
www.vishay.com

VS-ETU1506-M3,VS-ETU1506FP-M3

Vishay Semiconductors

Ultra Fast Rectifier, 15 A FRED Pt[®]

Cathode Anode

20

Cathode Anode VS-ETU1506FP-M3

20

PRIMARY CHARACTERISTICS					
Package	TO-220AC 2L, TO-220FullPAK 2L				
I _{F(AV)}	15 A				
V _R	600 V				
V _F at I _F	1.1 V				
t _{rr} (typ.)	24 ns				
T _J max.	175 °C				
Circuit configuration	Single				

FEATURES

- Low forward voltage drop
- · Ultrafast soft recovery time
- 175 °C operating junction temperature
- Low leakage current
- Fully isolated package (V_{INS} = 2500 V_{RMS})
- True 2 pin package
- Designed and qualified according to JEDEC[®]-JESD 47
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

DESCRIPTION

State of the art, ultralow V_F , soft-switching ultrafast rectifiers optimized for Discontinuous (Critical) Mode (DCM) Power Factor Correction (PFC).

The minimized conduction loss, optimized stored charge and low recovery current minimized the switching losses and reduce over dissipation in the switching element and snubbers.

The device is also intended for use as a freewheeling diode in power supplies and other power switching applications.

APPLICATIONS

AC/DC SMPS 70 W to 400 W

e.g. laptop and printer AC adaptors, desktop PC, TV and monitor, games units and DVD AC/DC power supplies.

ABSOLUTE MAXIMUM RATINGS							
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS			
Peak repetitive reverse voltage	V _{RRM}		600	V			
Average restified featured surrent in DC	I _{F(AV)}	T _C = 151 °C	15	А			
Average rectified forward current in DC		T _C = 103 °C	15				
Non-repetitive peak surge current	I _{FSM}	T _J = 25 °C	160				
Operating junction and storage temperatures	T _J , T _{Stg}		-65 to +175	°C			

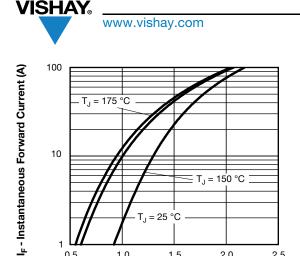
ELECTRICAL SPECIFICATIONS (T _J = 25 °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CONDITIONS MIN. TYP.			MAX.	UNITS	
Breakdown voltage, blocking voltage	V _{BR} , V _R			-	-		
Forward voltage	V _F	I _F = 15 A	-	1.35	1.9	V	
		I _F = 15 A, T _J = 150 °C	-	1.1	1.3		
	-	$V_{R} = V_{R}$ rated	-	0.01	15		
Reverse leakage current I _R		$T_J = 150 \text{ °C}, V_R = V_R \text{ rated}$	-	20	200	μA	
Junction capacitance	CT	V _R = 600 V	-	12	-	pF	
Series inductance	L _S	Measured lead to lead 5 mm from package body	-	8	-	nH	

Revision: 31-May-17

Document Number: 93534

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

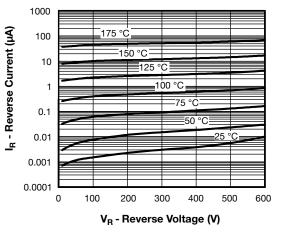
VS-ETU1506-M3, VS-ETU1506FP-M3

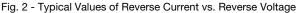

Vishay Semiconductors

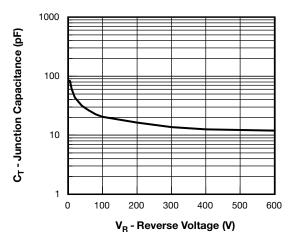
DYNAMIC RECOVERY CHARACTERISTICS (T _J = 25 °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNITS
		$I_F = 1 \text{ A}, \text{ d}I_F/\text{d}t = 100 \text{ A}/\mu\text{s}, \text{ V}_R = 30 \text{ V}$		-	24	28	
Reverse recovery time	+	$I_F = 15 \text{ A}, \text{ d}I_F/\text{d}t = 100 \text{ A}/\mu\text{s}, \text{ V}_R = 30 \text{ V}$		-	36	47	
Reverse recovery time	t _{rr}	T _J = 25 °C		-	40	-	ns
		T _J = 125 °C	I _F = 15 A dI _F /dt = 200 A/μs V _R = 390 V	-	87	-	
Poak recovery current	I _{RRM}	T _J = 25 °C		-	5	-	A
Peak recovery current		T _J = 125 °C		-	9	-	
	0	T _J = 25 °C		-	107	-	nC
Reverse recovery charge	Q _{rr}	T _J = 125 °C		-	430	-	ne
Reverse recovery time	t _{rr}		I _F = 15 A dI _F /dt = 800 A/μs	-	53	-	ns
Peak recovery current	I _{RRM}	T _J = 125 °C		-	25	-	А
Reverse recovery charge	Q _{rr}		V _R = 390 V	-	730	-	nC

THERMAL - MECHANICAL SPECIFICATIONS							
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS	
Maximum junction and storage temperature range	T _J , T _{Stg}		-65	-	175	°C	
Thermal resistance,	р		-	1.2	1.4		
junction to case FULL-PAK	R _{thJC}		-	3.7	4.3		
Thermal resistance, junction to ambient	R _{thJA}	Typical socket mount	-	-	70	°C/W	
Typical thermal resistance, case to heatsink	R _{thCS}	Mounting surface, flat, smooth and greased	-	0.5	-		
			-	2	-	g	
Weight			-	0.07	-	oz.	
Mounting torque			6 (5)	-	12 (10)	kgf · cm (lbf · in)	
Marking davias		Case style TO-220AC 2L	ETU1506				
Marking device		Case style TO-220 FullPAK 2L		ETU1	506FP		

VS-ETU1506-M3, VS-ETU1506FP-M3




1.5 V_F - Forward Voltage Drop (V)


0.5

1.0

Fig. 1 - Typical Forward Voltage Drop Characteristics

2.5

2.0

Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

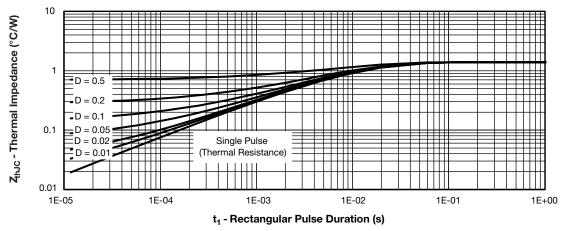
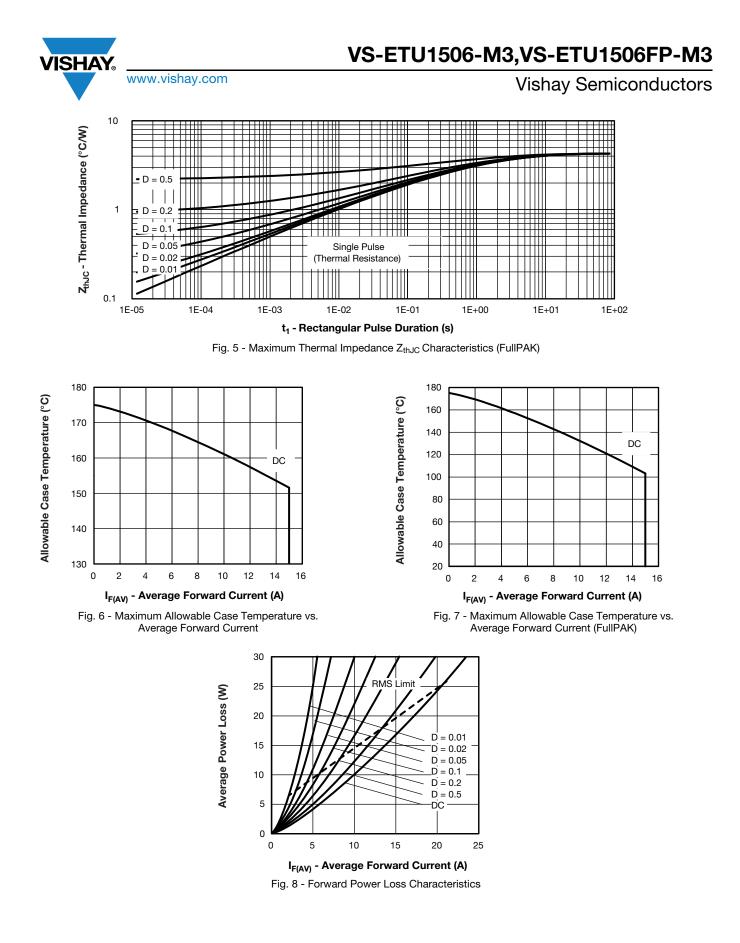
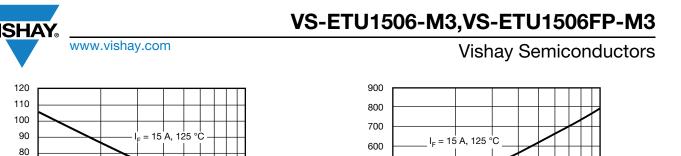




Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics

Revision: 31-May-17 Document Number: 93534 3 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

Q_{rr} (nC)

t_{rr} (ns)

70

60

50

40

30

20

10 100 I_F = 15 A, 25

typical value

°C

dl_Fdt (A/µs) Fig. 9 - Typical Reverse Recovery vs. dl_F/dt 500

400

300

200

100

0

100

current during t_b portion of t_{rr}

I_F = 15 A, 25 °C

dl_Fdt (A/µs)

Fig. 10 - Typical Stored Charge vs. dl_F/dt

typical value

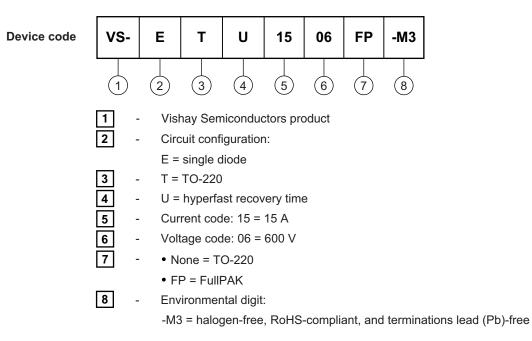
1000

(3) 0 (4) Q_{rr} (2) 0.5 I_{RRM} I_{RRM} dl_{(rec)M}/dt (5) 0.75 I_{RRM} (1) dl_F/dt (4) Q_{rr} - area under curve defined by t_{rr} (1) dl_F/dt - rate of change of current and I_{RRM} through zero crossing (2) I_{RRM} - peak reverse recovery current $Q_{rr} = \frac{t_{rr} \times I_{RRM}}{2}$ (3) t_{rr} - reverse recovery time measured (5) $dI_{(rec)M}/dt$ - peak rate of change of

1000

from zero crossing point of negative

going I_F to point where a line passing through 0.75 $\mathrm{I}_{\mathrm{RRM}}$ and 0.50 $\mathrm{I}_{\mathrm{RRM}}$ extrapolated to zero current.


Fig. 11 - Reverse Recovery Waveform and Definitions

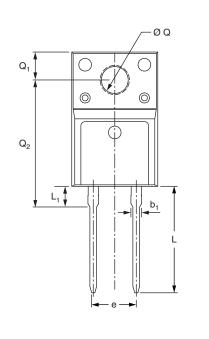
VS-ETU1506-M3, VS-ETU1506FP-M3

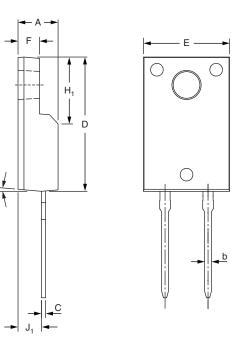
Vishay Semiconductors

ORDERING INFORMATION TABLE

ORDERING INFORMATION (Example)						
PREFERRED P/N QUANTITY PER TUBE MINIMUM ORDER QUANTITY PACKAGING DESCRIPTI						
VS-ETU1506-M3	50	1000	Antistatic plastic tube			
VS-ETU1506FP-M3	50	1000	Antistatic plastic tube			

LINKS TO RELATED DOCUMENTS					
Dimensions	TO-220AC 2L	www.vishay.com/doc?95259			
Dimensions	TO-220 FullPAK 2L	www.vishay.com/doc?95260			
Part marking information	TO-220AC 2L	www.vishay.com/doc?95391			
	TO-220 FullPAK 2L	www.vishay.com/doc?95392			
SPICE model	TO-220AC 2L	www.vishay.com/doc?96130			
	TO-220 FullPAK 2L	www.vishay.com/doc?96131			





True 2 Pin TO-220 FULL-PAK

θ

DIMENSIONS in millimeters and inches

SYMBOL	MILLIN	METERS	INCHES		
	MIN.	MAX.	MIN.	MAX.	
A	4.53	4.93	0.178	0.194	
b	0.71	0.91	0.028	0.036	
b ₁	1.15	1.39	0.045	0.055	
С	0.36	0.53	0.014	0.021	
D	15.67	16.07	0.617	0.633	
E	9.96	10.36	0.392	0.408	
е	5.08	5.08 typical		typical	
F	2.34	2.74	0.092	0.107	
H ₁	6.50	6.90	0.256	0.272	
J ₁	2.56	2.96	0.101	0.117	
L	12.78	13.18	0.503	0.519	
L ₁	2.23	2.63	0.088	0.104	
ØQ	2.98	3.38	0.117	0.133	
Q ₁	3.10	3.50	0.122	0.138	
Q ₂	14.80	15.20	0.583	0.598	
θ	0°	5°	0°	5°	

Document Number: 95260

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.