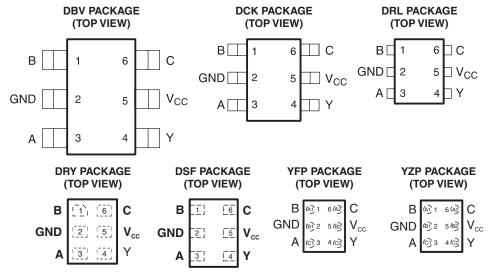


SCES506H-NOVEMBER 2003-REVISED MAY 2010


LOW-POWER CONFIGURABLE MULTIPLE-FUNCTION GATE

Check for Samples: SN74AUP1G98

FEATURES

- Available in the Texas Instruments NanoStar™ Package
- Low Static-Power Consumption (I_{CC} = 0.9 μA Max)
- Low Dynamic-Power Consumption (C_{pd} = 4.6 pF Typ at 3.3 V)
- Low Input Capacitance (C_i = 1.5 pF Typ)
- + Low Noise Overshoot and Undershoot <10% of V_{CC}
- I_{off} Supports Partial-Power-Down Mode Operation
- Includes Schmitt-Trigger Inputs

- Wide Operating V_{CC} Range of 0.8 V to 3.6 V
- Optimized for 3.3-V Operation
- 3.6-V I/O Tolerant to Support Mixed-Mode Signal Operation
- t_{pd} = 5.3 ns Max at 3.3 V
- Suitable for Point-to-Point Applications
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance Tested Per JESD 22
 - 2000-V Human-Body Model (A114-B, Class II)
 - 1000-V Charged-Device Model (C101)

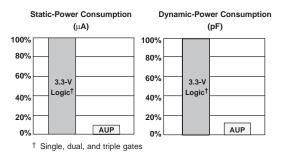
See mechanical drawings for dimensions.

DESCRIPTION/ORDERING INFORMATION

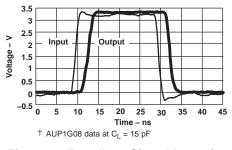
The AUP family is TI's premier solution to the industry's low-power needs in battery-powered portable applications. This family ensures a very low static- and dynamic-power consumption across the entire V_{CC} range of 0.8 V to 3.6 V, resulting in increased battery life (see Figure 1). This product also maintains excellent signal integrity (see the very low undershoot and overshoot characteristics shown in Figure 2).

The SN74AUP1G98 features configurable multiple functions. The output state is determined by eight patterns of 3-bit input. The user can choose the logic functions MUX, AND, OR, NAND, NOR, inverter, and noninverter. All inputs can be connected to V_{CC} or GND.

The device functions as an independent gate with Schmitt-trigger inputs, which allow for slow input transition and better switching-noise immunity at the input.


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SN74AUP1G98


TEXAS INSTRUMENTS

www.ti.com

SCES506H-NOVEMBER 2003-REVISED MAY 2010

Figure 1. AUP – The Lowest-Power Family

Switching Characteristics at 25 MHz[†]

Figure 2. Excellent Signal Integrity

NanoStar[™] package technology is a major breakthrough in IC packaging concepts, using the die as the package.

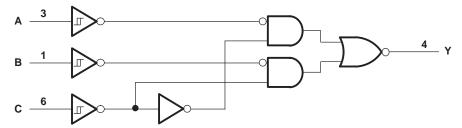
This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

T _A	PACKAGE ⁽²⁾		ORDERABLE PART NUMBER	TOP-SIDE MARKING ⁽³⁾
	NanoStar – WCSP (DSBGA) 0.23-mm Large Bump – YFP (Pb-free)	Reel of 3000	SN74AUP1G98YFPR	HR_
	NanoStar – WCSP (DSBGA) 0.23-mm Large Bump – YZP (Pb-free)	Reel of 3000	SN74AUP1G98YZPR	H R _
–40°C to 85°C	QFN – DRY	Reel of 5000	SN74AUP1G98DRYR	HR
	uQFN – DSF	Reel of 5000	SN74AUP1G98DSFR	HR
	SOT (SOT-23) – DBV	Reel of 3000	SN74AUP1G98DBVR	H98_
	SOT (SC-70) – DCK	Reel of 3000	SN74AUP1G98DCKR	
	SOT (SOT-553) – DRL	Reel of 4000	SN74AUP1G98DRLR	HR_

ORDERING INFORMATION⁽¹⁾

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.


(3) DBV/DCK/DRL: The actual top-side marking has one additional character that designates the wafer fab/assembly site. YFP/YZP: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one following character to designate the wafer fab/assembly site. Pin 1 identifier indicates solder-bump composition (1 = SnPb, • = Pb-free).

	INPUTS		OUTPUT
С	В	Α	Y
L	L	L	Н
L	L	Н	Н
L	н	L	L
L	н	Н	L
Н	L	L	Н
Н	L	н	L
Н	н	L	Н
Н	Н	Н	L

FUNCTION TABLE

SCES506H-NOVEMBER 2003-REVISED MAY 2010

LOGIC DIAGRAM (POSITIVE LOGIC)

Table 1. FUNCTION SELECTION TABLE

LOGIC FUNCTION	FIGURE NO.
2-to-1 data selector with inverted output	Figure 3
2-input NAND gate	Figure 4
2-input NOR gate with one inverted input	Figure 5
2-input AND gate with one inverted input	Figure 5
2-input NAND gate with one inverted input	Figure 6
2-input OR gate with one inverted input	Figure 6
2-input NOR gate	Figure 7
Noninverted buffer	Figure 8
Inverter	Figure 9

LOGIC CONFIGURATIONS

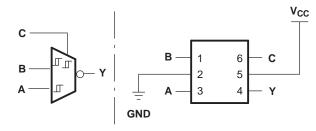


Figure 3. 2-to-1 Data Selector With Inverted Output When C is L, Y = \overline{B} When C is H, Y = \overline{A}

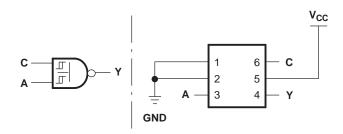
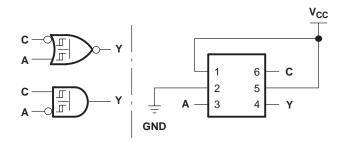
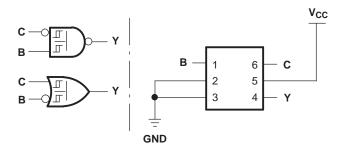




Figure 4. 2-Input NAND Gate

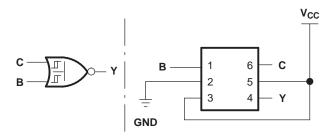


Figure 7. 2-Input NOR Gate

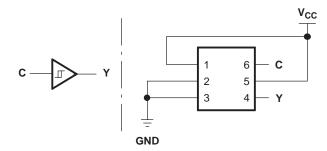


Figure 8. Noninverted Buffer

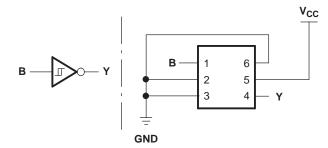


Figure 9. Inverter

www.ti.com

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.5	4.6	V
VI	Input voltage range ⁽²⁾		-0.5	4.6	V
Vo	Voltage range applied to any output in the h	Voltage range applied to any output in the high-impedance or power-off state ⁽²⁾			V
Vo	Output voltage range in the high or low state	e ⁽²⁾	-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V ₁ < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
lo	Continuous output current			±20	mA
	Continuous current through V_{CC} or GND		±50	mA	
		DBV package		165	
		DCK package		259	
0	De elve se the second interest (3)	DRL package		142	°C/W
θ_{JA}	Package thermal impedance ⁽³⁾	DSF package		300	-C/vv
		DRY package		234	
		YFP/YZP package		123	
T _{stg}	Storage temperature range		-65		°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

(3) The package thermal impedance is calculated in accordance with JESD 51-7.

RECOMMENDED OPERATING CONDITIONS⁽¹⁾

			MIN	MAX	UNIT
V_{CC}	Supply voltage		0.8	3.6	V
VI	Input voltage		0	3.6	V
Vo	Output voltage		0	V _{CC}	V
		V _{CC} = 0.8 V		-20	А
		V _{CC} = 1.1 V		-1.1	
lau	High-level output current $V_{CC} = 1.4 V$ $V_{CC} = 1.65$ $V_{CC} = 2.3 V$ $V_{CC} = 3 V$		-1.7		
I _{OH}		V _{CC} = 1.65		-1.9	mA
		$V_{CC} = 2.3 V$		-3.1	
		$V_{CC} = 3 V$		-4	
		$V_{CC} = 0.8 V$		20	μA
		$V_{CC} = 1.1 V$		1.1	
		$V_{CC} = 1.4 V$		1.7	mA
I _{OL}	Low-level output current	V _{CC} = 1.65 V		1.9	
		$V_{CC} = 2.3 V$		3.1	
		V _{CC} = 3 V		4	
T _A	Operating free-air temperature		-40	85	°C

 All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

www.ti.com

ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	v	Т,	_A = 25°C	$T_A = -40^{\circ}C t_C$	o 85°C	UNIT
PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP MAX	MIN	MAX	UNIT
V _{T+}		0.8 V	0.3	0.6	0.3	0.6	
		1.1 V	0.53	0.9	0.53	0.9	
Positive-going		1.4 V	0.74	1.11	0.74	1.11	V
input threshold		1.65 V	0.91	1.29	0.91	1.29	V
voltage		2.3 V	1.37	1.77	1.37	1.77	
		3 V	1.88	2.29	1.88	2.29	
V _{T-}		0.8 V	0.1	0.6	0.1	0.6	
		1.1 V	0.26	0.65	0.26	0.65	
Negative-going		1.4 V	0.39	0.75	0.39	0.75	
input threshold		1.65 V	0.47	0.84	0.47	0.84	V
voltage		2.3 V	0.69	1.04	0.69	1.04	
		3 V	0.88	1.24	0.88	1.24	
ΔV _T		0.8 V	0.07	0.5	0.07	0.5	
		1.1 V	0.08	0.46	0.08	0.46	
		1.4 V	0.18	0.56	0.18	0.56	
Hysteresis		1.65 V	0.27	0.66	0.27	0.66	V
$(V_{T+} - V_{T-})$		2.3 V	0.53	0.92	0.53	0.92	
		3 V	0.79	1.31	0.79	1.31	
	I _{OH} = -20 μA	0.8 V to 3.6 V	V _{CC} - 0.1		V _{CC} – 0.1		
	$I_{OH} = -1.1 \text{ mA}$	1.1 V	0.75 × V _{CC}		0.7 × V _{CC}		
	$I_{OH} = -1.7 \text{ mA}$	1.4 V	1.11		1.03		
	$I_{OH} = -1.9 \text{ mA}$	1.65 V	1.32		1.3		.,
V _{OH}	$I_{OH} = -2.3 \text{ mA}$		2.05		1.97		V
	$I_{OH} = -3.1 \text{ mA}$	2.3 V	1.9		1.85		
	$I_{OH} = -2.7 \text{ mA}$		2.72		2.67		
	$I_{OH} = -4 \text{ mA}$	3 V	2.6		2.55		
	I _{OL} = 20 μA	0.8 V to 3.6 V		0.1		0.1	
	$I_{OL} = 1.1 \text{ mA}$	1.1 V		0.3 × V _{CC}	C	$0.3 \times V_{CC}$	
	I _{OL} = 1.7 mA	1.4 V		0.31		0.37	
	$I_{OL} = 1.9 \text{ mA}$	1.65 V		0.31		0.35	
V _{OL}	$I_{OL} = 2.3 \text{ mA}$			0.31		0.33	V
	I _{OL} = 3.1 mA	2.3 V		0.44		0.45	
	I _{OL} = 2.7 mA			0.31		0.33	
	$I_{OL} = 4 \text{ mA}$	3 V		0.44		0.45	
II All inputs	$V_1 = GND \text{ to } 3.6 \text{ V}$	0 V to 3.6 V		0.1		0.5	μA
	$V_{\rm I}$ or $V_{\rm O} = 0$ V to 3.6 V	0 V		0.2		0.6	μΑ
ΔI _{off}	$V_{\rm I} \text{ or } V_{\rm O} = 0 \text{ V to 3.6 V}$	0 V to 0.2 V		0.2		0.6	μΑ
	$V_{I} = GND \text{ or } (V_{CC} \text{ to } 3.6 \text{ V}),$ $I_{O} = 0$	0.8 V to 3.6 V		0.5		0.9	μΑ
ΔI _{CC}	$V_{\rm I} = V_{\rm CC} - 0.6 \ V^{(1)}, \ I_{\rm O} = 0$	3.3 V		40		50	μA
		0 V		1.5			μΑ
C _i	$V_{I} = V_{CC}$ or GND	3.6 V		1.5			pF
C _o	V _O = GND	0 V		3			pF

(1) One input at V_{CC} – 0.6 V, other inputs at V_{CC} or GND.

SCES506H-NOVEMBER 2003-REVISED MAY 2010

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range, $C_L = 5 \text{ pF}$ (unless otherwise noted) (see Figure 10 and Figure 11)

PARAMETER	FROM	TO	V _{cc}	Т	ק = 25°C		T _A = to 85	40°C 5°C	UNIT
	(INPUT)	(OUTPUT)		MIN	TYP	MAX	MIN	MAX	
			0.8 V		22.2				
			1.2 V ± 0.1 V	2.7	9.1	13.6	2.2	17	
		Y	1.5 V ± 0.1 V	2	6.4	9.2	1.5	11.1	
t _{pd}	A, B, or C	ř	1.8 V ± 0.15 V	1.4	5.2	7.2	0.9	8.9	ns
			2.5 V ± 0.2 V	1.2	3.8	5.3	0.7	6.3	
			3.3 V ± 0.3 V	1	3.1	4.5	0.5	5.3	

SWITCHING CHARACTERISTICS

over recommended operating free-air temperature range, $C_L = 10 \text{ pF}$ (unless otherwise noted) (see Figure 10 and Figure 11)

	PARAMETER		TO	V _{cc}	Т,	₄ = 25°C	;	T _A = to 85	40°C 5°C	UNIT
		(INPUT)	(OUTPUT)		MIN	TYP	MAX	MIN	MAX	
				0.8 V		25.4				
				1.2 V ± 0.1 V	5.2	10.4	15.4	4.7	19	
			Y	1.5 V ± 0.1 V	4	7.4	10.5	3.5	12.6	
	t _{pd} A, B	A, B, or C	Y	1.8 V ± 0.15 V	3.1	6	8.3	2.6	10.2	ns
				2.5 V ± 0.2 V	2.7	4.5	6.1	2.2	7.3	
			3.3 V ± 0.3 V	2.5	3.7	5	2	6		

SWITCHING CHARACTERISTICS

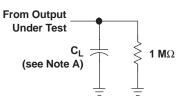
over recommended operating free-air temperature range, $C_L = 15 \text{ pF}$ (unless otherwise noted) (see Figure 10 and Figure 11)

PARAMETER	FROM	TO (OUTPUT)	V _{cc}	Т	ק = 25°C		T _A = to 85		UNIT
	(INPUT)	(001901)		MIN	TYP	MAX	MIN	MAX	
			0.8 V		28.7				
			1.2 V ± 0.1 V	3.7	11.5	17	3.2	21.1	
		N N	1.5 V ± 0.1 V	2.8	8.3	11.6	2.3	14	
t _{pd}	A, B, or C	Y	1.8 V ± 0.15 V	2.1	6.7	9.2	1.6	11.3	ns
			2.5 V ± 0.2 V	1.8	5	6.7	1.3	8.1	
			3.3 V ± 0.3 V	1.6	4.1	5.5	1.1	6.6	

SWITCHING CHARACTERISTICS

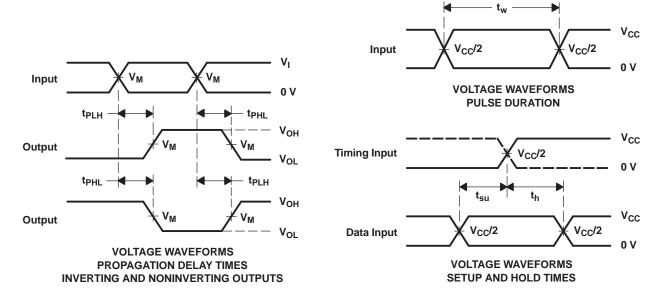
over recommended operating free-air temperature range, $C_L = 30 \text{ pF}$ (unless otherwise noted) (see Figure 10 and Figure 11)

PARAMETER	FROM (INPUT)	TO	V _{cc}	т,	₄ = 25°C		T _A = to 85		UNIT
	(INPUT)	(OUTPUT)		MIN	TYP	MAX	MIN	MAX	
		0.8 V		39.7					
			1.2 V ± 0.1 V	5.1	15.3	21.6	4.6	26.8	
		Y	1.5 V ± 0.1 V	3.9	10.9	14.6	3.4	17.6	20
t _{pd}	A, B, or C	ř	1.8 V ± 0.15 V	3.1	8.9	11.5	2.6	14.1	ns
			2.5 V ± 0.2 V	2.6	6.7	8.4	2.1	10.1	
			3.3 V ± 0.3 V	2.3	5.5	6.9	1.8	8.3	


SCES506H-NOVEMBER 2003-REVISED MAY 2010

OPERATING CHARACTERISTICS

 $T_A = 25^{\circ}C$


	PARAMETER	TEST CONDITIONS	V _{cc}	TYP	UNIT
			0.8 V	4	
			1.2 V ± 0.1 V	4	
~			1.5 V ± 0.1 V	4	
C _{pd}	Power dissipation capacitance	f = 10 MHz	1.8 V ± 0.15 V	4	pF
			2.5 V ± 0.2 V	4.3	
			3.3 V ± 0.3 V	4.6	

PARAMETER MEASUREMENT INFORMATION (Propagation Delays, Setup and Hold Times, and Pulse Duration)

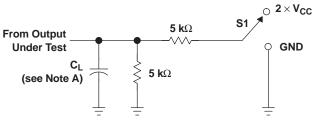
	V _{CC} = 0.8 V	V _{CC} = 1.2 V ± 0.1 V	V _{CC} = 1.5 V ± 0.1 V	V _{CC} = 1.8 V ± 0.15 V	V_{CC} = 2.5 V \pm 0.2 V	V _{CC} = 3.3 V ± 0.3 V
CL	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF
V _M	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2
VI	V _{CC}	V _{CC}	V _{CC}	V _{CC}	V _{CC}	V _{CC}

LOAD CIRCUIT

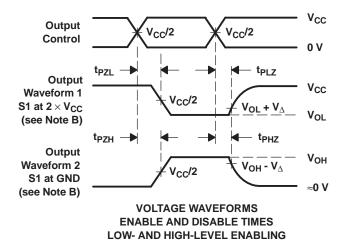
NOTES: A. C_L includes probe and jig capacitance.

- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_Q = 50 Ω , slew rate \geq 1 V/ns.
- C. The outputs are measured one at a time, with one transition per measurement.
- D. t_{PLH} and t_{PHL} are the same as t_{pd} .
- E. All parameters and waveforms are not applicable to all devices.

Figure 10. Load Circuit and Voltage Waveforms


_____I

SCES506H-NOVEMBER 2003-REVISED MAY 2010


PARAMETER MEASUREMENT INFORMATION (Enable and Disable Times)

TEST	S1
t _{PLZ} /t _{PZL} t _{PHZ} /t _{PZH}	$2 \times V_{CC}$ GND

LOAD CIRCUIT

	V _{CC} = 0.8 V	V _{CC} = 1.2 V ± 0.1 V	V _{CC} = 1.5 V ± 0.1 V	V _{CC} = 1.8 V ± 0.15 V	V_{CC} = 2.5 V \pm 0.2 V	V _{CC} = 3.3 V ± 0.3 V
CL	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF	5, 10, 15, 30 pF
VM	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2
VI	V _{CC}	V _{CC}	V _{CC}	V _{CC}	V _{CC}	V _{CC}
V_{Δ}	0.1 V	0.1 V	0.1 V	0.15 V	0.15 V	0.3 V

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , slew rate \geq 1 V/ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. All parameters and waveforms are not applicable to all devices.

Figure 11. Load Circuit and Voltage Waveforms

4-May-2017

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SN74AUP1G98DBVR	ACTIVE	SOT-23	DBV	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	H98R	Samples
SN74AUP1G98DCKR	ACTIVE	SC70	DCK	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	HRR	Samples
SN74AUP1G98DCKT	ACTIVE	SC70	DCK	6	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	HRR	Samples
SN74AUP1G98DRLR	ACTIVE	SOT-5X3	DRL	6	4000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(HR7 ~ HRR)	Samples
SN74AUP1G98DRLRG4	ACTIVE	SOT-5X3	DRL	6	4000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	(HR7 ~ HRR)	Samples
SN74AUP1G98DRYR	ACTIVE	SON	DRY	6	5000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	HR	Samples
SN74AUP1G98DSFR	ACTIVE	SON	DSF	6	5000	Green (RoHS & no Sb/Br)	CU NIPDAU CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	HR	Samples
SN74AUP1G98YFPR	ACTIVE	DSBGA	YFP	6	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	(HR7 ~ HRN)	Samples
SN74AUP1G98YZPR	ACTIVE	DSBGA	YZP	6	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-40 to 85	HRN	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

4-May-2017

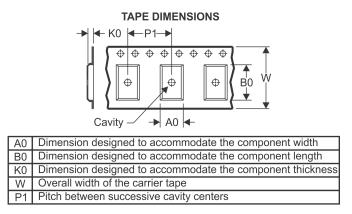
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

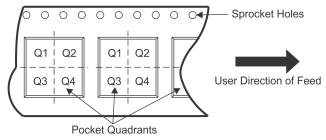
⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

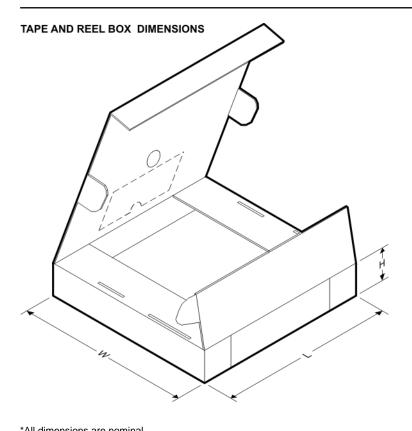

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

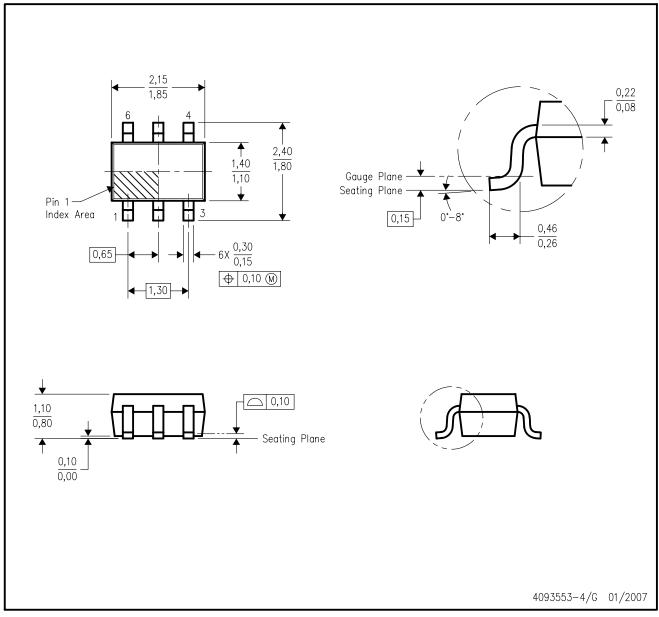
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74AUP1G98DBVR	SOT-23	DBV	6	3000	180.0	8.4	3.23	3.17	1.37	4.0	8.0	Q3
SN74AUP1G98DCKR	SC70	DCK	6	3000	180.0	8.4	2.41	2.41	1.2	4.0	8.0	Q3
SN74AUP1G98DCKT	SC70	DCK	6	250	180.0	8.4	2.41	2.41	1.2	4.0	8.0	Q3
SN74AUP1G98DRLR	SOT-5X3	DRL	6	4000	180.0	9.5	1.78	1.78	0.69	4.0	8.0	Q3
SN74AUP1G98DRLR	SOT-5X3	DRL	6	4000	180.0	8.4	1.98	1.78	0.69	4.0	8.0	Q3
SN74AUP1G98DRYR	SON	DRY	6	5000	180.0	9.5	1.15	1.6	0.75	4.0	8.0	Q1
SN74AUP1G98DSFR	SON	DSF	6	5000	180.0	9.5	1.16	1.16	0.5	4.0	8.0	Q2
SN74AUP1G98YFPR	DSBGA	YFP	6	3000	178.0	9.2	0.89	1.29	0.62	4.0	8.0	Q1
SN74AUP1G98YZPR	DSBGA	YZP	6	3000	178.0	9.2	1.02	1.52	0.63	4.0	8.0	Q1

TEXAS INSTRUMENTS

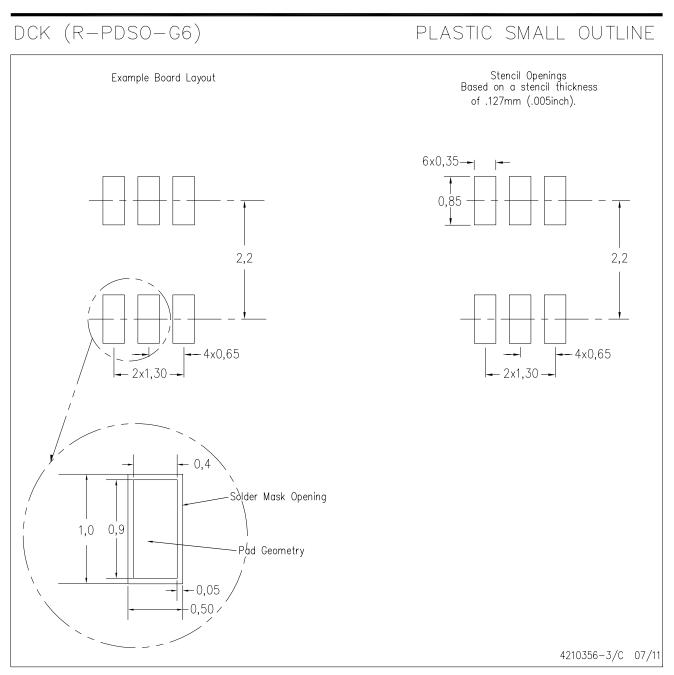
www.ti.com

PACKAGE MATERIALS INFORMATION


3-Aug-2017

*All dimensions are nominal							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74AUP1G98DBVR	SOT-23	DBV	6	3000	202.0	201.0	28.0
SN74AUP1G98DCKR	SC70	DCK	6	3000	202.0	201.0	28.0
SN74AUP1G98DCKT	SC70	DCK	6	250	202.0	201.0	28.0
SN74AUP1G98DRLR	SOT-5X3	DRL	6	4000	184.0	184.0	19.0
SN74AUP1G98DRLR	SOT-5X3	DRL	6	4000	202.0	201.0	28.0
SN74AUP1G98DRYR	SON	DRY	6	5000	184.0	184.0	19.0
SN74AUP1G98DSFR	SON	DSF	6	5000	184.0	184.0	19.0
SN74AUP1G98YFPR	DSBGA	YFP	6	3000	220.0	220.0	35.0
SN74AUP1G98YZPR	DSBGA	YZP	6	3000	220.0	220.0	35.0

DCK (R-PDSO-G6)

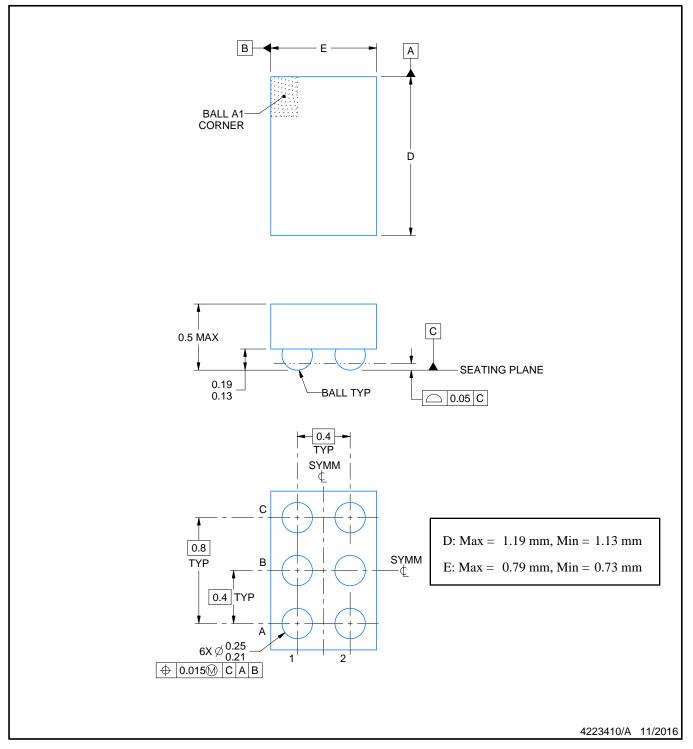

PLASTIC SMALL-OUTLINE PACKAGE

- NOTES: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
 - D. Falls within JEDEC MO-203 variation AB.

LAND PATTERN DATA

NOTES:

- A. All linear dimensions are in millimeters.B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.


YFP0006

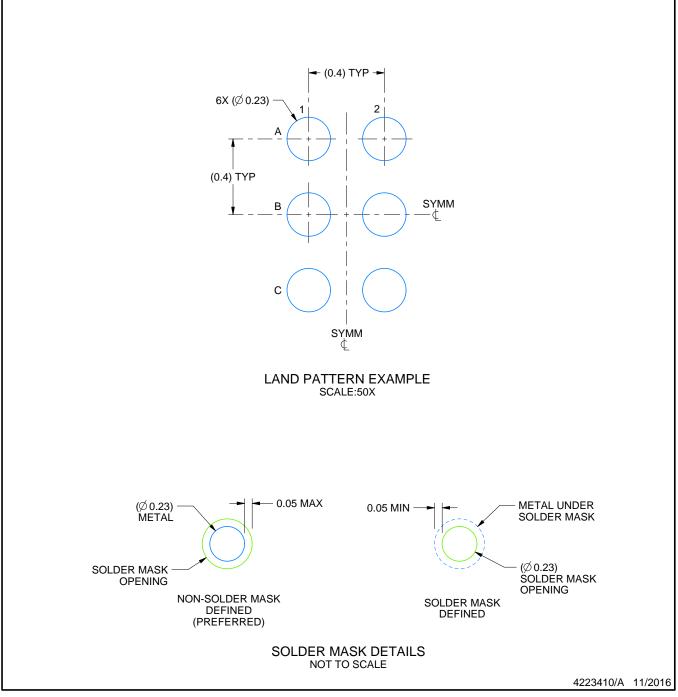
PACKAGE OUTLINE

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.



YFP0006

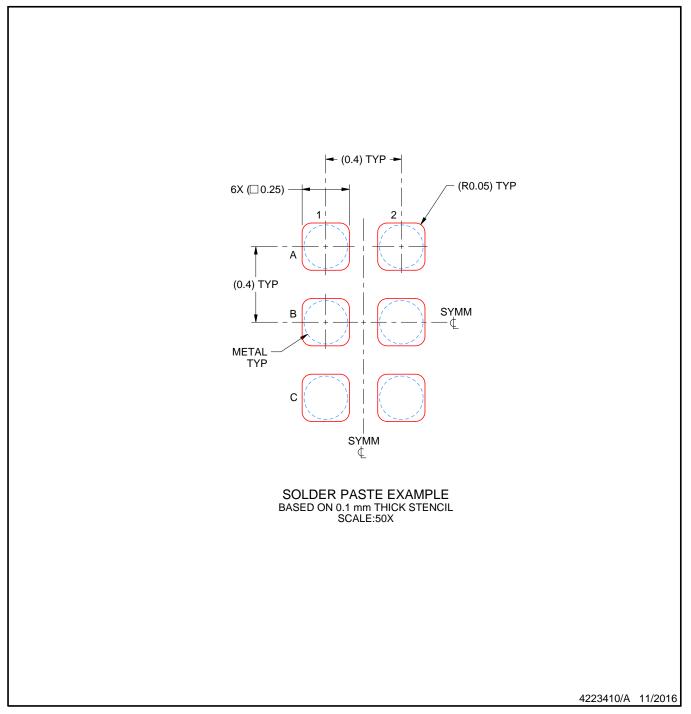
EXAMPLE BOARD LAYOUT

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).

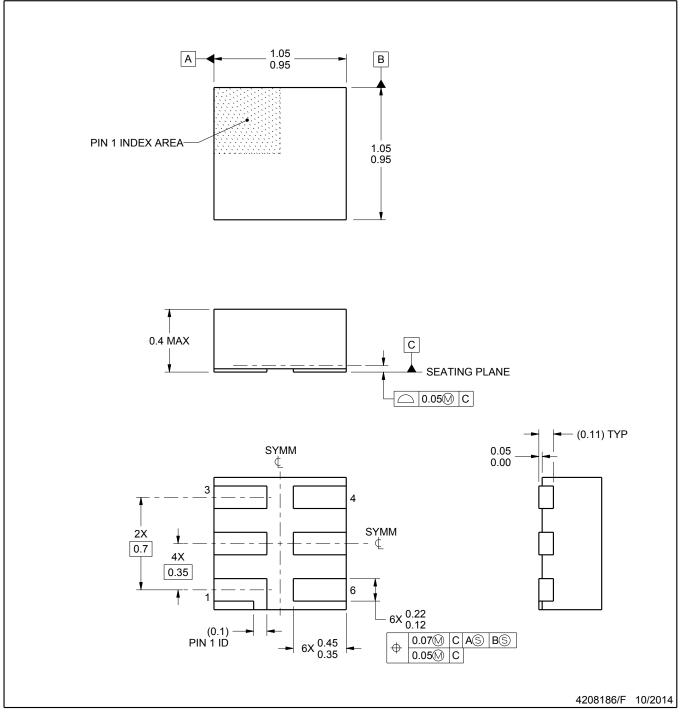


YFP0006

EXAMPLE STENCIL DESIGN

DSBGA - 0.5 mm max height

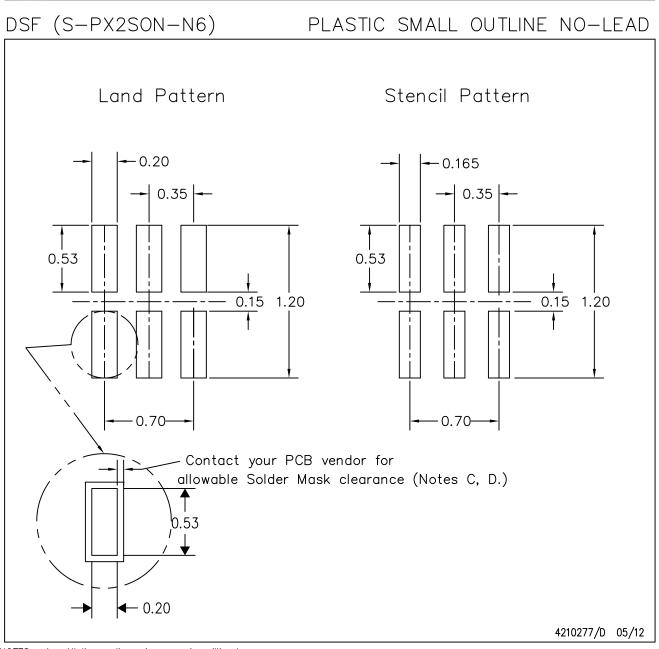
DIE SIZE BALL GRID ARRAY


NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

MECHANICAL DATA

PLASTIC SMALL OUTLINE NO-LEAD



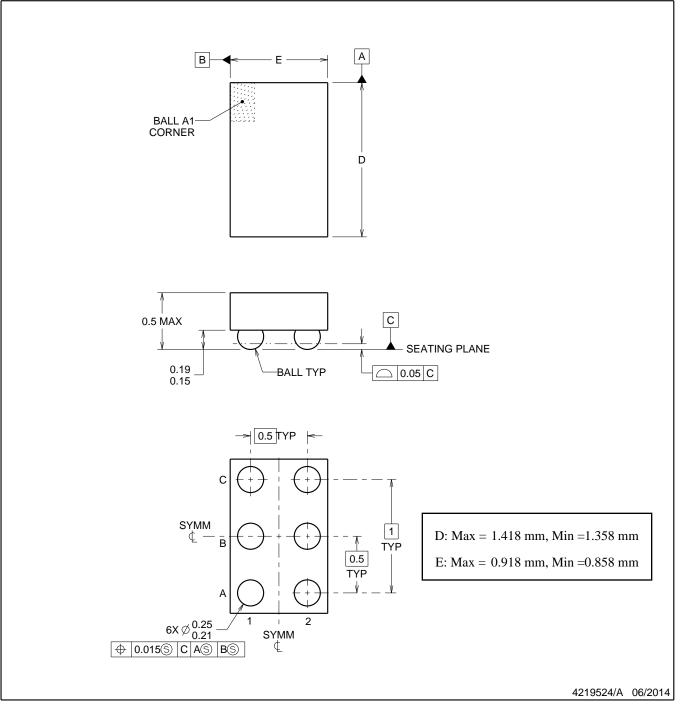
NOTES:

DSF (S-PX2SON-N6)

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing Per ASME Y14.5M.
 This drawing is subject to change without notice.
 Reference JEDEC registration MO-287, variation X2AAF.

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads. If 2 mil solder mask is outside PCB vendor capability, it is advised to omit solder mask.
- E. Maximum stencil thickness 0,1016 mm (4 mils). All linear dimensions are in millimeters.
- F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- G. Suggest stencils cut with lasers such as Fiber Laser that produce the greatest positional accuracy.
- H. Component placement force should be minimized to prevent excessive paste block deformation.


YZP0006

PACKAGE OUTLINE

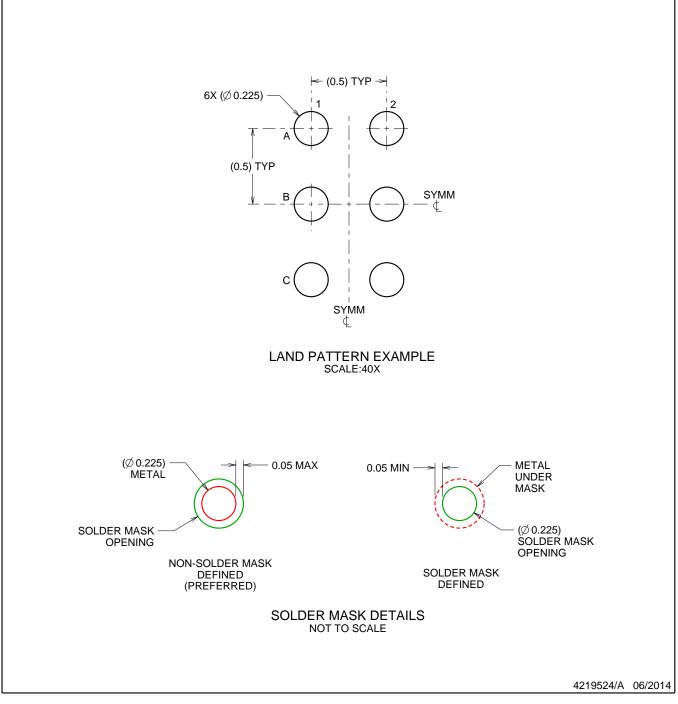
DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES:

NanoFree Is a trademark of Texas Instruments.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.
- 3. NanoFree[™] package configuration.



YZP0006

EXAMPLE BOARD LAYOUT

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

4. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SBVA017 (www.ti.com/lit/sbva017).

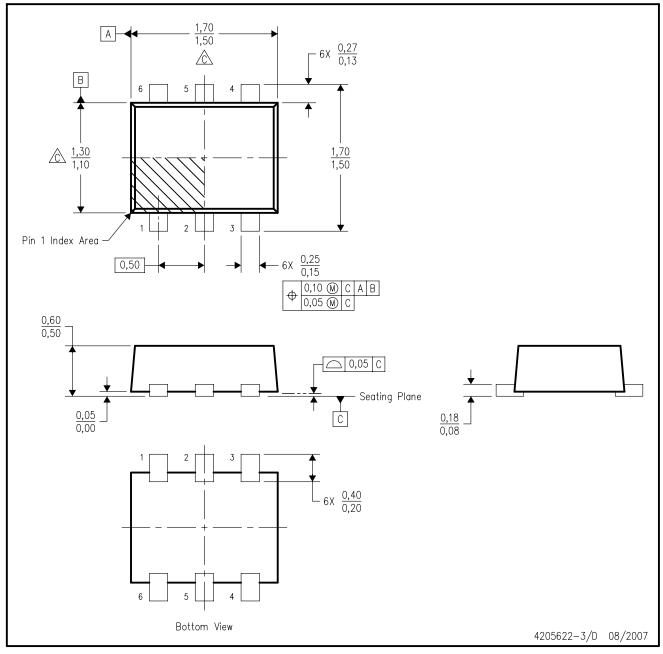


YZP0006

EXAMPLE STENCIL DESIGN

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY


NOTES: (continued)

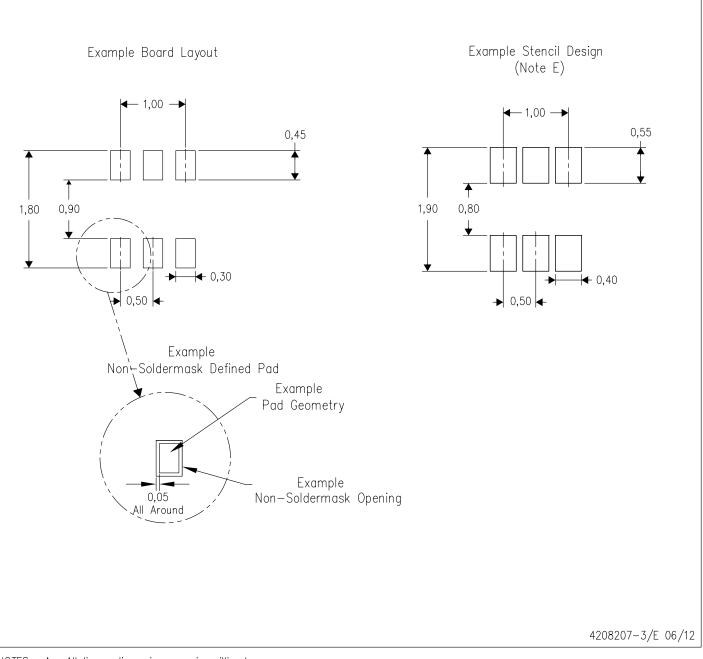
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

DRL (R-PDSO-N6)

PLASTIC SMALL OUTLINE

NOTES:

A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. B. This drawing is subject to change without notice.


🖄 Body dimensions do not include mold flash, interlead flash, protrusions, or gate burrs. Mold flash, interlead flash, protrusions, or gate burrs shall not exceed 0,15 per end or side.

D. JEDEC package registration is pending.

DRL (R-PDSO-N6)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in millimeters.

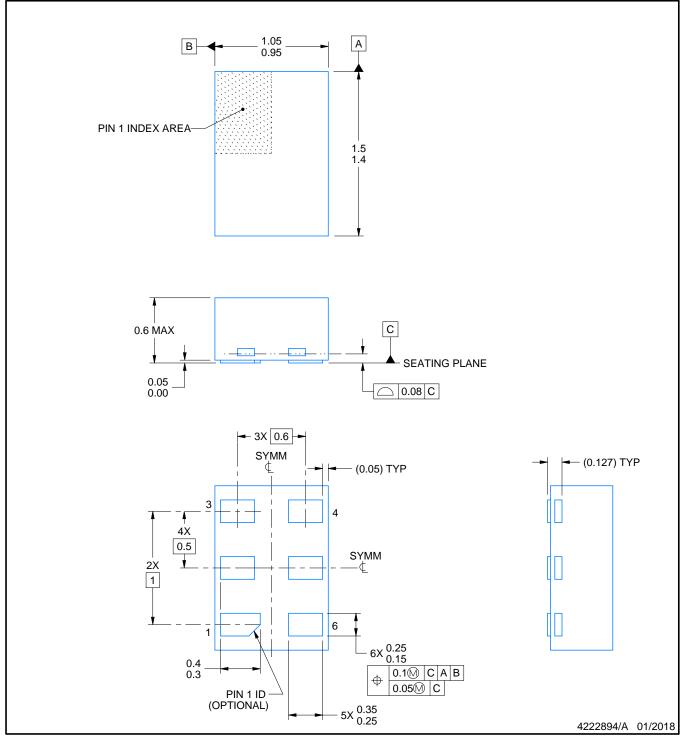
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.
- E. Maximum stencil thickness 0,127 mm (5 mils). All linear dimensions are in millimeters.
- F. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- G. Side aperture dimensions over-print land for acceptable area ratio > 0.66. Customer may reduce side aperture dimensions if stencil manufacturing process allows for sufficient release at smaller opening.

GENERIC PACKAGE VIEW

USON - 0.6 mm max height PLASTIC SMALL OUTLINE - NO LEAD

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4207181/G


DRY0006A

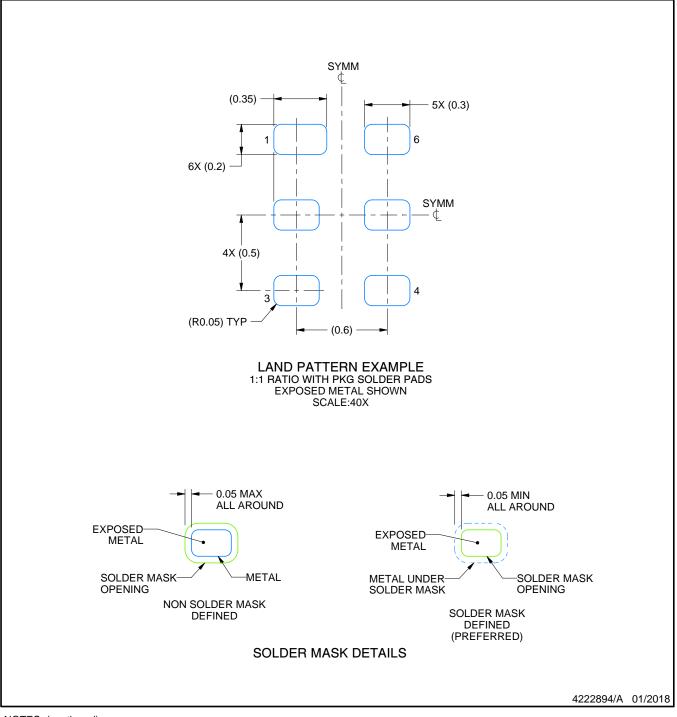
PACKAGE OUTLINE

USON - 0.6 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.



DRY0006A

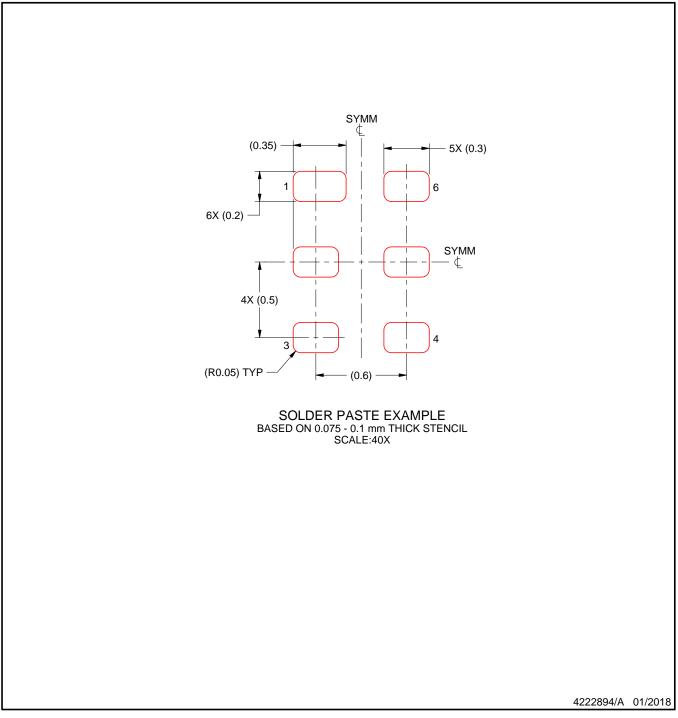
EXAMPLE BOARD LAYOUT

USON - 0.6 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

3. For more information, see QFN/SON PCB application report in literature No. SLUA271 (www.ti.com/lit/slua271).

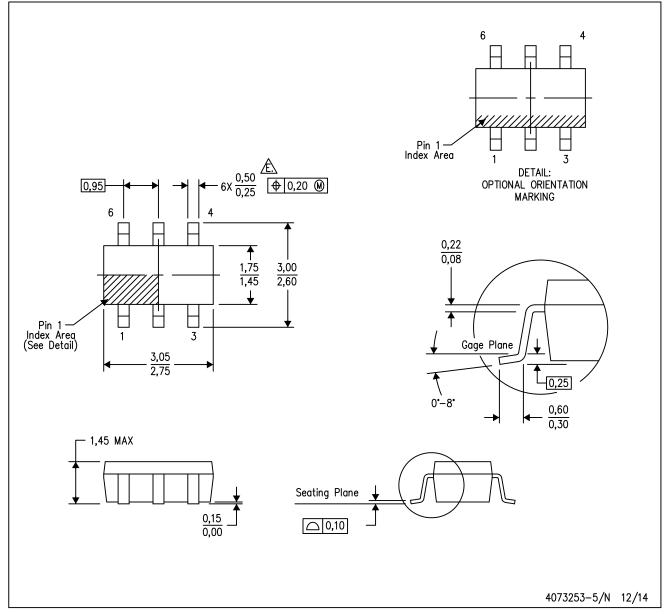


DRY0006A

EXAMPLE STENCIL DESIGN

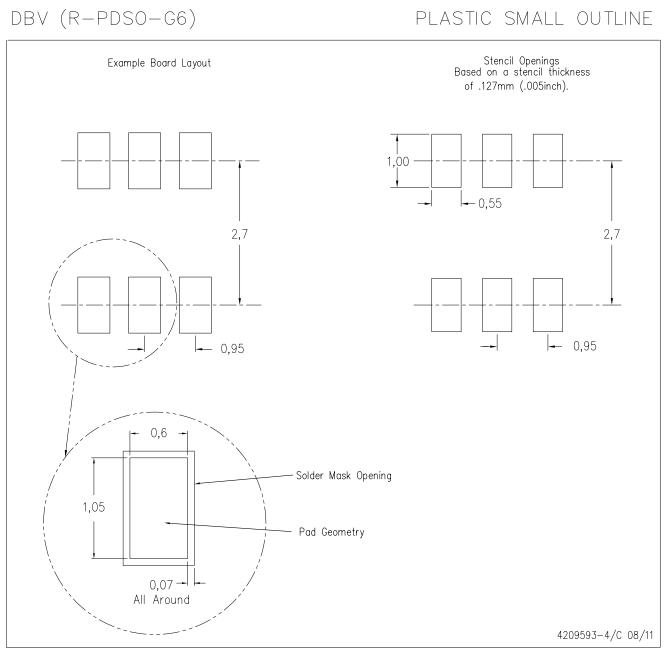
USON - 0.6 mm max height

PLASTIC SMALL OUTLINE - NO LEAD


NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

DBV (R-PDSO-G6)


PLASTIC SMALL-OUTLINE PACKAGE

- NOTES:
 - A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
 - D. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.
 - È Falls within JEDEC MO-178 Variation AB, except minimum lead width.

LAND PATTERN DATA

NOTES:

- A. All linear dimensions are in millimeters.B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated