Dual 1 Form A Solid-State Relay

DESCRIPTION

The LH1505 contains two normally open switches that can be used as two independent SPST relays or as one DPST relay. The relay is constructed using a GaAIAs LED for actuation control and integrated monolithic dies for the switch outputs. The die, fabricated in a high-voltage dielectrically isolated technology, is comprised of a photodiode array, switch control circuity, and DMOS switches. In addition, the LH1505 relay employs current limiting circuitry, enabling it to pass lightning surge testing as per ANSI/TIA-968-B and other regulatory voltage surge requirements when overvoltage protection is provided.

FEATURES

- Two independent relays
- Current limit protection
- Isolation test voltage $5300 \mathrm{~V}_{\mathrm{RMS}}$
- Typical RoN 15Ω
- Load voltage 250 V
- Load current 120 mA
- High surge capability
- Clean bounce free switching
- Low power consumption
- High reliability monolithic receptor
- SMD lead available on tape and reel
- Compliant to RoHS Directive 2002/95/EC and in accordance to WEEE 2002/96/EC

APPLICATIONS

- General telecom switching
- On/off hook control
- Ring delay
- Dial pulse
- Ground start
- Ground fault protection
- Instrumentation
- Industrial controls

AGENCY APPROVALS

UL1577: file no. E52744 system code H, double protection
CSA: certification no. 093751
BSI/BABT: certification no. 7980
DIN EN: 60747-5-2 (VDE 0884)/60747-5-5 (pending), available with option 1
FIMKO: approval

LH1505AB, LH1505AAC, LH1505AACTR

www.vishay.com
Vishay Semiconductors

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified)				
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT
INPUT				
LED continuous forward current		I_{F}	50	mA
LED reverse voltage	$\mathrm{I}_{\mathrm{R}} \leq 10 \mu \mathrm{~A}$	V_{R}	8	V
OUTPUT				
DC or peak AC load voltage	L L $\leq 50 \mu \mathrm{~A}$	V_{L}	250	V
Continuous DC load current, one pole operating		I_{L}	130	mA
Continuous DC load current, two poles operating		I_{L}	120	mA
Peak load current (single shot), form B	$\mathrm{t}=100 \mathrm{~ms}$	I_{P}	(3)	
SSR				
Ambient operating temperature range		$\mathrm{T}_{\text {amb }}$	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature range		$\mathrm{T}_{\text {stg }}$	-40 to +150	${ }^{\circ} \mathrm{C}$
Pin soldering temperature ${ }^{(1)}$	$\mathrm{t}=10 \mathrm{~s}$ max.	$\mathrm{T}_{\text {sld }}$	260	${ }^{\circ} \mathrm{C}$
Input to output isolation test voltage	$\mathrm{t}=1 \mathrm{~s}, \mathrm{I}_{\text {ISO }}=10 \mu \mathrm{~A}$ max.	$\mathrm{V}_{\text {ISO }}$	5300	$\mathrm{V}_{\text {RMS }}$
Pole-to-pole isolation voltage (S 1 to S 2) ${ }^{(2)}$, (dry air, dust free, at sea level)			1600	V
Output power dissipation (continuous)		$\mathrm{P}_{\text {diss }}$	600	mW

Notes

- Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute maximum ratings for extended periods of the time can adversely affect reliability.
(1) Refer to reflow profile for soldering conditions for surface mounted devices (SMD). Refer to wave profile for soldering conditions for through hole devices (DIP).
(2) Breakdown occurs between the output pins external to the package.
(3) Refer to current limit performance application note for a discussion on relay operation during transient currents.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)

PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
INPUT						
LED forward current, switch turn-on	$\mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA}, \mathrm{t}=10 \mathrm{~ms}$	$\mathrm{I}_{\text {Fon }}$		1	2	mA
LED forward current, switch turn-off	$\mathrm{V}_{\mathrm{L}}= \pm 200 \mathrm{~V}$	$\mathrm{I}_{\text {Foff }}$	0.2	0.9		mA
LED forward voltage	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	V_{F}	1.15	1.26	1.45	V
OUTPUT						
On-resistance	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{L}}=50 \mathrm{~mA}$	RON	10	15	20	Ω
Off-resistance	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{L}}= \pm 100 \mathrm{~V}$	$\mathrm{R}_{\text {OFF }}$	0.5	5000		$\mathrm{G} \Omega$
Current limit	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{t}=5 \mathrm{~ms}, \mathrm{~V}_{\mathrm{L}}= \pm 6 \mathrm{~V}$	lımt	170	200	280	mA
Off-state leakage current	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{L}}= \pm 100 \mathrm{~V}$	I_{0}		0.02	200	nA
	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{L}}= \pm 250 \mathrm{~V}$	I_{0}			1	$\mu \mathrm{A}$
Output capacitance	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{L}}=1 \mathrm{~V}$	C_{0}		55		pF
	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{L}}=50 \mathrm{~V}$	C_{0}		10		pF
Pole-to-pole capacitance (S1 to S2)	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$			0.5		pF
Switch offset	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$	$\mathrm{V}_{\text {OS }}$		0.15		$\mu \mathrm{V}$
TRANSFER						
Capacitance (input to output)	$\mathrm{V}_{\text {ISO }}=1 \mathrm{~V}$	C_{10}		1.1		pF

Note

- Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluations. Typical values are for information only and are not part of the testing requirements.

SWITCHING CHARACTERISTICS ($\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Turn-on time	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{L}}=50 \mathrm{~mA}$	t_{on}		$1.4^{(1)}$	$4{ }^{(1)}$	ms
Turn-off time	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{L}}=50 \mathrm{~mA}$	$\mathrm{t}_{\mathrm{off}}$		$0.7{ }^{(1)}$	$4{ }^{(1)}$	ms

Note

(1) $\mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA}$.

TYPICAL CHARACTERISTICS $\left(T_{a m b}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)

Fig. 1 - Recommended Operating Conditions

Fig. 2 - LED Voltage vs. Temperature

Fig. 3 - LED Current for Switch Turn-on vs. Temperature

Fig. 4 - Current Limit vs. Temperature

Fig. 5 - LED Dropout Voltage vs. Temperature

Fig. 6 - On-Resistance vs. Temperature

Fig. 7 - Variation in On-Resistance vs. LED Current

Fig. 8 - Switch Capacitance vs. Applied Voltage

Fig. 9 - Insertion Loss vs. Frequency

Fig. 10 - Output Isolation

Fig. 11 - Leakage Current vs. Applied Voltage

Fig. 12 - Leakage Current vs. Applied Voltage at Elevated Temperatures

Fig. 13 - Switch Breakdown Voltage vs. Temperature

ilh1505ab_13 Ambient Temperature (${ }^{\circ} \mathrm{C}$)
Fig. 14 - Switch Offset Voltage vs. Temperature

Fig. 15 - Switch Offset Voltage vs. LED Current

Fig. 16 - Turn-on Time vs. Temperature

Fig. 17 - Turn-off Time vs. Temperature

Fig. 18 - Turn-on Time vs. LED Current

Fig. 19 - Turn-off Time vs. LED Current

PACKAGE DIMENSIONS in millimeters
DIP

SMD

PACKAGE MARKING (example)

LH1505

OV YWW H 68

Note

- Tape and reel suffix (TR) is not part of the package marking.

Footprint and Schematic Information for LH1505AAC, LH1505AACTR, LH1505AB

The footprint and schematic symbols for the following parts can be accessed using the associated links. They are available in Eagle, Altium, KiCad, OrCAD / Allegro, Pulsonix, and PADS.
Note that the 3D models for these parts can be found on the Vishay product page.

PART NUMBER	FOOTPRINT / SCHEMATIC
LH1505AAC	$\underline{\text { www.snapeda.com/parts/LH1505AAC/Vishay/view-part }}$
LH1505AACTR	www.snapeda.com/parts/LH1505AACTR/Vishay/view-part
LH1505AB	www.snapeda.com/parts/LH1505AB/Vishay/view-part

For technical issues and product support, please contact optocoupleranswers@vishay.com.

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

