)	-0.3	0.5	V
	Pulsed 10 µs shunt amplifier input pins (AISEN, BISEN)	-1	1	V
	Peak drive current (AOUT1, AOUT2, BOUT1, BOUT2, AISEN, BISEN)	Intern	ally limited	Α
T_J	Operating junction temperature	-40	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 Handling Ratings

			MIN	MAX	UNIT	
T _{stg}	Storage temper	rature range	-65	150	°C	
V	Electrostatic	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins (1)	-2000	2000	\/	
V _(ESD)	discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins (2)	-1000	1000	V	

- JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{M}	Power supply voltage range ⁽¹⁾	wer supply voltage range ⁽¹⁾			V
VI	Logic level input voltage		0	5.5	V
	Motor RMS current ⁽²⁾	PWP package	0	0.7	Α
IRMS	Motor RMS current*	RTE package	0	0.6	Α
f_{PWM}	Applied PWM signal to AIN1, AIN2, BIN1, or BIN2		0	200	kHz
T _A	Operating ambient temperature		-40	85	°C

Note that when V_M is below 5 V, $R_{DS(ON)}$ increases and maximum output current is reduced. Power dissipation and thermal limits must be observed.

nFAULT may be pulled up to an external supply rated < 5.5 V.

6.4 Thermal Information

		DRV	DRV8833C		
	THERMAL METRIC ⁽¹⁾	HTSSOP	QFN	UNIT	
		16 PINS	16 PINS		
$R_{\theta JA}$	Junction-to-ambient thermal resistance	40.5	44.7		
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	32.9	48.5		
$R_{\theta JB}$	Junction-to-board thermal resistance	28.8	16.8	°C/W	
Ψ_{JT}	Junction-to-top characterization parameter	0.6	0.7	*C/VV	
ΨЈВ	Junction-to-board characterization parameter	11.5	16.7		
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	4.8	4.2		

⁽¹⁾ For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

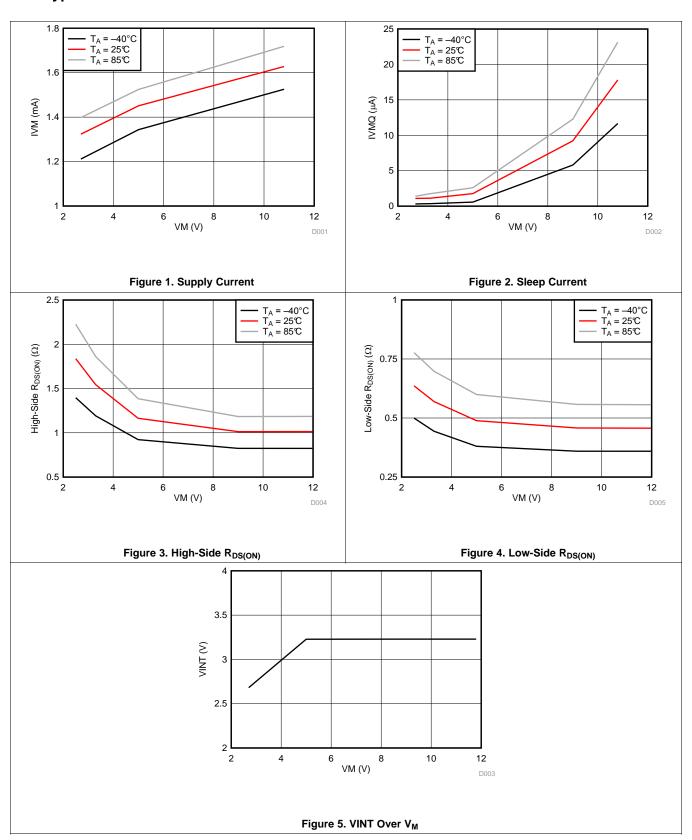
over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
POWER S	SUPPLIES (V _M , VINT)						
V _M	V _M operating voltage		2.7		10.8	V	
VM	V _M operating supply current	V _M = 5 V, xINx low, nSLEEP high		1.7	3	mA	
VMQ	V _M sleep mode supply current	V _M = 5 V, nSLEEP low		1.6	2.7	μΑ	
SLEEP	Sleep time	nSLEEP low to sleep mode		10		μs	
WAKE	Wake-up time	nSLEEP high to output transition		155		μs	
ON	Turn-on time	$V_M > V_{UVLO}$ to output transition		25		μs	
√INT	Internal regulator voltage	V _M = 5 V	3	3.3	3.6	V	
CONTRO	L INPUTS (AIN1, AIN2, BIN1, BIN2,	nSLEEP)					
.,	lanut logia law voltage	xINx	0		0.7	V	
V _{IL}	Input logic low voltage	nSLEEP	0		0.5	V	
	lanut lania hinbunatana	xINx	2		5.5	V	
		nSLEEP	2.5		5.5	V	
V _{HYS}	Input logic hysteresis		350	400	650	mV	
IL	Input logic low current	V _{IN} = 0 V	-1		1	μΑ	
IH	Input logic high current	V _{IN} = 5 V			50	μΑ	
		xINx	100	150	250	1.0	
R_{PD}	Pulldown resistance	nSLEEP	380	500	750	kΩ	
DEG	Input deglitch time			575		ns	
PROP	Propagation delay INx to OUTx	V _M = 5 V		1.2		μs	
CONTRO	L OUTPUTS (nFAULT)						
√ _{OL}	Output logic low voltage	I _O = 5 mA			0.5	V	
ОН	Output logic high leakage	$R_{PULLUP} = 1 \text{ k}\Omega \text{ to 5 V}$	-1		1	μA	
MOTOR I	DRIVER OUTPUTS (AOUT1, AOUT2,	BOUT1, BOUT2)	•				
		V _M = 5 V, I = 0.2 A, T _A = 25°C		1180			
_	High side EET on registeres	$V_M = 5 \text{ V}, I = 0.2 \text{ A}, T_A = 85^{\circ}\text{C}^{(1)}$		1400	1475	0	
R _{DS(ON)}	High-side FET on-resistance	V _M = 2.7 V, I = 0.2 A, T _A = 25°C		1550		mΩ	
		$V_M = 2.7 \text{ V}, I = 0.2 \text{ A}, T_A = 85^{\circ}\text{C}^{(1)}$		1875	1975		
		V _M = 5 V, I = 0.2 A, T _A = 25°C		555			
	Law elds FFT as westers	$V_M = 5 \text{ V}, I = 0.2 \text{ A}, T_A = 85^{\circ}\text{C}^{(1)}$		675	705		
R _{DS(ON)}	Low-side FET on-resistance	V _M = 2.7 V, I = 0.2 A, T _A = 25°C		635		mΩ	
		$V_M = 2.7 \text{ V}, I = 0.2 \text{ A}, T_A = 85^{\circ}\text{C}^{(1)}$		775	815		

⁽¹⁾ Not tested in production; based on design and characterization data

TEXAS INSTRUMENTS

Electrical Characteristics (continued)


over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
I _{OFF}	Off-state leakage current	V _M = 5 V	-1		1	μΑ
t _{RISE}	Output rise time	$V_M = 5 \text{ V}; R_L = 16 \Omega \text{ to GND}$		70		ns
t _{FALL}	Output fall time	$V_M = 5 \text{ V}; R_L = 16 \Omega \text{ to } V_M$		80		ns
t _{DEAD}	Output dead time	Internal dead time		450		ns
PWM CUR	RENT CONTROL (AISEN, BISEN)		·		·	
V _{TRIP}	xISEN trip voltage		160	200	240	mV
t _{OFF}	Current control constant off time	Internal PWM constant off time		20		μs
PROTECTI	ON CIRCUITS		·			
	V _M undervoltage lockout	V _M falling; UVLO report			2.6	
V_{UVLO}		V _M rising; UVLO recovery			2.7	V
V _{UVLO,HYS}	V _M undervoltage hysteresis	Rising to falling threshold		90		mV
I _{OCP}	Overcurrent protection trip level		1			А
t _{DEG}	Overcurrent deglitch time			2.3		μs
t _{OCP}	Overcurrent protection period			1.4		ms
T _{TSD} ⁽²⁾	Thermal shutdown temperature	Die temperature, T _J	150			°C
T _{HYS}	Thermal shutdown hysteresis	Die temperature, T _J		20		°C

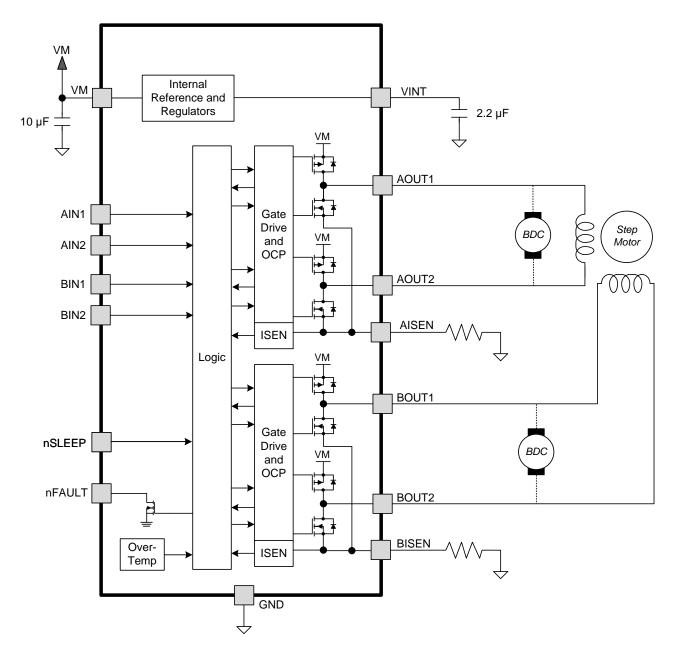
⁽²⁾ Not tested in production; based on design and characterization data

6.6 Typical Characteristics

TEXAS INSTRUMENTS

7 Detailed Description

7.1 Overview


The DRV8833C device is an integrated motor driver solution for brushed DC or bipolar stepper motors. The device integrates two PMOS + NMOS H-bridges and current regulation circuitry. The DRV8833C can be powered with a supply voltage from 2.7 to 10.8 V and can provide an output current up to 700 mA RMS.

A simple PWM interface allows easy interfacing to the controller circuit.

The current regulation is a 20-µs fixed off-time slow decay.

The device includes a low-power sleep mode, which lets the system save power when not driving the motor.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 PWM Motor Drivers

The DRV8833C contains drivers for two full H-bridges. Figure 6 shows a block diagram of the circuitry.

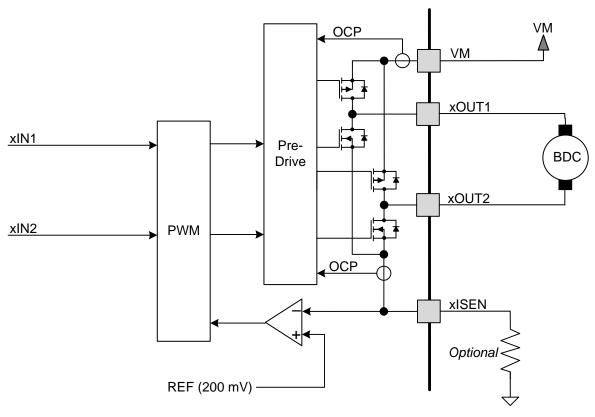


Figure 6. H-Bridge and Current-Chopping Circuitry

7.3.2 Bridge Control and Decay Modes

The AIN1 and AIN2 input pins control the state of the AOUT1 and AOUT2 outputs; similarly, the BIN1 and BIN2 input pins control the state of the BOUT1 and BOUT2 outputs (see Table 1).

xIN1	xIN2	xOUT1	xOUT2	FUNCTION
0	0	Z	Z	Coast / fast decay
0	1	L	Н	Reverse
1	0	Н	L	Forward
1	1	L	L	Brake / slow decay

Table 1. H-Bridge Logic

The inputs can also be used for PWM control of the motor speed. When controlling a winding with PWM and the drive current is interrupted, the inductive nature of the motor requires that the current must continue to flow (called recirculation current). To handle this recirculation current, the H-bridge can operate in two different states, fast decay or slow decay. In fast-decay mode, the H-bridge is disabled and recirculation current flows through the body diodes. In slow-decay mode, the motor winding is shorted by enabling both low-side FETs.

To externally pulse-width modulate the bridge in fast-decay mode, the PWM signal is applied to one xIN pin while the other is held low; to use slow-decay mode, one xIN pin is held high. See Table 2 for more information.

Product Folder Links: DRV8833C

SLVSCP9 – AUGUST 2014 www.ti.com

Table 2. PWM	Control of	Motor	Speed
--------------	------------	-------	-------

xIN1	xIN2	FUNCTION		
PWM	0	Forward PWM, fast decay		
1	PWM	Forward PWM, slow decay		
0	PWM	Reverse PWM, fast decay		
PWM	1	Reverse PWM, slow decay		

The internal current control is still enabled when applying external PWM to xIN. To disable the current control when applying external PWM, the xISEN pins should be connected directly to ground. Figure 7 show the current paths in different drive and decay modes.

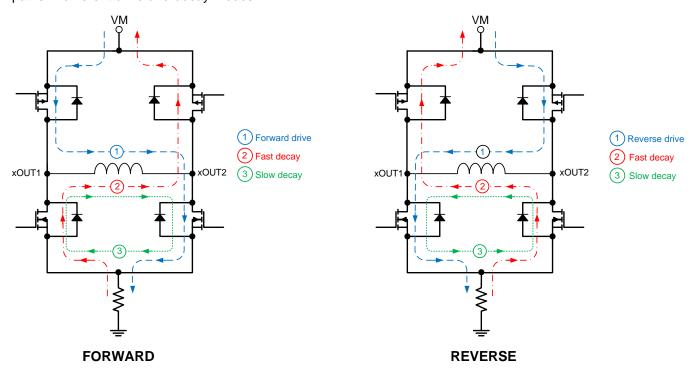


Figure 7. Drive and Decay Modes

7.3.3 Current Control

The current through the motor windings may be limited, or controlled, by a 20-µs constant off-time PWM current regulation, or current chopping. For DC motors, current control is used to limit the start-up and stall current of the motor. For stepper motors, current control is often used at all times.

When an H-bridge is enabled, current rises through the winding at a rate dependent on the DC voltage and inductance of the winding. If the current reaches the current chopping threshold, the bridge disables the current until the beginning of the next PWM cycle. Note that immediately after the output is enabled, the voltage on the xISEN pin is ignored for a fixed period of time before enabling the current sense circuitry. This blanking time is fixed at 3.75 us.

The PWM chopping current is set by a comparator that compares the voltage across a current sense resistor connected to the xISEN pins with a reference voltage. The reference voltage, V_{TRIP} , is is fixed at 200 mV nominally.

The chopping current is calculated as in Equation 1.

$$I_{CHOP} = \frac{200 \text{ mV}}{R_{XISEN}} \tag{1}$$

Example: If a 1- Ω sense resistor is used, the chopping current will be 200 mV / 1 Ω = 200 mA.

NOTE

If current control is not needed, the xISEN pins should be connected directly to ground.

7.3.4 Decay Mode

After the chopping current threshold is reached, the H-bridge switches to slow-decay mode. This state is held for t_{off} (20 µs) until the next cycle to turn on the high-side MOSFETs.

7.3.5 Slow Decay

In slow-decay mode, the high-side MOSFETs are turned off and both of the low-side MOSFETs are turned on. The motor current decreases while flowing in the two low-side MOSFETs until reaching its fixed off time (typically 20 µs). After that, the high-side MOSFETs are enabled to increase the winding current again.

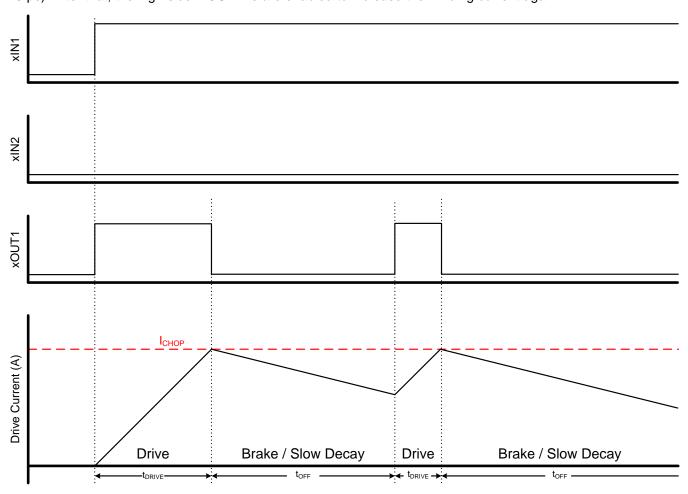


Figure 8. Current Chopping Operation

7.3.6 Sleep Mode

Driving nSLEEP low puts the device into a low-power sleep state. In this state, the H-bridges are disabled, all internal logic is reset, and all internal clocks are stopped. All inputs are ignored until nSLEEP returns inactive high. When returning from sleep mode, some time, t_{WAKE} , needs to pass before the motor driver becomes fully operational. To make the board design simple, the nSLEEP can be pulled up to the supply (V_M). TI recommends to use a pullup resistor when this is done. This resistor limits the current to the input in case V_M is higher than 6.5 V. Internally, the nSLEEP pin has a 500-k Ω resistor to GND. It also has a clamping Zener diode that clamps the voltage at the pin at 6.5 V. Currents greater than 250 μ A can cause damage to the input structure. Therefore, TI recommends a pullup resistor between 20 to 75 k Ω .

Copyright © 2014, Texas Instruments Incorporated

SLVSCP9 – AUGUST 2014 www.ti.com

TEXAS INSTRUMENTS

7.3.7 Parallel Mode

The two H-bridges in the DRV8833C can be connected in parallel for double the current of a single H-bridge. The internal dead time in the DRV8833C prevents any risk of cross-conduction (shoot-through) between the two bridges due to timing differences between the two bridges. Figure 9 shows the connections.

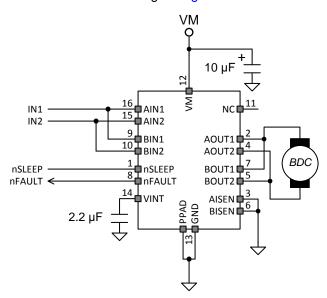


Figure 9. Parallel Mode Schematic

7.3.8 Protection Circuits

The DRV8833C is fully protected against overcurrent, overtemperature, and undervoltage events.

7.3.8.1 Overcurrent Protection (OCP)

An analog current limit (I_{OCP}) circuit on each FET limits the current through the FET by limiting the gate drive. If this analog current limit persists for longer than the OCP deglitch time (t_{DEG}), all FETs in the H-bridge are disabled and the nFAULT pin is driven low. The driver is re-enabled after the OCP retry period (t_{OCP}) has passed. nFAULT becomes high again after the retry time. If the fault condition is still present, the cycle repeats. If the fault is no longer present, normal operation resumes and nFAULT remains deasserted. Note that only the H-bridge in which the OCP is detected will be disabled while the other bridge functions normally.

Overcurrent conditions are detected independently on both high-side and low-side devices; a short to ground, supply, or across the motor winding all result in an overcurrent shutdown. Note that overcurrent protection does not use the current sense circuitry used for PWM current control, so it functions even without presence of the xISEN resistors.

7.3.8.2 Thermal Shutdown (TSD)

If the die temperature exceeds safe limits, all FETs in the H-bridge are disabled and the nFAULT pin is driven low. After the die temperature has fallen below the specified hysteresis (T_{HYS}), operation automatically resumes. The nFAULT pin is released after operation has resumed.

7.3.8.3 UVLO

If at any time the voltage on the V_M pin falls below the UVLO threshold voltage, V_{UVLO} , all circuitry in the device is disabled, and all internal logic is reset. Operation resumes when V_M rises above the UVLO threshold. The nFAULT pin is not driven low during an undervoltage condition.

Table 2 Davies Protectio

rab	ie 3.	Devi	ce Pi	rotect	ion

Fault	Condition	Error Report	H-Bridge	Internal Circuits	Recovery
V _M undervoltage (UVLO)	$V_{M} < 2.6 V$	None	Disabled	Disabled	$V_{M} > 2.7 \text{ V}$
Overcurrent (OCP)	I _{OUT} > I _{OCP}	FAULTn	Disabled	Operating	OCP
Thermal Shutdown (TSD)	$T_J > T_{TSD}$	FAULTn	Disabled	Operating	$T_J < T_{TSD} - T_{HYS}$

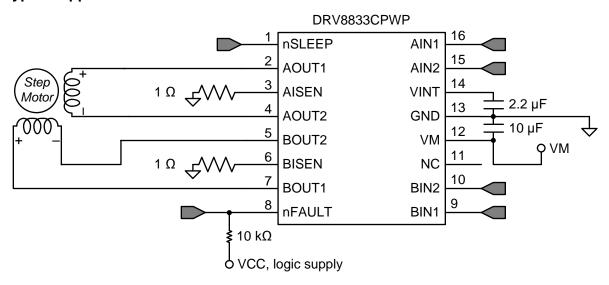
7.4 Device Functional Modes

The DRV8833C is active unless the nSLEEP pin is brought logic low. In sleep mode, the H-bridge FETs are disabled (Hi-Z). Note that t_{SLEEP} must elapse after a falling edge on the nSLEEP pin before the device is in sleep mode. The DRV8833C is brought out of sleep mode automatically if nSLEEP is brought logic high. Note that t_{WAKE} must elapse before the outputs change state after wake-up.

Table 4. Modes of Operation

Fault	Condition	H-Bridge	Internal Circuits		
Operating	nSLEEP pin high	Operating	Operating		
Sleep mode	nSLEEP pin low	Disabled	Disabled		
Fault encountered	Any fault condition met	Disabled	See Table 3		

Product Folder Links: DRV8833C


TEXAS INSTRUMENTS

8 Application and Implementation

8.1 Application Information

The DRV8833C is used in stepper or brushed DC motor control. The following design procedure can be used to configure the DRV8833C in a bipolar stepper motor application.

8.2 Typical Application

8.2.1 Design Requirements

Table 5 gives design input parameters for system design.

Reference **Design Parameter Example Value** Supply voltage V_{M} 9 V Motor winding resistance 12 Ω/phase R_L Motor winding inductance L_{L} 10 mH/phase 1.8 °/step Motor full step angle θ_{step} 2 (half-stepping) Target stepping level n_{m} Target motor speed ν 120 rpm Target chopping current 200 mA **I**CHOP Sense resistor 1 Ω R_{ISEN}

Table 5. Design Parameters

8.2.2 Detailed Design Procedure

8.2.2.1 Stepper Motor Speed

The first step in configuring the DRV8833C requires the desired motor speed and stepping level. The DRV8833C can support full- and half-stepping modes using the PWM interface.

If the target motor speed is too high, the motor does not spin. Ensure that the motor can support the target speed.

For a desired motor speed (v), microstepping level (n_m), and motor full step angle (θ_{step}),

$$f_{\text{step}} (\text{steps/s}) = \frac{\text{v(rpm)} \times \text{n}_{\text{m}} (\text{steps}) \times 360^{\circ} / \text{rot}}{\theta_{\text{step}} (^{\circ} / \text{step}) \times 60 \text{ s/min}}$$
(2)

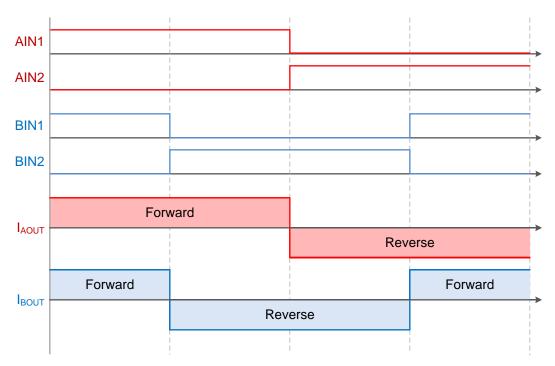


Figure 10. Full-Step Mode

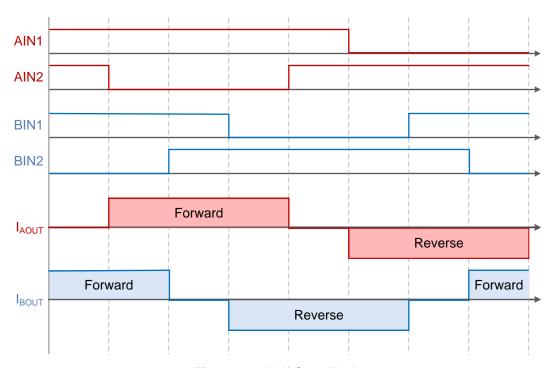


Figure 11. Half-Step Mode

8.2.2.2 Current Regulation

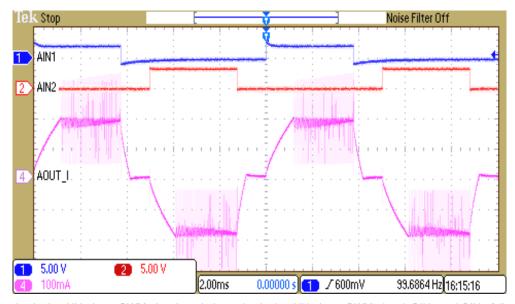
The chopping current (I_{CHOP}) is the maximum current driven through either winding. This quantity depends on the sense resistor value (R_{XISEN}).

$$I_{CHOP} = \frac{200 \text{ mV}}{R_{XISEN}}$$
 (3)

Copyright © 2014, Texas Instruments Incorporated

SLVSCP9 – AUGUST 2014 www.ti.com

(4)


 I_{CHOP} is set by a comparator which compares the voltage across R_{XISEN} to a reference voltage. Note that I_{CHOP} must follow Equation 4 to avoid saturating the motor.

$$I_{FS} \; (A) < \frac{VM \left(V\right)}{R_{L} \; (\Omega) + \; R_{DS(ON)} \, HS \; (\Omega) \; + R_{DS(ON)} \, LS \; (\Omega)}$$

where

- ullet V_M is the motor supply voltage.
- R_L is the motor winding resistance.

8.2.3 Application Curve

A. Channel 1 is the AIN1 input PWM signal, and channel 2 is the AIN2 input PWM signal. BIN1 and BIN2 follow the same pattern, but are shifted by 90° from AIN1 and AIN2 as shown in Figure 11. Channel 4 is the output current in the direction AOUT1 → AOUT2. In forward and reverse drive, the current rises until it hits the current chopping limit of 200 mA, and is regulated at that level with fixed-off time current chopping.

Figure 12. ½ Stepping Operation

16

SLVSCP9-AUGUST 2014

Power Supply Recommendations

The DRV8833C is designed to operate from an input voltage supply (V_M) range between 2.7 to 10.8 V. A 10-μF ceramic capacitor rated for V_M must be placed as close to the DRV8833C as possible.

Sizing Bulk Capacitance for Motor Drive Systems

Bulk capacitance sizing is an important factor in motor drive system design. It depends on a variety of factors including:

- Type of power supply
- Acceptable supply voltage ripple
- Parasitic inductance in the power supply wiring
- Type of motor (brushed DC, brushless DC, stepper)
- Motor startup current
- Motor braking method

The inductance between the power supply and motor drive system limits the rate current can change from the power supply. If the local bulk capacitance is too small, the system responds to excessive current demands or dumps from the motor with a change in voltage. Size the bulk capacitance to meet acceptable voltage ripple levels.

The data sheet generally provides a recommended value, but system-level testing is required to determine the appropriate-sized bulk capacitor.

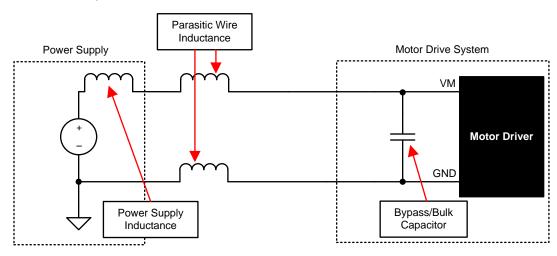
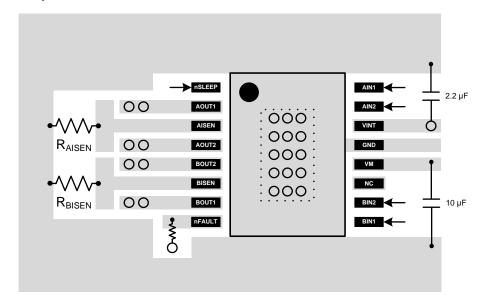


Figure 13. Setup of Motor Drive System With External Power Supply

SLVSCP9 – AUGUST 2014 www.ti.com

TEXAS INSTRUMENTS


10 Layout

10.1 Layout Guidelines

Bypass the V_M terminal to GND using a low-ESR ceramic bypass capacitor with a recommended value of 10 μ F rated for V_M . This capacitor should be placed as close to the V_M pin as possible with a thick trace or ground plane connection to the device GND pin and PowerPAD.

Bypass VINT to ground with a ceramic capacitor rated 6.3 V. Place this bypassing capacitor as close to the pin as possible.

10.2 Layout Example

11 Device and Documentation Support

11.1 Trademarks

PowerPAD is a trademark of Texas Instruments.

11.2 Electrostatic Discharge Caution

www.ti.com

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.3 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Product Folder Links: DRV8833C

19-Nov-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	_	Pins	_	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
DRV8833CPWP	ACTIVE	HTSSOP	PWP	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	8833C	Samples
DRV8833CPWPR	ACTIVE	HTSSOP	PWP	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-40 to 85	8833C	Samples
DRV8833CRTER	ACTIVE	WQFN	RTE	16	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	8833C	Samples
DRV8833CRTET	ACTIVE	WQFN	RTE	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	8833C	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

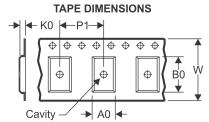
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

PACKAGE OPTION ADDENDUM

19-Nov-2014

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 23-Aug-2016

TAPE AND REEL INFORMATION

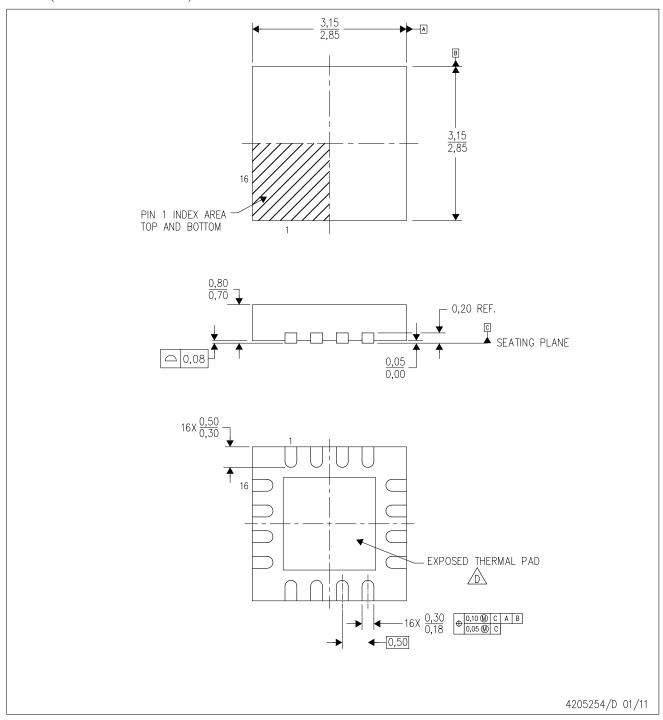
Α0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

All differsions are normal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
DRV8833CPWPR	HTSSOP	PWP	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
DRV8833CRTER	WQFN	RTE	16	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
DRV8833CRTET	WQFN	RTE	16	250	180.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2

www.ti.com 23-Aug-2016



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
DRV8833CPWPR	HTSSOP	PWP	16	2000	367.0	367.0	38.0
DRV8833CRTER	WQFN	RTE	16	3000	367.0	367.0	35.0
DRV8833CRTET	WQFN	RTE	16	250	210.0	185.0	35.0

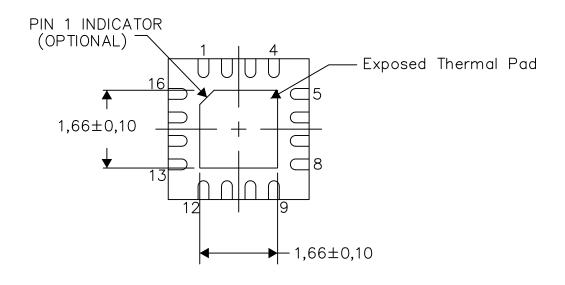
RTE (S-PWQFN-N16)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.

- B. This drawing is subject to change without notice.
- C. Quad Flatpack, No-leads (QFN) package configuration.
- The package thermal pad must be soldered to the board for thermal and mechanical performance. See the Product Data Sheet for details regarding the exposed thermal pad dimensions.
- E. Falls within JEDEC MO-220.

RTE (S-PWQFN-N16)


PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

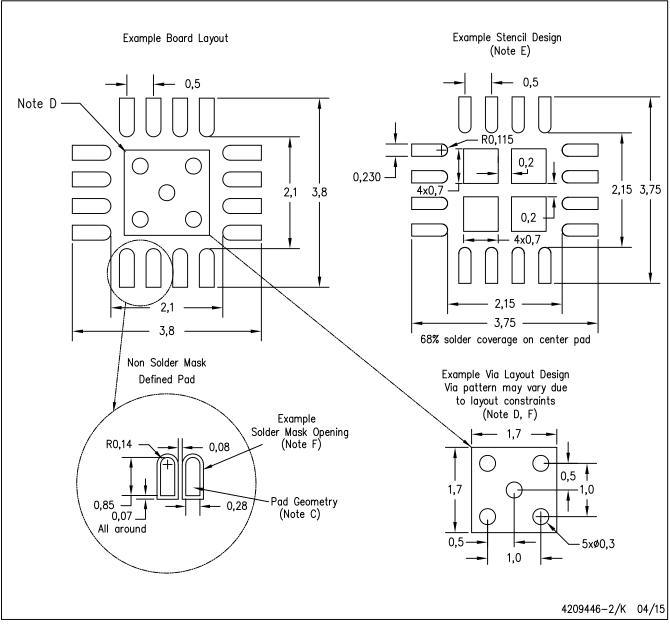
This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Bottom View

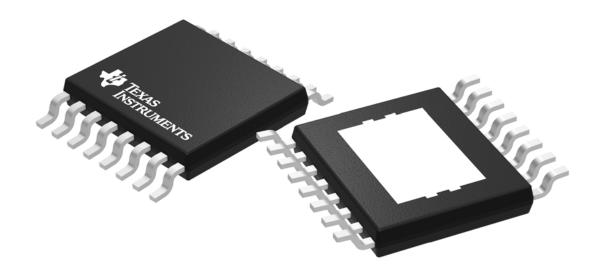
Exposed Thermal Pad Dimensions


4206446-8/U 08/15

NOTE: A. All linear dimensions are in millimeters

RTE (S-PWQFN-N16)

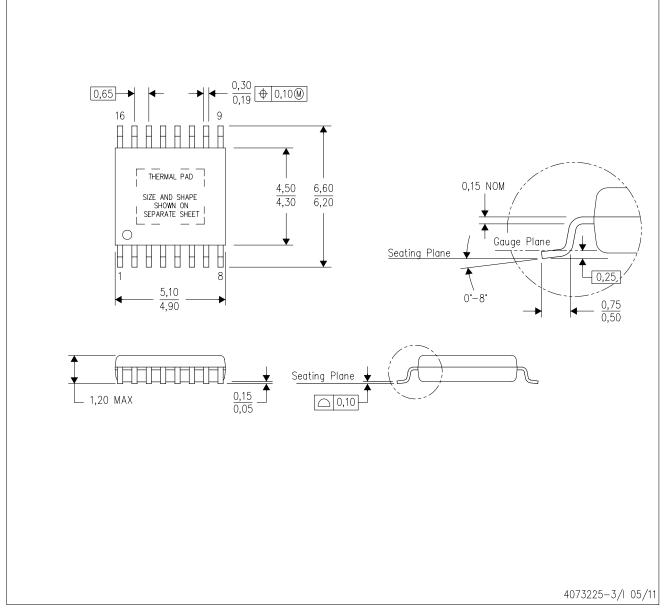
PLASTIC QUAD FLATPACK NO-LEAD



NOTES: A. All I

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat—Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com>.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.

PLASTIC SMALL OUTLINE


Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

PWP (R-PDSO-G16)

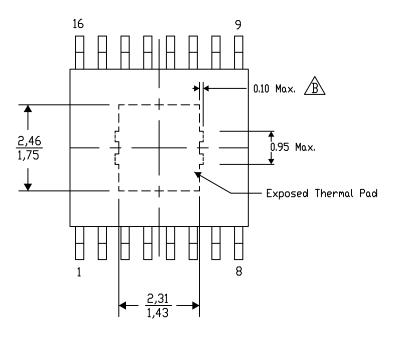
PowerPAD™ PLASTIC SMALL OUTLINE

NOTES:

- All linear dimensions are in millimeters.
- This drawing is subject to change without notice.
- Body dimensions do not include mold flash or protrusions. Mold flash and protrusion shall not exceed 0.15 per side.
- This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com www.ti.com.

 E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- E. Falls within JEDEC MO-153

PowerPAD is a trademark of Texas Instruments.


PWP (R-PDSO-G16) PowerPAD™ SMALL PLASTIC OUTLINE

THERMAL INFORMATION

This PowerPADTM package incorporates an exposed thermal pad that is designed to be attached to a printed circuit board (PCB). The thermal pad must be soldered directly to the PCB. After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Top View

Exposed Thermal Pad Dimensions

4206332-45/AO 01/16

NOTE: A. All linear dimensions are in millimeters

🛕 Exposed tie strap features may not be present.

PowerPAD is a trademark of Texas Instruments

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.