

SANYO Semiconductors DATA SHEET

LA73054

Monolithic Linear IC For DVD Player Video Signal Driver

• Y/C-MIX

• Output Mute

• 7MHz/14MHz LPF

• DC voltage output for S1 and S2

Overview

The LA73054 is a video signal driver for DVD player.

Functions

- 6 Channel
- Clamp
- Amplifier
- 75Ω driver

Specifications

Maximum Ratings at $Ta = 25^{\circ}C$

Conditions Parameter Symbol Ratings Unit Maximum supply voltage V_{CC} max 7.0 V Ta ≤ 75°C * mW Allowable power dissipation Pd max 800 Topr -20 to +75 °C Operating temperature Storage temperature Tstg -40 to +150 °C

Mounted on a board : 114.3×76.1×1.6mm3, glass epoxy board.

Recommended Operating Conditions at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Recommended supply voltage	V _{CC}		5.0	V
Operating supply voltage range	V _{CC} opg		4.75 to 5.25	V
Input pin voltage application range	VIN	$V_{CC} \text{ opg } + 0.3 \le 7V$	-0.3 to V _{CC} opg + 0.3	V

- Any and all SANYO Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO Semiconductor representative nearest you before usingany SANYO Semiconductor products described or contained herein in such applications.
- SANYO Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor products described or contained herein.

SANYO Semiconductor Co., Ltd. TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

LA73054

Electrical Characteristics at $Ta = 25^{\circ}C$, $V_{CC} = 5V$

			Innu	it Signal				F	Patina	e				Cont		onetle	Llni	+ · \/			SW C	ontrol
			inpu	lt Olghai			-		vaung.	3				0011		luur		v			0110	
Parameter	Symbol	Point	Signal	Freq	Ampli-	Output	Lest Conditions	min	typ	max	Unit	V3	V4	V5	V9	V10	V12	V13	V15	V36	S21	S28
				[112]	[p-p]	FUIII															323 S25	S33
Current drain	lcc					Vcc1	The sum of current	52	65	78	mA	3.3	0	0	0	0	0	0	0	0	ON	ON
	00					V0021	flowing through V _{CC} 1,															
						V22	V_{CC}^{21} and V_{CC}^{22} at															
						VCC22	no signal															
GAIN at 6dB	G33L	VIN ²	SG5		1V	133	Measure GAIN for input	5.6	5.9	6.4	dB			0	0	0	0	0	0	0	ON	ON
T OF two drives	G31L	V _{IN} 6	SG6		714mV	T31	at each output.															
	G28L	V _{IN} 8	SG5		1V	T28																
	G25L	V_{IN}^{11}	SG5		1V	T25																
	G23L	V _{IN} 14	SG6		1V	T23																
	G21L	V _{IN} 16	SG6		1V	T21																
GAIN at 9dB	G33H	V_{IN}^2	SG5		709mV	Т33	Measure GAIN for input	8.55	8.9	9.45	dB			0	0	0	0	0	0	3.3	ON	ON
For two drives	G31H	V _{IN} 6	SG6		507mV	T31	at each output.															
	G28H	V _{IN} 8	SG5		709mV	T28																
	G25H	V_{IN}^{11}	SG5		709mV	T25													3.3	0		
	G23H	V _{IN} 14	SG6		709mV	T23																
	G21H	V _{IN} 16	SG6		709mV	T21																
GAIN at 6dB	G33L1	V _{IN} 2	SG5		1V	T33	Measure GAIN for input	5.6	6.1	6.4	dB			0	0	0	0	0	0	0	ON	OFF
For one drive	G31L1	V _{IN} 6	SG6		714mV	T31	at each output.															
I wo-drive mode	G28L1	V _{IN} 8	SG5		1V	T28																
	G25L1	V _{IN} 11	SG5		1V	T25															OFF	ON
	G23L1	V _{IN} 14	SG6		1V	T23																
	G21L1	V _{IN} 16	SG6		1V	T21																
GAIN at 9dB	G33H1	V _{IN} 2	SG5		709mV	T33	Measure GAIN for input	8.55	9.1	9.45	dB			0	0	0	0	0	0	3.3	ON	OFF
For one drive	G31H1	VIN6	SG6		507mV	T31	at each output.															
Two-drive mode	G28H1	VIN8	SG5		709mV	T28																
	G25H1	Vini11	SG5		709mV	T25													3.3	0	OFF	ON
	G23H1	Vin14	SG6		709mV	T23													0.0	Ũ	0	0.1
	G21H1	VIN14	SG6		709m\/	T21																
Output GAIN	A33/31	Vin 2	SG5		709m\/	T33	Calculate the GAIN ratio	-0.5	0	0.5	%			0	0	0	0	0	0	33	ON	OFF
ratio	133/31	VIN ²	565		507mV	T21	at two outputs.	-0.5	0	0.5	70			0	0	0	0	0	0	5.5	ON	011
(composite/S)	421/20	VINO	500 805		700mV	T20																
	405/00	VIN [®]	000		700-1	120	Coloulate the CAUL	0.5	~	0.5	0/			_	^	_	^	^	2.0	0	055	0
ratio	A25/23	VINTI	365		709mV	125	at two outputs.	-0.5	U	0.5	%			0	U	0	U	U	3.3	U	UFF	UN
(component)	A25/21	VIN ¹⁴	566		709mV	123																
	Δ23/21	VIN ¹⁶	SG5		709mV	121																
f characteristic	F33L	V _{IN} 2	SG3	7M	1V	Т33	Measure GAIN for input	-2	-0.8	0.4	dB			0	0	0	0	0	0	0	ON	ON
Attenuation	F31L	V _{IN} 6	SG2	7M	714mV	T31	calcualte the attenuation															
amount	F28L	VIN ⁸	SG1	7M	1V	T28	amount for "6dB GAIN."															
	F25L1	V _{IN} 11	SG1	7M	1V	T25																
	F23L1	V_{IN}^{14}	SG4	7M	1V	T23																
	F21L1	V _{IN} 16	SG4	7M	1V	T21																
f characteristic	F33H	V_{IN}^2	SG3	27M	1V	T33	Measure GAIN for input		-29	-22	dB			0	0	0	0	0	0	0	ON	ON
27MHz Attenuation	F31H	V _{IN} 6	SG2	27M	714mV	T31	at each output and															
amount	F28H	V _{IN} 8	SG1	27M	1V	T28	amount for "6dB GAIN."															
	F25H1	V _{IN} 11	SG1	27M	1V	T25																
	F23H1	V _{IN} 14	SG4	27M	1V	T23																
	F21H1	V _{IN} 16	SG4	27M	1V	T21																

Continued on next page.

Continued from	preceding	, page.																				
			Inpu	ıt Signal				F	Rating	s				Con	trol V	oltage	e Ur	nit : V			SW C	ontrol
Parameter	Symbol	Point	Signal	Freq [Hz]	Ampli- tude [p-p]	Output Point	Test Conditions	min	typ	max	Unit	V3	V4	V5	V9	V10	V12	V13	V15	V36	S21 S23 S25	S28 S31 S33
f characteristic	F25L2	V _{IN} 11	SG1	14M	1V	T25	Measure GAIN for input	-1.9	-0.7	0.5	dB			0	0	0	0	3.3	0	0	ON	ON
of GAIN 14MHz	F23L2	V_{IN}^{14}	SG4	14M	1V	T23	at each output and															
amount	F21L2	V _{IN} 16	SG4	14M	1V	T21	amount for "6dB GAIN."															
f characteristic	F25H2	V _{IN} 11	SG1	54M	1V	T25			-39	-30	dB			0	0	0	0	3.3	0	0	ON	ON
of GAIN 54MHz	F23H2	V_{IN}^{14}	SG4	54M	1V	T23																
amount	F21H2	V _{IN} 16	SG4	54M	1V	T21																
MUTE voltage	V21MD					T21	Measure the pin voltage.	2.1	2.5	2.9	V			3.3	0	0	0	0	0	0	ON	ON
	V23MD					T23																
	V25MD					T25																
	V28MD					T28								0			3.3					
	V31MD					T31																
	V33MD					Т33																
DC for SQ	VSQ					T30	Measure the pin voltage	4.1	4.4	4.7	V	3.3	0	0	0	0	0	0	0	0	ON	ON
DC for LB	VLB					T30	at $V_{CC} =$	2.05	2.2	2.35	V	0	3.3	0	0	0	0	0	0	0	ON	ON
DC for 4 : 3	V43					T30	4.75 10 5.257	0	0	0.35	V	0	0	0	0	0	0	0	0	0	ON	ON

Design Guarantee Items at $Ta = 25^{\circ}C$, $V_{CC} = 5V$

			Inpu	ıt Signal					Ratino	s				Con	trol V	oltage	e Un	it : V			SW C	ontrol
Parameter	Symbol	Point	Signal	Freq	Ampli-	Output	Test Conditions	min	typ	may	Llnit	1/3	VA	V5	Va	V10	V12	V13	V/15	V36	\$21	\$28
1 arameter	Cymbol		eignai	[Hz]	tude	Point	rest conditions		ιyp	тал	Onit	v5	~-	v3	v3	10	VIZ	10	V 13	v 50	S23	S31
					[p-p]	1 0.11															S25	S33
f characteristic	GD33	V _{IN} 2	SG3	7M	1V	T33	Difference in group delay		±10	±15	ns			0	0	0	0	0	0	0	0	0
at group delay	GD31	V _{IN} 6	SG2	7M	714mV	T31	at 7MHz for 100kHz of															
At 7MHz	GD28	V _{IN} 8	SG1	7M	1V	T28	each output															
(intendee)	GD25-1	V _{IN} 11	SG1	7M	1V	T25																
	GD23-1	V _{IN} 14	SG4	7M	1V	T23																
	GD21-1	V _{IN} 16	SG4	7M	1V	T21																
f characteristic	GD25-2	V _{IN} 11	SG1	14M	1V	T25	Difference in group delay		±15	±20	ns			0	0	0	0	3.3	0	0	0	0
of group delay	GD23-2	V _{IN} 14	SG4	14M	1V	T23	at 14MHz for 100kHz of															
At 14MHz (progressive)	GD21-2	V _{IN} 16	SG4	14M	1V	T21	each output															
(P9)																						
DG	DG33	V _{IN} 2	SG7	3.58M	1V	T33	Calculate, in percentage,		1	2	%			0	0	0	0	0	0	0	0	0
	DG28	V _{IN} 8	SG7	3.58M	1V	T28	the amplitude of SIN															
	DG25	V _{IN} 11	SG7	3.58M	1V	T25	wave on the white level relative to that of SIN															
	DGMIX	V _{IN} 6	SG2	3.58M	286mV	T33	wave on the black level								3.3							
		V _{IN} 8	SG7	Y com-	1V		of each output signal.															
				ponent																		
DP	DP33	V _{IN} 2	SG7	3.58M	1V	T33	Measure the difference	-1	0.5	1	deg			0	0	0	0	0	0	0	0	0
	DP28	VIN ⁸	SG7	3.58M	1V	T28	the white level relative to															
	DP25	V _{IN} 11	SG7	3.58M	1V	T25	that of SIN wave on the															
	DPMIX	V _{IN} 6	SG2	3.58M	286mV	T33	black level of each								3.3							
		V _{IN} 8	SG7	Y com-	1V		output signal.															
Cross-talk	CT33	V _{IN} 2	SG3	4M	1V	T33	Measure the 4MHz		-60	-55	dB			0	0	0	0	0	0	0	0	0
	CT31	V _{IN} 6	SG2	4M	1V	T31	component of output in															
	CT28	V _{IN} 8	SG1	4M	1V	T28	the no-input route and															
	CT25	V _{IN} 11	SG1	4M	1V	T25	percentage relative to															
	CT23	V _{IN} 14	SG4	4M	1V	T23	the magnitude of 4MHz															
	CT21	V _{IN} 16	SG4	4M	1V	T21	of other outputs.															
Video S/N ratio	SN33	V _{IN} 2	SG5		1V	T33	Measure S/N of the		-79	-77	dB			0	0	0	0	0	0	0	0	0
	SN28	V _{IN} 8	SG5		1V	T28	output signal with a noise															
	SN25	V _{IN} 11	SG5		1V	T25	meter (LPF 10MHz, HPF															
	SNMIX	V _{IN} 8	SG5		1V	T33	in dB.		-73	-71	dB				3.3							
Linearity of RGB	LN25	V _{IN} 11	SG8		0.7V	T25	Measure GAIN of the	95	99	100	%			0	0	3.3	0	0	0	0	0	0
signal	LN23	V _{IN} 14	SG8		0.7V	T23	output signal and specify															
	LN21	V _{IN} 16	SG8		0.7V	T21	this in a percentage															
		V _{IN} 2	SG5		1V		0.35Vp-p input.															
																						1

Caution: The control voltage of V19 and V35 is 0 V for all of above items. SG8 is the signal determined by removing SYNC from SG5.

Package Dimensions

unit : mm

Control Pin Function Table

Pin No.	Contro	bl	0 to 0.7V (LOW)	2.6 to 5V (HIGH)			
36	AMP-GAIN changeover for comp	oosite/S	6dB	9dB			
15	AMP-GAIN changeover for comp	onent	6dB	9dB			
35	Drive current changeover for com	nposite/S	Two-system drive	Single-system drive			
19	Drive current changeover for com	nponent	Two-system drive	Single-system drive			
5	Mute control for composite/S	With pin 10 at LOW	No mute	Mute of pins 33, 31, and 28			
		With pin 10 at HIGH	No mute	Mute of pins 31 and 28			
12	Component mute control		No mute	Mute of pins 25, 32, and 21			
9	Y/C-MIX control		At composite	At Y/C-MIX			
10	Pin 11 input form changeover		Clamp input	Pedestal clamp input			
13	Component LPF characteristics of	changeover	Interlace compatible	Progressive compatible			

* Pin 2 is connected to GND at Y/C-MIX.

Pin 3	Pin 4	Pin 30 output DC
0 to 0.7V	0 to 0.7V	LOW (0V) \rightarrow For 4:3 mode
0 to 0.7V	2.6 to 5V	MIDDLE (2.2V) \rightarrow For the letter box mode
2.6 to 5V	0 to 0.7V	HIGH (5V) \rightarrow For the squeeze mode
2.6 to 5V	2.6 to 5V	Prohibited

* The voltage to be applied to all control pins must not be higher than the one applied to V_{CC} and lower than the one applied to GND.

 \ast All of control pins must not be used in the OPEN state.

LA73054

Block Diagram and Application Circuit Example

Pin Functions

Pin No.	Pin Name	I/O	Terminal Voltage	Conditions	Equivalent Circuit
1	V _{CC} 1	Р	5V	V _{CC}	
24 34	V _{CC} 22 V _{CC} 21				
2			2.3\/	When selecting V/C-MIX off and	Var Var Var
				gain (L)	
					S
3	SQUEEZE.SW	I	2V	OPEN	vçc
4 5	LETTER-BOX.SW MUTE.SW1				₽ ⊖∣
9	Y/C-MIX.SW				↓\\` 8
10 12	RGB.SW MUTE.SW2				
13	LPF.SW				
15 10	AMP.SW2				intering skΩ gg The skΩ state stat
35	DRIVE.SW1				777
36	AMP.SW1				л. л. ОМР06186
6	CHROMA.IN	I	2.8V	Always	
					v _{cc}
					т т т ОМР06187
7	GND11	Р	0V	GND	
17 20	GND12 GND26				
22	GND25				
26 27	GND24 GND23				
29	GND22				
32	GND21		0.01/		
Ø	Y.IN1		2.3V	when selecting gain (L)	$\begin{array}{c cc} \mathbf{v}_{\mathbf{CC}} & \mathbf{v}_{\mathbf{CC}} & \mathbf{v}_{\mathbf{CC}} \\ \uparrow & \uparrow & \uparrow \\ \end{array}$
					V _{CC} ≷
					OMP06188

Continued on next page.

Continued	from preceding page.				
Pin No.	Pin Name	I/O	Terminal Voltage	Conditions	Equivalent Circuit
11	Y.IN2	1	2.3V	When selecting component and gain (L)	VCC
14 16	Cb.IN Cr.IN	I	2.9V	When selecting gain (L)	VCC VCC VCC VCC VCC VCC VCC VCC VCC VCC VCC
18	REG	0	2V	470μF toward to GND.	VCC VCC VCC VCC VCC VCC VCC VCC VCC VCC
21 23 25	Cr.OUT Cb.OUT Y.QUT2	0	2.5V 1.35V	Except mute	
28 33	Y.OUT1 COMPOSITE.OUT		1.00 V		OMP06192
30	C_DC.OUT	0	4.4∨	When squeeze mode	VCC VCC VCC VCC VCC VCC VCC VCC VCC VCC

Continued on next page.

Continued	from preceding page.				
Pin No.	Pin Name	I/O	Terminal Voltage	Conditions	Equivalent Circuit
31	CHROMA.OUT	0	2.4V	When selecting gain (L) Except mute	

Test Circuit

Test input signal

- Specifications of any and all SANYO Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Semiconductor Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Semiconductor Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of March, 2006. Specifications and information herein are subject to change without notice.