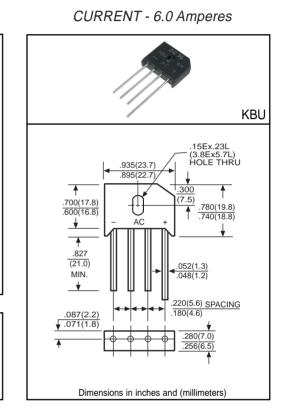
RECTIFIER SPECIALISTS RS601/KBU6A RECTIFIER SPECIALISTS

TECHNICAL SPECIFICATIONS OF SINGLE-PHASE SILICON BRIDGE RECTIFIER

VOLTAGE RANGE - 50 to 1000 Volts

FEATURES


- * Low leakage
- * Low forward voltage
- * Surge overload rating: 175 Amperes peak

MECHANICAL DATA

- * Case: Molded plastic
- * Epoxy: UL 94V-0 rate flame retardant
- * Terminals: MIL-STD-202E, Method 208 guaranteed
- * Polarity: Symbols molded or marked on body
- * Mounting position: Any
- * Weight: 4.8 grams

Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave, 60Hz, resistive or inductive load. For capacitive load, derate current by 20%.

			KBU6A	KBU6B	KBU6D	KBU6G	KBU6J	KBU6K	KBU6M	
		SYMBOL	RS601	RS602	RS603	RS604	RS605	RS606	RS607	UNITS
Maximum Recurrent Peak Reverse Voltage		Vrrm	50	100	200	400	600	800	1000	Volts
Maximum RMS Bridge Input Voltage		Vrms	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage		VDC	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current @Tc=100°C		lo	6.0							Amps
Peak Forward Surge Current 8.3 ms single half sine-wave superimposed on rated load (JEDEC Method)		Ifsm	175							Amps
Maximum Forward Voltage Drop per element at 3.0A DC		VF	1.0							Volts
Maximum DC Reverse Current at Rated DC Blocking Voltage per element	@TJ = 25°C	IR	10							μAmps
	@Tj = 125°C		500							
Typical Junction Capacitance (Note1)		CJ	260							pF
Typical Thermal Resistance (Note 2)		RθJA	10							°C/W
Operating Temperature Range		TJ	-55 to +150							°C
Storage Temperature Range		Tstg	-55 to +150							°C

NOTES : 1.Measured at 1 MHz and applied reverse voltage of 4.0 volts.

2. Thermal Resistance from Junction to Case per element Unit mounted on 50x50x1.6mm Cu plate heat-sink.

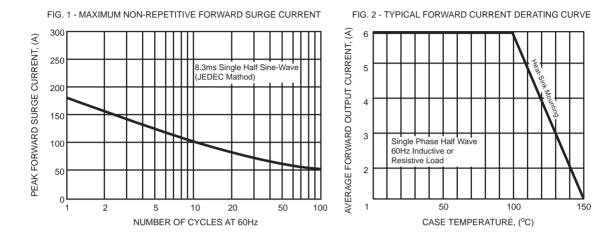


FIG. 3 - TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS

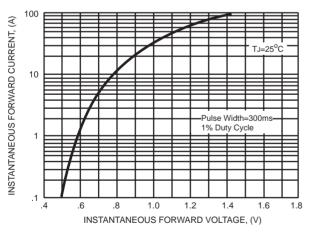
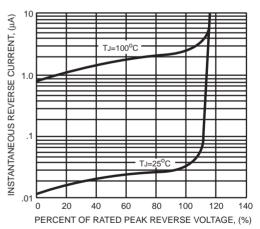



FIG. 4 - TYPICAL REVERSE CHARACTERISTICS

Disclaimer

Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold *DC COMPONENTS* are harmless against all damages.

DC COMPONENTS disclaims any and all liability arising out of the application or use of any product, including consequential or incidental damages. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application.

DC COMPONENTS reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein , and disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Unless otherwise in writing, *DC COMPONENTS* products are intended for use as general electronic components in standard applications (eg: Consumer electronic, Computer equipment, Office equipment, etc.), and not recommended for use in a high specific application where a failure or malfunction of the device could result in human injury or death (eg: Aerospace equipment, Submarine cables, Combustion equipment, Safety devices, Life support systems, etc.)

Customers using or selling *DC COMPONENTS* products not expressly indicated for use in such applications do so at their own risk. If customer intended to use *DC COMPONENTS* standard quality grade devices for applications not envisioned by *DC COMPONENTS*, please contact our sales representatives in advance.

