EXAS INSTRUMENTS

Data sheet acquired from Harris Semiconductor SCHS095B - Revised July 2003

CMOS 8-Stage Presettable Synchronous **Down Counters**

High-Voltage Types (20-Volt Rating)

CD40102B - 2-Decade BCD Type CD40103B - 8-Bit Binary Type

CD40102B, and CD40103B consist of an 8-stage synchronous down counter. with a single output which is active when the internal count is zero. The CD40102B is configured as two cascaded 4-bit BCD counters, and the CD40103B contains a single 8-bit binary counter. Each type has control inputs for enabling or disabling the clock, for clearing the counter to its maximum count, and for presetting the counter either synchronously or asynchronously. All control inputs and the CARRY-OUT/ZERO-DETECT output are active-low logic.

In normal operation, the counter is decremented by one count on each positive transition of the CLOCK. Counting is inhibited when the CARRY-IN/COUNTER ENABLE (CI/CE) input is high. The CARRY-OUT/ ZERO-DETECT (CO/ZD) output goes low when the count reaches zero if the CI/CE input is low, and remains low for one full clock period.

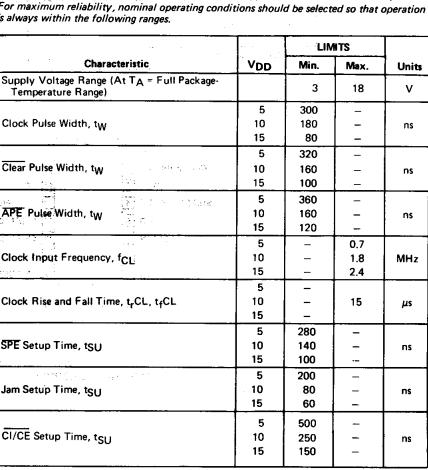
When the SYNCHRONOUS PRESET ENA-BLE (SPE) input is low, data at the JAM input is clocked into the counter on the next positive clock transition regardless of the state of the CI/CE input. When the ASYN-CHRONOUS PRESET-ENABLE (APE) input is low, data at the JAM inputs is asynchronously forced into the counter regard-less of the state of the SPE, CI/CE, or CLOCK inputs. JAM inputs JO-J7 represent two 4-bit BCD words for the CD40102B and a single 8-bit binary word for the CD40103B. When the CLEAR (CLR) input is low, the counter is asynchronously cleared to its maximum count (9910 for the CD40102B and 25510 for the CD40103B) regardless of the state of any other input. The precedence relationship between control inputs is indicated in the truth table.

If all control inputs except CI/CE are high at the time of zero count, the counters will jump to the maximum count, giving a counting sequence of 100 or 256 clock pulses long.

This causes the CO/ZD output to go low to enable the clock on each succeeding clock pulse.

The CD40102B and CD40103B may be cascaded using the CI/CE input and the CO/ZD output, in either a synchronous or ripple mode as shown in Figs.21 and 22.

The CD40102B and CD40103B types are supplied in 16-lead dual-in-line plastic packages (E suffix), 16-lead small-outline packages (NSR suffix), and 16-lead thin shrink small-outline packages (PW and PWR suffixes). The CD40103B types also are supplied in 16-lead hermetic dual-in-line ceramic packages (F3A suffix).


CD40102B, CD40103B Types

Features:

- Synchronous or asynchronous preset
- Medium-speed operation: fcL = 3.6 MHz (typ.) @ VDD = 10 V
- Cascadable
- 100% tested for quiescent current at 20 V
- Maximum input current of 1 µA at 18 V over full package-temperature range; 100 nA at 18 V and 25°C
- Noise margin (full package-temperature range) = 1 V at VDD = 5 V
 - 2 V at VDD = 10 V
 - 2.5 V at VDD = 15 V
- Standardized, symmetrical output characteristics
- 5-V, 10-V, and 15-V parametric ratings
- Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

Applications:

- Divide-by-"N" counters
- Programmable timers
- Interrupt timers
- Cycle/program counter

RECOMMENDED OPERATING CONDITIONS AT TA = 25°C, Unless Otherwise Specified For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges.

SPE APE CI/CE 10 8-STAGE DOWN COUNTER CO/2D CLOCK 9205-3 CD40102B, CD40103B FUNCTIONAL DIAGRAM

CD40102B, CD40103B Types

MAXIMUM RATINGS, Absolute-Maximum Values:	
DC SUPPLY-VOLTAGE RANGE, (VDD)	
Voltages referenced to VSS Terminal)	0.5V to +20V
INPUT VOLTAGE RANGE, ALL INPUTS	+0.5V to Vnn +0.5V
DC INPUT CURRENT, ANY ONE INPUT	±10mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -55°C to +100°C	500mW
For TA = +100°C to +125°CDerate I	Linearity at 12mW/°C to 200mW
DEVICE DISSIPATION PER OUTPUT TRANSISTOR	
FOR TA = FULL PACKAGE-TEMPERATURE RANGE (All Package Types)	
OPERATING-TEMPERATURE RANGE (TA)	55°C to +125°C
STORAGE TEMPERATURE RANGE (Tstg)	
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 inch (1.59 \pm 0.79mm) from case for 10s max	+265°C

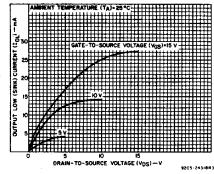
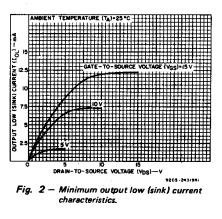



Fig. 1 - Typical output low (sink) current characteristics.

3

COMMERCIAL CMOS HIGH VOLTAGE ICS

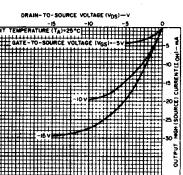


Fig. 3 - Typical output high (source) current characteristics.

9265 243209

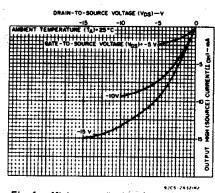


Fig. 4 - Minimum output high (source) current characteristics.

DO INFOI CORRENT, ANT ONE INPOT	***************************************
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -55°C to +100°C	
For TA = +100°C to +125°C.	Derate Linearity at 12mW
DEVICE DISSIPATION PER OUTPUT TRANSISTOR	•
FOR TA = FULL PACKAGE-TEMPERATURE RANGE (All Package Types)
OPERATING-TEMPERATURE RANGE (TA)	
STORAGE TEMPERATURE RANGE (Tstg)	
LEAD TEMPERATURE (DURING SOLDERING):	
At distance $1/16 \pm 1/32$ inch (1.59 \pm 0.79mm) from cas	e for 10s max

CHARACTER-	CON	ютю	VS	LIMITS AT INDICATED TEMPERATURES (°C)							1				
ISTIC	Vo	VIN	VDD						+25		UNITS				
	(V)	(V)	(V)	55	-40	+85	+125	Min.	Тур.	Max.	1				
Quiescent Device	-	0,5	5	5	5	150	150	-	0.04	5					
Current, IDD Max.	-	0,10	10	10	10	300	300	-	0.04	10					
	-	0,15	15	20	20	600	600	-	0.04	20	μA				
	-	0,20	20	100	100	3000	3000	-	0.08	100	1				
Output Low	0.4	0,5	5	0.64	0.61	0.42	0.36	0.51	1	-					
(Sink) Current IQL Min.	0.5	0,10	10	1.6	1.5	1.1	0.9	1.3	2.6	-	1				
	1.5	0,15	15	4.2	4	2.8	2.4	34	6.8	-:	1				
Output High (Source)	4.6	0,5	5	-0.64	-0.61	-0.42	-0.36	-0.51	-1	- 1	mA				
	2.5	0,5	5	-2	-1.8	-1.3	-1.15	-1.6	-3.2	- 1					
Current, IOH Min.	9.5	0,10	10	-1.6	-1.5	-1.1	-0.9	-1.3	-2.6	-	1				
OH WINT	13.5	0,15	15	-4.2	-4	-2.8	-2.4	-3.4	-6.8	-	1				
Output Voltage:	-	0,5	5		0	.05		-	0	0.05					
Low-Level, Voi Max.	— · · ·	0,10	10		0	.05			0	0.05					
VOL max.	-	0,15	15		0	.05		-	0	0.05					
Output Voltage:	-	0,5	5.		4	.95		4.95	5		v				
High-Level,	-	0,10	10		9	.95		9.95	10	-					
VOH Min.	-	0,15	15		14	4.95		14.95	15	-					
Input Low	0.5, 4.5	· -	5		1	1.5		-	-	1.5					
Voltage,	1, 9	—	10			3				3					
VIL Max.	1.5,13.5	-	15			4			_	4					
Input High	0.5, 4.5	-	5			3.5		3.5		- 1	V				
Voltage,	1, 9	-	10			7	_	7	-	-					
VIH Min.	1.5,13.5	-	15		1	1		11	-	-					

STATIC ELECTRICAL CHARACTERISTICS

Input Current

IIN Max.

0,18

18

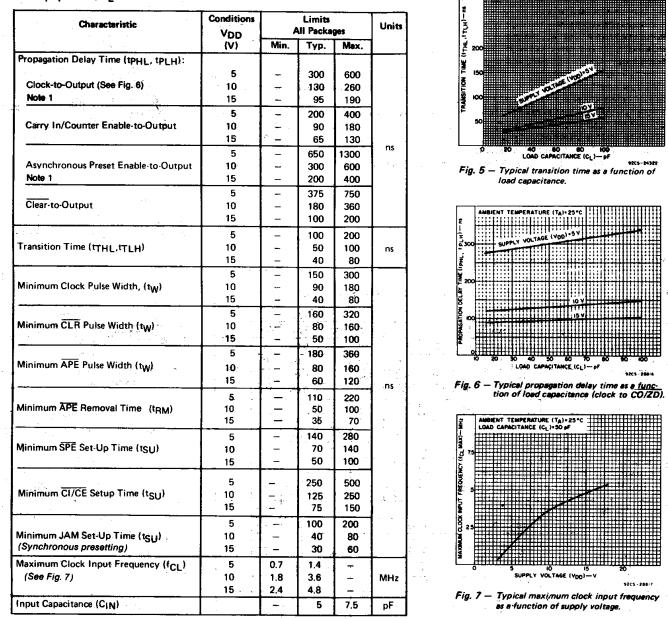
±0.1

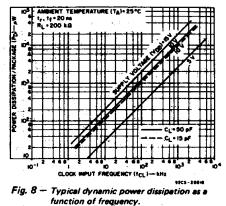
Note 1: These parameters and limits also apply to the Synchronous Preset Mode should a Preset condition of JAM Zero on Jo to J7 exist.

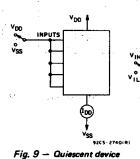
±0.1

±1

±1


_


±10-5


±0.1

μA

DYNAMIC ELECTRICAL CHARACTERISTICS at T_A = 25°C, C_L = 50 pF, Input t_r, t_f = 20 ns, R_L = 200 k Ω

ig. 9 — Quiescent device current test circuit.

Fig. 10 - Input voltage test circuit. Fig. 11 - Input current test circuit.

BINATION

¥00

V55

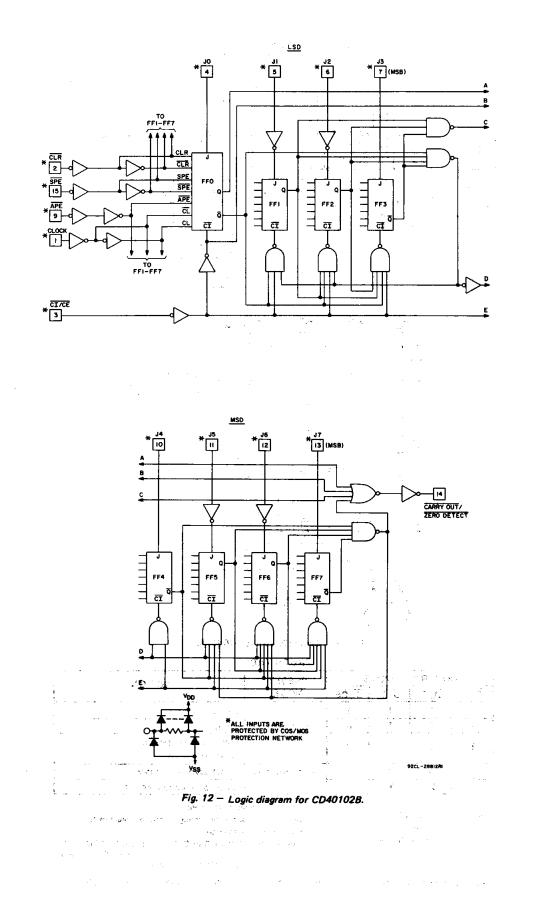
OTE

9205-27402

NOTE NEASURE INPUTS SEQUENTIALLY, TO BOTH VDD AND VSS CONNECT ALL UNUSED INPUTS TO EITHER

VDD OR VSS

VDO


VSS

OUT

TEST ANY CO OF INPUTS

92C5-2744(R)

ENT TEMPERATURE (TA)-25°C

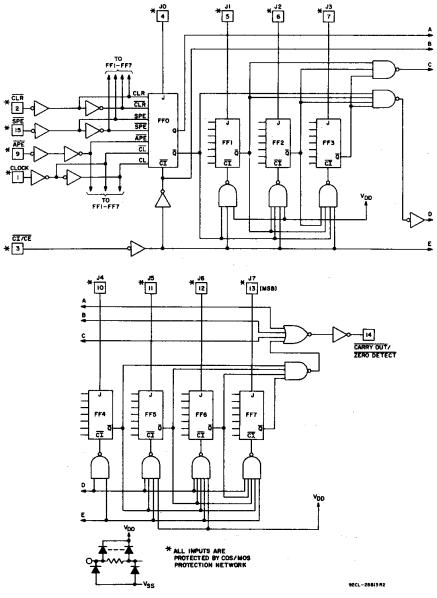


Fig. 13 - Logic diagram for CD40103B.

TRI	ITH	TAB	I F

C	ONTRO	L INPUT	S	PRESET	ACTION			
CLR	APE	SPE	CI/CE	MODE				
1	1	1	1		Inhibit counter			
1	1	1	0	Synchronous	Count down*			
1	1	0	x	· · ·	Preset on next positive clock transition			
1	0	X	X	Asynchronous	Preset asynchronously			
0	X	X	X	1	Clear to maximum count			

1 = High level

X = Don't care

Synchronous operation: changes occur on negative-to-З. positive clock transitions

4. JAM inputs: CD40102B BCD; MSD = J7, J6, J5, J4 (J7 is MSB) LSD = J3, J2, J1, J0 (J3 is MSB)

CD40103B Binary; MSB = J7, LSB = J0

*At zero count, the counters will jump to the maximum count on the next clock transition to "High."

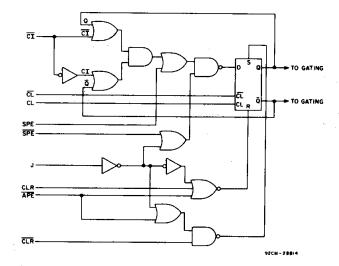
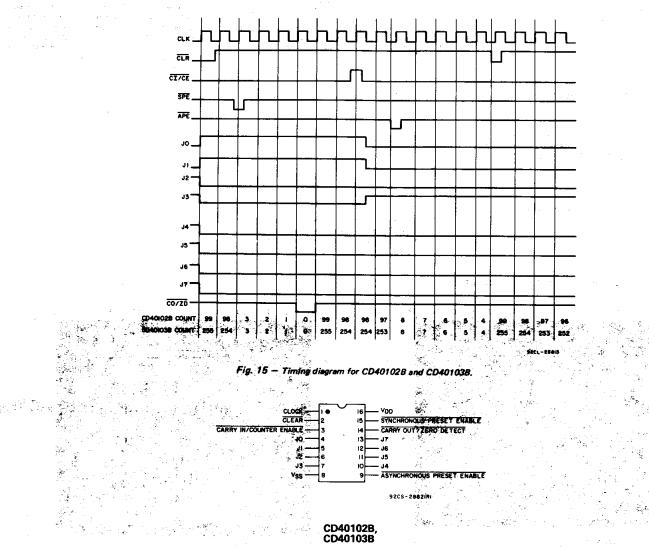



Fig. 14 — Detail logic diagram for flip-flops, FFO – FF7, used in logic diagrams for CD40102B and CD40103B.

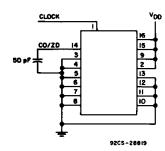


Fig. 16 - Maximum clock frequency test circuit.

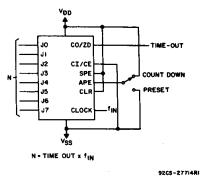


Fig.19 — Programmable timer.

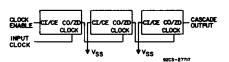


Fig.22 - Ripple cascading.

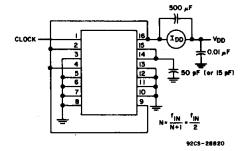


Fig.17 – Dynamic power dissipation test circuit (÷ 2 mode).

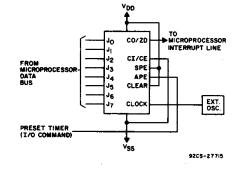


Fig.20 — Microprocessor interrupt timer.

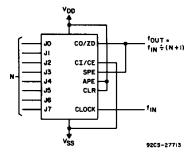
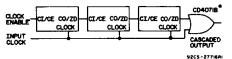



Fig. 18 - Divide-by-"N" counter.

* An output spike (160 ns @ V_{DD} = 5 V) occurs whenever two or more devices are cascaded in the parallel-clocked mode because the clock-tocarry out delay is greater than the carry-in-tocarry out delay. This spike is eliminated by gating the output of the last device with the clock as shown.

Fig.21 - Synchronous cascading.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch) .

40 50 60 70 80 90 100 110 118 30 40 50 60 70 80 90 100 10 18 0 10 20 30 10 20 0 100 100-14 12 E 12 90 90-15 80 80-П 70 lif 70-He Ъŀ 60-97-105 (2.464-2.667) 60-50-50-97-105 (2.464-2.667) 40-40s 30-30-20-20-10 ю 2.4 4 Ξ. 3.1 4 5 0 _____4-10 (0.102-0.254)_J15-123____ (2.921-3.124) 0 -10 (0.102-0.254) ||5-|23 (2.92|-3.|24) 92CM-35088 ٦ 92CM-35087

Dimensions and pad layout for CD401028.

3-382

Dimensions and pad layout for CD40103B.

10-Jun-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
CD40102BE	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD40102BE	Samples
CD40102BEE4	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD40102BE	Samples
CD40102BNSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD40102B	Samples
CD40102BPW	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM0102B	Samples
CD40102BPWG4	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM0102B	Samples
CD40102BPWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM0102B	Samples
CD40103BE	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD40103BE	Samples
CD40103BEE4	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD40103BE	Samples
CD40103BF	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	CD40103BF	Samples
CD40103BF3A	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	CD40103BF3A	Samples
CD40103BNSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD40103B	Samples
CD40103BNSRG4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD40103B	Samples
CD40103BPW	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM0103B	Samples
CD40103BPWE4	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM0103B	Samples

⁽¹⁾ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

PACKAGE OPTION ADDENDUM

10-Jun-2014

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

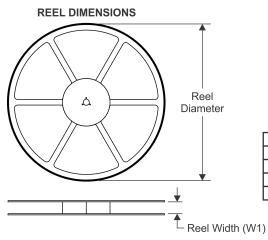
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

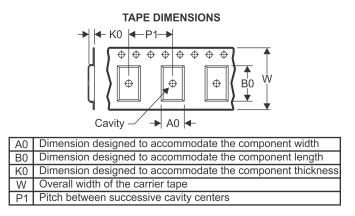
OTHER QUALIFIED VERSIONS OF CD40103B, CD40103B-MIL :

Catalog: CD40103B

• Military: CD40103B-MIL

NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

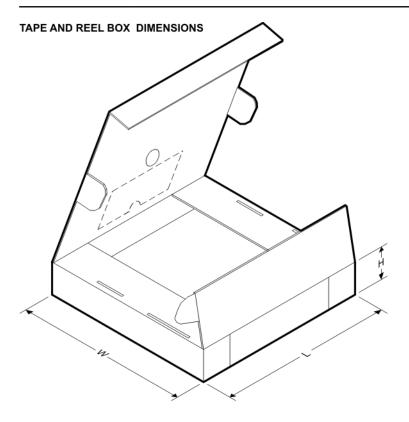

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*Al	l dimensions are nominal												
	Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
	CD40102BNSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
	CD40102BPWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

8-Apr-2013

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CD40102BNSR	SO	NS	16	2000	367.0	367.0	38.0
CD40102BPWR	TSSOP	PW	16	2000	367.0	367.0	35.0

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0-10 Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

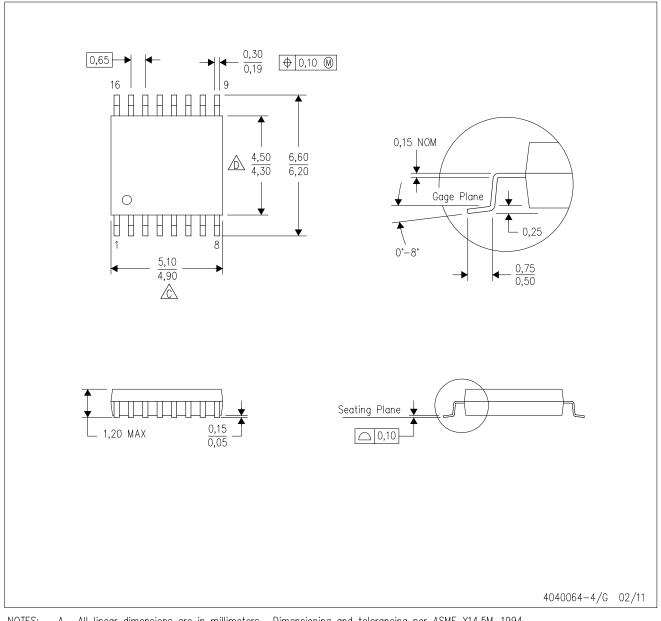
NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE



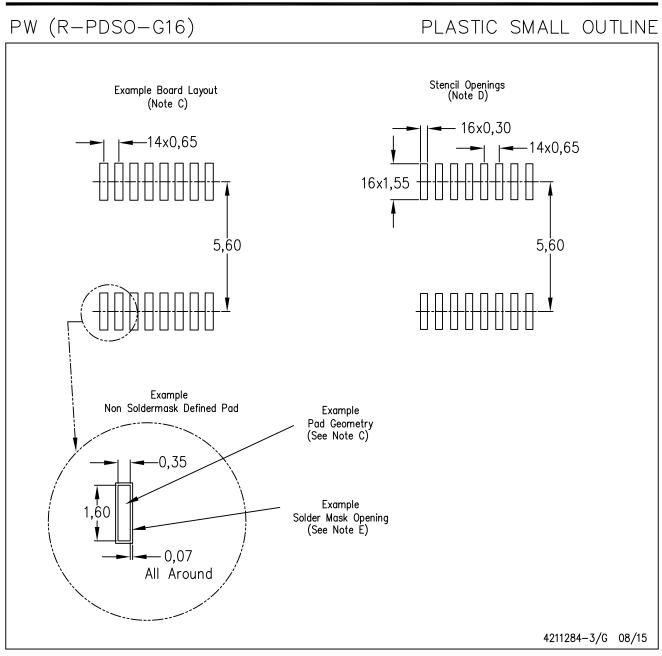
NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES:


A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. β . This drawing is subject to change without notice.

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.

Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated