ARM®-based 32-bit Cortex®-M4F MCU+FPU with 256 to 1024 KB Flash, sLib, USB, Ethernet, 2 CANs, 17 timers, 3 ADCs, 21 communication interfaces

Feature

■ Core: ARM®32-bit Cortex®-M4F CPU with FPU

- 240 MHz maximum frequency, with a Memory Protection Unit (MPU), single-cycle multiplication and hardware division
- Floating Point Unit (FPU)
- DSP instructions

Memories

- 256 to 1024 KBytes of Flash memory
- sLib: configurable part of main Flash set as a library area with code excutable but secured, non-readable
- SPIM interface: extra interfacing up to 16 Mbytes of external SPI Flash (as instruction/data memory)
- Up to 96 + 128 KBytes of SRAM
- External memory controller (XMC) with 2 Chip Select, supports multiplexed SRAM/NOR/PSRAM and NAND memories
- LCD parallel interface, 8080/6800 modes

■ Clock, Reset, and Power management

- 2.6 V ~ 3.6 V application suppy and I/Os
- Power on reset (POR)/ low voltage reset (LVR), and power voltage monitor (PVM)
- 4 to 25 MHz crystal (HEXT)
- Internal 48 MHz factory-trimmed RC (accuracy 1% at T_A=25 °C, 2.5 % at T_A=-40 to +105 °C), with automatic clock calibration (ACC)
- Internal 40 kHz RC oscillator (LICK)
- 32.768 kHz crystal oscillator (LEXT)

■ Low power consumption

- Sleep, Deepsleep, and Standby modes
- V_{BAT} supply for RTC and 42 x 16-bit battery powered registers (BPR)

■ 3 x 12-bit 0.5 µs A/D converters, up to 16 channels

- Conversion range: 0 V to 3.6 V
- Triple sample and hold capability
- Temparature sensor

2 x 12-bit D/A converters

■ DMA: 14-channel DMA controller

Peripherals supported: timers, ADCs, SDIOs, I²Ss, SPIs, I²Cs, and USARTs

Debug Mode

- Serial wire debug (SWD) and JTAG interface
- Cortex®-M4F Embedded Trace Macrocell (ETMTM)

■ Up to 80 Fast I/O Interfaces

- 37/51/80 multifunctional and bidirectional I/Os, all mappable to 16 external interrupt vectors and almost 5 V-tolerant
- All fast I/Os, control registers accessable with fahb speed

■ Up to 17 Timers

- Up to 8 x 16-bit timers + 2 x 32-bit timers; each with 4 IC/OC/PWM or pulse counter and quadrature (incremental) encoder input.
- Up to 2 x 16-bit motor control PWM advanced timers with dead-time generator and emergency brake
- 2 x Watchdog timers
- SysTick timer: 24-bit downcounter
- 2 x 16-bit basic timers to drive the DAC

■ Up to 21 Communication Interfaces

- Up to 3 x I²C interfaces (SMBus/PMBus)
- Up to 8 x USARTs (ISO7816 interface, LIN, IrDA capability, and modem control)
- Up to 4 x SPIs (50 Mbit/s), all with I²S interface multiplexed,. I²S2/ I²S3 support full-duplex
- Up to 2 x CAN interfaces (2.0B Active)
- USB2.0 full-speed interface supporting Crystal-less
- Up to 2 x SDIO interfaces
- 10/100M Ethernet MAC with dedicated DMA and SRAM(4 KBytes): IEEE1588 hardware support, MII/RMII available

CRC Calculation Unit

■ 96-bit unique ID (UID)

Packages

- LQFP100 14x14 mm
- LQFP64 10x10 mm
- LQFP48 7x7 mm
- QFN48 6 x 6 mm

■ List of Models

Internal Flash	Model
	AT32F403ACGU7, AT32F403ACGT7,
1024 KBytes	AT32F403ARGT7, AT32F403AVGT7,
	AT32F407RGT7, AT32F407VGT7, AT32F407AVGT7
	AT32F403ACEU7, AT32F403ACET7,
512 KBytes	AT32F403ARET7, AT32F403AVET7,
	AT32F407RET7, AT32F407VET7
	AT32F403ACCU7, AT32F403ACCT7,
256 KBytes	AT32F403ARCT7, AT32F403AVCT7,
	AT32F407RCT7, AT32F407VCT7, AT32F407AVCT7

Contents

1	Syste	em architecture3	5
	1.1	System overview3	7
		1.1.1 ARM Cortex TM -M4F processor	7
		1.1.2 Bit band	8
		1.1.3 Interrupt and exception vectors	0
		1.1.4 System Tick (SysTick)	3
		1.1.5 Reset 4	3
	1.2	List of abbreviations for registers4	5
	1.3	Device characteristics information4	5
		1.3.1 Flash memory size register	5
		1.3.2 Device electronic signature4	5
2	Mem	ory resources4	7
	2.1	Internal memory address map 4	7
	2.2	Flash memory4	7
	2.3	SRAM memory4	9
	2.4	Peripheral address map4	9
3	Powe	er control (PWC)5	2
	3.1	Introduction5	2
	3.2	Main Features5	2
	3.3	POR/LVR5	2
	3.4	Power voltage monitor (PVM)5	3
	3.5	Power domain5	3
	3.6	Power saving modes 5	4
	3.7	PWC registers5	5
		3.7.1 Power control register (PWC_CTRL) 5	6
		3.7.2 Power control/status register (PWC_CTRLSTS) 5	7
4	Cloc	k and reset manage (CRM)5	8
	4.1	Clock 5	8

4.1.1	Clock sources	58
4.1.2	System clock	59
4.1.3	Peripheral clock	59
4.1.4	Clock fail detector	60
4.1.5	Auto step-by-step system clock switch	60
4.1.6	Internal clock output	60
4.1.7	Interrupts	60
Reset		60
4.2.1	System reset	60
4.2.2	Battery powered domain reset	61
CRM	registers	61
4.3.1	Clock control register (CRM_CTRL)	62
4.3.2	Clock configuration register (CRM_CFG)	63
4.3.3	Clock interrupt register (CRM_CLKINT)	65
4.3.4	APB2 peripheral reset register (CRM_APB2RST)	66
4.3.5	APB1 peripheral reset register (CRM_APB1RST)	68
4.3.6	APB peripheral clock enable register (CRM_AHBEN)	69
4.3.7	APB2 peripheral clock enable register (CRM_AHB2EN)	70
4.3.8	APB1 peripheral clock enable register (CRM_AHB1EN)	72
4.3.9	Battery powered domain control register (CRM_BPDC)	73
4.3.10	Control/status register (CRM_CTRLSTS)	74
4.3.11	AHB peripheral reset register (CRM_AHBRST)	75
4.3.12	Additional register1 (CRM_MISC1)	75
4.3.13	Additional register2 (CRM_MISC2)	76
4.3.14	Additional register3 (CRM_MISC3)	76
4.3.15	Interrupt map register (CRM_INTMAP)	77
n mem	ory controller (FLASH)	78
	·	
	·	
	·	
⊨xterr	nal memory operation	86
	4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.1.7 Reset 4.2.1 4.2.2 CRM 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6 4.3.7 4.3.8 4.3.10 4.3.11 4.3.12 4.3.13 4.3.14 4.3.15 Flash Flash Flash Flash 5.2.1 5.2.2 5.2.3 5.2.4	4.1.1 Clock sources 4.1.2 System clock

5

5.4	User system data area operation	86
	5.4.1 Unlock/lock	86
	5.4.2 Erase operation	86
	5.4.3 Programming operation	87
	5.4.4 Read operation	88
5.5	Flash memory protection	88
	5.5.1 Access protection	89
	5.5.2 Erase/program protection	89
5.6	Special functions	89
	5.6.1 Security library settings	89
5.7	Flash memory registers	91
	5.7.1 Flash performance select register (FLASH_PSR)	91
	5.7.2 Flash unlock register (FLASH_UNLOCK)	91
	5.7.3 Flash user system data unlock register (FLASH_USD_UNLOCK) .	92
	5.7.4 Flash status register (FLASH_STS)	92
	5.7.5 Flash control register (FLASH_CTRL)	92
	5.7.6 Flash address register (FLASH_ADDR)	93
	5.7.7 User system data register (FLASH_USD)	93
	5.7.8 Erase/program protection status register (FLASH_EPPS)	93
	5.7.9 Flash unlock register2 (FLASH_UNLOCK2)	93
	5.7.10 Flash status register2 (FLASH_STS2)	94
	5.7.11 Flash control register2 (FLASH_CTRL2)	94
	5.7.12 Flash address register2 (FLASH_ADDR2)	95
	5.7.13 Flash unlock register3 (FLASH_UNLOCK3)	95
	5.7.14 Flash select register (FLASH_SELECT)	95
	5.7.15 Flash status register3 (FLASH_STS3)	95
	5.7.16 Flash control register3 (FLASH_CTRL3)	95
	5.7.17 Flash address register3 (FLASH_ADDR3)	96
	5.7.18 Flash decrption address register (FLASH_DA)	96
	5.7.19 Flash security library status register (SLIB_STS0)	96
	5.7.20 Flash security library status register1 (SLIB_STS1)	96
	5.7.21 Flash security library password clear register (SLIB_PWD_CLR)	97
	5.7.22 Security library additional status register (SLIB_MISC_STS)	97
	5.7.23 Security library password setting register (SLIB_SET_PWD)	98
	5.7.24 Security library address setting register (SLIB_SET_RANGE)	98

		5.7.25 Security library unlock register (SLIB_UNLOCK)	98
		5.7.26 Flash CRC check control register (FLASH_CRC_CTRL)	99
		5.7.27 Flash CRC check result register (FLASH_CRC_CHKR)	99
6	Gene	eral-purpose I/Os (GPIOs)	100
	6.1	Introduction	100
	6.2	Function overview	100
		6.2.1 GPIO structure	100
		6.2.2 GPIO reset status	101
		6.2.3 General-purpose input configuration	101
		6.2.4 Analog input/output configuration	101
		6.2.5 General-purpose output configuration	101
		6.2.6 I/O port protection	101
	6.3	GPIO registers	102
		6.3.1 GPIO configuration register low (GPIOx_CFGLR) (x=AE)	102
		6.3.2 GPIO configuration register high (GPIOx_CFGHR) (AE)	103
		6.3.3 GPIO input data register (GPIOx_IDT) (x=AE)	103
		6.3.4 GPIO output data register (GPIOx_ODT) (x=AE)	103
		6.3.5 GPIO set/clear register (GPIOx_SCR) (x=AE)	104
		6.3.6 GPIO clear register (GPIOx_CLR) (x=AE)	104
		6.3.7 GPIO write protection register (GPIOx_WPR) (x=AE)	104
		6.3.8 GPIO huge current control register (GPIOx_HDRV) (x=AE)	104
7	Multi	iplex function I/Os (IOMUX)	105
	7.1	Introduction	105
	7.2	Function overview	105
		7.2.1 IOMUX structure	105
		7.2.2 MUX Input configuration	106
		7.2.3 MUX output or bidirectional MUX configuration	106
		7.2.4 Peripheral MUX function configuration	106
		7.2.5 IOMUX map priority	106
		7.2.5.1 Hardware preemption	107
		7.2.5.2 Debug port priority	107
		7.2.5.3 Other peripheral output priority	107
		7.2.6 External interrupt/wake-up lines	107

	7.3	IOMUX registers	108
		7.3.1 Event output control register (IOMUX_EVTOUT)	108
		7.3.2 IOMUX remap register (IOMUX_REMAP)	109
		7.3.3 IOMUX external interrupt configuration register1 (IOMUX_EXINTC1)	111
		7.3.4 IOMUX external interrupt configuration register2 (IOMUX_EXINTC2)	112
		7.3.5 IOMUX external interrupt configuration register3 (IOMUX_EXINTC3)	113
		7.3.6 IOMUX external interrupt configuration register4 (IOMUX_EXINTC4)	113
		7.3.7 IOMUX remap register2 (IOMUX_REMAP2)	114
		7.3.8 IOMUX remap register3 (IOMUX_REMAP3)	115
		7.3.9 IOMUX remap register4 (IOMUX_REMAP4)	115
		7.3.10 IOMUX remap register5 (IOMUX_REMAP5)	116
		7.3.11 IOMUX remap register6 (IOMUX_REMAP6)	117
		7.3.12 IOMUX remap register7 (IOMUX_REMAP7)	118
		7.3.13 IOMUX remap register8 (IOMUX_REMAP8)	119
8	Exte	rnal interrupt/Event controller (EXINT)	121
8	Exte 8.1	rnal interrupt/Event controller (EXINT)	
8			121
8	8.1	EXINT introduction Function overview and configuration procedure	121 121
8	8.1 8.2	EXINT introduction Function overview and configuration procedure	121 121 122
8	8.1 8.2	EXINT introduction Function overview and configuration procedure EXINT registers	121 121 122 122
8	8.1 8.2	EXINT introduction Function overview and configuration procedure EXINT registers 8.3.1 Interrupt enable register (EXINT_INTEN)	121 121 122 122
8	8.1 8.2	EXINT introduction Function overview and configuration procedure EXINT registers 8.3.1 Interrupt enable register (EXINT_INTEN) 8.3.2 Event enable register (EXINT_EVTEN)	121 121 122 122 122
8	8.1 8.2	EXINT introduction Function overview and configuration procedure EXINT registers 8.3.1 Interrupt enable register (EXINT_INTEN) 8.3.2 Event enable register (EXINT_EVTEN) 8.3.3 Polarity configuration register1 (EXINT_ POLCFG1)	121 121 122122122122
8	8.1 8.2	EXINT introduction Function overview and configuration procedure EXINT registers 8.3.1 Interrupt enable register (EXINT_INTEN) 8.3.2 Event enable register (EXINT_EVTEN) 8.3.3 Polarity configuration register1 (EXINT_ POLCFG1) 8.3.4 Polarity configuration register2 (EXINT_ POLCFG2)	121 122122122122122
9	8.1 8.2 8.3	EXINT introduction Function overview and configuration procedure EXINT registers 8.3.1 Interrupt enable register (EXINT_INTEN) 8.3.2 Event enable register (EXINT_EVTEN) 8.3.3 Polarity configuration register1 (EXINT_ POLCFG1) 8.3.4 Polarity configuration register2 (EXINT_ POLCFG2) 8.3.5 Software trigger register (EXINT_ SWTRG)	121 122122122122123
9	8.1 8.2 8.3	EXINT introduction Function overview and configuration procedure EXINT registers 8.3.1 Interrupt enable register (EXINT_INTEN) 8.3.2 Event enable register (EXINT_EVTEN) 8.3.3 Polarity configuration register1 (EXINT_ POLCFG1) 8.3.4 Polarity configuration register2 (EXINT_ POLCFG2) 8.3.5 Software trigger register (EXINT_ SWTRG) 8.3.6 Interrupt status register (EXINT_ INTSTS)	121 122122122122123123
9	8.1 8.2 8.3	EXINT introduction Function overview and configuration procedure EXINT registers 8.3.1 Interrupt enable register (EXINT_INTEN) 8.3.2 Event enable register (EXINT_EVTEN) 8.3.3 Polarity configuration register1 (EXINT_ POLCFG1) 8.3.4 Polarity configuration register2 (EXINT_ POLCFG2) 8.3.5 Software trigger register (EXINT_ SWTRG) 8.3.6 Interrupt status register (EXINT_ INTSTS) controller (DMA)	121 122122122122123123124
9	8.1 8.2 8.3 DMA 9.1	EXINT introduction Function overview and configuration procedure EXINT registers 8.3.1 Interrupt enable register (EXINT_INTEN) 8.3.2 Event enable register (EXINT_EVTEN) 8.3.3 Polarity configuration register1 (EXINT_ POLCFG1) 8.3.4 Polarity configuration register2 (EXINT_ POLCFG2) 8.3.5 Software trigger register (EXINT_ SWTRG) 8.3.6 Interrupt status register (EXINT_ INTSTS) controller (DMA)	121 122122122122123123124124
9	8.1 8.2 8.3 DMA 9.1 9.2	EXINT introduction Function overview and configuration procedure EXINT registers 8.3.1 Interrupt enable register (EXINT_INTEN) 8.3.2 Event enable register (EXINT_EVTEN) 8.3.3 Polarity configuration register1 (EXINT_ POLCFG1) 8.3.4 Polarity configuration register2 (EXINT_ POLCFG2) 8.3.5 Software trigger register (EXINT_ SWTRG) 8.3.6 Interrupt status register (EXINT_ INTSTS) controller (DMA) Introduction Main features	121 122122122123123124 124 124 124

		9.3.2 Handshake mechanism	125
		9.3.3 Arbiter	125
		9.3.4 Programmable data transfer width	126
		9.3.5 Errors	127
		9.3.6 Interrupts	127
		9.3.7 Fixed DMA request mapping	127
		9.3.8 Flexible DMA request mapping	128
	9.4	DMA registers	129
		9.4.1 DMA interrupt status register (DMA_STS)	130
		9.4.2 DMA interrupt flag clear register (DMA_CLR)	132
		9.4.3 DMA channelx configuration register (DMA_CxCTRL) (x = 1	7)133
		9.4.4 DMA channelx number of data register (DMA_CxDTCNT)	
		(x = 17)	134
		9.4.5 DMA channelx peripheral address register (DMA_CxPADDR)	
		(x = 17)	135
		9.4.6 DMA channelx memory address register (DMA_CxMADDR) (x = 17)	125
		9.4.7 Channel source register (DMA_SRC_SEL0)	
		9.4.8 Channel source register1 (DMA_SRC_SEL1)	
		5.4.6 Chamer source register (DM/_GRO_GEET)	
10	CRC	calculation unit (CRC)	137
	10.1	CRC introduction	137
	10.2	CRC registers	137
		10.2.1 Data register (CRC_DT)	137
		10.2.2 Common data register (CRC_CDT)	137
		10.2.3 Control register (CRC_CTRL)	138
		10.2.4 Initialization register (CRC_IDT)	138
11	I ² C in	iterface	139
	11 1	I ² C introduction	130
		I ² C main features	
		I ² C function overview	
	11.4	I ² C interface	
		11.4.1 I ² C slave communication flow	
		11.4.2 I ² C master communication flow	144

151
151
153
153
154
154
155
156
156
156
157
159
160
161
161
163
163
163
163
164
164
164
164
165
165
165
166
166
166
166
166 166

	12.9	Interrupt requests	168
	12.10	0I/O pin control	169
	12.1	1USART registers	169
		12.11.1 Status register (USART_STS)	169
		12.11.2 Data register (USART_DT)	171
		12.11.3 Baud rate register (USART_BAUDR)	171
		12.11.4 Control register1 (USART_CTRL1)	171
		12.11.5 Control register2 (USART_CTRL2)	172
		12.11.6 Control register3 (USART_CTRL3)	173
		12.11.7 Guard time and divider register (GDIV)	174
13	Seria	I peripheral interface (SPI)	175
	13.1	SPI introduction	175
	13.2	Function overview	175
		13.2.1 SPI description	175
		13.2.2 Full-duplex/half-duplex selector	176
		13.2.3 Chip select controller	178
		13.2.4 SPI_SCK controller	178
		13.2.5 CRC	178
		13.2.6 DMA transfer	179
		13.2.7 Transmitter	180
		13.2.8 Receiver	180
		13.2.9 Interrupt	181
		13.2.10 IO pin control	181
		13.2.11 Precautions	182
	13.3	I ² S functional description	182
		13.3.1 I ² S introduction	182
		13.3.2 l ² S full-duplex	183
		13.3.3 Operation mode selector	183
		13.3.4 Audio protocol selector	184
		13.3.5 I2S_CLK controller	185
		13.3.6 DMA transfer	188
		13.3.7 Transmitter/Receiver	188
		13.3.8 Interrupts	189
		13.3.9 IO pin control	189

	13.4	SPI registers	190
		13.4.1 SPI control register1 (SPI_CTRL1) (Not used in I ² S mode)	190
		13.4.2 SPI control register2 (SPI_CTRL2)	191
		13.4.3 SPI status register (SPI_STS)	192
		13.4.4 SPI data register (SPI_DT)	193
		13.4.5 SPICRC register (SPI_CPOLY) (Not used in I ² S mode)	193
		13.4.6 SPIRxCRC register (SPI_RCRC) (Not used in I2S mode)	193
		13.4.7 SPITxCRC register (SPI_TCRC)	193
		13.4.8 SPI_I2S register (SPI_I2SCTRL)	193
		13.4.9 SPI_I2S prescaler register (SPI_I2SCLKP)	194
14	Time	r	195
	14.1	Basic timer (TMR6 and TMR7)	196
		14.1.1 TMR6 and TMR7 introduction	196
		14.1.2 TMR6 and TMR7 main features	196
		14.1.3 TMR6 and TMR7 function overview	196
		14.1.3.1 Count clock	196
		14.1.3.2 Counting mode	196
		14.1.3.3 Debug mode	197
		14.1.4 TMR6 and TMR7 registers	197
		14.1.4.1 TMR6 and TMR7 control register1 (TMRx_CTRL1)	198
		14.1.4.2 TMR6 and TMR7 control register2 (TMRx_CTRL2)	198
		14.1.4.3 TMR6 and TMR7 DMA/interrupt enable register (TMRx_ID	EN) 198
		14.1.4.4 TMR6 and TMR7 interrupt status register (TMRx_ISTS)	199
		14.1.4.5 TMR6 and TMR7 software event register (TMRx_SWEVT)	199
		14.1.4.6 TMR6 and TMR7 counter value (TMRx_CVAL)	199
		14.1.4.7 TMR6 and TMR7 division (TMRx_DIV)	199
		14.1.4.8 TMR6 and TMR7 period register (TMRx_PR)	199
	14.2	General-purpose timer (TMR2 to TMR5)	199
		14.2.1 TMRx introduction	199
		14.2.2 TMRx main features	200
		14.2.3 TMRx functional overview	200
		14.2.3.1 Count clock	200
		14.2.3.2 Counting mode	202
		14.2.3.3 TMR input function	204
		14.2.3.4 TMR output function	205

	14.2.3.5 TMR synchronization	208
	14.2.3.6 Debug mode	211
	14.2.4 TMRx registers	211
	14.2.4.1 Control register1 (TMRx_CTRL1)	212
	14.2.4.2 Control register2 (TMRx_CTRL2)	213
	14.2.4.3 Slave timer control register (TMRx_STCTRL)	213
	14.2.4.4 DMA/interrupt enable register (TMRx_IDEN)	214
	14.2.4.5 Interrupt status register (TMRx_ISTS)	215
	14.2.4.6 Software event register (TMRx_SWEVT)	216
	14.2.4.7 Channel mode register1 (TMRx_CM1)	216
	14.2.4.8 Channel mode register2 (TMRx_CM2)	219
	14.2.4.9 Channel control register (TMRx_CCTRL)	220
	14.2.4.10 Counter value (TMRx_CVAL)	220
	14.2.4.11 Division value (TMRx_DIV)	221
	14.2.4.12 Period register (TMRx_PR)	221
	14.2.4.13 Channel 1 data register (TMRx_C1DT)	221
	14.2.4.14 Channel 2 data register (TMRx_C2DT)	221
	14.2.4.15 Channel 3 data register (TMRx_C3DT)	221
	14.2.4.16 Channel 4 data register (TMRx_C4DT)	222
	14.2.4.17 DMA control register (TMRx_DMACTRL)	222
	14.2.4.18 DMA data register (TMRx_DMADT)	222
14.3	General-purpose timer (TMR9 to TMR14)	222
	14.3.1 TMRx introduction	222
	14.3.2 TMRx main features	223
	14.3.2.1 TMR9 and TMR12 main features	223
	14.3.2.2 TMR10, TMR11, TMR13 and TMR14 main features	223
	14.3.3 TMRx functional overview	224
	14.3.3.1 Count clock	224
	14.3.3.2 Counting mode	225
	14.3.3.3 TMR input function	226
	14.3.3.4 TMR output function	226
	14.3.3.5 TMR synchronization	228
	14.3.3.6 Debug mode	229
	14.3.4 TMR9 and TMR12 registers	230
	14.3.4.1 Control register1 (TMRx_CTRL1)	230
	14.3.4.2 Slave timer control register (TMRx_STCTRL)	231
	14.3.4.3 DMA/interrupt enable register (TMRx_IDEN)	231
	14.3.4.4 Interrupt status register (TMRx_ISTS)	231

	14.3.4.5 Software event register (TMRx_SWEVT)	232
	14.3.4.6 Channel mode register1 (TMRx_CM1)	233
	14.3.4.7 Channel control register (TMRx_CCTRL)	235
	14.3.4.8 Counter value (TMRx_CVAL)	235
	14.3.4.9 Division value (TMRx_DIV)	235
	14.3.4.10 Period register (TMRx_PR)	236
	14.3.4.11 Channel 1 data register (TMRx_C1DT)	236
	14.3.4.12 Channel 2 data register (TMRx_C2DT)	236
	14.3.5 TMR10,TMR11, TMR13 and TMR14 registers	236
	14.3.5.1 Control register1 (TMRx_CTRL1)	237
	14.3.5.2 DMA/interrupt enable register (TMRx_IDEN)	237
	14.3.5.3 Interrupt status register (TMRx_ISTS)	237
	14.3.5.4 Software event register (TMRx_SWEVT)	238
	14.3.5.5 Channel mode register1 (TMRx_CM1)	238
	14.3.5.6 Channel control register (TMRx_CCTRL)	240
	14.3.5.7 Counter value (TMRx_CVAL)	240
	14.3.5.8 Division value (TMRx_DIV)	240
	14.3.5.9 Period register (TMRx_PR)	240
	14.3.5.10 Channel 1 data register (TMRx_C1DT)	241
14.4	Advanced-control timers (TMR1 and TMR8)	241
	14.4.1 TMR1 and TMR8 introduction	241
	14.4.2 TMR1 and TMR8 main features	241
	14.4.3 TMR1 and TMR8 functional overview	242
	14.4.3.1 Count clock	242
	14.4.3.2 Counting mode	244
	14.4.3.3 TMR input function	246
	14.4.3.4 TMR output function	247
	14.4.3.5 TMR break function	251
	14.4.3.6 TMR synchronization	252
	14.4.3.7 Debug mode	253
	14.4.4 TMR1 and TMR8 registers	253
	14.4.4.1 TMR1 and TMR8 control register1 (TMRx_CTRL1)	254
	14.4.4.2 TMR1 and TMR8 control register2 (TMRx_CTRL2)	255
	14.4.4.3 TMR1 and TMR8 slave timer control register (TMRx_STCTRL).	256
	14.4.4.4 TMR1 and TMR8 DMA/interrupt enable register (TMRx_IDEN)	257
	14.4.4.5 TMR1 and TMR8 interrupt status register (TMRx_ISTS)	258
	14.4.4.6 Software event register (TMRx_SWEVT)	259
	14.4.4.7 TMR1 and TMR8 channel mode register1 (TMRx_CM1)	260

		14.4.4.8 Channel mode register2 (TMRx_CM2)	262
		14.4.4.9 Channel control register (TMRx_CCTRL)	263
		14.4.4.10 TMR1 and TMR8 counter value (TMRx_CVAL)	265
		14.4.4.11 TMR1 and TMR8 division value (TMRx_DIV)	265
		14.4.4.12 TMR1 and TMR8 period register (TMRx_PR)	265
		14.4.4.13 TMR1 and TMR8 repetition period register (TMRx_RPR)	265
		14.4.4.14 TMR1 and TMR8 channel 1 data register (TMRx_C1DT)	
		14.4.4.15 TMR1 and TMR8 channel 2 data register (TMRx_C2DT)	
		14.4.4.16 TMR1 and TMR8 channel 3 data register (TMRx_C3DT)	
		14.4.4.17 TMR1 and TMR8 channel 4 data register (TMRx_C4DT)	
		14.4.4.18 TMR1 and TMR8 break register (TMRx_BRK)	
		14.4.4.20 TMR1 and TMR8 DMA data register (TMRx_ DMADT)	
15	Wind	ow watchdog timer (WWDT)	. 269
	15.1	WWDT introduction	. 269
	15.2	WWDT main features	269
	15.3	WWDT functional overview	. 269
	15.4	Debug mode	270
	15.5	WWDT registers	. 270
		15.5.1 Control register (WWDT_CTRL)	270
		15.5.2 Configuration register (WWDT_CFG)	270
		15.5.3 Status register (WWDT_STS)	271
16	Wata	hdog timer (WDT)	272
10	walc	ndog timer (wbi)	. 212
	16.1	WDT introduction	. 272
	16.2	WDT main features	272
	16.3	WDT functional overview	272
	16.4	Debug mode	. 273
	16.5	WDT registers	. 273
		16.5.1 Command register (WDT_CMD)	274
		16.5.2 Divider register (WDT_DIV)	274
		16.5.3 Reload register (WDT_RLD)	274
		16.5.4 Status register (WDT_STS)	274
17	Roal-	time clock (RTC)	275
• •	iveai-	····· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··	3

	17.1	RTC introduction	. 275
	17.2	RTC main features	. 275
	17.3	RTC structure	. 275
	17.4	RTC functional overview	. 276
		17.4.1 Configuring RTC registers	276
		17.4.2 Reading RTC registers	277
		17.4.3 RTC interrupts	277
	17.5	RTC registers	. 278
		17.5.1 RTC control register high (RTC_CTRLH)	278
		17.5.2 RTC control register low (RTC_CTRLL)	279
		17.5.3 RTC divider register (RTC_ DIVH/RTC_DIVL)	279
		17.5.4 RTC divider counter register (RTC_ DIVCNTH/RTC_DIVCNTL)	280
		17.5.5 RTC counter value register (RTC_CNTH/RTC_CNTL)	280
		17.5.6 RTC alarm register (RTC_TAH/RTC_TAL)	280
18	Batte	ry powered registers (BPR)	281
	18.1	BPR introduction	. 281
	18.2	BPR main features	. 281
	18.3	BPR functional overview	. 281
	18.4	BPR registers	. 281
		18.4.1 Battery powered data register x (BPR_DTx) (x = 1 42)	282
		18.4.2 RTC calibration register (BPR_ RTCCAL)	282
		18.4.3 BPR control register (BPR_ CTRL)	283
		18.4.4 BPR control/status register (BPR_ CTRLSTS)	284
19	Analo	og-to-digital converter (ADC)	285
	19.1	ADC introduction	. 285
	19.2	ADC main features	. 285
	19.3	ADC structure	. 285
	19.4	ADC functional overview	. 286
		19.4.1 Channel management	
		19.4.1.1 Internal temperature sensor	
		19.4.1.2 Internal reference voltage	287
		19.4.2 ADC operation process	287
		19.4.2.1 Power-on and calibration	288

	19.4.2.2 Trigger	. 288
	19.4.2.3 Sampling and conversion sequence	. 289
	19.4.3 Conversion sequence management	.290
	19.4.3.1 Sequence mode	. 290
	19.4.3.2 Automatic preempted group conversion mode	. 290
	19.4.3.3 Repetition mode	. 291
	19.4.3.4 Partition mode	
	19.4.4 Data management	
	19.4.4.1 Data alignment	. 292
	19.4.4.2 Data read	
	19.4.5 Voltage monitor	.292
	19.4.6 Status flag and interrupts	.292
19.5	Master/Slave mode	293
	19.5.1 Data management	.293
	19.5.2 Regular simultaneous mode	.293
	19.5.3 Alternate preempted trigger mode	.294
	19.5.4 Regular switch mode	.295
19.6	ADC registers	296
	19.6.1 ADC status register (ADC_STS)	.297
	19.6.2 ADC control register1 (ADC_CTRL1)	.297
	19.6.3 ADC control register2 (ADC_CTRL2)	.299
	19.6.4 ADC sampling time register 1 (ADC_SPT1)	.302
	19.6.5 ADC sampling time register 2 (ADC_SPT2)	.304
	19.6.6 ADC preempted channel data offset register x (ADC_ PCDTOx)	
	(x=14)	.306
	19.6.7 ADC voltage monitor high threshold register (ADC_ VWHB)	.306
	19.6.8 ADC voltage monitor low threshold register (ADC_ VWLB)	.306
	19.6.9 ADC ordinary sequence register 1 (ADC_ OSQ1)	.306
	19.6.10 ADC ordinary sequence register 2 (ADC_ OSQ2)	.306
	19.6.11 ADC ordinary sequence register 3 (ADC_ OSQ3)	.307
	19.6.12 ADC preempted sequence register (ADC_ PSQ)	.307
	19.6.13 ADC preempted data register x (ADC_ PDTx) (x=14)	.307
	19.6.14 ADC ordinary data register (ADC_ ODT)	
Digita	al-to-analog converter (DAC)	308
20.1	DAC introduction	308

20

	20.2	DAC main features	308
	20.3	Design tips	308
	20.4	Function overview	309
		20.4.1 Trigger events	.309
		20.4.2 Noise/Triangular-wave generation	.309
		20.4.3 DAC data alignment	.311
	20.5	DAC registers	311
		20.5.1 DAC control register (DAC_CTRL)	.311
		20.5.2 DAC software trigger register (DAC_SWTRG)	.314
		20.5.3 DAC1 12-bit right-aligned data holding register (DAC_ D1DTH12R)	314
		20.5.4 DAC1 12-bit left-aligned data holding register (DAC_ D1DTH12L)	314
		20.5.5 DAC1 8-bit right-aligned data holding register (DAC_ D1DTH8R).	
		20.5.6 DAC2 12-bit right-aligned data holding register	
		(DAC_ D2DTH12R)	314
		20.5.7 DAC2 12-bit left-aligned data holding register	
		(DAC_ D2DTH12L)	.315
		20.5.8 DAC2 8-bit right-aligned data holding register (DAC_ D2DTH8R) .	.315
		20.5.9 Dual DAC 12-bit right-aligned data holding register (DAC_ DDTH12R)	315
		20.5.10 Dual DAC 12-bit left-aligned data holding register	
		(DAC_ DDTH12L)	.315
		20.5.11 Dual DAC 8-bit right-aligned data holding register	
		(DAC_ DDTH8R)	
		20.5.12 DAC1 data output register (DAC_ D1ODT)	
		20.5.13 DAC2 data output register (DAC_ D2ODT)	.315
21	CAN.		316
	21.1	CAN introduction	316
	21.2	CAN main features	316
	21.3	Baud rate	316
	21.4	Interrupt management	319
		Interrupt management	
		Function overview	
	5		0

	21.6.1 General description	320
	21.6.2 Operating modes	321
	21.6.3 Test modes	321
	21.6.4 Message filtering	322
	21.6.5 Message transmission	324
	21.6.6 Message reception	
	21.6.7 Error management	326
21.7	CAN registers	
	21.7.1 CAN control and status registers	
	21.7.1.1 CAN master control register (CAN_MCTRL)	
	21.7.1.2 CAN master status register (CAN_MSTS)	
	21.7.1.3 CAN transmit status register (CAN_TSTS)	
	21.7.1.4 CAN receive FIFO 0 register (CAN_RF0)	
	21.7.1.5 CAN receive FIFO 1 register (CAN_RF1)	
	21.7.1.6 CAN interrupt enable register (CAN_INTEN)	335
	21.7.1.7 CAN error status register (CAN_ESTS)	336
	21.7.1.8 CAN bit timing register (CAN_BTMG)	337
	21.7.2 CAN mailbox registers	338
	21.7.2.1 Transmit mailbox identifier register (CAN_TMIx) (x=02)	338
	21.7.2.2 Transmit mailbox data length and time stamp register	
	(CAN_TMCx) (x=02)	338
	21.7.2.3 Transmit mailbox data low register (CAN_TMDTLx) (x=02)	
	21.7.2.4 Transmit mailbox data high register (CAN_TMDTHx) (x=02)	
	21.7.2.5 Receive FIFO mailbox identifier register (CAN_RFIx) (x=01)	339
	21.7.2.6 Receive FIFO mailbox data length and time stamp register (CAN_RFCx) (x=01)	240
	21.7.2.7 Receive FIFO mailbox data low register (CAN_RFDTLx)	340
	(x=01)	340
	21.7.2.8 Receive FIFO mailbox data high register (CAN_RFDTHx)	
	(x=01)	340
	21.7.3 CAN filter registers	340
	21.7.3.1 CAN filter control register (CAN_FCTRL)	340
	21.7.3.2 CAN filter mode configuration register (CAN_FMCFG)	341
	21.7.3.3 CAN filter bit width configuration register (CAN_ FBWCFG)	341
	21.7.3.4 CAN filter FIFO association register (CAN_ FRF)	341
	21.7.3.5 CAN filter activation control register (CAN_ FACFG)	341
	21.7.3.6 CAN filter bank i filter bit register (CAN_ FiFBx)	
	(i=013; x=12)	341

Exter	nal memory controller	. 342
22.1	XMC introduction	. 342
22.2	XMC main features	. 342
22.3	XMC architecture	. 343
	22.3.1 Block diagram	343
	22.3.2 Address mapping	344
22.4	NOR/PSRAM	. 345
	22.4.1 Operation mode	345
	22.4.2 Access mode	346
	22.4.2.1 Read/write operation with the same timings	346
	22.4.2.2 Read/write operation with different timings	351
	22.4.2.3 Multiplexed mode	359
	22.4.2.4 Synchronous mode	361
22.5	NAND	. 363
	22.5.1 Operation mode	363
	22.5.2 Access timings	364
	22.5.3 ECC computation	366
22.6	XMC registers	. 366
	22.6.1 NOR Flash and PSRAM control registers	367
	22.6.1.1 SRAM/NOR Flash chip select control register 1	
	(XMC_BK1CTRL1)	367
	22.6.1.2 SRAM/NOR Flash chip select control register 4	
	(XMC_BK1CTRL4)	368
	22.6.1.3 SRAM/NOR Flash chip select timing register 1, 4 (XMC_BK1CTRL1, 4)	370
	22.6.1.4 SRAM/NOR Flash write timing register 1, 4	
	(XMC_BK1 TMGWR1, 4)	371
	22.6.1.5 SRAM/NOR Flash extra timing register 1, 4 (XMC_EXT1, 4)	371
	22.6.2 NAND Flash control registers	372
	22.6.2.1 NAND Flash control register 2 (XMC_BK2CTRL)	372
	22.6.2.2 Interrupt enable and FIFO status register 2 (XMC_BK2IS)	373
	22.6.2.3 Regular memory timing register 2 (XMC_ BK2TMGRG)	
	22.6.2.4 Special memory timing register 2 (XMC_ BK2TMGSP)	
	22.6.2.5 ECC value register 2 (XMC_ BK2ECC)	374
SDIO	interface	375

23.1	SDIO introduction	375
23.2	SDIO main features	375
23.3	SDIO main features	377
	23.3.1 Card functional description	377
	23.3.1.1 Card identification mode	377
	23.3.1.2 Data transfer mode	378
	23.3.1.3 Erase	379
	23.3.1.4 Protection management	379
	23.3.2 Commands and responses	382
	23.3.2.1 Commands	382
	23.3.2.2 Response formats	385
	23.3.3 SDIO functional description	387
	23.3.3.1 SDIO adapter	388
	23.3.3.2 Data BUF	
	23.3.3.3 SDIO AHB interface	
	23.3.3.4 Hardware flow control	
	23.3.4 SDIO I/O card-specific operations	
23.4	SDIO registers	394
	23.4.1 SDIO power control register (SDIO_ PWRCTRL)	394
	23.4.2 SDIO clock control register (SDIO_ CLKCTRL)	395
	23.4.3 SDIO argument register (SDIO_ARG)	396
	23.4.4 SDIO command register (SDIO_CMD)	396
	23.4.5 SDIO command response register (SDIO_RSPCMD)	397
	23.4.6 SDIO response 14 register (SDIO_RSPx)	397
	23.4.7 SDIO data timer register (SDIO_DTTMR)	397
	23.4.8 SDIO data length register (SDIO_DTLEN)	397
	23.4.9 SDIO data control register (SDIO_DTCTRL)	398
	23.4.10 SDIO data counter register (SDIO_DTCNTR)	399
	23.4.11 SDIO status register (SDIO_STS)	399
	23.4.12 SDIO clear interrupt register (SDIO_INTCLR)	400
	23.4.13 SDIO interrupt mask register (SDIO_INTEN)	401
	23.4.14 SDIOBUF counter register (SDIO_BUFCNTR)	
	23.4.15 SDIO data BUF register (SDIO_BUF)	
Unive	ersal serial bus full-seed device interface (USBFS)	404
	USBFS introduction	

24

	24.2	USBFS clock and pin configuration	404
		24.2.1 USB clock configuration	404
		24.2.2 USB pin configuration	404
	24.3	USBFS functional description	404
		24.3.1 USB initialization	404
		24.3.2 Endpoint configuration	405
		24.3.3 USB buffer	405
		24.3.4 Double-buffered endpoints	406
		24.3.5 SOF output	407
		24.3.6 Suspend/Resume	407
	24.4	USBFS interrupts	407
	24.5	USBFS registers	407
		24.5.1 USBFS endpoint n register (USBFS_EPTn), n=[07]	408
		24.5.2 USBFS control register (USBFS_CTRL)	409
		24.5.3 USBFS interrupt status register (USBFS_INTSTS)	410
		24.5.4 USBFS SOF frame number register (USBFS_SOFRNUM)	411
		24.5.5 USBFS device address register (USBFS_DEVADDR)	411
		24.5.6 USBFS buffer table address register (USBFS_BUFTBL)	411
		24.5.7 USBFS CFG control register (USBFS_CFG)	411
		24.5.8 USBFS transmission buffer first address register (USBFS_TnADDR)	412
		24.5.9 USBFS transmission data length register (USBFS_TnLEN).	
		24.5.10 USBFS reception buffer first address register	
		(USBFS_RnADDR)	412
		24.5.11 USBFS reception data length register (USBFS_RnLEN)	412
25	ніск	auto clock calibration (ACC)	413
	25.1	ACC introduction	413
	25.2	Main features	413
	25.3	Interrupt requests	413
	25.4	Functional description	414
		Principle	
		Register description	
		25.6.1 Status register (ACC_STS)	
		25.6.2 Control register 1 (ACC_CTRL1)	
		J (/	·

		25.6.3 Control register 2 (ACC_CTRL2)	418
		25.6.4 Compare value 1 (ACC_C1)	418
		25.6.5 Compare value 2 (ACC_C2)	418
		25.6.6 Compare value 3 (ACC_C3)	419
26	Ether	net media access control (EMAC)	420
	26.1	EMAC introduction	420
		26.1.1 EMAC structure	420
		26.1.2 EMAC main features	420
	26.2	EMAC functional description	421
		26.2.1 EMAC communication interfaces	421
		26.2.2 EMAC frame communication	426
		26.2.3 Ethernet frame transmission and reception using DMA	432
		26.2.4 Ethernet frame transmission and reception using DMA	444
		26.2.5 IEEE1588 precision time protocol	445
		26.2.6 EMAC interrupts	449
	26.3	EMAC registers	450
		26.3.1 Ethernet MAC configuration register (EMAC_MACCTRL)	452
		26.3.2 Ethernet MAC frame filter register (EMAC_ MACFRMF)	454
		26.3.3 Ethernet MAC Hash table high register (EMAC_MACHTH)	456
		26.3.4 Ethernet MAC Hash table low register (EMAC_MACHTL)	456
		26.3.5 Ethernet MAC MII address register (EMAC_MACMIIADDR)	457
		26.3.6 Ethernet MAC MII data register (EMAC_MACMIIDT)	458
		26.3.7 Ethernet MAC flow control register (EMAC_MACFCTRL)	458
		26.3.8 Ethernet MAC VLAN tag register (EMAC_MACVLT)	459
		26.3.9 Ethernet MAC remote wakeup frame filter register	
		(EMAC_MACRWFF)	460
		26.3.10 Ethernet MAC PMT control and status register	400
		(EMAC_MACPMTCTRLSTS)	
		26.3.11 Ethernet MAC interrupt status register (EMAC_MACISTS)	
		26.3.12 Ethernet MAC address 0 high register (EMAC_MAIMR)	
		26.3.13 Ethernet MAC address 0 high register (EMAC_MACA0H)	
		26.3.14 Ethernet MAC address 0 low register (EMAC_MACA0L)	
		26.3.15 Ethernet MAC address 1 low register (EMAC_MACA1H)	
		26.3.16 Ethernet MAC address 1 low register (EMAC_MACA1H)	403

26.3.17 Ethernet MAC address 2 high register (EMAC_MACA2H)463
26.3.18 Ethernet MAC address 2 low register (EMAC_MACA2L)464
26.3.19 Ethernet MAC address 3 high register (EMAC_MACA3H)464
26.3.20 Ethernet MAC address 3 low register (EMAC_MACA3L)465
26.3.21 Ethernet DMA bus mode register (EMAC_DMABM)465
26.3.22 Ethernet DMA transmit poll demand register (EMAC_DMATPD)467
26.3.23 Ethernet DMA receive poll demand register (EMAC_DMARPD)467
26.3.24 Ethernet DMA receive descriptor list address register
(EMAC_DMARDLADDR)467
26.3.25 Ethernet DMA transmit descriptor list address register
(EMAC_DMATDLADDR)468
26.3.26 Ethernet DMA status register (EMAC_DMASTS)468
26.3.27 Ethernet DMA operation mode register (EMAC_DMAOPM)471
26.3.28 Ethernet DMA interrupt enable register (EMAC_DMAIE)473
26.3.29 Ethernet DMA missed frame and buffer overflow counter register
(EMAC_DMAMFBOCNT)475
26.3.30 Ethernet DMA current transmit descriptor register
(EMAC_DMACTD)475
26.3.31 Ethernet DMA current receive descriptor register
(EMAC_DMACRD)476
26.3.32 Ethernet DMA current transmit buffer address register
(EMAC_DMACTBADDR)476
26.3.33 Ethernet DMA current receive buffer address register
(EMAC_DMACRBADDR)
26.3.34 Ethernet MMC control register (EMAC_MMCCTRL)
26.3.35 Ethernet MMC receive interrupt register (EMAC_MMCRI)476
26.3.36 Ethernet MMC transmit interrupt register (EMAC_MMCTI)477
26.3.37 Ethernet MMC receive interrupt register (EMAC_MMCRIM)477
26.3.38 Ethernet MMC transmit interrupt register (EMAC_MMCTIM)478
26.3.39 Ethernet MMC transmitted good frame single collision counter register
(EMAC_MMCTFSCC)
26.3.40 Ethernet MMC transmitted good frame more than a single collision
counter register (EMAC_MMCTFMSCC)
26.3.41 Ethernet MMC transmitted good frames counter register (EMAC_MMCTFCNT)
1 - IVIAU IVIIVIU I I UNI I

		26.3.42 Ethernet MMC received frames with CRC error counter register	
		(EMAC_MMCRFCECR)	.479
		26.3.43 Ethernet MMC received frames with alignment error counter reg	jister
		(EMAC_MMCRFAECNT)	.479
		26.3.44 Ethernet MMC received good unicast frames counter register	
		(EMAC_MMCRGUFCNT)	
		26.3.45 Ethernet PTP time stamp control register (EMAC_PTPTSCTRL)	.479
		26.3.46 Ethernet PTP subsecond increment register	
		(EMAC_PTPSSINC)	
		26.3.47 Ethernet PTP time stamp high register (EMAC_PTPTSH)	
		26.3.48 Ethernet PTP time stamp low register (EMAC_PTPTSL)	.482
		26.3.49 Ethernet PTP time stamp high update register	
		(EMAC_PTPTSHUD)	.482
		26.3.50 Ethernet PTP time stamp low update register	
		(EMAC_PTPTSLUD)	
		26.3.51 Ethernet PTP time stamp addend register (EMAC_PTPTSAD)	
		26.3.52 Ethernet PTP target time high register (EMAC_PTPTTH)	
		26.3.53 Ethernet PTP target time low register (EMAC_PTPTTL)	
		26.3.54 Ethernet PTP time stamp status register (EMAC_PTPTSSR)	
		26.3.55 Ethernet PTP PPS register (EMAC_PTPPPSCR)	.484
27	Debu	g (DEBUG)	485
	27.1	Debug introduction	485
	27.2	Debug and Trace	485
	27.3	I/O pin control	485
	27.4	DEBUG registers	486
		27.4.1 DEBUG device ID (DEBUG_IDCODE)	.486
		27.4.2 DEBUG control register (DEBUG_CTRL)	.487
28	Revis	sion history	489

List of figures

Figure 1 - 1 AT32F403A/407 Series microcontrollers system architecture	36
Figure 1 - 2 Internal block diagram of Cortex®-M4F	37
Figure 1 - 3 Comparison between bit-band region and its alias region: image A	38
Figure 1 - 4 Comparison between bit-band region and its alias region: image B	38
Figure 1 - 5 Reset process	43
Figure 1 - 6 Example of MSP and PC initialization	44
Figure 2- 1 AT32F403A/407address map	47
Figure 3- 1 Block Diagram of Each Power Supply	52
Figure 3- 2 Power-on reset/Low voltage reset waveform	53
Figure 3- 3 PVM threshold and output	53
Figure 4- 1 AT32F403A/407 clock trees	58
Figure 4- 2 System reset circuit	61
Figure 5- 1 Programming Process	79
Figure 5- 2 Reference circuit for external memory	80
Figure 5- 3 Process of Flash memory page erase	83
Figure 5- 4 Process of Flash memory mass erase	84
Figure 5- 5 Flash memory programming process	85
Figure 5- 6 System data area erase process	87
Figure 5- 7 System data area programming process	88
Figure 6- 1 GPIO basic structure	100
Figure 7- 1 Basic structure of IOMUX	105
Figure 8- 1 External interrupt/event controller block diagram	121
Figure 9- 1 DMA block diagram	124
Figure 9- 2 Re-arbitrae after request/acknowledge	125
Figure 9- 3 PWIDTH: byte, MWIDTH: half-word	126
Figure 9- 4 PWIDTH: half-word, MWIDTH: word	126
Figure 9- 5 PWIDTH: word, MWIDTH: byte	126
Figure 11- 1 I2C bus protocol	139
Figure 11- 2 I2C function block diagram	140
Figure 11- 3 Transfer sequence of slave transmitter	142
Figure 11- 4 Transfer sequence of slave receiver	143
Figure 11- 5 Transfer sequence of master transmitter	145
Figure 11- 6 Transfer sequence of master receiver	146

Figure 11- 7 Transfer sequence of master receiver when N>2	147
Figure 11- 8 Transfer sequence of master receiver when N=2	148
Figure 11- 9 Transfer sequence of master receiver when N=1	150
Figure 12- 1 USART block diagram	161
Figure 12- 2 USART interrupt map diagram	169
Figure 13- 1 SPI block diagram	175
Figure 13- 2 SPI two-wire unidirectional full-duplex connection	176
Figure 13- 3 Single-wire unidirectional receive only in SPI master mode	176
Figure 13- 4 Single-wire unidirectional receive only in SPI slave mode	177
Figure 13- 5 Single-wire bidirectional half-duplex mode	177
Figure 13- 6 SPI interrupts	181
Figure 13- 7 l ² S block diagram	182
Figure 13- 8 I ² S full-duplex structure	183
Figure 13- 9 I ² S slave device transmission	183
Figure 13- 10 I ² S slave device reception	184
Figure 13- 11 I ² S master device transmission	184
Figure 13- 12 I ² S master device reception	184
Figure 13- 13 CK & MCK source in master mode	186
Figure 13- 14 I ² S interrupt	189
Figure 14- 1 Basic timer block diagram	196
Figure 14- 2 Control circuit with CK_INT divided by 1	196
Figure 14- 3 Overflow event when PRBEN=0	197
Figure 14- 4 Overflow event when PRBEN=1	197
Figure 14- 5 Counting timing diagram when the prescaler division is 4	197
Figure 14- 6 General-purpose timer block diagram	200
Figure 14- 7 Control circuit with CK_INT divided by 1	200
Figure 14- 8 Block diagram of external clock mode A	201
Figure 14- 9 Counting in external clock mode A	201
Figure 14- 10 Block diagram of external clock mode B	201
Figure 14- 11 Counting in external clock mode B	201
Figure 14- 12 Counter timing with prescaler value changing from 1 to 4	202
Figure 14- 13 Overflow event when PRBEN=0	203
Figure 14- 14 Overflow event when PRBEN=1	203
Figure 14- 15 Counter timing diagram with internal clock divided by 4	203
Figure 14- 16 Counter timing diagram with internal clock divided by 1 and TMRx_PR=0x32	203

Figure 14- 17 Example of counter behavior in encoder interface mode (encoder mode C)	204
Figure 14- 18 Input/output channel 1 main circuit	204
Figure 14- 19 Channel 1 input stage	205
Figure 14- 20 Capture/compare channel output stage (channel 1 to 4)	205
Figure 14- 21 C1ORAW toggles when counter value matches the C1DT value	206
Figure 14- 22 Upcounting mode and PWM mode A	207
Figure 14- 23 Up/down counting mode and PWM mode A	207
Figure 14- 24 One-pulse mode	207
Figure 14- 25 Clearing CxORAW(PWM mode A) by EXT input	208
Figure 14- 26 Example of reset mode	208
Figure 14- 27 Example of suspend mode	209
Figure 14- 28 Example of trigger mode	209
Figure 14- 29 Master/slave timer connection	209
Figure 14- 30 Using master timer to start slave timer	210
Figure 14- 31 Starting master and slave timers synchronously by an external trigger	211
Figure 14- 32 Block diagram of general-purpose TMR9/12	223
Figure 14- 33 Block diagram of general-purpose TMR10/11/13/14	223
Figure 14- 34 Control circuit with CK_INT divided by 1	224
Figure 14- 35 Block diagram of external clock mode A	224
Figure 14- 36 Counting in external clock mode A	224
Figure 14- 37 Counter timing with prescaler value changing from 1 to 4	225
Figure 14- 38 Overflow event when PRBEN=0	225
Figure 14- 39 Overflow event when PRBEN=1	225
Figure 14- 40 Input/output channel 1 main circuit	226
Figure 14- 41 Channel 1 input stage	226
Figure 14- 42 Capture/compare channel output stage (channel 1)	227
Figure 14- 43 C1ORAW toggles when counter value matches the C1DT value	228
Figure 14- 44 Upcounting mode and PWM mode A	228
Figure 14- 45 One-pulse mode	228
Figure 14- 46 Example of reset mode	229
Figure 14- 47 Example of suspend mode	229
Figure 14- 48 Example of trigger mode	229
Figure 14- 49 Block diagram of advanced-control timer	242
Figure 14- 50 Control circuit with CK_INT divided by 1	242
Figure 14- 51 Block diagram of external clock mode A	242

Figure 14- 52 Counting in external clock mode A	243
Figure 14- 53 Block diagram of external clock mode B	243
Figure 14- 54 Counting in external clock mode B	243
Figure 14- 55 Counter timing with prescaler value changing from 1 to 4	244
Figure 14- 56 Overflow event when PRBEN=0	244
Figure 14- 57 Overflow event when PRBEN=1	244
Figure 14- 58 Counter timing diagram with internal clock divided by 4	245
Figure 14- 59 Counter timing diagram with internal clock divided by 1 and TMRx_PR=0x32	245
Figure 14- 60 OVFIF when RPR=2	245
Figure 14- 61 Example of encoder interface mode C	246
Figure 14- 62 Input/output channel 1 main circuit	246
Figure 14- 63 Channel 1 input stage	246
Figure 14- 64 Channel output stage (channel 1 to 3)	247
Figure 14- 65 Channel 4 output stage	247
Figure 14- 66 C1ORAW toggles when counter value matches the C1DT value	248
Figure 14- 67 Upcounting mode and PWM mode A	249
Figure 14- 68 Up/down counting mode and PWM mode A	249
Figure 14- 69 One-pulse mode	250
Figure 14- 70 Clearing CxORAW(PWM mode A) by EXT input	250
Figure 14- 71 Complementary output with dead-time insertion	251
Figure 14- 72 Example of TMR break function	252
Figure 14- 73 Example of reset mode	252
Figure 14- 74 Example of suspend mode	253
Figure 14- 75 Example of trigger mode	253
Figure 15- 1 Window watchdog block diagram	269
Figure 15- 2 Window watchdog timing diagram	270
Figure 16- 1 WDT block diagram	273
Figure 17- 1 Simplified RTC block diagram	276
Figure 17- 2 RTC second and alarm waveform example with DIV=0004 and TA=00003	277
Figure 17- 3 RTC overflow waveform example with DIV=0004	278
Figure 19- 1 ADC1 block diagram	286
Figure 19- 2 ADC basic operation process	287
Figure 19- 3 ADC power-on and calibration	288
Figure 19- 4 Sequence mode	290
Figure 19- 5 Preempted group auto conversion mode	290

Figure 19- 6 Repetition mode	291
Figure 19- 7 Partition mode	291
Figure 19- 8 Data alignment	292
Figure 19- 9 Block diagram of master/salve mode	293
Figure 19- 10 Regular simultaneous mode	294
Figure 19- 11 Regular simultaneous mode	294
Figure 19- 12 Alternate preempted trigger mode	294
Figure 19- 13 Fast switch mode	295
Figure 19- 14 Fast slow mode	296
Figure 20- 1 DAC1/DAC2 block diagram	308
Figure 20- 2 LFSR register calculation algorithm	310
Figure 20- 3 Trianaular-wave generation	310
Figure 21- 1 Bit timing 316	
Figure 21- 2 Transmit interrupt generation	318
Figure 21- 3 Transmit interrupt generation	319
Figure 21- 4 Receive interrupt 0 generation	319
Figure 21- 5 Receive interrupt 1 generation	319
Figure 21- 6 Status error interrupt generation	319
Figure 21- 7 CAN block diagram	320
Figure 21- 8 32-bit identifier mask mode	322
Figure 21- 9 32-bit identifier list mode	322
Figure 21- 10 16-bit identifier mask mode	322
Figure 21- 11 16-bit identifier list mode	323
Figure 21- 12 Transmit mailbox status	325
Figure 21- 13 Receive FIFO status	326
Figure 21- 14 Transmit and receive mailboxes	338
Figure 22- 1 XMC block diagram	343
Figure 22- 2 XMC memory banks	344
Figure 22- 3 NOR/PSARM mode 1 read access	348
Figure 22- 4 NOR/PSARM mode 1 write access	349
Figure 22- 5 NOR/PSARM mode 2 read access	350
Figure 22- 6 NOR/PSARM mode 2 write access	351
Figure 22- 7 NOR/PSARM mode A read access	352
Figure 22- 8 NOR/PSARM mode A write access	353
Figure 22- 9 NOR/PSARM mode B read access	354

Figure 22- 10 NOR/PSARM mode B write access	355
Figure 22- 11 NOR/PSARM mode C read access	356
Figure 22- 12 NOR/PSARM mode C write access	357
Figure 22- 13 NOR/PSARM mode D read access	358
Figure 22- 14 NOR/PSARM mode D write access	359
Figure 22- 15 NOR/PSARM multiplexed mode read access	360
Figure 22- 16 NOR/PSARM multiplexed mode write access	361
Figure 22- 17 NOR/PSARM synchronous multiplexed mode read access	362
Figure 22- 18 NOR/PSARM synchronous multiplexed mode write access	363
Figure 22- 19 NAND read access	365
Figure 22- 20 NAND wait functionality	366
Figure 23- 1 SDIO "no response" and "no data" operations	376
Figure 23- 2 SDIO multiple block read operation	376
Figure 23- 3 SDIO multiple block write operation	376
Figure 23- 4 SDIO sequential read operation	377
Figure 23- 5 SDIO sequential write operation	377
Figure 23- 6 SDIO block diagram	388
Figure 23- 7 Command channel state machine (CCSM)	390
Figure 23- 8 SDIO command transfer	391
Figure 23- 9 Data channel state machine (DCSM)	391
Figure 24- 1 Buffer description table of regular endpoint vs. double-buffered endpoint	406
Figure 25- 1 ACC interrupt mapping diagram	413
Figure 25- 2 ACC block diagram	415
Figure 25- 3 Cross-return algorithm	415
Figure 26- 1 Block diagram of EMAC	420
Figure 26- 2 SMI interface signals	422
Figure 26- 3 MII signals	422
Figure 26- 4 Reduced media-independent interface signals	424
Figure 26- 5 MII clock sources (provided by CLKOUT pin)	424
Figure 26- 6 MII clock sources (provided by an external oscillator)	424
Figure 26- 7 RMII clock sources (provide by CLKOUT pin)	425
Figure 26- 8 RMII clock sources (provide by an external crystal oscillator)	425
Figure 26- 9 MAC frame format	426
Figure 26- 10 Tagged MAC frame format	426
Figure 26- 11 Descriptor for ring and chain structure	433

Figure 26- 12 Transmit descriptors	. 436
Figure 26- 13 RXDMA descriptor structure	. 441
Figure 26- 14 Wakeup frame filter register	. 444
Figure 26- 15 System time update using the fine correction method	. 447
Figure 26- 16 PTP trigger output to TMR2 ITR1 connection	. 448
Figure 26- 17 PPS output	. 449
Figure 26- 18 Ethernet interrupts	450
Figure 26- 19 Ethernet MAC remote wakeup frame filter register (EMAC_MACRWFF)	. 460

List of tables

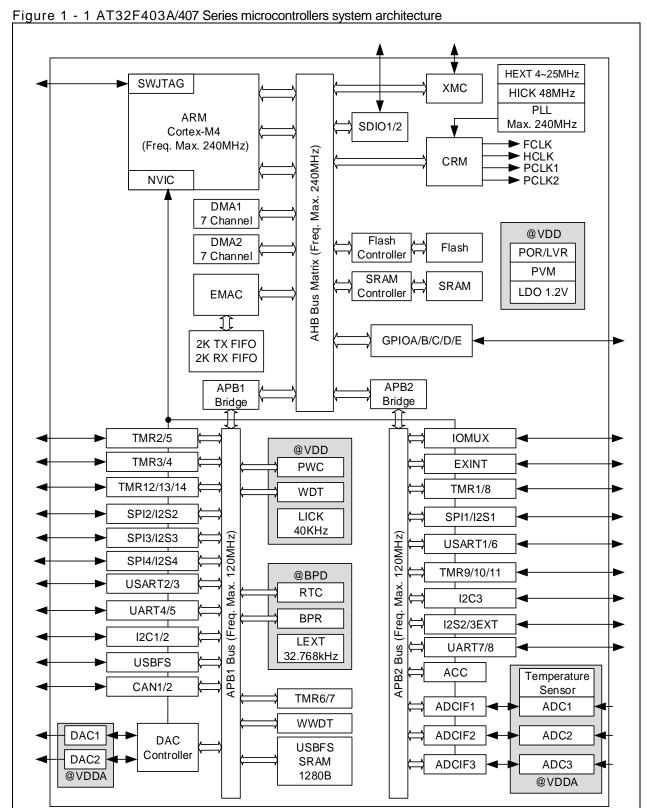
Table 1- 1 Bit-band address mapping in SRAM	39
Table 1- 2 Bit-band address mapping in the peripheral area	39
Table 1- 3 lists the vector table of AT32F403A/407/407A series.	40
Table 1- 4 List of abbreviations for registers	45
Table 1- 5 List of abbreviations for registers	45
Table 2- 1 Peripheral boundary address	49
Table 3- 1 PW register map and reset values	55
Table 4- 1 CRM register map and reset value	61
Table 5- 1 Flash Memory Architecture(1024 K)	78
Table 5- 2 Flash Memory Architecture(512 K)	78
Table 5- 3 Flash Memory Architecture(256 K)	79
Table 5- 4 Instruction set supported by external memory	80
Table 5- 5 User system data area	81
Table 5- 6 Flash memory access limit	89
Table 5- 7 Flash memory interface—Register map and reset value	91
Table 6- 1 GPIO register map and reset values	102
Table 7- 1 IOMUX input configuration	106
Table 7- 2 IOMUX output configuration	106
Table 7- 3 Hardware preemption	107
Table 7- 4 Debug port map	107
Table 7- 5 IOMUX register map and reset value	108
Table 8- 1 External interrupt/event controller register map and reset value	122
Table 9- 1 DMA error event	127
Table 9- 2 DMA interrupt requests	127
Table 9- 3 DMA1 requests for each channel	127
Table 9- 4 DMA2 requests for each channel	127
Table 9- 5 DMA flexible requests for each channel	128
Table 9- 6 DMA register map and reset value	129
Table 10- 1 CRC register map and reset value	137
Table 11- 1 l ² C register map and reset value	154
Table 12- 1 Error calculation for programmed baud rate	165
Table 12- 2 Data sampling over start bit and noise detection	168
Table 12- 3 Data sampling over valid data and noise detection	168

Table 12- 4 USART interrupt request	168
Table 12- 5 USART register map and reset value	169
Table 13- 1 Audio frequency precision using system clock	186
Table 13- 2 SPI register map and reset value	190
Table 14- 1 TMR functional comparison	195
Table 14- 2 TMR6 and TMR7— register table and reset value	197
Table 14- 3 TMRx internal trigger connection	202
Table 14- 4 Couting direction versus encoder signals	204
Table 14- 5 TMRx register map and reset value	211
Table 14- 6 Standard CxOUT channel output control bit	220
Table 14- 7 TMRx internal trigger connection	225
Table 14- 8 TMRx register map and reset value	230
Table 14- 9 Standard CxOUT channel output control bit	235
Table 14- 10 TMRx register map and reset value	236
Table 14- 11 Standard CxOUT channel output control bit	240
Table 14- 12 TMRx internal trigger connection	244
Table 14- 13 Couting direction versus encoder signals	246
Table 14- 14 TMR1 and TMR8 register map and reset value	253
Table 14- 15 Complementary output channel CxOUT and CxCOUT control bits with break function	264
Table 15- 1 Minimum and maximum timeout value when PCLK1=72 MHz	270
Table 15- 2 WWDT register map and reset value	270
Table 16- 1 WDT timeout period (LICK=40kHz)	273
Table 16- 2 WDT register and reset value	273
Table 17- 1 RTC register map and reset values	278
Table 18- 1 BPR register map and reset values	281
Table 19- 1 Trigger sources for ADC1 and ADC2	289
Table 19- 2 Trigger sources for ADC3	289
Table 19- 3 ADC register map and reset values	296
Table 20- 1 Trigger source selection	309
Table 20- 2 DAC register map and reset values	311
Table 21- 1 CAN register map and reset values	327
Table 22- 1 NOR/PSRAM pins	343
Table 22- 2 NAND pins	343
Table 22- 3 Memory bank selection	344
Table 22- 4 Pin signals for NOR and PSRAM	345

Table 22- 5 Address translation between HADDR and external memory	345
Table 22- 6 Data access width vs. external memory data width	345
Table 22- 7 NOR/PSRAM parameter registers	346
Table 22- 8 Mode 1— SRAM/NOR Flash chip select control register (XMC_BK1CTRL) configuration	346
Table 22- 9 Mode 1— SRAM/NOR Flash chip select timing register (XMC_ BK1TMG) configuration	347
Table 22- 10 Mode 2— SRAM/NOR Flash chip select control register (XMC_BK1CTRL) configuration	349
Table 22- 11 Mode 2— SRAM/NOR Flash chip select timing register (XMC_BK1TMG) configuration	350
Table 22- 12 Mode A— SRAM/NOR Flash chip select control register (XMC_BK1CTRL) configuration	351
Table 22- 13 Mode A— SRAM/NOR Flash chip select timing register (XMC_BK1TMG) configuration	352
Table 22- 14 Mode A— SRAM/NOR Flash write timing register (XMC_BK1TMGWR) configuration	352
Table 22- 15 Mode B— SRAM/NOR Flash chip select register (XMC_BK1CTRL) configuration	353
Table 22- 16 Mode B— SRAM/NOR Flash chip select timing register (XMC_BK1TMG) configuration	354
Table 22- 17 Mode B— SRAM/NOR Flash write timing register (XMC_BK1TMGWR) configuration	354
Table 22- 18 Mode C— SRAM/NOR Flash chip select register (XMC_BK1CTRL) configuration	355
Table 22- 19 Mode C—SRAM/NOR Flash chip select timing register (XMC_BK1TMG) configuration	356
Table 22- 20 Mode C— SRAM/NOR Flash write timing register (XMC_BK1TMGWR) configuration	356
Table 22- 21 Mode D— SRAM/NOR Flash chip select register (XMC_BK1CTRL) configuration	. 357
Table 22- 22 Mode D—SRAM/NOR Flash chip select timing register (XMC_BK1TMG) configuration	358
Table 22- 23 Mode D— SRAM/NOR Flash write timing register (XMC_BK1TMGWR) configuration	358
Table 22- 24 Multiplexed mode — SRAM/NOR Flash chip select control register (XMC_BK1CTRL)	359
Table 22- 25 Multiplexed mode—SRAM/NOR Flash chip select timing register (XMC_BK1TMG)	360
Table 22- 26 Synchronous mode—SRAM/NOR Flash chip select control register (XMC_ BK1CTRL)	. 361
Table 22- 27 Synchronous mode—SRAM/NOR Flash chip select timing register (XMC_BK1TMG)	. 362
Table 22- 28 Typical pin signals for NAND Flash	363
Table 22- 29 Data access width vs. external memory data width	364
Table 22- 30 NAND parameter registers	364
Table 22- 31 lists the ECC result bits corresponding to the number of bytes	366
Table 22- 32 XMC register address mapping	366
Table 23- 1 Lock/unlock command structure	. 380
Table 23- 2 Commands	382
Table 23- 3 Data block read commands	383
Table 23- 4 Data stream read/write commands	383
Table 23- 5 Data block write commands	384
Table 23- 6 Block-based write protect commands	384
Table 23- 7 Erase commands	. 384

Ver 2.02

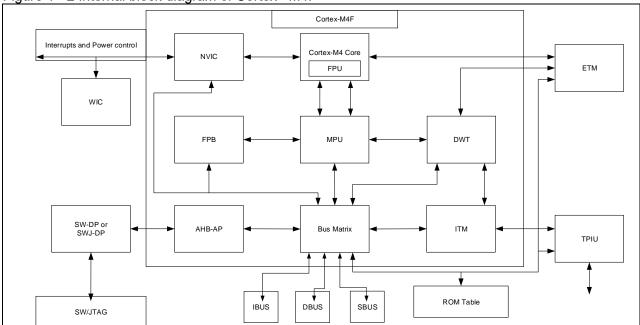
Table 23- 8 I/O mode commands	385
Table 23- 9 Card lock commands	385
Table 23- 10 Application-specific commands	385
Table 23- 11 R1 response	386
Table 23- 12 R2 response	386
Table 23- 13 R3 response	386
Table 23- 14 R4 response	386
Table 23- 15 R4b response	386
Table 23- 16 R5 response	387
Table 23- 17 R6 response	387
Table 23- 18 SDIO pin definitions	388
Table 23- 19 Command formats	389
Table 23- 20 Short response format	389
Table 23- 21 Long response format	389
Table 23- 22 Command path status flags	390
Table 23- 23 Data token formats	392
Table 23- 24 A summary of the SDIO registers.	394
Table 23- 25 Response type and SDIO_RSPx register	397
Table 24- 1 Buffer size configuration table	405
Table 24- 2 USBFS register map and reset values	407
Table 25- 1 ACC interrupt requests	413
Table 25- 2 ACC register map and reset values	416
Table 26- 1 shows the clock range.	422
Table 26- 2 Transmit interface signal encode	423
Table 26- 3 Receive interface signal encode	423
Table 26- 4 Ethernet peripheral pin configuration (black: default red: remapping signals)	425
Table 26- 5 Destination address filtering	427
Table 26- 6 Source address filtering	428
Table 26- 7 Receive descriptor 0	442
Table 26- 8 Ethernet register map and its reset values	450
Table 27- 1 Trace function enable	485
Table 27- 2 Trace function mode	486
Table 27- 3 DEBUG register address and reset value	486



1 System architecture

AT32F403A/407 series microcontrollers consist of 32-bit ARM® Cortex®-M4F processor core, multiple 16-bit and 32-bit timers, DMA controllers, RTC, communication interfaces such as SPI, I2C, USART/UART and SDIO, CANs, external memory controller (XMC), USB2.0 full-speed interfaces, Ethernet MAC, automatic clock calibration (ACC), 12-bit ADC, 12-bit DAC, programmable voltage monitor (PVM) and other peripherals. Cortex®-M4F processer supports enhanced high-performance DSP instruction set, including extended single cycle 16-bit/32-bit multiply accumulater (MAC), dual 16-bit MAC instruction, optimized 8-bit/16-bit SIMD operation and saturation operation instruction, and single-precision (IEEE-754) float point unit (FPU), as shown in Figure 1-1:

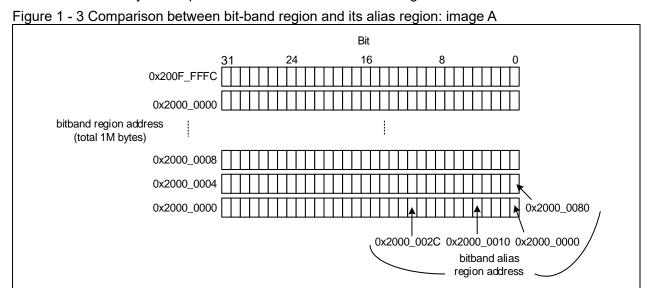
Note: EMAC is applied to only AT32F407, rather than AT32F403A.

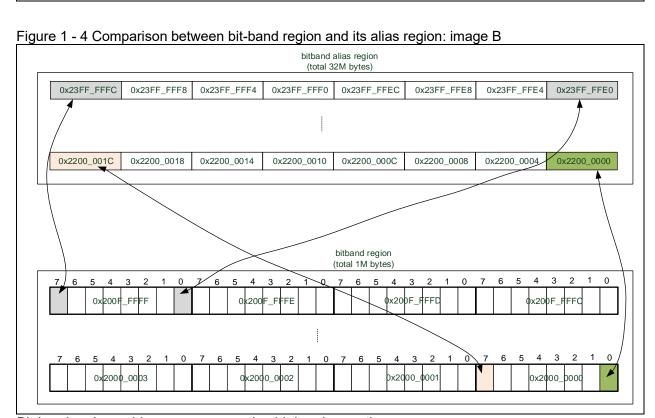

1.1 System overview

1.1.1 ARM Cortex[™]-M4F processor

Cortex®-M4F processor is a low power consumption processor featuring low gate count, low interrupt latency, and low-cost debug. It supports DSP instruction set and FPU, and is applicable to deeply-embedded applications that require quicker response to interruption. Cortex®-M4F processor is based on ARMv7-M architecture, supporting both Thumb instruction set and DSP instruction set.

Figure 1-2 shows the internal block diagram of Cortex®-M4F processor. Please refer to *ARM Cortex®-M4 Technical Reference Manual* for more information.


Figure 1 - 2 Internal block diagram of Cortex®-M4F



1.1.2 Bit band

Through bit-band operations, read and write access to a single bit can be performed using common load/store operations. The Cortex®-M4F memory includes two bit-band regions: the least significant 1M byte of SRAM and the least significant 1M byte of peripherals. In addition to access to bit-band addresses, their respective bit-band alias area can be used to access to any bit of any address. The bit-band alias area transforms each bit into a 32-bit word. Thus, accessing to one bit in the alias area has the same effect as read-modify-write operation on the bit in the bit-band region.

Bit-band region: address area supporting bit-band operations

Bit-band alias region: access to the alias region has the same effect as read-modify-write operation on the bit-band region

Each bit in the bit-band region is mapped into a word (LSB) of the alias region. When accessing to the address in the bit-band alias region, such address is transformed into the bit-band address. For a read operation, read one word in the bit-band region, then move the required bit to the right to LSB, and then return the LSB. For a write operation, first move the targeted bit to the left to the corresponding bit

number, then perform read-modify-write operation on bit level.

The address ranges of two Flash memories supporting bit-band operations:

Least significant 1 Mbyte in SRAM: 0x2000 0000~0x200F FFFF

Least significant 1 Mbyte in peripherals: 0x4000_0000~0x400F_FFFF

For a bit in the SRAM bit-band region, if the byte address is A, the bit number is n (0<=n<=7), then the alias address where the bit is :

AliasAddr = 0x2200 0000+ (A-0x2000 0000)*32+n*4

For a bit in the peripheral bit-band region, if the byte address is A, the bit number is n (0<=n<=7), then the alias address where the bit is:

AliasAddr = $0x4200 \ 0000+ (A-0x4000 \ 0000)*32+n*4$

Table 1-1 shows the mapping between bit-band region and alias region in SRAM:

Table 1- 1 Bit-band address mapping in SRAM

Bit-band region	Equivalent alias address
0x2000_0000.0	0x2200_0000.0
0x2000_0000.1	0x2200_0004.0
0x2000_0000.2	0x2200_0008.0
0x2000_0000.31	0x2200_007C.0
0x2000_0004.0	0x2200_0080.0
0x2000_0004.1	0x2200_0084.0
0x2000_0004.2	0x2200_0088.0
0x200F_FFFC.31	0x23FF_FFFC.0

Table 1-2 shows the mapping between bit-band region and alias region in the peripheral area:

Table 1- 2 Bit-band address mapping in the peripheral area

Bit-band region	Equivalent alias address
0x4000_0000.0	0x4200_0000.0
0x4000_0000.1	0x4200_0004.0
0x4000_0000.2	0x4200_0008.0
0x4000_0000.31	0x4200_007C.0
0x4000_0004.0	0x4200_0080.0
0x4000_0004.1	0x4200_0084.0
0x4000_0004.2	0x4200_0088.0
0x400F_FFFC.31	0x43FF_FFFC.0

In terms of bit-band operation, one of the advantages is to control LED ON/OFF independently via GPIO pins. On the other hand, it brings great conveninence for serial interface operations. In short, it is best suited to hardware I/O-intensive low-level applications.

In addition, bit-band operations can also simplify jump process. When jump operation is based on a bit level, the previous steps are:

- Read the whole register
- Mask the undesired bits
- Compare and jump

For now, you just need do:

- Read the bit status from the bit-band alias region
- Compare and jump

Apart from making code more concise, its important function is also reflected in multi-task environment. When it comes to multiples taks, it turns the read-modify-write operations into a hardware-supported atomic operation to avoid the scenario where the read-modify-write operation is disrupted, resulting in disorder.

1.1.3 Interrupt and exception vectors

Table 1-3 AT32F403A/407 series vector table

Pos.	Priorit	Priority Y Type	Name	Description	Address
	-	-	-	Reserved	0x0000_0000
	-3	Fixed	Reset	Reset	0x0000_0004
	-2	Fixed	NMI	Non maskable interrupt Clock Fail Detector (CFD) is linked to NMI vector	0x0000_0008
	-1	Fixed	HardFault	All class of fault	0x0000_000C
	0	Configur able	MemoryManage	Memory management	0x0000_0010
	1	Configur able	BusFault	Pre-fetch fault, memory access fault	0x0000_0014
	2	Configur able	UsageFault	Undefined instruction or illegal state	0x0000_0018
	-	-	-	Reserved	0x0000_001C ~0x0000_002B
	3	Configur able	SVCall	System service call via SWI instruction	0x0000_002C
	4	Configur able	DebugMonitor	Debug monitor	0x0000_0030
	-	-	-	Reserved	0x0000_0034
	5	Configur able	PendSV	Pendable request for system service	0x0000_0038
	6	Configur able	SysTick	System tick timer	0x0000_003C
0	7	Configur able	WWDT	Window watchdog timer	0x0000_0040
1	8	Configur able	PVM	PVM from EXINT interrupt	0x0000_0044
2	9	Configur able	TAMPER	Tamper interrupt	0x0000_0048
3	10	Configur able	RTC	RTC global interrupt	0x0000_004C
4	11	Configur able	FLASH	Flash global interrupt	0x0000_0050
5	12	Configur able	CRM	Clock Reset manage interrupt	0x0000_0054
6	13	Configur able	EXINT0	EXINT line0 interrupt	0x0000_0058
7	14	Configur able	EXINT1	EXINT line1 interrupt	0x0000_005C
8	15	Configur able	EXINT2	EXINT line2 interrupt	0x0000_0060

9	16	Configur able	EXINT3	EXINT line3 interrupt	0x0000_0064
10	17	Configur able	EXINT4	EXINT line4 interrupt	0x0000_0068
11	18	Configur able	DMA1 channel1	DMA1 channel1 global interrupt	0x0000_006C
12	19	Configur able	DMA1 channel2	DMA1 channel2 global interrupt	0x0000_0070
13	20	Configur able	DMA1 channel3	DMA1 channel3 global interrupt	0x0000_0074
14	21	Configur able	DMA1 channel4	DMA1 channel4 global interrupt	0x0000_0078
15	22	Configur able	DMA1 channel5	DMA1 channel5 global interrupt	0x0000_007C
16	23	Configur able	DMA1 channel6	DMA1 channel6 global interrupt	0x0000_0080
17	24	Configur able	DMA1 channel7	DMA1 channel7 global interrupt	0x0000_0084
18	25	Configur able	ADC1_2	ADC1 and ADC2 global interrupt	0x0000_0088
19	26	Configur able	USBFS_H_CAN1_TX	USBFS high priority or CAN1 TX interrupt	0x0000_008C
20	27	Configur able	USBFS_L_CAN1_RX0	USBFS low priority or CAN1 RX0 interrupt	0x0000_0090
21	28	Configur able	CAN1_RX1	CAN1 RX1 interrupt	0x0000_0094
22	29	Configur able	CAN_SE	CAN state error interrupt	0x0000_0098
23	30	Configur able	EXINT9_5	EXINT line[9: 5] interrupt	0x0000_009C
24	31	Configur able	TMR1_BRK_TMR9	TMR1 break interrupt and TMR9 global interrupt	0x0000_00A0
25	32	Configur able	TMR1_OVF_TMR10	TMR1 overflow and TMR10 global interrupt	0x0000_00A4
26	33	Configur able	TMR1_TRG_HALL_TMR 11	TMR1 trigger and HALL interrupt and TMR11 global interrupt	0x0000_00A8
27	34	Configur able	TMR1_CH	TMR1 channel interrupt	0x0000_00AC
28	35	Configur able	TMR2	TMR2 global interrupt	0x0000_00B0
29	36	Configur able	TMR3	TMR3 global interrupt	0x0000_00B4
30	37	Configur able	TMR4	TMR4 global interrupt	0x0000_00B8
31	38	Configur able	I2C1_EVT	I ² C1 event interrupt	0x0000_00BC
32	39	Configur able	I2C1_ERR	I ² C1 error interrupt	0x0000_00C0
33	40	Configur able	I2C2_EVT	I ² C2 event interrupt	0x0000_00C4
34	41	Configur able	I2C2_ERR	1 ² C2 error interrupt	0x0000_00C8
35	42	Configur able	SPI1	SPI1 global interrupt	0x0000_00CC
36	43	Configur able	SPI2_I ² S2EXT	SPI2 and I ² S2EXT global interrupt	0x0000_00D0
37	44	Configur able	USART1	USART1 global interrupt	0x0000_00D4
38	45	Configur able	USART2	USART2 global interrupt	0x0000_00D8
39	46	Configur able	USART3	USART3 global interrupt	0x0000_00DC
40	47	Configur able	EXINT15_10	EXINT line[15: 10] global interrupt	0x0000_00E0
41	48	Configur able	RTCAlarm	RTC alarm through EXINT interrupt	0x0000_00E4
42	49	Configur able	USBFS_WAKEUP	USBFS wakeup through EXINT interrupt	0x0000_00E8
		۵٠			

43	50	Configur able	TMR8_BRK_TMR12	TMR8 break interrupt and TMR12 global interrupt	0x0000_00EC
44	51	Configur able	TMR8_OVF_TMR13	TMR8 overflow interrupt and TMR13 global interrupt	0x0000_00F0
45	52	able	TMR8_TRG_HALL_TMR 14	TMR8 trigger and HALL interrupt and TMR14 global interrupt	0x0000_00F4
46	53	Configur able	TMR8_CH	TMR8 channel interrupt	0x0000_00F8
47	54	Configur able	ADC3	ADC3 global interrupt	0x0000_00FC
48	55	Configur able	XMC	XMC global interrupt	0x0000_0100
49	56	Configur able	SDIO	SDIO global interrupt	0x0000_0104
50	57	Configur able	TMR5	TMR5 global interrupt	0x0000_0108
51	58	Configur able	SPI3_I ² S3EXT	SPI3 and I ² S3EXT global interrupt	0x0000_010C
52	59	Configur able	UART4	UART4 global interrupt	0x0000_0110
53	60	Configur able	UART5	UART5 global interrupt	0x0000_0114
54	61	Configur able	TMR6	TMR6 global interrupt	0x0000_0118
55	62	Configur able	TMR7	TMR7 global interrupt	0x0000_011C
56	63	Configur able	DMA2 channel1	DMA2 channel1 global interrupt	0x0000_0120
57	64	Configur able	DMA2 channel2	DMA2 channel2 global interrupt	0x0000_0124
58	65	Configur able	DMA2 channel3	DMA2 channel3 global interrupt	0x0000_0128
59	66	Configur able	DMA2 channel4_5	DMA2 channel4 and DMA2 channel5 global interrupt	0x0000_012C
60	67	Configur able	SDIO2	SDIO2 global interrupt	0x0000_0130
61	68	Configur able	I2C3_EVT	I2C3 event interrupt	0x0000_0134
62	69	Configur able	I2C3_ERR	I2C3 error interrupt	0x0000_0138
63	70	Configur able	SPI4	SPI4 global interrupt	0x0000_013C
64	71	-	-	Reserved	0x0000_0140
65	72	-	-	Reserved	0x0000_0144
66	73	-	-	Reserved	0x0000_0148
67	74	-	-	Reserved	0x0000_014C
68	75	Configur able	CAN2_TX	CAN2 TX interrupt	0x0000_0150
69	76	Configur able	CAN2_RX0	CAN2 RX0 interrupt	0x0000_0154
70	77	Configur able	CAN2_RX1	CAN2 RX1 interrupt	0x0000_0158
71	78	Configur able	CAN2_SE	CAN2 status error interrupt	0x0000_015C
72	79	Configur able	ACC	ACC interruupt	0x0000_0160
73	80	Configur able	USBFS_MAPH ¹	USBFS remap high priority interrupt	0x0000_0164
74	81	Configur able	USBFS_MAPL ¹	USBFS remap low priority interrupt	0x0000_0168
75	82	Configur able	DMA2 channel6_7	DMA2 channel6 and DMA2 channel7 global interrupt	0x0000_016C
76	83	Configur able	USART6	UART6 global interrupt	0x0000_0170
					

77	84	Configur able	UART7	UART7 global interrupt	0x0000_0174
78	85	Configur able	UART8	UART8 global interrupt	0x0000_0178
79	86	Configur able	EMAC ²	Ethernet global interrupt	0x0000_017C
80	87	Configur able	EMAC_WKUP ²	Ethernet wakeup interrupt through EXINT	0x0000_0180

Note: 1. USBFS module interrupt supports remap through the USBINTMAP bit in the CRM_INTMAP register. When USBINTMAP=0, use USBFS_H (19th) and USBFS_L (20th) interrupts; when USBINTMAP=1, use USB MAPH (73rd) and USB MAPL (74th) interrupts.

2. AT32F407 supports EMAC and EMAC_WKUP interrupts, but AT32F403A does not.

1.1.4 System Tick (SysTick)

The System Tick is a 24-bit downcounter. It will be reloaded with the initial value automatically when it is decremented to zero. It can generate periodic interrupts, so it is often used as multi-task scheduling counter for embedded operating system, and also to call the periodic tasks for non-embedded system.

The System Tick calibration value is fixed to 9000, which gives a reference time base of 1 ms when the System Tick clock is set to 9 MHz.

1.1.5 **Reset**

The processor reads the first two words from the CODE memory after a system reset and before program execution.

- Get the initial value of the main stack pointer (MSP) from address 0x0000 0000
- Get the initial value of the program counter (PC) from address 0x0000_0004. This value is a reset vector and LSB must be 1. Then take the instructions from the address corresponding to this value.

Figure 1 - 5 Reset process

Cortex[™]-M4F uses a full stack that increases downward, so the initial value of the main stack pointer (MSP) must be the end address of the stack memory plus 1. For example, if the stack area is set between 0x2000 7C00 and 0x2000 7FFF, then the initial value of MSP must be defined as 0x2000 8000.

The vector table follows the initial value of MSP. Cortex[™]-M4F operates in Thumb state, and thus each data value in the vetor table must set the LSB to 1. In Figure 1-6, 0x0000_0101 is used to represent 0x0000_0100. After the instruction at 0x0000_0100 is executed, the program starts running formally. Before that, it is a must for initializing MSP, because the first instruction may be interrupted by NMI or other faults before being executed. After the completion of MSP initialization, it is ready to prepare stack room for its service routines.

Figure 1 - 6 Example of MSP and PC initialization Other Memory Initial SP Value 0x2000 8000 0x2000_8000 1st push data 0x2000_7FFC Stack grows 0x2000_7FF8 2nd push data downward Stack Memory 0x2000_7C00 Other Memory Code **Boot Code** 0x0000_0100 Other Exception Vectors 0x0000_0101 0x0000 0004 0x0000_0000 0x2000_8000

In the AT32F403A/407 series, the main Flash memory, Boot code or SRAM can be remapped to the code area between 0x0000_0000 and 0x07FF_FFFF. BOOT1 and BOOT0 are used to set the specific memory from which CODE starts.

{BOOT1, BOOT0}=00/10, CODE starts from the main Flash memory

{BOOT1, BOOT0}=11, CODE starts from Boot code

{BOOT1, BOOT0}=11, CODE starts from SRAM

After a system reset or when leaving from Standby mode, the pin values of both BOOT1 and BOOT0 will be relatched.

Boot code memory contains an embedded boot loader program that provides not only Flash programming function through USART1, USART2 or USB interface, but also provides extra firmware including communication protocol stacks that can be called for use by software developer through API.

1.2 List of abbreviations for registers

Table 1- 4 List of abbreviations for registers

Register type	Description
rw	Software can read and write to this bit.
ro	Software can only read this bit.
wo	Software can only write to the bit. Reading it returns its reset value.
rrc	Software can read this bit. Reading this bit automaticaly clears it.
rw0c	Software can read this bit and clear it by writing 0. Writing 1 has no effect on this bit.
rw1c	Software can read this bit and clear it by writing 1. Writing 0 has no effect on this bit.
rw1s	Software can read this bit and set it by writing 1. Writing 0 has no effect on this bit.
tog	Software can read this bit and torggle it by writing 1. Writing 0 has no effect on this bit.
rwt	Software can read this bit. Writng any value will trigger an event.
resd	Reserved.

1.3 Device characteristics information

Table 1-5 List of abbreviations for registers

Register abbr.	Base address	Reset value
F_SIZE	0x1FFF F7E0	0xXXXX
UID[31: 0]	0x1FFF F7E8	0xXXXX XXXX
UID[63: 32]	0x1FFF F7EC	0xXXXX XXXX
UID[95: 64]	0x1FFF F7F0	0xXXXX XXXX

1.3.1 Flash memory size register

This register contains the information about Flash memory size.

Bit	Abbr.	Reset value	Type	Descrption
D# 45: 0	E 017E	0		Flash size, in terms of KByte
BIT 15: 0	F_SIZE	0xXXXX	ro	For example: 0x0080 = 128 KByte

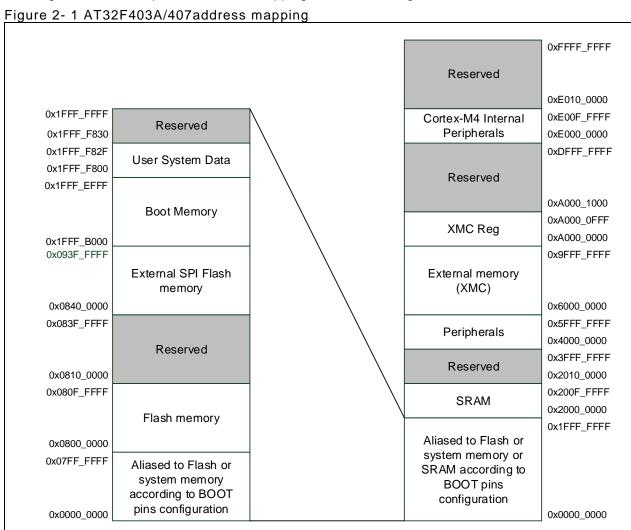
1.3.2 Device electronic signature

The device electronic signature contains the memory size and the unique device ID (96 bits). It is stored in the information block of the Flash memory. The 96-bit ID is unique for any device, and cannot be altered by users. It can be used for the following:

- Serial number: such as USB string serial number
- Part of security keys

Bit	Abbr.	Reset value	Туре	Description
Bit 31: 0	UID[31: 0]	0xXXXX XXXX	ro	UID for bit 31 to bit 0
Bit	Abbr.	Reset value	Type	Description
Bit 31: 0	UID[63: 32]	0xXXXX XXXX	ro	UID for bit 63 to bit 32
Bit	Abbr.	Reset value	Type	Description

Bit 31: 0 UID[95: 64] 0xXXXX XXXX ro UID for bit 95 to bit 64


Note: UID[95:88] is series ID, which is 0x07 for AT32F403A, and 0x8 for AT32F407.

2 Memory resources

2.1 Internal memory address map

Internal memory contains program memory (Flash), data memory (SRAM), peripheral registers and core registers. Their respective address mapping are shown in Figure 2-1.

2.2 Flash memory

AT32F403A/407 series provide up to 1024 KB of on-chip Flash memory, supporting a zero wait state single cycle 32-bit read operation.

Refer to Chapter 5 for more details about Flash memory controller and register configuration.

Flash memory organization (1024K)

The main memory is divided into bank 1 and bank 2, each with 512 Kbytes, including 256 pages per bank, and 2 Kbytes per page.

External memory size can be up to 16 Mbytes, including 4096 pages, and 4 Kbytes per page.

Block		Name	Address range
		Page 0	0x0800 0000 – 0x0800 07FF
	Damle 1	Page 1	0x0800 0800 – 0x0800 0FFF
	Bank 1 512 KB	Page 2	0x0800 1000 – 0x0800 17FF
	DIZKD		
Main maman		Page 255	0x0807 F800 – 0x0807 FFFF
Main memory		Page 256	0x0808 0000 – 0x0808 07FF
	Bank2 512 KB	Page 257	0x0808 0800 – 0x0808 0FFF
		Page 258	0x0808 1000 – 0x0808 17FF
		Page 511	0x080F F800 – 0x080F FFFF
		Page 0	0x0840 0000 – 0x0840 0FFF
Catamaal		Page 1	0x0840 1000 – 0x0840 1FFF
External memory	16 MB	Page 2	0x0840 2000 – 0x0840 2FFF
		Page 4095	0x093F F000 – 0x093F FFFF
Information bla	nok	Boot loader 16 KB	0x1FFF B000 – 0x1FFF EFFF
nformation block		User system data 48 B	0x1FFF F800 – 0x1FFF F82F

Flash memory organization (512K)

The main memory contains only one bank of 512 Kbytes, including 256 pages and 2 Kbytes per page. External memory size can be up to 16 Mbytes, including 4096 pages, and 4 Kbytes per page.

lock	Name	Add	Address range	
		Page 0	0x0800 0000 – 0x0800 07FF	
	D 1.4	Page 1	0x0800 0800 - 0x0800 0FFF	
Main memory	Bank 1	Page 2	0x0800 1000 – 0x0800 17FF	
memory	512 KB			
		Page 255	0x0807 F800 – 0x0807 FFFF	
		Page 0	0x0840 0000 - 0x0840 0FFF	
		Page 1	0x0840 1000 – 0x0840 1FFF	
External memory	16 MB	Page 2	0x0840 2000 - 0x0840 2FFF	
memory				
		Page 4095	0x093F F000 – 0x093F FFFF	
Information block		Boot load 16KB	0x1FFF B000 – 0x1FFF EFFF	
		User system da 48B	0x1FFF F800 – 0x1FFF F82F	

Flash memory organization (256K)

The main memory contains only one bank of 256 Kbytes, including 128 pages and 2 Kbytes per page. External memory size can be up to 16 Mbytes, including 4096 pages, and 4 Kbytes per page.

Block		Name	Address range
		Page 0	0x0800 0000 – 0x0800 07FF
	Danie 1	Page 1	0x0800 0800 – 0x0800 0FFF
	Bank 1 256 KB	Page 2	0x0800 1000 – 0x0800 17FF
	230 KB		
		Page 127	0x0803 F800 – 0x0803 FFFF
		Page 0	0x0840 0000 – 0x0840 0FFF
Estemal	16 MB	Page 1	0x0840 1000 – 0x0840 1FFF
External		Page 2	0x0840 2000 – 0x0840 2FFF
memory			
		Page 4095	0x093F F000 – 0x093F FFFF
Information block		Boot loader 16 KB	0x1FFF B000 – 0x1FFF EFFF
		User system data 48 B	0x1FFF F800 – 0x1FFF F82F

2.3 SRAM memory

The AT32F403A/407 series contain up to 96 KB of on-chip SRAM which starts at the address 0x2000_0000. It supports byte, half-word (16 bit) and word (32 bit) accesses. In addition, AT32F403A/407 also provide a special mode that supports dynamic switch between 96 KB and 224 KB. This is done by setting the EOPB0 bit. In 224 KB mode, Flash memory size (zero wait sate) is limited to 128 KB, while in 96 KB mode, the zero-wait-state Flash size is limited to 256 KB.

2.4 Peripheral address map

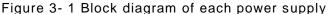
Table 2- 1 Peripheral boundary address

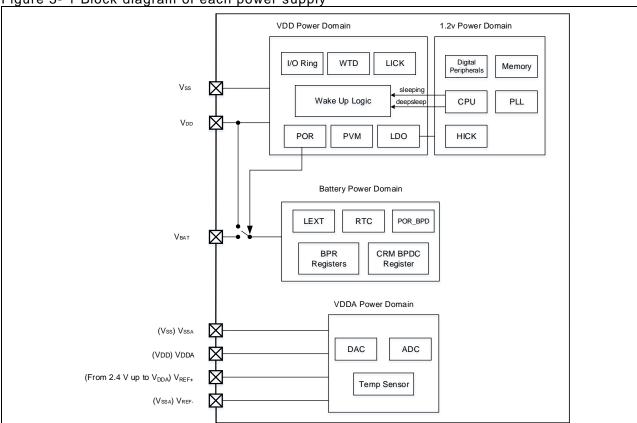
Bus	Boundary address	Peripherals
	0A000 1000 - 0xFFFF FFFF	Reserved
	0A000 0000 - 0xA000 0FFF	XMC_REG
	0x6000 0000 - 0x9FFF FFFF	XMC_MEM
	0x4002 A000 - 0x5FFF FFFF	Reserved
	0x4002 8000 - 0x4002 9FFF	EMAC
	0x4002 3400 - 0x4002 7FFF	SDIO2
	0x4002 3000 - 0x4002 33FF	CRC
AHB	0x4002 2000 - 0x4002 23FF	Flash memory interface (FLASH)
	0x4002 1400 - 0x4002 1FFF	Reserved
	0x4002 1000 - 0x4002 13FF	Clock reset manage (CRM)
	0x4002 0800 - 0x4002 0FFF	Reserved
	0x4002 0400 - 0x4002 07FF	DMA2
	0x4002 0000 - 0x4002 03FF	DMA1
	0x4001 8400 - 0x4001 7FFF	Reserved
	0x4001 8000 - 0x4001 83FF	SDIO
	0x4001 7400 - 0x4001 7FFF	Reserved
	0x4001 7000 - 0x4001 73FF	l ² S3EXT
	0x4001 6C00 - 0x4001 6FFF	I ² S2EXT
	0x4001 6800 - 0x4001 6BFF	UART8
	0x4001 6400 - 0x4001 67FF	UART7
	0x4001 6000 - 0x4001 63FF	USART6
	0x4001 5C00 - 0x4001 5FFF	l ² C3
	0x4001 5800 - 0x4001 5BFF	ACC
APB2	0x4001 5400 - 0x4001 57FF	TMR11 timer
	0x4001 5000 - 0x4001 53FF	TMR10 timer
	0x4001 4C00 - 0x4001 4FFF	TMR9 timer
	0x4001 4400 - 0x4001 4BFF	Reserved
	0x4001 4000 - 0x4001 43FF	Reserved
	0x4001 3C00 - 0x4001 3FFF	ADC3
	0x4001 3800 - 0x4001 3BFF	USART1
	0x4001 3400 - 0x4001 37FF	TMR8 timer
	0x4001 3000 - 0x4001 33FF	SPI1/I ² S1

0x4001 2C00 - 0x4001 2FFF	TMR1 timer
0x4001 2800 - 0x4001 2BFF	ADC2
0x4001 2400 - 0x4001 27FF	ADC1
0x4001 2000 - 0x4001 23FF	Reserved
0x4001 1C00 - 0x4001 1FFF	Reserved
0x4001 1800 - 0x4001 1BFF	GPIO port E
0x4001 1400 - 0x4001 17FF	GPIO port D
0x4001 1000 - 0x4001 13FF	GPIO port C
0X4001 0C00 - 0x4001 0FFF	GPIO port B
0x4001 0800 - 0x4001 0BFF	GPIO port A
0x4001 0400 - 0x4001 07FF	EXINT
0x4001 0000 - 0x4001 03FF	IOMUX
0x4000 8400 - 0x4000 FFFF	Reserved
0x4000 7800 - 0x4000 83FF	USBFS 1280 bytes buffer
0x4000 7400 - 0x4000 77FF	DAC
0x4000 7000 - 0x4000 73FF	Power control (PWC)
0x4000 6C00 - 0x4000 6FFF	Backup registers (BPR)
0x4000 6800 - 0x4000 6BFF	CAN2
0x4000 6400 - 0x4000 67FF	CAN1
0x4000 6000 - 0x4000 63FF	USBFS 512 bytes buffer (1)
0x4000 5C00 - 0x4000 5FFF	USBFS
0x4000 5800 - 0x4000 5BFF	I ² C2
0x4000 5400 - 0x4000 57FF	I ² C1
0x4000 5000 - 0x4000 53FF	UART5
0x4000 4C00 - 0x4000 4FFF	UART4
0x4000 4800 - 0x4000 4BFF	USART3
0x4000 4400 - 0x4000 47FF	USART2
0x4000 4000 - 0x4000 43FF	SPI4/I ² S4
0x4000 3C00 - 0x4000 3FFF	SPI3/I ² S3
0x4000 3800 - 0x4000 3BFF	SPI2/I ² S2
0x4000 3400 - 0x4000 37FF	Reserved
0x4000 3000 - 0x4000 33FF	Watchdog timer (WDT)
0x4000 2C00 - 0x4000 2FFF	Window watchdog timer (WWDT)
0x4000 2800 - 0x4000 2BFF	RTC
0x4000 2400 - 0x4000 27FF	Reserved
0x4000 2000 - 0x4000 23FF	TMR14 timer
0x4000 1C00 - 0x4000 1FFF	TMR13 timer
0x4000 1800 - 0x4000 1BFF	TMR12 timer
0x4000 1400 - 0x4000 17FF	TMR7 timer
0x4000 1000 - 0x4000 13FF	TMR6 timer
0x4000 0C00 - 0x4000 0FFF	TMR5 timer

APB1

0x4000 0800 - 0x4000 0BFF	TMR4 timer
0x4000 0400 - 0x4000 07FF	TMR3 timer
0x4000 0000 - 0x4000 03FF	TMR2 timer

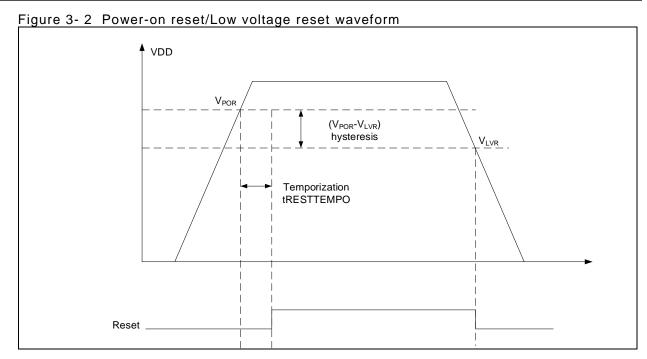

Note: 1.When USBBUFS = 0, USBFS buffer size is 512 bytes, its address is 0x4000 6000 ~ 0x400063FF. When USBBUFS = 1, USBFS buffer size is 768 ~ 1280 bytes, its address is 0x4000 7800 ~ 0x4000 83FF. If both CAN1 and CAN2 are not enabled, the maximum USBFS buffer can be set to 1280 bytes; If any one of them is enabled, the maximum USBFS buffer can be up to 1024 bytes; If both are enabled, the maximum USB buffer can be set to 768 bytes. 2. Only AT32F407 supports EMAC module.



3 Power control (PWC)

3.1 Introduction

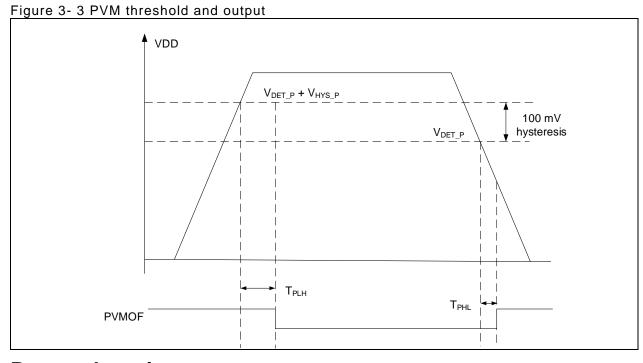
For AT32F403A/407 series, its operating voltage supply is 2.6 V \sim 3.6 V, with a temperature range of -40 \sim +105 °C. To reduce power consumption, this series provides three types of power saving modes, including Sleep, Deepsleep and Standby modes so as to achieve the best tradeoff among the conflicting demands of CPU operating time, speed and power consumption. The AT32F403A/407 series have three power domains—VDD/VDDA domain, 1.2 V domain and battery powered domain. The VDD/VDDA domain is supplied directly by external power, the 1.2 V domain is powered by the embedded LDO in the VDD/VDDA domain, and the battery powered domain is supplied through a VBAT pin.


3.2 Main Features

- Three power domains: VDD/VDDA domain, 1.2 V domain and battery powered domain
- Three types of power saving modes: Sleep mode, Deepsleep mode, and Standby mode
- Internal voltage regulator supplies 1.2 V voltage source for the core domain
- Power voltage detector is provided to issue an interrupt when the supply voltage is lower or higher than a programmed threshold
- The battery powered domain is powered by V_{BAT} when VDD is powered off
- VDD/VDDA applies separated digital and analog module to reduce noise on external power

3.3 POR/LVR

A POR analog module embedded in the VDD/VDDA domain is used to generate a power reset. The power reset signal is released at V_{POR} when the VDD is increased from 0 V to the operating voltage, or it is triggered at V_{LVR} when the VDD drops from the operating voltage to 0 V. During the power-on reset period, the reset signal has certain amount of time delay compared to VDD boost process. At the same time, hysteresis occurs in power-on reset (POR) and low voltage reset (LVR).



3.4 Power voltage monitor (PVM)

The PVM is used to monitor the power supply variations. It is enabled by setting the PVMEN bit in the power control register (PWC_CTRL), and the threshold value for voltage monitor is selected with the PVMSEL[2: 0].

After PVM is enabled, the comparison result between VDD and the programmed threshold is indicated by the PVMOF bit in the PWC_CTRLSTS register, with the hysteresis voltage VHYS_P being 100 mv. The PVM interrupt will be generated through the EXTI line 16 when VDD rises above the PVM threshold.

3.5 Power domain

1.2 V domain

1.2 V core domain includes a CPU core, SRAM, embedded digital peripherals and Phase Locked Loop (PLL). Such power domain is supplied by LDO (voltage regulator).

VDD/VDDA domain

VDD/VDDA domain includes VDD domain and VDDA domain. The VDD domain contains I/O circuit, power-saving mode wakeup circuit, watchdog timer, power-on reset/low voltage reset (POR/LVR), LDO and all PAD circuits other than PC13, PC14 and PC15. The VDDA domain contains DAC/ADC (DA/AD converters), temperature sensor and so on.

Typically, to ensure a better accuracy of ADC/DAC at a low voltage, the digital circuit is supplied by VDD while the analog circuit is powered by VDDA. On 64-pin packages and packages with less pins, the external reference voltage VREF+ and VREF- are connected to the VDDA pin and VSSA pin, respectively.

Battery powered domain

The battery powered domain contains RTC circuit, LEXT oscillator, PC13, PC14 and PC15, which is powered by either VDD or VBAT pin. When the VDD is cut off, the battery powered domain is automatically switched to VBAT pin to ensure that RTC can work normally.

- 1) When the battery powered domain is powered by VDD, the PC13 can be used as a general-purpose I/O, tamper pin, RTC calibration clock, RTC alarm or second output, while the PC14 and PC15 can be used as a GPIO or LEXT pin. (As an I/O port, PC13, PC14 and PC15 must be limited below 2 MHz, and to the maximum load of 30 pF, and these I/O ports must not be used as current sources)
- 2) When the battery powered domain is powered by VBAT, the PC13 can be used as a a tamper pin, RTC alarm or second output, while the PC14 and PC15 can only be used as a LEXT pin.

The switch of the battery powered domain will not be disconnected from VBAT because of the VDD being at its rising phrase or due to VDD low voltage reset. If the power switch has not been switched to the VDD when the VDD is powered on quickly, it is recommended to add a low votage drop diode between VDD and VBAT in order to prevent the currents of VDD from being injected to VBAT. If there is no external battery in the application, it is better to connet the VBAT to a 100 nF ceramic filter capacitor that is externally connected to VDD.

3.6 Power saving modes

When the CPU does not need to be kept running, there are three types of low-power modes available (Sleep mode, Deepsleep mode and Standby mode) to save power. Users can select the mode that gives the best compromise according to the low-power consumption, short startup time, and available wakeup sources. In addition, the power consumption in Run mode can be reduced by slowing down the system clocks or gating the clocks on the APB and AHB peripherals when they are not used.

Sleep mode

The Sleep mode is entered by executing WFI or WFE command. There are two options to select the Sleep mode entry mechanism through the SLEEPONEXIT bit in the Cortex ® -M4F system control register.

SLEEP-NOW mode:

When SLEEPDEEP=0 and SLEEPONEXIT=0, the MCU enters Sleep mode as soon as WFI or WFE instruction is executed.

SLEEP-ON-EXIT mode:

When SLEEPDEEP=0 and SLEEPONEXIT=1, the MCU enters Sleep mode as soon as the system exits the lowest-priority interrupt service routine by executing the WFI instruction.

In Sleep mode, all clocks and LDO work normally except CPU clocks (stopped), and all I/O pins keep the same state as in Run mode. The LDO provides an 1.2 V power (for CPU core, memory and embedded peripherals) as it is in normal power consumption mode.

- 1) If the WFI is executed to enter Sleep mode, any peripheral interrupt can wake up the device from Sleep mode.
- 2) If the WFE is executed to enter Sleep mode, the MCU exits Sleep mode as soon as an event occurs. The wakeup event can be generated by the following:
- Enabling a peripheral interrupt (it is not enabled in the NVIC) and enabling the SEVONPEND bit. When the MCU resumes, the peripheral interrupt pending bit and NVIC channel pending bit must be cleared.
- Configuring an internal EXINT line as an event mode to generate a wakeup event.

The wakeup time required by a WFE command is the shortest, since no time is wasted on interrupt

entry/exit.

Deepsleep Mode

Deepsleep mode is entered by setting the SLEEPDEEP bit in the Cortex[™]-M4F system control register and clearing the LPSEL bit in the power control register before WFI or WFE instructions.

The LDO status is selected by setting the VRSEL bit in the power control register (PWC_CTRL). When VRSEL=0, the LDO works in normal mode. When VRSEL=1, the LDO is set in low-power consumption mode.

In Deepsleep mode, all clocks in 1.2 V domain are stopped, and both HICK and HEXT oscillators are disabled. The LDO supplies power to the 1.2 V domain in normal mode or low-power mode. All I/O pins keep the same state as in Run mode. SRAM and register contents are preserved.

- 1) When the Sleep mode is entered by executing a WFI instruction, the interrupt generated on any external interrupt line in Interrupt mode can wake up the system from Deepsleep mode.
- 2) When the Sleep mode is entered by executing a WFE instruction, the interrupt generated on any external interrupt line in Event mode can wake up the system from Deepsleep mode.

When the MCU exits the Deepsleep mode, the HICK RC oscillator is enabled and selected as a system clock after stabilization. When the LDO operates in low-power mode, an additional wakeup delay is incurred for the reason that the LDO must be stabilized before the system is waken from the Deepsleep mode.

Standby Mode

Standby mode can achieve the lowest power consumption for the device. In this mode, the LDO is disabled. The whole 1.2 V domain, PLL, HICK and HEXT oscillators are also powered off. SRAM and register contents are lost. Only registers in the battery powered domain and standby circuitry remain supplied.

The Standby mode is entered by the following procedures:

- Set the SLEEPDEE bit in the Cortex™-M4F system control register
- Set the LPSEL bit in the power control register (PWC CTRL)
- Clear the SWEF bit in the power control/status register (PWC CTRLSTS)
- Execute a WFI/WFE instruction

In Standby mode, all I/O pins remain in a high-impedance state except reset pins, TAMPER pins that are set as anti-tamper or calibration output, and the wakeup pins enabled.

The MCU leaves the Standby mode when an external reset (NRST pin), an WDT reset, a rising edge on the WKUP pin or the rising edge of an RTC alarm even occurs.

Debug mode

By default, the debug connection is lost if the MCU enters Deepsleep mode or Standby mode while debugging. The reason is that the Cortex[™]-M4F core is no longer clocked. However, the software can be debugged even in the low-power mode by setting some configuration bits in the DEBUG register (DEBUG CTRL).

3.7 PWC registers

The peripheral registers can be accessed by half-words (16 bit) or words (32 bit)

Table 3- 1 PW register map and reset values

Register abbr.	Offset	Reset value
PWC_CTRL	0x00	0x0000 0000
PWC_CTRLSTS	0x04	0x0000 0000

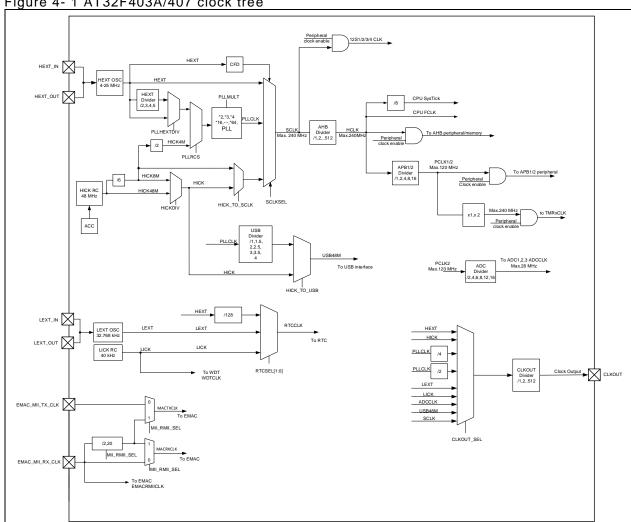
3.7.1 Power control register (PWC_CTRL)

Bit	Name	Reset value	Type	Description
Bit 31: 9	Reserved	0x000000	resd	Kept at its default value.
				Battery powered domain write enable
				0: Disabled
				1: Enabled
D:+ 0	DDWEN	0.0	m.,	Note:
Bit 8	BPWEN	0x0	rw	If HEXT/128 is used as the RTC clock, the battery powered
				domain write operation is enabled.
				After reset, the battery powered domain write access is
				disabled. To write, this bit must be set.
,				Power voltage monitoring boundary select
				000: Unused, not configurable
				001: 2.3 V
				010: 2.4 V
Bit 7: 5	PVMSEL	0x0	rw	011: 2.5 V
				100: 2.6 V
				101: 2.7 V
				110: 2.8 V
				111: 2.9 V
-				Power voltage monitoring enable
Bit 4	PVMEN	0x0	rw	0: Disabled
				1: Enabled
				Clear SEF flag
				0: No effect
Bit 3	CLSEF	0x0	wo	1: Clear the SEF flag
				Note: This bit is cleared by hardware after clearing the SEF
				flag. Reading this bit at any time will return all zero.
-				Clear SWEF flag
				0: No effect
				1: Clear the SWEF flag
Bit 2	CLSWEF	0x0	wo	Note:
				Clear the SWEF flag after two system clock cycles.
				This bit is cleared by hardware after clearing the SWEF
				flag. Reading this bit at any time will return all zero.
				Low power mode select in sleepdeep
Bit 1	LPSEL	0x0	rw	0: Enter DEEPSLEEP mode
				1: Enter Standby mode
-				LDO state select in deepsleep mode
Bit 0	VRSEL	0x0	rw	0: Enabled
		0,10	. •••	1: Low-power consumption mode
-				== series eemes pase

3.7.2 Power control/status register (PWC_CTRLSTS)

Additional APB cycles are needed to read this register versus a standard APB read.

Bit	Name	Reset value	Type	Description
Bit 31: 9	Reserved	0x000000	resd	Kept at its default value.
Bit 8	SWPEN	0x0	rw	Standby wake-up pin enable 0: Disabled (this pin is used for general-purpose I/O) 1: Enabled (this pin is forced in input pull-down mode, and no longer used for general-purpose I/O) Note: This bit is cleared by hardware after system reset.
Bit 7: 3	Reserved	0x00	resd	Keep at its default value.
Bit 2	PVMOF	0x0	ro	Power voltage monitoring output flag 0: Power voltage is higher than the threshold 1: Power voltage is lower than the threshold Note: The power voltage monitor is stopped in Standby mode.
Bit 1	SEF	0x0	ro	Standby mode entry flag 0: Device is not in Standby mode 1: Device is in Standby mode Note: This bit is set by hardware (enter Standby mode) and cleared by POR/LVR or by setting the CLSEF bit.
Bit 0	SWEF	0x0	ro	Standby wake-up event flag 0: No wakeup event occurred 1: A wakeup event occurred Note: This bit is set by hardware (on an wakeup event), and cleared by POR/LVR or by setting the CLSWEF bit. A wakeup event is generated by one of the following: When the rising edge on the Standby wakeup pin occurs; When the RTC alarm event occurs; If the Standby wakeup pin is enabled when the Standby wakeup pin level is high.



Clock and reset manage (CRM)

Clock 4.1

AT32F403A/407 series provide different clock sources: HEXT oscillator clock, HICK oscillator clock, PLL clock, LEXT oscillator and LICK oscillator.

Figure 4- 1 AT32F403A/407 clock tree

AHB, APB1 and APB2 all support multiple frequency division. The AHB domain has a maximum of 240 MHz, and both APB1 and APB2 are up to 120 MHz.

4.1.1 **Clock sources**

High speed external oscillator (HEXT)

The HEXT includes two clock sources: crystal/ceramic resonator and bypass clock.

The HEXT crystal/ceramic resonator is connected externally to a 4~25MHz HEXT crystal that produces a highly accurate clock for the system. The HEXT clock signal is not released until it becomes stable.

An external clock source can be provided by HEXT bypass. Its frequency can be up to 25 MHz. The external clock signal should be connected to the HEXT_IN pin while the HEXT_OUT pin should be left floating.

High speed internal clock (HICK)

The HICK oscillator is clocked by a high-speed RC in the microcontroller. The internal frequency of the HICK clock is 48 MHz. Although it is less accurate, its startup time is shorter than the HEXT crystal oscillator. The HICK clock frequency of each device is calibrated by ARTERY for 1% accuracy (25°C) in factory. The factory calibration value is loaded in the HICKCAL[7: 0] bit of the clock control register. The RC oscillator speed may be affected by voltage or temperature variations. Thus the HICK frequency can

be trimmed using the HICKTRIM[5: 0] bit in the clock control register.

The HICK clock signal is not released until it becomes stable.

PLL clock

The HICK or HEXT clock can be used as an input clock source of PLL, and the input clock rangs from 2 M to 16 MHz. The input clock source and multiplication factor must be configured before enabling the PLL. Otherwise, once the PLL is enabled, these parameters cannot be changed. The PLL clock signal is not released until it becomes stable.

Low speed external oscillator (LEXT)

The LEXT oscillator provides two clock sources: LEXT crystal/ceramic resonator and LEXT bypass.

LEXT crystal/ceramic resonator:

The LEXT crystal/ceramic resonator provides a 32.768 KHz low-speed clock source. The LEXT clock signal is not released until it becomes stable.

LEXT bypass clock

In this mode, an external clock source with a frequency of 32.768 kHzcan be provided. The external clock signal should be connected to the LEXT_IN pin while the LEXT_OUT remains floating.

Low speed internal RC oscillator (LICK)

The LICK oscillator is clocked by an internal low-speed RC oscillator. The clock frequency is between 30 kHz and 60 kHz. It acts as a low-power clock source that can be kept running in Deepsleep mode and Standby mode for watchdog and auto-wakeup unit.

The LICK clock signal is not released until it becomes stable.

4.1.2 System clock

After a system reset, the HICK oscillator is selected as system clock. The system clock can make flexible switch among HICK oscillator, HEXT oscillator and PLL clock. However, a switch from one clock source to another occurs only if the target clock source becomes stable. When the HICK oscillator is used directly or indirectly through the PLL as the system clock, it cannot be stopped.

4.1.3 Peripheral clock

Most peripherals use HCLK, PCLK1 or PCLK2 clock. The individual peripherals have their dedicated clocks.

System Tick timer (SysTick) is clocked by HCLK or HCLK/8.

ADCs are clocked by APB2 divided by 2, 4, 6, 8, 12 or 16.

The timers are clocked by APB1/2. In particular, if the APB prescaler is 1, the timer clock frequency is equal to that of APB1/2; otherwise, the timer clock frequency is set to double the APB1/2 frequency.

The USB clock source can be switched between HICK and PLL frequency divider. If the HICK is selected as the clock source, the USB clock should be set as 48 MHz; If the PLL frequency divider is selected as the clock source, the USB frequency divider provides 48 MHz USBCLK, and thus the PLL needs to be set as 48*N*0.5 MHz (N=2,3,4,5...)

RTC clock sources: HEXT/128, LEXT oscillator and LICK oscillator. Once the clock source is selected, it cannot be altered without resetting the battery powered domain. If the LEXT is used as RTC clock, the RTC is not affected when the VDD is powered off. If the HEXT or LICK is selected as RTC clock, the RTC state is not guaranteed when both HEXT and LICK are powered off.

Watchdog is clocked by LICK oscillator. If the watchdog is enabled by either hardware option or software access, the LICK oscillator is forced ON. The clock is provided to the watchdog only after the LICK oscillator temporization.

4.1.4 Clock fail detector

The clock fail detector (CFD) is designed to respond to HEXT clock failure when the HEXT is used as the system clock ,directly or indirectly. If a failure is detected on the HEXT clock, a clock failure event is sent to the break input of TMR1 and TMR8 and an interrupt is generated. This interrrpt is directly linked to CPU NMI so that the software can perform rescue operations. The NMI interrupt keeps executing until the CFD interrupt pending bit is cleared. This is why the CFD interrupt has to be cleared in the NMI service rounte. The HEXT clock failure will result in a switch of the system clock to the HICK clock, the CFD to be disabled , HEXT clock to be stopped, and even PLL to be disabled if the HEXT clock is selected as the system clock through PLL.

4.1.5 Auto step-by-step system clock switch

The automatic frequency switch is designed to ensure a smooth and stable switch of system frequency when the system clock source is switched from others to the PLL or when the AHB prescaler is changed from large to small. When the operational target is larger than 108 MHz, it is recommended to enable the automatic frequency switch. Once it is enabled, the AHB bus is halted by hardware till the completion of the switch. During this switch period, the DMA remain working, and the interrupt events are recorded and then handled by NVIC when the AHB bus resumes.

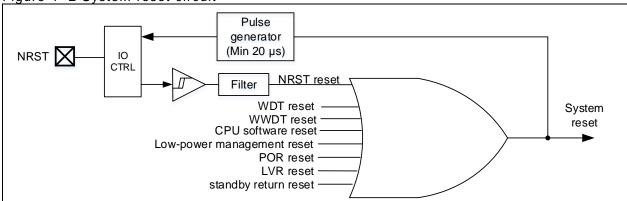
4.1.6 Internal clock output

The microcontroller allows the internal clock signal to be output to an external CLKOUT pin. That is, ADC CLK, USB48M, SCLK, LICK, LEXT, HICK, HEXT, PLL/2 and PLL/4 can be output to the CLKOUT pin.

4.1.7 Interrupts

The microcontroller specifies a stable flag for each clock source. As a result, when a clock source is enabled, it is possible to determine if the clock is stable by checking the flag pertaining to the clock source. An interrupt request is generated when the interrupt corresponding to the clock source is enabled. If a failure is detected on the HEXT clock, the CFD interrupt is generated. Such interrrpt is directly linked to CPU NMI.

4.2 Reset


4.2.1 System reset

AT32F403A/407 series provide the following system reset sources:

- NRST reset: on the external NRST pin
- WDT reset: watchdog overflow
- WWDT reset: window watchdog overflow
- CPU software reset: Cortex[™]-M4F software reset
- Low-power management reset: this type of reset is enabled when entering Standby mode (by clearing the nSTDBY_RST bit in the user system data); this type of reset is enabled when entering Deepsleep mode (by clearing the nDEPSLP_RST in the user system data).
- POR reset: power-on reset
- LVR reset: low voltage reset
- When exiting Standby mode

NRST reset, WDT reset, WWDT reset, software reset and low-power management reset sets all registers to their reset values except the clock control/status register (CRM_CTRLSTS) and the battery powered domain; the power-on reset, low-voltage reset or reset generated when exiting Standby mode sets all registers to their reset values except the battery powered domain registers.

Figure 4- 2 System reset circuit

4.2.2 Battery powered domain reset

Battery powered domain has two specific reset sources:

- Software reset: triggered by setting the BPDRST bit in the battery powered domain control register (CRM_BPDC)
- VDD or VBAT power on, if both supplies have been powered off.
 Software reset affects only the battery powered domain.

4.3 CRM registers

These peripheral registers have to be accessed by bytes (8 bits), half words (16 bits) or words (32 bits).

Table 4- 1 CRM register map and reset values

Register	Offset	Reset value
CRM_CTRL	0x000	0x0000 XX83
CRM_CFG	0x004	0x0000 0000
CRM_CLKINT	0x008	0x0000 0000
CRM_APB2RST	0x00C	0x0000 0000
CRM_APB1RST	0x010	0x0000 0000
CRM_AHBEN	0x014	0x0000 0014
CRM_APB2EN	0x018	0x0000 0000
CRM_APB1EN	0x01C	0x0000 0000
CRM_BPDC	0x020	0x0000 0000
CRM_CTRLSTS	0x024	0x0C00 0000
CRM_AHBRST	0x028	0x0000 0000
CRM_MISC1	0x030	0x0000 0000
CRM_MISC2	0x050	0x0000 0000
CRM_MISC3	0x054	0x0000 000D
CRM_INTMAP	0x05C	0x0000 0000

4.3.1 Clock control register (CRM_CTRL)

Bit	Name	Reset value	Туре	Description
Bit 30: 26	Reserved	0x00	resd	Kept at its default value.
				PLL clock stable
D'' 05	DI I OTDI	0.0		This bit is set by hardware after PLL is ready.
Bit 25	PLLSTBL	0x0	ro	0: PLL clock is not ready.
				1: PLL clock is ready.
				PLL enable
Bit 24	PLLEN	0x0	rw	This bit is set and cleared by software. It can also be cleared by hardware when entering Standby or Deepsleep mode. When the PLL clock is used as the system clock, this bit cannot be cleared. 0: PLL is OFF
				1: PLL is ON.
Bit 23: 20	Reserved	0x0	resd	Kept at its default value.
				Clock failure detector enable
Bit 19	CFDEN	0x0	rw	0: OFF
				1: ON
				High speed external crystal bypass
				This bit can be written only if the HEXT is disabled.
Bit 18	HEXTBYPS	0x0	rw	0: OFF
				1: ON
				High speed external crystal stable
Bit 17	HEXTSTBL	0x0	ro	This bit is set by hardware after HEXT becomes stable.
				0: HEXT is not ready.
				1: HEXT is ready.
				High speed external crystal enable
Bit 16	HEXTEN	0x0	rw	This bit is set and cleared by software. It can also be cleared by hardware when entering Standby or Deepsleep mode. When the HEXT clock is used as the system clock, this bit cannot be cleared
				0: OFF.
				1: ON
				High speed internal clock calibration
				The default value of this field is the initial factory calibration value.
Bit 15: 8	HICKCAL	0xXX	rw	When the HICK output frequency is 48 MHz, it needs adjust 240 kHz (design value) based on this frequency for each HICKCAL value change; when HICK output frequency is 8 MHz (design value), it needs adjust 40 kHz based on this frequency for each HICKCAL value change.
				Note: This bit can be written only if the HICKCAL_KEY[7: 0] is set as 0x5A.
				High speed internal clock trimming
Bit 7: 2	HICKTRIM	0x20	rw	These bits work with the HICKCAL[7: 0] to determine the HICK oscillator frequency. The default value is 32, which can trim the HICK to be ±1%.
			_	High speed internal clock stable
Bit 1	HICKSTBL	0x1	ro	This bit is set by hardware after the HICK is ready.
DIL I	INCICOLDE	OA I	.0	0: Not ready
				1: Ready

Bit 0	HICKEN	0x1	rw	High speed internal clock enable This bit is set and cleared by software. It can also be set by hardware when exiting Standby or Deepsleep mode. When a HEXT clock failure occurs. This bit can also be set. When the HICK is used as the sytem clock, this bit cannot be cleared. 0: Disabled 1: Enabled
-------	--------	-----	----	--

4.3.2 Clock configuration register (CRM_CFG)

Access: 0 to 2 wait state. 1 or 2 wait states are inserted only when the access occurs during a clock source switch.

Bit	Name	Reset value	Type	Description
				PLL clock output range
Bit 31	PLLRANGE	0x0	rw	0: PLL output ≦ 72 MHz
				1: PLL output > 72 MHz
				Clock output selection
				CLKOUT_SEL[3] is in bit 16 of the CRM_MISC1 register.
				0000: Not clock output
				0001: Reserved
				0010: LICK
D:: 00 04	OLKOUT OF	0.0		0011: LEXT
Bit 26: 24	CLKOUT_SEL	0x0	rw	0100: SCLK
				0101: HICK
				0110: HEXT
				0111: PLL/2
				1100: PLL/4 1101: USB
				1110: ADC
	USBDIV	0x0		USB frequency division factor
				After being divided, the PLL clock is used as USB clock.
			rw	000: PLL clock divided by 1.5 to be USB clock
D:+ 07				001: PLL clock is directly to be USB clock.
Bit 27 Bit 23: 22				010: PLL clock divided by 2.5 to be USB clock
DIL 23. 22				011: PLL clock divided by 2 to be USB clock
				100: PLL clock divided by 3.5 to be USB clock
				101: PLL clock divided by 3 to be USB clock 110: PLL clock divided by 4 to be USB clock
				111: PLL clock divided by 4 to be USB clock 111: PLL clock divided by 4 to be USB clock
				<u> </u>
				PLL multiplication factor { Bit 30: 29, Bit 21: 18}
				000000: PLL output x 2 000001: PLL output x 3
				000010: PLL output x 4 000011: PLL output x 5
D:t 20. 20				001100: PLL output x 14 001101: PLL output x 15
Bit 30: 29	PLLMULT	0x00	rw	001110: PLL output x 16 001111: PLL output x 16
Bit 21: 18				010000: PLL output x 17
				010010: PLL output x 19 010011: PLL output x 20
				111110: PLL output x 63 111111: PLL output x 64 Note: PLLRANGE bit has to be configured along with PLI output.

Bit 17	PLLHEXTDIV	0x0	rw	HEXT division selection for PLL entry clock 0: HEXT is not divided 1: HEXT is divided according to the setting of HEXTDIV.
Bit 16	PLLRCS	0x0	rw	PLL entry clock select 0: HICK clock divided (4MHz) to be PLL entry clock 1: HEXT clock is used as PLL entry clock
Bit 28 Bit 15: 14	ADCDIV	0x0	rw	ADC division PCLK division is used as ADC clock. 000: PCLK divided by 2 to be ADC clock 001: PCLK divided by 4 to be ADC clock 010: PCLK divided by 6 to be ADC clock 011: PCLK divided by 8 to be ADC clock 100: PCLK divided by 2 to be ADC clock 101: PCLK divided by 12 to be ADC clock 101: PCLK divided by 8 to be ADC clock 110: PCLK divided by 8 to be ADC clock
Bit 13: 11	APB2DIV	0x0	rw	APB2 division HCLK frequency division is used as APB2 clock. 0xx: HCLK is not divided 100: HCLK is divided by 2 101: HCLK is divided by 4 110: HCLK is divided by 8 111: HCLK is divided by 16 Note: These bit must be configured by software to ensure that the APB2 clock frequency is less than 120 MHz.
Bit 10: 8	APB1DIV	0x0	rw	APB1 division HCLK frequency division is used as APB1 clock. 0xx: HCLK is not divided 100: HCLK is divided by 2 101: HCLK is divided by 4 110: HCLK is divided by 8 111: HCLK is divided by 16 Note: These bit must be configured by software to ensure that the APB1 clock frequency is less than 120 MHz.
Bit 7: 4	AHBDIV	0x0	rw	AHB division SCLK frequency division is used as AHB clock. 0xxx: SCLK is not divided 1000: SCLK is divided by 2 1001: SCLK is divided by 4 1010: SCLK is divided by 8 1011: SCLK is divided by 16 1100: SCLK is divided by 64 1101: SCLK is divided by 128 1110: SCLK is divided by 256 1111: SCLK is divided by 512
Bit 3: 2	SCLKSTS	0x0	ro	System clock select status 00: HICK 01: HEXT 10: PLL 11: Reserved, default value.

System clock select

00: HICK

Bit 1: 0 SCLKSEL 0x0 rw 01: HEXT

10: PLL

11: Reserved, default value.

4.3.3 Clock interrupt register (CRM_CLKINT)

Bit	Name	Reset value	Туре	Description
Bit 31: 24	Reserved	0x00	resd	Kept at its default value.
				Clock failure detection flag clear
D:+ 00	OFDEO		14/0	Writing 1 by software to clear CFDF.
Bit 23	CFDFC	0x0	WO	0: No effect
				1: Clear
Bit 22: 21	Reserved	0x0	resd	Kept at its default value.
				PLL stable flag clear
D:+ 00	DLI OTDI FO	00	14/0	Writing 1 by software to clear PLLSTBLF.
Bit 20	PLLSTBLFC	0x0	WO	0: No effect
				1: Clear
-				HEXT stable flag clear
D:: 40				Writing 1 by software to clear HEXTSTBLF.
Bit 19	HEXTSTBLFC	0x0	WO	0: No effect
				1: Clear
				HICK stable flag clear
D: 40		0x0	wo	Writing 1 by software to clear HICKSTBLF.
Bit 18	HICKSTBLFC			0: No effect
				1: Clear
Bit 17	LEXTSTBLFC	0x0	wo	LEXT stable flag clear
				Writing 1 by software to clear LEXTSTBLF.
				0: No effect
				1: Clear
			wo	LICK stable flag clear
		0x0		Writing 1 by software to clear LICKSTBLF.
Bit 16	LICKSTBLFC			0: No effect
				1: Clear
Bit 15: 13	Reserved	0x0	resd	Kept at its default value.
				PLL stable interrupt enable
Bit 12	PLLSTBLIEN	0x0	rw	0: Disabled
				1: Enabled
				HEXT stable interrupt enable
Bit 11	HEXTSTBLIEN	0x0	rw	0: Disabled
	,	one -		1: Enabled
				HICK stable interrupt enable
Bit 10	HICKSTBLIEN	0x0	rw	0: Disabled
BIT 10				1: Enabled
				LEXT stable interrupt enable
Bit 9	LEXTSTBLIEN	0x0	rw	0: Disabled
Dit 3				

				LICK stable interrupt enable
Bit 8	LICKSTBLIEN	0x0	rw	0: Disabled
				1: Enabled
				Clock Failure Detection flag
Bit 7	CFDF	0x0	ro	This bit is set by hardware when the HEXT clock failure occurs.
				0: No clock failure
				1: Clock failure
Bit 6: 5	Reserved	0x0	resd	Kept at its default value.
				PLL stable flag
D:: 4	DI LOTDI E	0x0	ro	Set by hardware.
Bit 4	PLLSTBLF			0: PLL is not ready.
				1: PLL is ready.
	HEXTSTBLF	0x0	ro	HEXT stable flag
D:4 0				Set by hardware.
Bit 3				0: HEXT is not ready.
				1: HEXT is ready.
-		0x0	ro	HICK stable flag
D:4 0	LUCKOTOLE			Set by hardware.
Bit 2	HICKSTBLF			0: HICK is not ready.
				1: HICK is ready.
				LEXT stable flag
D:4.4	LEVTOTOLE	00	ro	Set by hardware.
Bit 1	LEXTSTBLF	0x0	ro	0: LEXT is not ready.
				1: LEXT is ready.
				LICK stable interrupt flag
D:4 0	LICKSTRIF	0.40	ro	Set by hardware.
Bit 0	LICKSTBLF	0x0	ro	0: LICK is not ready.
				1: LICK is ready.

4.3.4 APB2 peripheral reset register (CRM_APB2RST)

Bit	Name	Reset value	Type	Description	
Bit 31: 27	Reserved	0x00	resd	Kept at its default value.	
				UART8 reset	
Bit 26	UART8RST	0x0	rw	0: No effect	
				1: Reset	
				UART7 reset	
Bit 25	UART7RST	0x0	rw	0: No effect	
				1: Reset	
_				UART6 reset	
Bit 24	UART6RST	0x0	rw	0: No effect	
				1: Reset	
_				I2C3 reset	
Bit 23	I2C3RST	0x0	rw	0: No effect	
				1: Reset	
				ACC reset	
Bit 22	ACCRST	0x0	rw	0: No effect	
				1: Reset	
_				TMR11 reset	
Bit 21	TMR11RST	0x0	rw	0: No effect	
				1: Reset	

-				TMR10 reset	
Bit 20	TMR10RST	0x0	rw	0: No effect	
				1: Reset	
				TMR9 reset	
Bit 19	TMR9RST	0x0	rw	0: No effect	
				1: Reset	
Bit 18:16	Reserved	0x0	resd	Kept at its default value.	
				ADC3 reset	
Bit 15	ADC3RST	0x0	rw	0: No effect	
				1: Reset	
				USART1 reset	
Bit 14	USART1RST	0x0	rw	0: No effect	
				1: Reset	
				TMR8 reset	
Bit 13	TMR8RST	0x0	rw	0: No effect	
		0.1.0		1: Reset	
				SPI1 reset	
Bit 12	SPI1RST	0x0	rw	0: No effect	
DICIZ SFIINST	or rinto i	ONO	1 **	1: Reset	
				TMR1 reset	
Bit 11 TMR1	TMR1RST	0x0	rw	0: No effect	
DICTI	TWINTINGT			1: Reset	
				ADC2 reset	
Bit 10 ADC2R	ADCODET	0x0	rw	0: No effect	
	ADC2R31			1: Reset	
				ADC1 reset	
Dit O	ADC1RST	0x0	rw	0: No effect	
Bit 9	ADCIRSI			1: Reset	
Bit 8: 7	Reserved	0x0	resd	Kept at its default value.	
Dit 0. 7	1 (e3e) veu	0.00	resu	GPIOE reset	
Dit 6	CDIOEDET	0.40	mar	0: No effect	
Bit 6	GPIOERST	0x0	rw	1: Reset	
				GPIOD reset	
D:+ E	CDIODDCT	0.40		0: No effect	
Bit 5	GPIODRST	0x0	rw	1: Reset	
				GPIOC reset	
D:4 4	ODIOODOT	00		0: No effect	
Bit 4	GPIOCRST	0x0	rw	1: Reset	
5 o				GPIOB reset	
Bit 3	GPIOBRST	0x0	rw	0: No effect	
				1: Reset	
Bit 2	0010:50=			GPIOA reset	
	GPIOARST	0x0	rw	0: No effect	
				1: Reset	
				EXINT reset	
Bit 1	EXINTRST	0x0	rw	0: No effect	
		30	• • •	1: Reset	
				Note: Always read as 0.	
				IOMUX reset	
Bit 0	IOMUXRST	0x0	rw	0: No effect	
				1: Reset	

4.3.5 APB1 peripheral reset register (CRM_APB1RST)

Bit	Name	Reset value	Туре	Description
Bit 31:30	Reserved	0x0	resd	Kept at its default value.
				DAC reset
Bit 29	DACRST	0x0	rw	0: No effect
				1: Reset
				PWC reset
Bit 28	PWCRST	0x0	rw	0: No effect
				1: Reset
				Battery powered register reset
Bit 27	BPRRST	0x0	rw	0: No effect
				1: Reset
				CAN2 reset
Bit 26	CAN2RST	0x0	rw	0: No effect
				1: Reset
-				CAN1 reset
Bit 25	CAN1RST	0x0	rw	0: No effect
				1: Reset
Bit 24	Reserved	0x0	resd	Kept at its default value.
	110001100	OAO .	1000	USB reset
Bit 23	USBRST	0x0	rw	0: No effect
DIL 23	OODINOT	OXO	I VV	1: Reset
				I2C2 reset
Bit 22	I2C2RST	0x0	rw	0: No effect
DIL ZZ	12021101	OXO	I VV	1: Reset
				I2C1 reset
Bit 21	I2C1RST	0x0	rw	0: No effect
DIL Z I	12C1R51	OXO	I VV	1: Reset
				UART5 reset
Bit 20	UART5RST	0x0	rw	0: No effect
Dit 20	OARTOROT	OXO	I VV	1: Reset
				UART4 reset
Bit 19	UART4RST	0x0	rw	0: No effect
DIL 13	OAKT+KOT	OXO	I VV	1: Reset
				USART3 reset
Bit 18	USART3RST	0x0	rw	0: No effect
Dit 10	OUARTOROT	OXO	I VV	1: Reset
				USART2 reset
Bit 17	USART2RST	0x0	rw	0: No effect
Dit 17	00/11/12/10/1	OXO	1 VV	1: Reset
				SPI4 reset
Bit 16	SPI4RST	0x0	rw	0: No effect
DIL 10	01141101	OXO	I VV	1: Reset
				SPI3 reset
Bit 15	SPI3RST	0x0	r\A/	0: No effect
טו זום	OI IOINO I	UAU	rw	1: Reset
				SPI2 reset
Bit 14	SPI2RST	0x0	rw	0: No effect
טוג ו 4	OI IZNOT	UAU	ı vV	1: Reset
Dit 40 40	Dogger (c.)	0.0	no o al	Kept at its default value.
Bit 13: 12	Reserved	0x0	resd	rept at its uclauit value.

				WWDT reset	
Bit 11	WWDTRST	0x0	rw	0: No effect	
				1: Reset	_
Bit 10: 9	Reserved	0x0	resd	Kept at its default value.	
				TMR14 reset	
Bit 8	TMR14RST	0x0	rw	0: No effect	
				1: Reset	
				TMR13 reset	
Bit 7	TMR13RST	0x0	rw	0: No effect	
				1: Reset	
				TMR12 reset	
Bit 6	TMR12RST	0x0	rw	0: No effect	
				1: Reset	
-	TMR7RST			TMR7 reset	
Bit 5		0x0	rw	0: No effect	
				1: Reset	
-	TMR6RST	0x0		TMR6 reset	
Bit 4			rw	0: No effect	
				1: Reset	
	TMR5RST	0x0	rw	TMR5 reset	-
Bit 3				0: No effect	
				1: Reset	
-				TMR4 reset	_
Bit 2	TMR4RST	0x0	rw	0: No effect	
				1: Reset	
-				TMR3 reset	_
Bit 1	TMR3RST	0x0	rw	0: No effect	
				1: Reset	
				TMR2 reset	
Bit 0	TMR2RST	0x0	rw	0: No effect	
				1: Reset	

4.3.6 APB peripheral clock enable register (CRM_AHBEN)

Bit	Name	Reset value	Туре	Description
Bit 31: 29	Reserved	0x0	resd	Kept at its default value.
				Ethernet MAC PTP clock enable
Bit 28	EMACPTPEN	0x0	rw	0: Disabled
				1: Enabled
Bit 27: 17	Reserved	0x0	resd	Kept at its default value.
				Ethernet MAC RX clock enable
Bit 16	EMACRXEN	0x0	rw	0: Disabled
				1: Enabled
				Ethernet MAC TX clock enable
Bit 15	EMACTXEN	0x0	rw	0: Disabled
				1: Enabled
				Ethernet MAC clock enable
Bit 14	EMACEN	0x0	rw	0: Disabled
				1: Enabled
Bit 13: 12	Reserved	0x0	resd	Kept at its default value.
				SDIO2 clock enable
Bit 11	SDIO2EN	0x0	rw	0: Disabled
				1: Enabled

				00104
				SDIO1 clock enable
Bit 10	SDIO1EN	0x0	rw	0: Disabled
-				1: Enabled
Bit 9	Reserved	0x0	rw	Kept at its default value.
				XMC clock enable
Bit 8	XMCEN	0x0	rw	0: Disabled
				1: Enabled
Bit 7	Reserved	0x0	resd	Kept at its default value.
•				CRC clock enable
Bit 6	CRCEN	0x0	rw	0: Disabled
				1: Enabled
Bit 5	Reserved	0x0	resd	Kept at its default value.
•				Flash clock enable
				This bit is used to enable Flash clock in Sleep or
Bit 4	FLASHEN	0x1	rw	Deepsleep mode.
				0: Disabled
				1: Enabled
Bit 3	Reserved	0x0	resd	Kept at its default value.
				SRAM clock enable
				This bit is used to enable SRAM clock in Sleep or
Bit 2	SRAMEN	0x1	rw	Deepsleep mode.
				0: Disabled
				1: Enabled
				DMA2 clock enable
Bit 1	DMA2EN	0x0	rw	0: Disabled
				1: Enabled
_				DMA1 clock enable
Bit 0	DMA1EN	0x0	rw	0: Disabled
				1: Enabled

4.3.7 APB2 peripheral clock enable register (CRM_AHB2EN)

Bit	Name	Reset value	Туре	Description
Bit 31: 27	Reserved	0x00	resd	Kept at its default value.
_				UART8 clock enable
Bit 26	UART8EN	0x0	rw	0: Disabled
				1: Enabled
				UART7 clock enable
Bit 25	UART7EN	0x0	rw	0: Disabled
				1: Enabled
				USART6 clock enable
Bit 24	USART6EN	0x0	rw	0: Disabled
				1: Enabled
_				I2C3 clock enable
Bit 23	I2C3EN	0x0	rw	0: Disabled
				1: Enabled
				ACC clock enable
Bit 22	ACCEN	0x0	rw	0: Disabled
				1: Enabled
				TMR11 clock enable
Bit 21	TMR11EN	0x0	rw	0: Disabled
				1: Enabled

				TMD40 alsolver also
				TMR10 clock enable
Bit 20	TMR10EN	0x0	rw	0: Disabled
				1: Enabled
				TMR9 clock enable
Bit 19	TMR9EN	0x0	rw	0: Disabled
				1: Enabled
Bit 18: 16	Reserved	0x0	resd	Kept at its default value.
				ADC3 clock enable
Bit 15	ADC3EN	0x0	rw	0: Disabled
				1: Enabled
				USART1 clock enable
Bit 14	USART1EN	0x0	rw	0: Disabled
				1: Enabled
				TMR8 clock enable
Bit 13	TMR8EN	0x0	rw	0: Disabled
				1: Enabled
				SPI1 clock enable
Bit 12	SPI1EN	0x0	rw	0: Disabled
				1: Enabled
-				TMR1 clock enable
Bit 11	TMR1EN	0x0	rw	0: Disabled
				1: Enabled
				ADC2 clock enable
Bit 10	ADC2EN	0x0	rw	0: Disabled
2.1 0	, 12 022.1	0.1.0		1: Enabled
-				ADC 1 clock enable
Bit 9	ADC1EN	0x0	rw	0: Disabled
		2112		1: Enabled
Bit 8: 7	Reserved	0x0	rw	Kept at its default value.
				GPIOE clock enable
Bit 6	GPIOEEN	0x0	rw	0: Disabled
				1: Enabled
				GPIOD clock enable
Bit 5	GPIODEN	0x0	rw	0: Disabled
				1: Enabled
				GPIOC clock enable
Bit 4	GPIOCEN	0x0	rw	0: Disabled
				1: Enabled
D:4 0	ODIODEN	00		GPIOB clock enable
Bit 3	GPIOBEN	0x0	rw	0: Disabled
-				1: Enabled GPIOA clock enable
Bit 2	GPIOAEN	0x0	rw	0: Disabled
J., L	J. IJ/ILIV	3,0	. **	1: Enabled
Bit 1	Reserved	0x0	rw	Keep at its default value.
		3.0		IOMUX clock enable
Bit 0	IOMUXEN	0x0	rw	0: Disabled
2 0	·OMONEIN	5,70	. **	1: Enabled
				1. LHUDICU

4.3.8 APB1 peripheral clock enable register (CRM_AHB1EN)

Bit	Name	Reset value	Туре	Description
Bit 31: 30	Reserved	0x0	resd	Kept at its default value.
				DAC clock enable
Bit 29	DACEN	0x0	rw	0: Disabled
				1: Enabled
				Power control clock enable
Bit 28	PWCEN	0x0	rw	0: Disabled
				1: Enabled
				BPR clock enable
Bit 27	BPREN	0x0	rw	0: Disabled
				1: Enabled
				CAN2 clock enable
Bit 26	CAN2EN	0x0	rw	0: Disabled
				1: Enabled
-				CAN1 clock enable
Bit 25	CAN1EN	0x0	rw	0: Disabled
Dit 20	07.11.12.11	ono		1: Enabled
Bit 24	Reserved	0x0	resd	Kept its default value.
				USB clock enable
Bit 23	USBEN	0x0	rw	0: Disabled
Dit 20	OODLIN	OXO	1 VV	1: Enabled
				I2C2 clock enable
Bit 22	I2C2EN	0x0	rw	0: Disabled
Dit ZZ	IZOZLIV	OXO	1 VV	1: Enabled
				I2C1 clock enable
Bit 21	I2C1EN	0x0	rw	0: Disabled
Dit Z i	1201211	ONO	1 **	1: Enabled
				UART5 clock enable
Bit 20	UART5EN	0x0	rw	0: Disabled
Dit 20	ONTOLIV	OXO	1 VV	1: Enabled
				UART4 clock enable
Bit 19	UART4EN	0x0	rw	0: Disabled
Dit 13	OAKI4LIV	OXO	1 VV	1: Enabled
				USART3 clock enable
Bit 18	USART3EN	0x0	rw	0: Disabled
Dit 10	00/11/10214	OXO	1 44	1: Enabled
				USART2 clock enable
Bit 17	USART2EN	0x0	rw	0: Disabled
DIC 17	OOAITIZEIN	OXO	I VV	1: Enabled
-				SPI4 clock enable
Bit 16	SPI4EN	0x0	rw	0: Disabled
טונ וט	3FI4EIN	UXU	I VV	1: Enabled
				SPI3 clock enable
Bit 15	SPI3EN	0x0	P.A/	0: Disabled
טונ וט	SPISEN	UXU	rw	1: Enabled
				SPI2 clock enable
Dit 11	CDISEN	0×0	P147	0: Disabled
Bit 14	SPI2EN	0x0	rw	1: Enabled
<u> </u>				
Bit 13: 12	Reserved	0x0	resd	Kept at its default value.

-				
				WWDT clock enable
Bit 11	WWDTEN	0x0	rw	0: Disabled
				1: Enabled
Bit 10: 9	Reserved	0x0	resd	Kept its default value.
				TMR14 clock enable
Bit 8	TMR14EN	0x0	rw	0: Disabled
			1: Enabled。	
				TMR13 clock enable
Bit 7	TMR13EN	0x0	rw	0: Disabled
				1: Enabled
				TMR12 clock enable
Bit 6	TMR12EN	0x0	rw	0: Disabled
				1: Enabled
	TMR7EN			TMR7 clock enable
Bit 5		0x0	rw	0: Disabled
				1: Enabled
				TMR6 clock enable
Bit 4	TMR6EN	0x0	rw	0: Disabled
				1: Enabled
-				TMR5 clock enable
Bit 3	TMR5EN	0x0	rw	0: Disabled
				1: Enabled
				TMR4 clock enable
Bit 2	TMR4EN	0x0	rw	0: Disabled
				1: Enabled
				TMR3 clock enable
Bit 1	TMR3EN	0x0	rw	0: Disabled
				1: Enabled
				TMR2 clock enable
Bit 0	TMR2EN	0x0	rw	0: Disabled
				1: Enabled
-				

4.3.9 Battery powered domain control register (CRM_BPDC)

Access: 0 to 3 wait states. Wait states are inserted in the case of consecutive accesses to this register. Note: LEXTEN, LEXTBYPS, RTCSEL, and RTCEN bits of the battery powered domain control register (CRM_BDC) are in the battery powered domain. As a result, these bits are write protected after reset, and can only be modified by setting the BPWEN bit in the power control register (PWR_CTRL). These bits could be reset only by battery powered domain reset. Any internal or external Reset does not affect these bits.

Bit	Name	Reset value	Type	Description
Bit 31: 17	Reserved	0x0000	resd	Kept at its default value.
				Battery powered domain software reset
Bit 16	BPDRST	0x0	rw	0: No effect
				1: Reset
_				RTC clock enable
D:: 45				Set and cleared by software.
Bit 15	RTCEN	0x0	rw	0: Disabled
				1: Enabled
Bit 14: 10	Reserved	0x00	resd	Kept at its default value.

				RTC clock selection
				Once the RTC clock source is selected, it cannot be changed until the BPDRST bit is reset.
Bit 9: 8	RTCSEL	0x0	rw	00: No clock
Dit 0. 0	1110022	one.	. ••	01: LEXT
				10: LICK
				11: HEXT/128
Bit 7: 3	Reserved	0x00	resd	Kept at its default value.
	LEXTBYPS			Low speed external crystal bypass
Bit 2		0x0	rw	0: Disabled
				1: Enabled
				Low speed external oscillator stable
D:: 4	I EVTOTO!			Set by hardware after the LEXT is ready.
Bit 1	LEXTSTBL	0x0	ro	0: LEXT is not ready.
				1: LEXT is ready.
				External low-speed oscillator enable
Bit 0	LEXTEN	0x0	rw	0: Disabled
				1: Enabled

4.3.10 Control/status register (CRM_CTRLSTS)

Reset flag can only be cleared by power reset, while others are cleared by system reset.

Access: 0 to 3 wait states. Wait states are inserted in the case of consecutive accesses to this register.

Bit	Name	Reset value	Type	Description
Bit 31	LPRSTF	0x0	ro	Low-power reset flag Sety by hardware. Cleared by writing to the RSTFC bit. 0: No low-power reset occurs 1: Low-power reset occurs
Bit 30	WWDTRSTF	0x0	ro	Window watchdogtimer reset flag Sety by hardware. Cleared by writing to the RSTFC bit. 0: No window watchdogtimer reset occurs 1: Window watchdogtimer reset occurs
Bit 29	WDTRSTF	0x0	ro	Watchdog timer reset flag Sety by hardware. Cleared by writing to the RSTFC bit. 0: No watchdog timer reset occurs 1: Watchdog timer reset occurs.
Bit 28	SWRSTF	0x0	ro	Software reset flag Sety by hardware. Cleared by writing to the RSTFC bit. 0: No software reset occurs 1: Software reset occurs.
Bit 27	PORRSTF	0x1	ro	POR/LVR reset flag Sety by hardware. Cleared by writing to the RSTFC bit. 0: No POR/LVR reset occurs 1: POR/LVR reset occurs.
Bit 26	NRSTF	0x1	rw	NRST pin reset flag Sety by hardware. Cleared by writing to the RSTFC bit. 0: No NRST pin reset occurs 1: NRST pin reset occurs
Bit 25	Reserved	0x0	resd	Kept at its default value.

Bit 24	RSTFC	0x0	rw	Reset flag clear Cleared by writing 1 through software. 0: No effect 1: Clear the reset flag.
Bit 23: 2	Reserved	0x000000	resd	Kept at its default value.
Bit 1	LICKSTBL	0x0	ro	LICK stable 0: LICK is not ready.
	LIGITOTE	ONO	10	1: LICK is ready.
Bit 0	LICKEN	0x0	rw	LICK enable 0: Disabled 1: Enabled

4.3.11 AHB peripheral reset register (CRM_AHBRST)

Bit	Name	Reset value	Туре	Description
Bit 31: 15	Reserved	0x00000	resd	Kept at its default value.
				Ethernet MAC reset
Bit 14	EMACRST	0x0	rw	0: No effect
Dit 11		OXO	. **	1: Reset
Bit 13: 0	Reserved	0x0000	resd	Kept at its default value.

4.3.12 Additional register1 (CRM_MISC1)

Bit	Name	Reset value	Type	Description
				Clock output division
				Set the frequency division of CLKOUT.
				0xxx: Clock output
Bit 31: 28				1000: Clock output divided by 2
				1001: Clock output divided by 4
	CLKOUTDIV	0x0	rw	1010: Clock output divided by 8
				1011: Clock output divided by 16
				1100: Clock output divided by 64
				1101: Clock output divided by 128
				1110: Clock output divided by 256
Bit 27: 26	Reserved	0x0	resd	Kept its default value.
	HICKDIV	0x0	rw	HICK 6 divider selection
Bit 25				This bit is used to select HICK or HICK /6. If the HICK/6 is selected, the clock frequency is 8 MHz. Otherwise, the clock frequency is 48 MHz.
				0: HICK/6
				1: HICK
		0x0	rw	USB buffer size selection
Bit 24	USBBUFS			0: USB buffer size is 512 byte
				1: USB buffer size is 768~1280 byte.
Bit 23: 17	Reserved	0x00	resd	Kept at its default value.
Bit 16	CLKOUT_SEL[3]	0x0	rw	Clock output selection
	CLROUT_SEL[3]	0.00	I VV	Used with CRM CFG register bit 26: 24.
Bit 15: 8	Reserved	0x00	resd	Keep at its default value.
				HICK calibration key
Bit 7: 0	HICKCAL_KEY	0x00	rw	The HICKCAL [7:0] can be written only when this field is set 0x5A.

4.3.13 Additional register2 (CRM_MISC2)

Bit	Name	Reset value	Type	Description
Bit 31: 17	Reserved	0x0000	resd	Kept at its default value.
Bit 16	CLK_TO_TMR	0x0	rw	CLKOUT internally connected to timer 10 channel 1 0: Not connected 1: Connected
Bit 15: 0	Reserved	0x0000	resd	Kept its default value.

4.3.14 Additional register3 (CRM_MISC3)

Bit	Name	Reset value	Туре	Description
Bit 31: 16	Reserved	0x0000	resd	Kept at its default value.
				Ethernet pulse width select
Bit 15	EMAC_PPS_SEL	0x0	rw	0: Pulse width is 125 ms.
				1: Pulse width is 1 system clock.
Bit 14	Reserved	0x0	resd	Kept at its default value.
				HEXT division
				00: HEXT clock is divided by 2.
				01: HEXT clock is divided by 3.
Bit 13: 12	HEXTDIV	0x0	rw	10: HEXT clock is divided by 4.
				11: HEXT clock is divided by 5.
				Note: The division control bit should be configured only after the HEXT clock is ready. Otherwise, it will be ignored.
Bit 11: 10	Reserved	0x0	resd	Kept at its default value.
-				HICK as system clock frequency select
Bit 9	HICK_TO_SCLK	0x0	rw	When the HICK is selected as the clock source SCLKSEL, the frequency of SCLK is:
				0: Fixed 8 MHz, that is, HICK/6
				1: 48 MHz or 8 MHz, depending on theHICKDIV
				USB 48 MHz clock source select
	HICK_TO_USB	0x0		0: PLL or PLL division
Bit 8			rw	1: HICK or HICK/6
Dit 0			TVV	Note: Since USB must work at 48 MHz, HICKDIV=1 must be guaranteed to ensure that the HICK 48 MHz is selected as the clock source of USB 48 MHz.
Bit 7: 6	Reserved	0x0	resd	Kept its default value.
				Auto step-by-step system clock switch enable
				When the system clock source is switched from others to the PLL or when the AHB prescaler is changed from large to small (system frequency is from small to large), it is recommended to enable the auto step-by-step system clock switch if the operational target is larger than 108 MHz,.
Bit 5: 4	AUTO_STEP_EN	0x0	rw	Once it is enabled, the AHB bus is halted by hardware till the completion of the switch. During this switch period, the DMA remain working, and the interrupt events are recorded and then handled by NVIC when the AHB bus resumes.
				00: Disabled
				01: Reserved
				10: Reserved
				11: Enabled. When AHBDIV or SCLKSEL is modified, the auto step-by-step system clock switch is activated
D:+ 0 - 0	Decembed	0.4	المحا	automatically. It is fixed to 0xd. Do not change.
Bit 3: 0	Reserved	0xd	resd	it is lived to over the flot challe.

4.3.15 Interrupt map register (CRM_INTMAP)

Bit	Name	Reset value	Туре	Description
Bit 31: 1	Reserved	0x0000 0000	resd	Kept at its default value.
Bit 0	USBINTMAP	0x0	rw	USBFS interrupt remap 0: USBFS uses the 19 th USBFS_H and the 20 th USBFS_L interrupt 1: USBDEV uses the 73rd USBFS_MAPH and the 74th USBFS_MAPL interrupt.

2021.12.01 Page 77 Ver 2.02

5 Flash memory controller (FLASH)

5.1 Flash memory introduction

Flash memory is divided into four parts: main Flash memory, external memory, information block and Flash memory registers.

- Main Flash memory is up to 1024 KB, including bank 1 and bank 2.
- Externa memory is up to 16 MB
- Information block consists of 16 KB boot loader and the user system data area. The boot loader uses USART1, USART2 or USB (DFU) serial interface for ISP programming.

Main Flash memory (1024 KB) is divided into bank 1 and bank 2, 512 KB/256 pages per bank, and 2 K per page.

External memory size is up to 16 MB, including 4096 pages, 4 K per page.

Table 5- 1 Flash memory architecture (1024 K)

BI	ock	Name	Address range	
		Page 0	0x0800 0000 - 0x0800 07FF	
	Dank 4	Page 1	0x0800 0800 - 0x0800 0FFF	
	Bank 1 512 KB	Page 2	0x0800 1000 – 0x0800 17FF	
	312 ND			
Main		Page 255	0x0807 F800 – 0x0807 FFFF	
Flash memory		Page 256	0x0808 0000 - 0x0808 07FF	
	Bank 2 512 KB	Page 257	0x0808 0800 - 0x0808 0FFF	
		Page 258	0x0808 1000 – 0x0808 17FF	
	312 ND		•••	
		Page 511	0x080F F800 – 0x080F FFFF	
		Page 0	0x0840 0000 - 0x0840 0FFF	
External		Page 1	0x0840 1000 - 0x0840 1FFF	
	16 MB	Page 2	0x0840 2000 - 0x0840 2FFF	
nemory				
		Page 4095	0x093F F000 – 0x093F FFFF	
Informat	tion block	Boot loader 16 KB	0x1FFF B000 – 0x1FFF EFFF	
Inioma	HOLL DIOCK	User option bytes 48 B	0x1FFF F800 – 0x1FFF F82F	

Main Flash memory (512 KB) has only bank 1, including 256 pages, 2 K per page.

External memory size is up to 16 MB, including 4096 pages, 4 K per page.

Table 5- 2 Flash memory architecture (512 K)

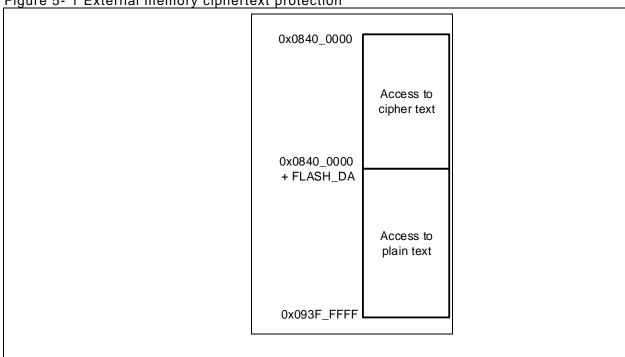
В	lock	Name	Address range	
		Page 0	0x0800 0000 – 0x0800 07FF	
Main Flash	Bank 1	Page 1	0x0800 0800 - 0x0800 0FFF	
	512 KB	Page 2	0x0800 1000 – 0x0800 17FF	
memory	312 ND			
		Page 255	0x0807 F800 – 0x0807 FFFF	
		Page 0	0x0840 0000 - 0x0840 0FFF	
External	16 MB	Page 1	0x0840 1000 – 0x0840 1FFF	
		Page 2	0x0840 2000 - 0x0840 2FFF	
memory				
		Page 4095	0x093F F000 – 0x093F FFFF	
Information block		Boot loader 16 KB	0x1FFF B000 – 0x1FFF EFFF	
IIIIOIIIIa	ALIOH DIOCK	User option bytes 48 B	0x1FFF F800 - 0x1FFF F82F	

Main Flash memory (256 KB) has only bank 1, including 128 pages, 2 K per page. External memory size is up to 16 MB, including 4096 pages, 4 K per page.

Table 5- 3 Flash memory architecture(256 K)

Block		Name	Address range	
		Page 0	0x0800 0000 – 0x0800 07FF	
Main Flash	Donk 1	Page 1	0x0800 0800 – 0x0800 0FFF	
	Bank 1 256 KB	Page 2	0x0800 1000 – 0x0800 17FF	
memory	200 ND			
		Page 127	0x0803 F800 – 0x0803 FFFF	
		Page 0	0x0840 0000 – 0x0840 0FFF	
External	16 MB	Page 1	0x0840 1000 – 0x0840 1FFF	
memory		Page 2	0x0840 2000 – 0x0840 2FFF	
illelilory				
		Page 4095	0x093F F000 – 0x093F FFFF	
Inform	ation block	Boot loader 16 KB	0x1FFF B000 – 0x1FFF EFFF	
1111011114	ation block	User option bytes 48 B	0x1FFF F800 – 0x1FFF F82F	

External memory


External Flash memory controls the external SPI Flash through SPIM transmission interface. It supports ciphertext protection. User can decide whether or not to encrypte the data by setting the EXT FLASH KEYx bit of the user system data area, and can control the range to be encrypted with the FLASH DA register.

AHB clock (HCLK), used as a reference clock of SPIM, provides HCLK/2 clock for external SPIM via SPIM interface.

SPIM=External SPI Flash memory expansion (program execution/data store/program and data encrypted)

Note: SPIM has to be accessed by word or half-word.

Figure 5- 1 External memory ciphertext protection

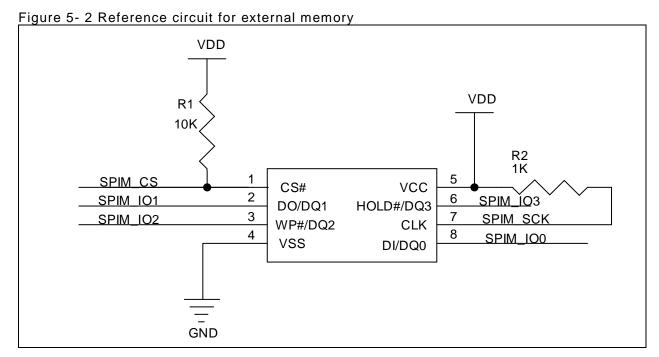


Table 5- 4 Instruction set supported by external memory

Instruction	Code	FLASH_SELECT register config.	Description
Write Enable	0x06	0x1/0x2	Both 0x1 and 0x2 Flash must support 0x06 instruction
Quad Page Program	0x32	0x1/0x2	Both 0x1 and 0x2 Flash must support 0x32 instruction
Sector Erase	0x20	0x1/0x2	Both 0x1 and 0x2 Flash must support 0x20 instruction
Chip Erase	0xC7	0x1/0x2	Both 0x1 and 0x2 Flash must support 0XC7 instruction
Read Status Register	0x05	0x1/0x2	Both 0x1 and 0x2 Flash must support 0x05 instruction
Quad I/O Read	0xEB	0x1/0x2	Both 0x1 and 0x2 Flash must support 0xEB instruction 24-bit Addr + 6x Dummy cycle
Volatile status Register write enable	0x50		When 0x1 Flash is selected, the hardware sends a command automatically to configure the Quad Enable bit
Write Status Register-1	0x01	0x1	of the Flash Status Register 0x1 Flash memory must support: 0x50 and 0x01
Write Status Register-2	0x31		or 0x50 and 0x31

Note:

- 1. If it is mandatory to set the QE to 1 in the Status Register before executing 0x32 and 0xEB, then 0x1 Flash is selected by seting the FLASH SELECT register to 0x1.
- 2. If it is not required to set the QE bit before executing 0x32 and 0xEB, then 0x2 Flash is selected by seting the FLASH_SELECT register to 0x2.

For example,

If FLASH SELECT register is set to 0x1:

D25Q127C, GD25Q64C,GD25Q32C,GD25Q16C,GD25Q80C and W25Q128V Flash memory are supported.

If FLASH_SELECT register is set as 0x2: EN25F20A and EN25QH128A Flash memory are supported.

User system data area

The system data will be read from the information block of Flash memory whenever a system reset occurs, and is saved in the user system data register (FLASH_USD)and erase programming protection status register (FLASH_EPPS).

Each system data occupies two bytes, where the low bytes corresponds to the contents in the system data area, and the high bytes represent the inverse code that is used to verify the correctness of the selected bit. When the high byte is not equal to the inverse code of the low byte (except when both high and low byte are all 0xFF), the system data loader will issue a system data error flag (USDERR) and the corresponding system data and their inverse codes are forced 0xFF.

Note: The update of the contents in the user system data area becomes effective only after a system reset.

Table 5- 5 User system data area

Address	Bit	ai Cd	Description				
Addiess	DIL	FΔP(7: 01: Flach momons as	ccess protection (Access protection enable/disable				
	[7: 0]	result is stored in the FLASI 0xA5: Disabled Others: Enabled	H_USD[1] register)				
	[15: 8]	nFAP[7: 0]: Inverse code of					
		SSB[7: 0]: System configuration byte (it is stored in the FLASH_USD[9: 2] register)					
		Bit 7: 4	Reserved				
0x1FFF_F800	[23: 16]	0: When booting from main Flash mem there is no boot loader in the bank 2, it will from bank 1, otherwise, bank 2. 1: When booting from main Flash mem starts from bank 1.					
		Bit 2 (nSTDBY_RST)	0: Reset occurs when entering Standby mode 1: No reset occurs when entering Standby mode				
		Bit 1 (nDEPSLP_RST)	Reset occurs when entering Deepsleep mode No reset occurs when entering Deepsleep mode				
		Bit 0 (nWDT_ATO_EN)	0: Watchdog is enabled 1: Watchdog is disabled				
-	[31: 24]	nSSB[7: 0]: Inverse code of					
	[7: 0]	Data0[7: 0]: User data 0 (It is stored in the FLASH_USD[17:10] register)					
0x1FFF_F804	[15: 8]	nData0[7: 0]: Inverse code o					
	[23: 16]	nData1[7: 0]: User data 1 (It i	s stored in the FLASH_USD[25: 18] register)				
	[31: 24]						
	[7: 0]	EPP0[7: 0]: Flash erase/write protection byte 0 (in the FLASH_EPPS[7: 0]) This field is used to protect page 0 ~page 15 of main Flash memory. Each bit takes care of two pages (2 KB/page) 0: Erase/write protection is enabled 1: Erase/write protection is disabled					
	[15: 8]	nEPP0[7: 0]: Inverse code of EPP0[7: 0]					
0x1FFF_F808	[23: 16]	EPP1[7: 0]: Flash erase/write protection byte 1 (stored in the FLASH_EPPS[15: 8]) This field is used to protect page 16~page 31 of main Flash memory. Each bit takes care of two pages (2 KB/page) 0: Erase/write protection is enabled 1: Erase/write protection is disabled					
	[31: 24]	nEPP1[7: 0]: Inverse code of EPP1[7: 0]					
	[7: 0]	nEPP1[7: 0]: Inverse code of EPP1[7: 0] EPP2[7: 0]: Flash erase/write protection byte 2 (stored in the FLASH_EPPS[23: 16]) This field is used to protect page 32~page 47 of main Flash memory. Each bit takes care of two pages (2 KB/page) 0: Erase/write protection is enabled 1: Erase/write protection is disabled					
0v1EEE E000	[15: 8]	Inverse code of nEPP2[7: 0]	j: EPP2[7: 0]				
0x1FFF_F80C	[23: 16]	EPP3[7: 0]: Flash erase/write protection byte 3 (stored in the FLASH_EPPS[31: 24]) Bit 6:0 is used to protect page 48~page 61 of main Flash memory. Each bit takes care of two pages (2 KB/page) Bit 7 is used to protect page 62 and beyond, as well as external memory. 0: Erase/write protection is enabled 1: Erase/write protection is disabled nEPP3[7: 0]: Inverse code of EPP3[7: 0]					
	[01. 47]	EOPB0[7: 0]: Extended syst					
0x1FFF_F810	[7: 0]	Bit 7: 1: Reserved Bit 0: 0: 224 KB of on-chip SRAM 1: 96 KB of on-chip SRAM Note: Switching from 1 to 0	is valid only when the security library is disabled.				
	[15: 8]	nEOPB0[7: 0]: Inverse code	S OT FOURD[1: 0]				
0x1FFF F814	[31: 16] [7: 0]	Reserved Data2[7: 0]: User data 2					
<u> </u>	<u>i</u> [≀. ∪]	į Datazį i . Vj. Usei Uata Z					

	[15: 8]	nData2[7: 0]: Inverse code of Data2[7: 0]
	[23: 16]	Data3[7: 0]: User data 3
	[31: 24]	nData3[7: 0]: Inverse code of Data3[7: 0]
	[7: 0]	Data4[7: 0]: User data 4
0,4555 5040	[15: 8]	nData4[7: 0]: Inverse code of Data4[7: 0]
0x1FFF_F818	[23: 16]	Data5[7: 0]: User data 5
	[31: 24]	nData5[7: 0]: Inverse code of Data5[7: 0]
	[7: 0]	Data6[7: 0]: User data 6
0.4555 5040	[15: 8]	nData6[7: 0]: Inverse code of Data6[7: 0]
0x1FFF_F81C	[23: 16]	Data7[7: 0]: User data 7
	[31: 24]	nData7[7: 0]: Inverse code of Data7[7: 0]
		EXT FLASH KEY0[7: 0]: External memory ciphertext access area encryption
		key byte 0
0:4555 5000		The situations for non-encryption includes:
		Both EXT_FLASH_KEYx and nEXT_FLASH_KEYx are 0xFF (namely default
	[7: 0]	erase status)
	`	Write 0x00 to EXT_FLASH_KEYx
0x1FFF_F820		Write 0xFF to EXT_FLASH_KEYx
		That is, {nEXT_FLASH_KEYx, EXT_FLASH_KEYx } are all 0xFFFF, 0xFF00
		and 0x00FF.
	[15: 8]	nEXT_FLASH_KEY0[7: 0]: Inverse code of EXT_FLASH_KEY0[7: 0]
	[23: 16]	EXT FLASH KEY1[7: 0]: External memory ciphertext encryption key byte 1
	[31: 24]	nEXT_FLASH_KEY1[7: 0]: Inverse code of EXT_FLASH_KEY1[7: 0]
	[7: 0]	EXT FLASH KEY2[7: 0]: External memory ciphertext encryption key byte 2
0 4555 5004	[15: 8]	nEXT_FLASH_KEY2[7: 0]: Inverse code of EXT_FLASH_KEY2[7: 0]
0x1FFF_F824	[23: 16]	EXT_FLASH_KEY3[7: 0]: External memory ciphertext encryption key byte3
	[31: 24]	nEXT_FLASH_KEY3[7: 0]: Inverse code of EXT_FLASH_KEY3[7: 0]
	[7: 0]	EXT_FLASH_KEY4[7: 0]: External memory ciphertext encryption key byte 4
0.4555 5000	[15: 8]	nEXT_FLASH_KEY4[7: 0]: Inverse code of EXT_FLASH_KEY4[7:0]
0x1FFF_F828	[23: 16]	EXT_FLASH_KEY5[7: 0]: External memory ciphertext encryption key byte 5
	[31: 24]	nEXT_FLASH_KEY5[7: 0]: Inverse code of EXT_FLASH_KEY5[7: 0]
	[7: 0]	EXT_FLASH_KEY6[7: 0]: External memory ciphertext encryption key byte 6
0.4555 5000	[15: 8]	nEXT_FLASH_KEY6[7: 0]: Inverse code of EXT_FLASH_KEY6[7: 0]
0x1FFF_F82C	[23: 16]	EXT FLASH KEY7[7: 0]: External memory ciphertext encryption key byte 7
	[31: 24]	nEXT FLASH KEY7[7: 0]: Inverse code of EXT FLASH KEY7[7: 0]
	, _{[2} = .]	, was an

5.2 Flash memory operation

5.2.1 Unlock/lock

After reset, Flash memory is protected, by default. FLASH_CTRLx cannot be written. Write and erase operation can be performed only when the Flash memory is unlocked.

Unlock procedure:

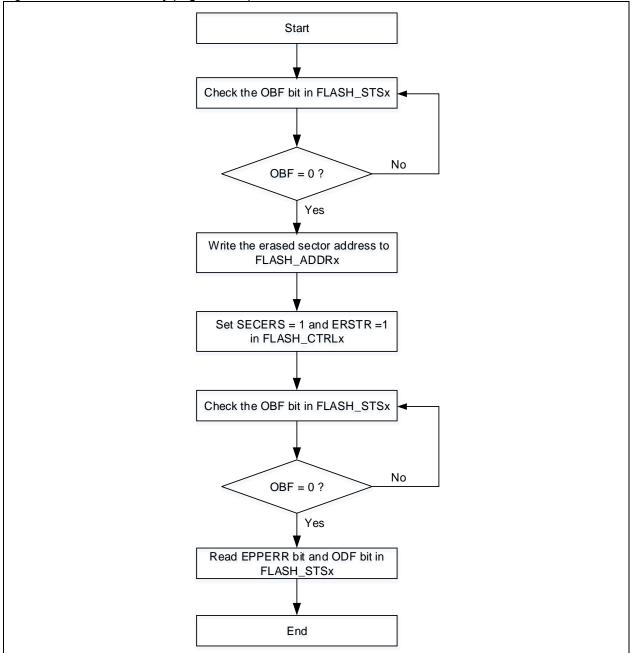
Flash memory block can be unlocked by writing KEY1 (0x45670123) and KEY2 (0xCDEF89AB) to the FLASH_UNLOCKx register.

Note: Writing incorrect key sequence leads to a bus error and the Flash memory is also locked until the next reset.

Lock procedure:

Flash memory block can be locked by setting the OPLK bit in the FLASH_CTRLx register.

5.2.2 Erase operation


Erase operation must be done before programming. Flash memory erase includes mass erase and page erase.

Page erase

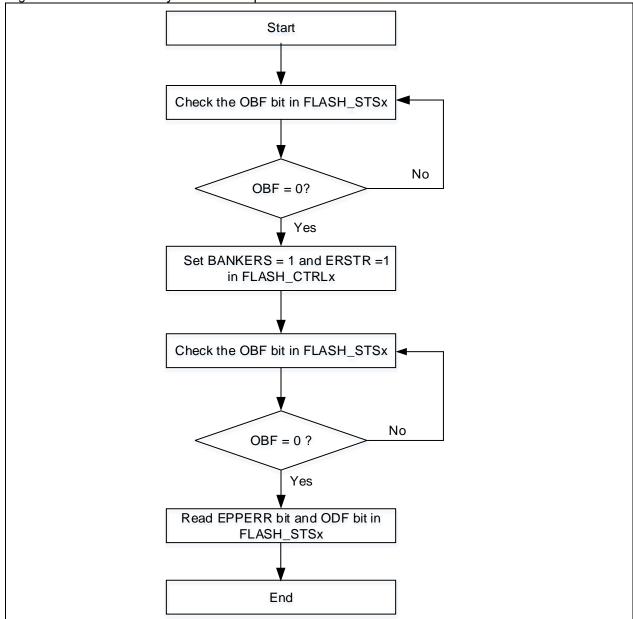
Any page in the Flash memory can be erased with page erase function. Below should be followed during page erase:

- Check the OBF bit in the FLASH_STSx register to confirm that there is no other programming operation in progress;
- Write the page to be erased in the FLASH ADDRx register
- Set the SECERS and ERSTR bit in the FLASH CTRLx register to enable page erase
- Wait until the OBF bit becomes "0" in the FLASH_STSx register. Read the EPPERR bit and ODF bit in the FLASH_STSx register to verify the erased pages.

Figure 5- 3 Flash memory page erase process

Mass erase

Mass erase function can erase all the Flash memory.



The following process is recommended:

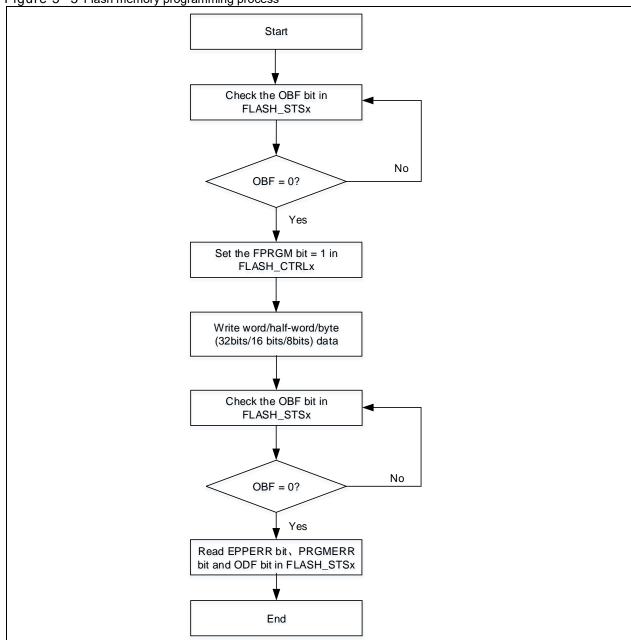
- Check the OBF bit in the FLASH_STSx register to confirm that there is no other programming operation in progress;
- Set the BANKERS and ERSTR bit in the FLASH_CTRLx register to enable mass erase;
- Wait until the OBF bit becomes "0" in the FLASH_STSx register. Read the EPPERR bit and ODF bit in the FLASH_STSx register to verify the erased pages.

Note: Read operation to the Flash memory during erase will halt CPU until the completion of erase.

Figure 5- 4 Flash memory mass erase process

5.2.3 Programming operation

The Flash memory can be programmed with 32 bits, 16 bits or 8 bits at a time.


The following process is recommended:

- Check the OBF bit in the FLASH_STSx register to confirm that there is no other programming operation in progress;
- Set the FPRGM bit in the FLASH_CTRLx register, so that the Flash memory programming instructions can be received;
- Write the data (word/half-word/byte) to be programmed to the designated address;
- Wait until the OBF bit in the FLASH_STSx register becomes "0", read the EPPERR, PRGMERR
 and ODF bit to verify the programming result.

Note: 1. When the address to be written is not erased in advance, the programming operation is not executed unless the data to be written is all 0. In this case, a programming error is reported by the PRGMERR bit in the FLASH STSx register.

2. Read operation to the Flash memory during tprogramming will halt CPU until the completion of programming.

Figure 5-5 Flash memory programming process

5.2.4 Read operation

Flash memory can be accessed through AHB bus of the CPU.

5.3 External memory operation

External memory has the same operation method as that of Flash memory, including read, unlock, erase and programming except that the external memory only supports 32-bit and 16-bit operations, rather than 8 bits.

5.4 User system data area operation

5.4.1 Unlock/lock

After reset, user system data area is protected, by default. Write and erase operations can be performed only after the Flash memory is unlocked before the unlock operation for the user system data area.

Unlock procedure:

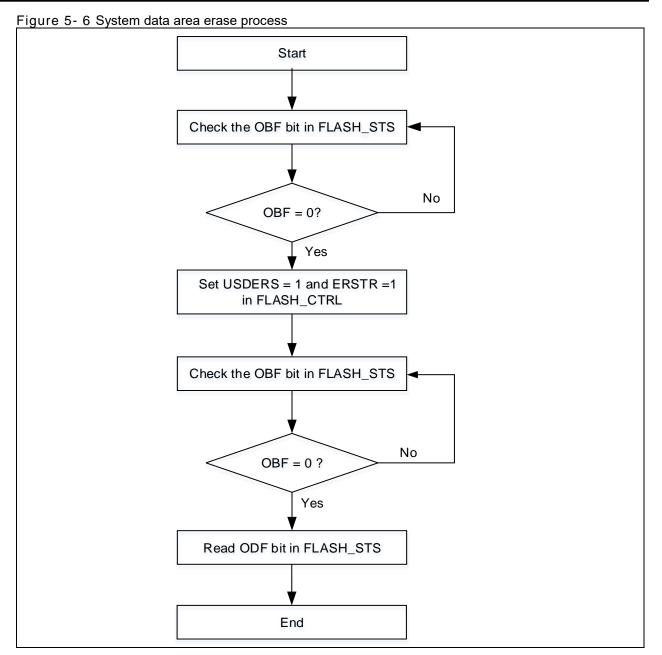
Flash memory block can be unlocked by writing KEY1 (0x45670123) and KEY2 (0xCDEF89AB) to the FLASH UNLOCK register;

When KEY1 (0x45670123) and KEY2 (0xCDEF89AB) is written to the FLASH_USD_UNLOCK register, the USDULKS bit in the FLASH_CTRL register will be automatically set by hardware, indicating that it supports write/erase operation to the user system data area.

Note: Writing an incorrect key sequence leads to bus error and the Flash memory is also locked until the next reset.

Lock procedure:

User system data area is locked by clearing the USDULKS bit in the FLASH CTRL register by software.


5.4.2 Erase operation

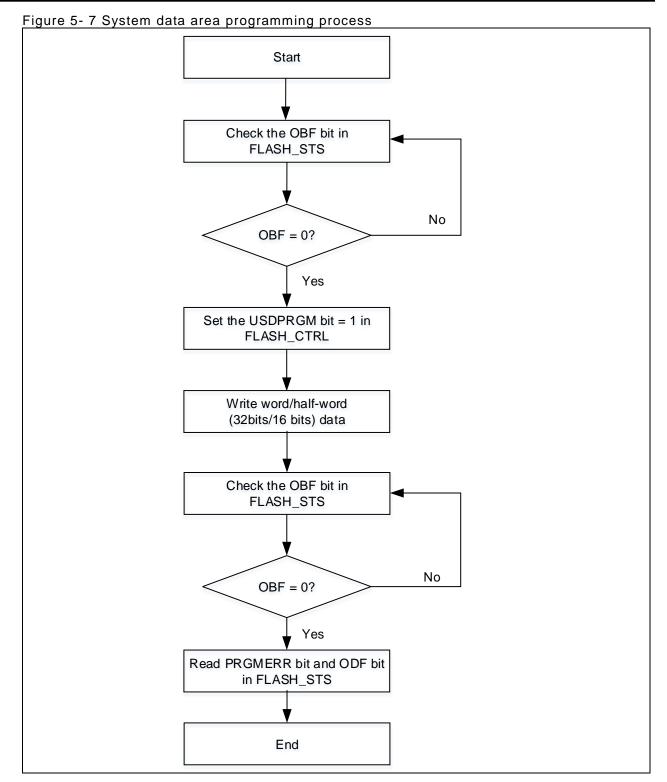
Erase operation must be done before programming. User system data area can perform erase operation independently.

Below should be followed during page erase:

- Check the OBF bit in the FLASH_STS register to confirm that there is no other programming operation in progress;
- Set the USDERS and ERSTR bit in the FLASH_CTRL register to enable erase operation;
- Wait until the OBF bit becomes "0" in the FLASH_STS register. Read the ODF bit in the FLASH_STSx register to verify the erase result.

Note: Read operation to the Flash memory during programming will halt CPU until the completion of erase.

5.4.3 Programming operation


The User system data area can be programmed with 16 bits at a time.

The following process is recommended:

- Check the OBF bit in the FLASH_STS register to confirm that there is no other programming operation in progress;
- Set the USDPRGM bit in the FLASH_CTRL register, so that the programming instructions for the user system data area can be received;
- Write the data (half-word) to be programmed to the designated address;
- Wait until the OBF bit in the FLASH_STS register becomes "0", read the PRGMERR and ODF bit to verify the programming result.

Note: Read operation to the Flash memory during programming will halt CPU until the completion of programming.

5.4.4 Read operation

User system data area can be accessed through AHB bus of the CPU.

5.5 Flash memory protection

Flash memory includes access and erase/program protection.

5.5.1 Access protection

When the contents in the nFAP and FAP byte are different from 0x5A and 0xA5, the Flash memory will activate access protection after a system reset. In this case, only the Flash program is allowed to read Flash memory data. This read operation is not permitted in debug mode or by booting from non-Flash memory.

When the Flash access is protected, the user can re-erase the system data area, and unlock Flash access protection (switching from protected to unprotected state will trigger mass erase on the Flash memory automatically) by wrting 0xA5 to FAP byte, and then perform a system reset. Subsequently, the system data loader will be reloaded with system data and updated with Flash memory access protection disable state (FAP byte)

Note: If the access protection bit is set in debug mode, then the debug mode has to be cleared by POR instead of system reset in order to resume access to Flash memory data.

Table 5-6 shows Flash memory access limits when Flash access protection is enabled.

Table 5- 6 Flash memory access limit

Block		Access limits							
	In debug mo	In debug mode or boot from boot loader		Boot from main Flash memor		h memory			
	Read	Write	Erase	Read Write Erase					
Main Flash memory	Not al	Not allowed		Accessible					
External memory	Not al	Not allowed		Accessible					
User system data area	Not allowed	Not allowed Acces		Accessible					

⁽¹⁾Main Flash memory is cleared automatically by hardware only when the access protection is disabled; (2)Only page erase is forbidden. Bank 1 and bank 2 and external memory mass erase are not affected.

5.5.2 Erase/program protection

If Flash memory is 256K and above, the erase/program protection is based on two-page level.

This is used to protect the contents in the Flash memory against inadvertent operation when the program crash occurs.

Erase/program operation is not permitted under one of the following events, and the EPPERR bit is set accordingly:

- The pages with erase/program protection enabled (main Flash memory and external memory)
- Bank1, bank2 and external memory with erase/program protection enabled
- When the Flash access protection is enabled, page 0 and page 1 in the main Flash memory will be protected against erase/program automatically,
- Once the Flash access protection is enabled, the main Flash memory is protected against erase/program when it is in debug mode or when it is started from non-main Flash memory.

5.6 Special functions

5.6.1 Security library settings

Security library is a defined area protected by a code in the main memory. This area is only executable but cannot be read (Except for I-Code and D-code buses), written, or deleted, unless a correct code is keyed in. Security library includes instruction security library and data security library; users can select part of or the whole security library for instruction storage, but using the whole security library for storing data is not supported.

Advantages of security library:

Security library is protected by codes so that solution providers can program core algorithm into this area;

Security library cannot be read or deleted (including ISP/IAP/SWD) but only executed unless code defined by the solution provider is keyed in;

The rest of the area can be used for secondary development by solution providers;

Solution providers can sell core algorithm with security library function and do not have to develop full solutions for every customer.

Security library helps prevent from deliberate damage or changing terminal application codes.

Note: Security library can only be located in the main Flash memory;

Security library code must be programmed by page, with its start address aligned with the main memory address;

Interrupt vector table will be placed on the first page of Flash memory (page 0), which should not be configured as security library;

Program codes to be protected by the security library should not be placed on the first page of Flash memory;

Only I-Code bus is allowed to read instruction security library;

Only D-Code bus is allowed to read data security library;

When writing or deleting security library code, a warning message will be issued by WRPRTFLR =1 in the FLASH_STS register;

Executing mass erase in the main memory will not erase the security library.

By default, security library setting register is unreadable and write protected. To enable write access to this register, security library should be unlocked first, write 0xA35F6D24 to the SLIB_UNLOCK register, and check the SLIB_ULKF bit in the SLIB_MISC_STS register to verify if it is unlocked successfully. Then write a value into the security library setting register.

Optional CRC check for security library code is based on a page level.

The steps to enable security library are as follows:

- Check the OBF bit in the FLASH_STS register to ensure that there is no other ongoing programming operation;
- Write 0xA35F6D24 to the SLIB KEYR register to unlock security library.
- Check the SLIB ULKF bit of SLIB MISC STS register to verify that it is unlocked successfully.
- Set the area to be protected in the SLIB_SET_RANGE register, including the addresses of instruction area and data area.
- Wait until the OBF bit becomes "0";
- Set security library password in the SLIB_SET_PSW register;
- Wait until the OBF bit becomes "0";
- Program the code to be saved in security library;
- Perform system reset, and then reload security library setting word;
- Read the SLIB STS0/STS1 register to verify the security library setting.

Note: Security library should be enabled when the Flash access protection is not activated.

Steps to unlock security library:

- Write the previously set security library password to the SLIB PWD CLR register.
- Wait until the OBF bit becomes "0";
- Perform system reset, and then reload security library setting word;
- Read the SLIB STS0 register to check the security library setting.

Note: Disabling the security library will automatically perform mass erase for the main memory and page erase for security library setting block.

5.7 Flash memory registers

Table 5-7 lists Flash register map and their reset values.

These peripheral registers must be accessed by words (32 bits).

Table 5- 7 Flash memory interface—Register map and reset value

Register	Offset	Reset value
FLASH_PSR	0x00	0x0000 0030
FLASH_UNLOCK	0x04	0xXXXX XXXX
FLASH_USD_UNLOCK	0x08	0xXXXX XXXX
FLASH_STS	0x0C	0x0000 0000
FLASH_CTRL	0x10	0x0000 0080
FLASH_ADDR	0x14	0x0000 0000
FLASH_USD	0x1C	0x03FF FFFC
FLASH_EPPS	0x20	0xFFFF FFFF
FLASH_UNLOCK2	0x44	0xXXXX XXXX
FLASH_STS2	0x4C	0x0000 0000
FLASH_CTRL2	0x50	0x0000 0080
FLASH_ADDR2	0x54	0x0000 0000
FLASH_UNLOCK3	0x84	0xXXXX XXXX
FLASH_SELECT	0x88	0x0000 0000
FLASH_STS3	0x8C	0x0000 0000
FLASH_CTRL3	0x90	0x0000 0080
FLASH_ADDR3	0x94	0x0000 0000
FLASH_DA	0x98	0x0000 0000
SLIB_STS0	0xCC	0x0000 0000
SLIB_STS1	0xD0	0x0000 0000
SLIB_PWD_CLR	0xD4	0x0000 0000
SLIB_MISC_STS	0xD8	0x0100 0000
SLIB_SET_PWD	0xDC	0x0000 0000
SLIB_SET_RANGE	0xE0	0x0000 0000
SLIB_UNLOCK	0xF0	0x0000 0000
FLASH_CRC_CTRL	0xF4	0x0000 0000
FLASH_CRC_CHKR	0xF8	0x0000 0000
	0AI 0	0,0000 0000

5.7.1 Flash performance select register (FLASH_PSR)

Bit	Abbr.	Reset value	Type	Description
Bit 31: 0	Reserved	0x0000 0030	resd	Kept at its default value.

5.7.2 Flash unlock register (FLASH_UNLOCK)

Only used in Flash memory bank 1.

Bit 31: 0 UKVAL 0xXXXX XXXX wo This is used to unlock Flash memory bank 1	Bit	Abbr.	Reset value Type	Description
Bit 31: 0 UKVAL UXXXXX XXXX WO This is used to unlock Flash memory bank 1	D'' 04 0	1110 (4)	0.000(0000)	Unlock key value
This is ased to almost hash memory bank 1.	Bit 31: 0	UKVAL	0xxxxx xxxx wo	This is used to unlock Flash memory bank 1.

Note: All these bits are write-only, and return 0 when being read.

5.7.3 Flash user system data unlock register (FLASH_USD_UNLOCK)

Bit	Abbr.	Reset value	Type	Description
Bit 31: 0	USD_UKVAL	0xXXXX XXXX		User system data Unlock key value

Note: All these bits are write-only, and return 0 when being read.

5.7.4 Flash status register (FLASH_STS)

Only used in Flash memory bank 1.

Bit	Abbr.	Reset value	Type	Description
Bit 31: 6	Reserved	0x0000000	resd	Kept at its default value
				Operation done flag
Bit 5	ODF	0x0	rw	This bit is set by hardware when Flash memory operations (program/erase) is completed. It is cleared by writing "1".
				Erase/program protection error
Bit 4	EPPERR	0x0	rw	This bit is set by hardware when programming the erase/program- protected Flash memory address. It is cleared by writing "1".
Bit 3	Reserved	0x0	resd	Kept at its default value.
				Programming error
Bit 2	PRGMERR	0x0	rw	When the programming addess is not "0xFFFF", this bit is set by hardware. It is cleared by writing "1".
Bit 1	Reserved	0x0	resd	Kept at its default value.
				Operation busy flag
Bit 0	OBF	0x0	ro	When this bit is set, it indicates that Flash memory operation is in process. It is cleared when operation is completed.

5.7.5 Flash control register (FLASH_CTRL)

Only used in Flash memory bank 1.

Bit	Register	Reset value	Type	Description
Bit 31: 13	Reserved	0x00000	resd	Kept at its default value
				Operation done flag interrupt enable
Bit 12	ODFIE	0x0	rw	0: Interrupt is disabled;
				1: Interrupt is enabled.
Bit 11,8,3	Reserved	0x0	resd	Kept its default value
				Error interrupt enable
				This bit enables EPPERR or PROGERR interrupt.
Bit 10	ERRIE	0x0	rw	0: Interrupt is disabled;
				1: Interrupt is enabled.
				User system data unlock success
Bit 9	USDULKS	0x0	rw	This bit is set by hardware when the user system data is unlocked properly, indicating that erase/program operation to the user system data is allowed. This bit is cleared by writing "0", which will re-lock the user system data area.
				Operation lock
Bit 7	OPLK	0x1	rw	This bit is set by default, indicating that Flash memory is protected against operations. This bit is cleared by hardware after unlock, indicating that erase/program operation to Flash memory is allowed. Writing "1" can relock Flash memory operations.
				Erase start
Bit 6	ERSTR	0x0	rw	An erase operation is triggered when this bit is set. This bit is cleared by hardware after the completion of the erase operation.

D:+ E	USDERS	0.40		User system data erase	
Bit 5	USDERS	0x0	rw	It indicates the user system data erase.	
Div. 4. LIODDDOM	00		User system data program		
Bit 4	USDPRGM	0x0	rw	It indicates the user system data program.	
D:: 0	DANKEDO	0.0		Bank erase	
Bit 2	BANKERS	0x0	rw	It indicates bank erase operation.	
D:: 4	050500	0.0		Page erase	
Bit 1	SECERS	0x0	rw	It indicates page erase operation.	
D'' 0	EDDOM	00		Flash program	
Bit 0	FPRGM	0x0	rw	It indicates Flash program operation.	

5.7.6 Flash address register (FLASH_ADDR)

Only used in Flash memory bank 1.

Bit	Register	Reset value	Type	Description
Bit 31: 0	FA	0x0000 0000	wo	Flash address Select the address of the pages to be erased in page erase operation.

5.7.7 User system data register (FLASH_USD)

Bit	Register	Reset value	Type	Description
Bit 31: 26	Reserved	0x00	resd	Kept at its default value
Bit 25: 18	USER_D1	0xFF	ro	User data 1
Bit 17: 10	USER_D0	0xFF	ro	User data 0
				System setting byte
				Includes the system setting bytes in the loaded user system data area
	SSB			Bit [9: 6]: Unused
Bit 9: 2		0xFF	ro	Bit 5: BTOPT
				Bit 4: nSTDBY_RST
				Bit 3: nDEPSLP_RST
				Bit 2: nWDT_ATO_EN
	540			Flash access protection
Bit 1	FAP	0x0	ro	Access to Flash memory is not allowed when this bit is set.
			x0 ro	User system data error
Bit 0	USDERR 0x0	0x0		When this bit is set, it indicates that certain byte does not match its inverse code in the user system data area. At this point, this byte and its inverse code will be forced to0xFF when being read.

5.7.8 Erase/program protection status register (FLASH_EPPS)

Bit	Register	Reset value	Type	Description
				Erase/Program protection status
Bit 31: 0	EPPS	0xFFFF FFFF	ro	This register reflects the erase/program protection byte status in the loaded user system data.

5.7.9 Flash unlock register2 (FLASH_UNLOCK2)

Only used in Flash memory bank 2.

Bit	Register	Reset value	Type	Description
Bit 31: 0	UKVAL	0xXXXX XXXX	wo	Unlock key value This register is used to unlock Flash memory bank 2.

Note: All these bits are write-only, and return 0 when being read.

5.7.10 Flash status register2 (FLASH_STS2)

Only used in Flash memory bank 2.

Bit	Register	Reset value	Type	Description
Bit 31: 6	Reserved	0x0000000	resd	Kept at its default value
				Operation done flag
Bit 5	ODF	0x0	rw	This bit is set by hardware when Flash memory
20		one.		operations (program/erase) is completed. It is cleared by writing "1".
				Erase/Program protection error
Bit 4	EPPERR	0x0	rw	This bit is set by hardware when programming the erase/program- protected Flash memory address. It is cleared by writing "1"
Bit 3	Reserved	0x0	resd	Kept at its default value
				Program error
Bit 2	PRGMERR	0x0	rw	When the programming addess is not "0xFFFF", this bit is set by hardware. It is cleared by writing "1"
Bit 1	Reserved	0x0	resd	Kept at its default value
				Operation busy flag
Bit 0	OBF	0x0	ro	When this bit is set, it indicates that Flash memory operation is in process. It is cleared when operation is completed.

5.7.11 Flash control register2 (FLASH_CTRL2)

Only used in Flash memory bank 2.

Bit	Register	Reset value	Type	Description
Bit 31: 13	Reserved	0x00000	resd	Kept at its default value
				Operation done flag interrupt enable
Bit 12	ODFIE	0x0	rw	0: Interrupt is disabled;
				1: Interrupt is enabled.
Bit 11	Reserved	0x0	resd	Keep its default value
				Error interrupt enable
D:: 40	500J5	0.0		This bit enables EPPERR or PROGERR interrupt.
Bit 10	ERRIE	0x0	rw	0: Interrupt is disabled;
				1: Interrupt is enabled.
Bit 9,8	Reserved	0x0	resd	Keep at its default value
				Operation lock
Bit 7	OPLK	0x1	rw	This bit is set by default, indicating that Flash memory is protected against operations. This bit is cleared by hardware after unlock, indicating that erase/program operation to Flash memory is allowed. Writing "1" can relock Flash memory operations.
			rw	Erase start
Bit 6	ERSTR	0x0		An erase operation is triggered when this bit is set. This bit is cleared by hardware after the completion of the erase operation.
Bit 5,4,3	Reserved	0x0	resd	Kept at its default value
D:: 0	DANKEDO	0.0		Bank erase
Bit 2	BANKERS	0x0	rw	It indicates bank erase operation.
D:: 4	050500	0.0		Page erase
Bit 1	SECERS	0x0	rw	It indicates page erase operation.
D:: 0	EDDOM	0.0		Flash program
Bit 0	FPRGM	0x0	rw	It indicates Flash program operation.

5.7.12 Flash address register2 (FLASH_ADDR2)

Only used in Flash memory bank 2.

Bit	Register	Reset value	Type	Description
-				Flash address
Bit 31: 0	FA	0x0000 0000	WO	Select the address of the pages to be erased in page erase operation.

5.7.13 Flash unlock register3 (FLASH_UNLOCK3)

Only used in external memory.

Bit	Register	Reset value Ty	уре	Description
D:1 04 0	Bit 31: 0 UKVAL 0xXXXX XXXX wo		Unlock key value	
Bit 31: 0			This register is used to unlock SPIM.	

5.7.14 Flash select register (FLASH_SELECT)

Only used in external memory.

Bit	Register	Reset value	Type	Description
		0x0000 0000	00 wo	SPIM supports extended SPI Flash chip selection
	05, 507			0x0001: Refer to Table 5-4
Bit 31: 0	SELECT			0x0002: Refer to Table 5-4
				Others: Reserved.

5.7.15 Flash status register3 (FLASH_STS3)

Only used in external memory.

Bit	Register	Reset value	Type	Description
Bit 31: 6	Reserved	0x0000000	resd	Kept at its default value
				Operation done flag
Bit 5	ODF	0x0	rw	This bit is set by hardware when Flash memory operations (program/erase) is completed. It is cleared by writing "1".
				Erase/Program protection error
Bit 4	EPPERR	0x0	rw	This bit is set by hardware when programming the erase/program- protected Flash memory address. It is cleared by writing "1"
Bit 3	Reserved	0x0	resd	Kept at its default value
				Programming error
Bit 2	PRGMERR	0x0	rw	When the programming addess is not "0xFFFF", this bit is set by hardware. It is cleared by writing "1
Bit 1	Reserved	0x0	resd	Kept at its default value
				Operation busy flag
Bit 0	OBF	0x0	ro	When this bit is set, it indicates that Flash memory operation is in process. It is cleared when operation is completed.

5.7.16 Flash control register3 (FLASH_CTRL3)

Only used in external memory.

enable

				1: Interrupt is enabled.
Bit 9,8	Reserved	0x0	resd	Kept at its default value
				Operation lock
Bit 7	OPLK	0x1	rw	This bit is set by default, indicating that Flash memory is protected against operations. This bit is cleared by hardware after unlock, indicating that erase/program operation to Flash memory is allowed. Writing "1" can relock Flash memory operations.
				Erase start
Bit 6	ERSTR	0x0	rw	An erase operation is triggered when this bit is set. This bit is cleared by hardware after the completion of the erase operation.
Bit 5,4,3	Reserved	0x0	resd	Kept at its default value
D:: 0	OURERO	0x0	rw	Mass erase
Bit 2	CHPERS			Perform mass erase on the external memory.
D.: 4	050500	2.2		Page erase
Bit 1	SECERS	0x0	rw	It indicates page erase operation.
D:+ 0	EDDOM	00		Flash program
Bit 0	FPRGM	0x0	rw	It indicates Flash program operation.

5.7.17 Flash address register3 (FLASH_ADDR3)

Only used in external memory.

Bit	Register	Reset value	Type	Description
				Flash address
Bit 31: 0	FA	0x0000 0000	WO	Select the address of the pages to be erased in external memory.

5.7.18 Flash decrption address register (FLASH_DA)

Only used in external memory.

Bit	Register	Reset value	Type	Description
				Flash decryption address
				Set the encryption range of external memory through FLASH_DA register in the user program.
Bit 31: 0	FDA	0x0000 0000	WO	$0x0840_0000 \sim (0x0840_0000+FDA-0x1)$: the cipher text of external memory
				$(0x0840_0000 + FDA) \sim 0x093F FFFF$: the plain text of external memory
				Note: The setting value of FDA must be a multiple of 4, aligned by word.

5.7.19 Flash security library status register (SLIB_STS0)

Only used in Flash security library.

Bit	Register	Reset value	Type	Description
Bit 31: 4	Reserved	0x0000000	resd	Kept at its default value
				SLIB_ENF: sLib enable flag
Bit 3	SLIB_ENF	0x0	ro	When this bit is set, it indicates that the main Flash memory is partially or completely (depending on the setting of SLIB_STS1) used as security library code.
Bit 2: 0	Reserved	0x0	resd	Kept at its default value

5.7.20 Flash security library status register1 (SLIB_STS1)

Only used in Flash security library.

Bit	Register	Reset value	Type	Description
Bit 31: 22	SLIB_ES	0x000	ro	Security library end page 0: Page 0

				1: Page 1
				2: Page 2
				511: Page 511
				Security library data start page 0: Invalid page 1: Page 1
Bit 21: 11	SLIB_DAT_SS	0x000	ro	2: Page 2
				511: Page 511
				0x7FF: No security library data area
Bit 10: 0	SLIB_SS	0x000	ro	Security library start page 0: Page 0 1: Page 1 2: Page 2
				511: Page 511

5.7.21 Flash security library password clear register (SLIB_PWD_CLR)

Only used in Flash security library.

Bit	Register	Reset value	Type	Description
				Security library password clear value
Bit 31:0	SLIB PCLR VAL	0x0000 0000	WO	Entering correct security library password will unlo security library functions.
		. 00000 0000		The write status of this register is reflected in the bit 0 and bit 1 in the SLIB_MISC_STS register.

5.7.22 Security library additional status register (SLIB_MISC_STS)

Only used in Flash security library.

Bit	Register	Reset value	Type	Description
Bit 31:25	Reserved	0x00	resd	Kept at its default value
Bit 24: 16	SLIB_RCNT	0x100	ro	Security library remaining count It is decremented from 256 to 0.
Bit 15: 3	Reserved	0x0000	resd	Kept at its default value
				Security library unlock flag
Bit 2	SLIB_ULKF	0x0	ro	When this bit is set, it indicates that sLib-related setting registers can be configured.
D:: 4	OLID DWD OK	0.0	ro	Security library password ok
Bit 1	SLIB_PWD_OK	0x0	ro	This bit is set by hardware when the password is correct.
				Security library password error
Bit 0	SLIB_PWD_ERR	0x0	ro	This bit is set by hardware when the password is incorrect and the setting value of the password clear register is different from 0xFFFF FFFF.
2 0				Note: When this bit is set, the hardware will no longer agree to re-program the password clear register until the next reset.

5.7.23 Security library password setting register (SLIB_SET_PWD)

Only used for Flash security library password setting.

Bit	Register	Reset value	Type	Description
				Security library password setting value
Bit 31: 0	SLIB_PSET_VAL	0x0000 0000	wo	Note: This register can be written only after unlocking security library lock. It is used to set up the startup password of security library. Values of 0xFFFF_FFFF and 0x0000_0000 are invalid.

5.7.24 Security library address setting register (SLIB_SET_RANGE)

Only used for Flash security library address setting.

Register	Reset value	Type	Description
			Security library end page setting
			Theses bits are used to set the security library end page.
			0: Page 0
SLIB ES SET	0x000	wo	1: Page 1
			2: Page 2
			511: Page 511
			Security library data start page setting
			These bits are used to set the security library start page.
	0x000		0: Invalid page. Setting it will cause security library to fail
			to start.
SLIB DSS SET		wo	1: Page 1
			2: Page 2
			511: Page 511
			0x7FF: No security library data area.
			Security library start page setting
			These bits are used to set the security library start page.
			0: Page 0
SLIB_SS_SET	0x000	wo	1: Page 1
			2: Page 2
			511: Page 511
	SLIB_ES_SET SLIB_DSS_SET	SLIB_ES_SET 0x000 SLIB_DSS_SET 0x000	SLIB_ES_SET 0x000 wo

Note: All these bits are write-only, and return 0 when being read.

This register can be written only after unlocking security library lock.

5.7.25 Security library unlock register (SLIB_UNLOCK)

Only used for Flash security library unlock setting.

Bit	Register	Reset value	Type	Description
				Security library unlock key value
Bit 31: 0	SLIB_UKVAL	0x0000 0000	WO	Fixed key value is 0xA35F_6D24, used for security library setting register unlock

Note: All these bits are write-only, and return 0 when being read.

5.7.26 Flash CRC check control register (FLASH_CRC_CTRL)

Only used in main Flash memory.

Bit	Register	Reset value	Type	Description
				CRC start
Bit 31	CRC_STRT	0x0	wo	Set this bit to enable user code or security library code CRC calibration. This bit is cleared automatically after the hardware enables CRC.
Bit 30: 24	Reserved	0x00	wo	Kept at its default value
D:: 00 10	CRC_SN	0x000	WO	CRC calibration page numbler
Bit 23: 12				Set the number of the CRC calibarion, in terms of pages.
				CRC calibration start page
				Set the start page for this CRC calibration.
Bit 11: 0	CRC_SS	0x000	WO	0x0: Page 0
				0x1: Page 1

Note: All these bits are write-only. Reading them has no effect.

5.7.27 Flash CRC check result register (FLASH_CRC_CHKR)

Only used in Flash or security library.

Bit	Register	Reset value	Type	Description
Bit 31: 0	CRC_CHKR	0x0000 00000	ro	CRC check result

Note: All these bits are write-only. Reading them has no effect.

6 General-purpose I/Os (GPIOs)

6.1 Introduction

AT32F403A/407 support up to 80 bidirectional I/O pins, which are grouped as five categories, namely PA, PB, PC, PD and PE. Each of the GPIO group provides up to 16 I/O pins that feature communication, control and data collection. In addition, their main features also include:

- Supports general-purpose I/O (GPIO) or multiplexed function I/O (IOMUX), which will be detailed in this chapter and the subsequent sections
- Each pin can be configured by software as floating input, pull-up/pull-down input, analog input/output, push-pull/open-drain output, multiplexed push-pull/open-drain output
- Each pin's output drive capability and output signal slope is configureable by software
- Each pin can be configured as external interrupt input
- Each pin can be locked

6.2 Function overview

6.2.1 GPIO structure

Each of the GPIO pins can be configured by software as four input modes (floating, pull-up/pull-down and analog input) and four output modes (open-drain, push-pull, alternate function push-pull/open-drain output)

Each I/O port bit can be programmed flexibly. However, I/O port registers must be accessed by 32-bit words (half-word/byte access is not supported).

Figure 6- 1 GPIO basic structure Single IO analog input/output Analog module output enable **ESD** protect AHB bus 3PIO controller output data Ю push/pull strength control input enable input data SMT trigger

6.2.2 GPIO reset status

After power-on or system reset, all pins are configured as floating input mode except JATG-related pins. JTAG pin configuration are as follows:

- PA15/JTDI, PA13/JTMS and PB4/JNTRST in pull-up input mode;
- PA14/JTCK in pull-down input mode;
- PB3/TDO in floating input mode.

6.2.3 General-purpose input configuration

Mode	IOFC	HDRV	IOMC[1]	IOMC[0]	ODT register
Floating input	01				Unused
Pull-down input	10		000		0
Pull-up input	10				1

When I/O port is configured as input:

- Get I/O states by reading input data register.
- Floating input, pull-up/pull-down input is configurable
- Schmitt-trigger input is activated.
- Output is disabled.

Note: In floating input mode, it is recommended to set the unused pins as analog input mode in order to avoid leakage caused by interference from unused pins in a complex environment.

6.2.4 Analog input/output configuration

Mode	IOFC	HDRV	IOMC[1]	IOMC[0]	ODT register
Analog input/output	00		000		Unused

When I/O port is configured as analog input:

- Schmitt-trigger input is disabled.
- Digital input/output is disabled.
- Without any pull-up/pull-down resistor.

6.2.5 General-purpose output configuration

Mode	IOFC	HDRV	IOMC[1]	IOMC[0]	ODT register
Push-Pull	00	000/100: Input mo 001: Output mode 010: Output mode 011: Output mode	e, large sourcing/s e, normal sourcing	sinking strength	0 or 1
Open-Drain	01	1xx: Output mode	0 or 1		

When I/O port is configured as output:

- Schmitt-trigger input is enabled.
- Output through output register.
- Pull-up/pull-down resistors are disabled.
- In open-drain mode, forced output 0, use pull-up resistor to output 1.
- In push-pull mode, output register is used to output 0/1.
- When CONF=10 or 11, it is used as a multiplexed output, refer to IOMUX for more details.

6.2.6 I/O port protection

Locking mechanism can freeze the I/O configuration for the purpose of protection. When LOCK is applied to a port bit, its configuration cannot be modified until the next reset or power on.

6.3 GPIO registers

Table 6-1 lists GPIO register map and their reset values. These peripheral registers must be accessed by words (32 bits).

Table 6- 1 GPIO register map and reset values

Register	Offset	Reset value
GPIOx_CFGLR	0x00	0x4444 4444
GPIOx_CFGHR	0x04	0x4444 4444
GPIOx_IDT	0x08	0x0000 XXXX
GPIOx_ODT	0x0C	0x0000 0000
GPIOx_SCR	0x10	0x0000 0000
GPIOx_CLR	0x14	0x0000 0000
GPIOx_WPR	0x18	0x0000 0000
GPIOx_SRCTR	0x20	0x0000 0000
GPIOx_HDRV	0x3C	0x0000 0000

6.3.1 GPIO configuration register low (GPIOx_CFGLR) (x=A..E)

Bit	Register	Reset value	Type	Description
				GPIOx function configuration (y=0~7)
				In input mode (IOMCy[1: 0]=00):
Bit 31: 30				00: Analog mode
Bit 27: 26				01: Floating input (reset state)
Bit 23: 22				10: Pull-up/pull-down input
Bit 19: 18 Bit 15: 14	IOFCy	0x1	rw	11: Reserved
Bit 11: 10				In output mode (IOMCy[1: 0]!=00):
Bit 7: 6			00: General-purpose push-p	00: General-purpose push-pull output
Bit 3: 2				01: General-purpose open-drain output
				10: Alternate function push-pull output
				11: Alternate function open-drain output
Bit 29: 28				GPIOx mode configuration (y=0~7)
Bit 25: 24 Bit 21: 20				00: Input mode (reset state)
Bit 17: 16 Bit 13: 12	10110	0.0		01: Output mode, large sourcing/sinking strength
	IOMCy	0x0	rw	10: Output mode, normal sourcing/sinking strength
Bit 9: 8 Bit 5: 4 Bit 1: 0				11: Output mode, normal sourcing/sinking strength

Note: Some port registers have different reset values. For example, some PA pins are JTAG/SWD with pull-up input by default.

6.3.2 GPIO configuration register high (GPIOx_CFGHR) (A..E)

Bit	Register	Reset value	Type	Description
				GPIOx function configuration (y=8~15)
				In input mode (IOMCy[1: 0]=00):
Bit 31: 30				00: Analog mode
Bit 27: 26				01: Floating input (reset state)
Bit 23: 22				10: Pull-up/pull-down input
Bit 19: 18 Bit 15: 14	IOFCy	0x1	rw	11: Reserved
Bit 11: 10				In output mode (IOMCy[1: 0]!=00):
Bit 7: 6				00: General-purpose push-pull output
Bit 3: 2				01: General-purpose open-drain output
				10: Alternate function push-pull output
				11: Alternate function open-drain output
Bit 29: 28 Bit 25: 24				GPIOx mode configuration (y=8~15)
Bit 25: 24				00: Input mode (reset state)
Bit 17: 16 Bit 13: 12 Bit 9: 8	IOMCy	0x0	rw	01: Output mode, large sourcing/sinking strength
	·o···oy	one.	•••	10: Output mode, normal sourcing/sinking strength
Bit 5: 4 Bit 1: 0				11: Output mode, normal sourcing/sinking strength

Note: Some port registers have different reset values. For example, some PB pins are JTAG/SWD with pull-up input by default.

6.3.3 GPIO input data register (GPIOx_IDT) (x=A..E)

Bit	Register	Reset value	Type	Description
Bit 31: 16	Reserved	0x0000	resd	Kept at its default value.
				GPIOx input data
Bit 15: 0	IDT	0xXXXX	ro	Indicates the input status of I/O port. Each bit corresponds to an I/O.

6.3.4 GPIO output data register (GPIOx_ODT) (x=A..E)

Bit	Register	Reset value	Type	Description
Bit 31: 16	Reserved	0x0000	resd	Kept at its default value.
				GPIOx output data
				Each bit represents an I/O port.
				As output: it indicates the output status of I/O port.
				0: Low
Bit 15: 0	ODT	0x0000	rw	1: High
				As input: it indicates the pull-up/pull-down status of I/O port.
				0: Pull-down
				1: Pull-up

6.3.5 GPIO set/clear register (GPIOx_SCR) (x=A..E)

Bit	Register	Reset value	Type	Description	
				GPIOx clear bit	
Bit 31: 16	IOCB	0x0000	WO	The corresponding ODT register bits are cleared by writing "1" to these bits. Writing 0 has no effect on the ODT register bits, which is equivalent to ODT register bit operations.	
				0: No action to the corresponding ODT bits	
				1: Clear the correspoinding ODT bits	
				GPIOx set bit	
Bit 15: 0	IOSB	0x0000	wo	The corresponding ODT register bits are set by writing "1" to these bits. Writing 0 has no effect on the ODT register bits, which is equivalent to ODT register bit operations.	
	5.0 100B	one or o		If both IOCB and IOSB are set, the IOSB has priority.	
				The corresponding ODT register bits are cleared by writi "1" to these bits. Writing 0 has no effect on the ODT regis bits, which is equivalent to ODT register bit operations. 0: No action to the corresponding ODT bits 1: Clear the correspoinding ODT bits GPIOx set bit The corresponding ODT register bits are set by writing to these bits.Writing 0 has no effect on the ODT regis bits, which is equivalent to ODT register bit operations.	
				1: Set the correspoinding ODT bits	

6.3.6 GPIO clear register (GPIOx_CLR) (x=A..E)

Bit	Register	Reset value	Type	Description
Bit 31: 16	Reserved	0x0000	resd	Kept at its default value.
				GPIOx clear bit
Bit 15: 0	IOCB	0x0000	wo	The corresponding ODT register bits are cleared by writing "1" to these bits. Writing o has no effect on the ODT register bit remains unchanged, which is equivalent to ODT register bit operations.
				0: No action to the correspoinding ODT bits
				1: Clear the correspoinding ODT bits

6.3.7 GPIO write protection register (GPIOx_WPR) (x=A..E)

Bit	Register	Reset value	Type	Description
Bit 31: 17	Reserved	0x0000	resd	Kept at its default value.
				Write protect sequence
	WDOEG	0x0		Write protect sequence Write protect enable sequence bit and WPEN bit must be enabled at the same time to achieve write protection for some I/O bits. Write protect enable bit is executed four times in the order below: write "1" -> write "0" -> write "1" -> read. Note that the value of WPSEL bit cannot be modified during this period. Write protect enable Each bit corresponds to an I/O port. 0: No effect.
Bit 16	WPSEQ		rw	Write protect enable bit is executed four times in the order below: write "1" -> write "0" -> write "1" -> read. Note that the value of WPSEL bit cannot be modified during this period.
				Write protect enable
Bit 15: 0	WPEN 0x0000	0.0000	rw	Each bit corresponds to an I/O port.
		0x0000		0: No effect.
				1: Write protect

6.3.8 GPIO huge current control register (GPIOx_HDRV) (x=A..E)

Bit	Register	Reset value	Type	Description
Bit 31: 16	Reserved	0x0000	resd	Kept at its default value.
Bit 15:0 HDRV				(Portx Huge sourcing/sinking strength control) (y=015)
				Each bit corresponds to an I/O port.
	HDRV	0x0000	rw	Kept at its default value. (Portx Huge sourcing/sinking strength control) (y=015) Each bit corresponds to an I/O port. 0: GPIO is configured as large or normal sourcing/sinkin strength, depending on IOMCy[1: 0]. 1: GPIO is configured as maximum sourcing/sinkin
				1: GPIO is configured as maximum sourcing/sinking strength, ignoring IOMCy[1: 0].

7 Multiplex function I/Os (IOMUX)

7.1 Introduction

AT32F403A/407 support up to 80 bi-directional I/O pins, which are grouped as five categories, namely PA, PB, PC, PD and PE. Each of the GPIO group provides up to 16 I/O pins that feature communication, control and data collection. In addition, their main features also include:

- Supports general-purpose I/O (GPIO) or multiplex I/O (IOMUX), which will be detailed in this chapter.
- Can be configured as multiplex function input/output ports by setting GPIOx_CFGLR or GPIOx CFGHR
- Most pins support output map for several peripherals. Select different peripheral input/output through IOMUX register
- Supports external interrupt

7.2 Function overview

7.2.1 IOMUX structure

While being used as multiplexed function input, the I/O port should be configured as input modes (floating, pull-up and pull-down input)

To enable multiplexed function output, the port is configured as multiplexed function output mode (push-pull or open-drain) by setting GPIOx_CFGLR or GPIOx_CFGHR register. In this case, the pins are disconnected from GPIO controller, and controlled by IOMUX controller, instead.

To achieve bidirectional multiplexed function, the port needs to be configured as multiplexed function output modes (push-pull or open-drain), controlled by IOMUX controller.

In MUX output mode, it is possible that an I/O pin is used as output for several peripherals. Select the required multiplexed function output by setting IOMUX registers. However, when a pin is programmed as MUX IO without activating the corresponding peripheral, its output will not specified.

Figure 7- 1 Basic structure of IOMUX basic structure Single IO analog input/output Analog module output enable **ESD** protect OMUX control output data Ю push/pull strength control input enable Peripheral Module input data SMT trigger

7.2.2 MUX Input configuration

When I/O ports are configured as multiplexed function input:

- Get I/O pin state by reading input data registers
- The pin be configured as floating input, pull-up or pull-down input
- Schmitt-trigger input is activated.
- Pin output is disabled.

Table 7- 1 IOMUX input configuration

Mode	IOFC	HDRV IOMC[1]	IOMC[0]	ODT register
Floating input	01		Unused	
Pull-down input		000	0	
Pull-up input	10			1

7.2.3 MUX output or bidirectional MUX configuration

When an I/O port is configured as MUX output or a bidirectional MUX:

- I/O pin output depends on the peripherals.
- Schmitt-trigger input is activated.
- Pull-up/pull-down resistor is disabled.
- If the I/O pin is set as several MUX outputs by mistake, the pin output depends on map priority, refer to next section for details.
- In open-drain mode, get an I/O port state by reading input data register
- In push-pull mode, get an I/O port state by reading input data register

The MUX functions of some peripherals can be remapped to different pins. Therefore, it is necessary to select the number of the desired peripheral IOMUX functions in different packages. Pin mapping is achieved by setting the IOMUX_REMAP and IOMUX_REMAPx registers.

Table 7- 2 IOMUX output configuration

Mode	IOFC	HDRV	IOMC[1]	IOMC[0]
Push-Pull	10	001: Output mode, I	arge sourcing/sinkin	g strength
Open-Drain	11	010: Output mode, r	normal sourcing/sink	ing strength
		011: Output mode, normal sourcing/sinking strength		
		1xx: Output mode, r	naximum sourcing/s	inking strength

Note: For MUX function output or bidirectional MUX function, IOMC[1: 0] > 00 must be met.

7.2.4 Peripheral MUX function configuration

When IOMUX function is used:

- To use a peripheral pin in MUX output, it is configured as multiplexed push-pull/open-drain output.
- To use a peripheral pin in MUX input, it is configured as floating input/pull-up/pull-down input.
- For ADC peripherals, the pins of analog channels should be configured as analog input/output mode.
- For I2C peripherals that intend to use pins as bidirectional functions, open-drain mode is required.

7.2.5 IOMUX map priority

When several peripheral MUX functions are mapped to the same pin, the priorirty below should be respected:

- Hardware preemption
- JTAG debug port
- Non-timer peripherals has priority over timer peripherals
- No priority applied among several non-timer peripherals, MUX function is overlapped to the same pin

7.2.5.1 Hardware preemption

Certain pins are occupied by specific hardware functions regardless of the GPIO configuration.

Table 7-3 Hardware preemption

Pin	Enable bit	Description	
PA0	PWC_CTRLSTS[8] =1	Once enabled, PA0 pin acts as WKUP function of PWC.	
PA4	DAC_CTRL[2] =1	Once enabled, PA4 pin acts as DAC1 analog channel.	
PA5	DAC_CTRL[18] =1	Once enabled, PA5 pin acts as DAC2 analog channel.	
PA11	CRM_APB1EN[23]=1	Once enabled, PA11 pin acts as USB_DM channel.	
PA12	CRM_APB1EN[23]=1	Once enabled, PA12 pin acts as USB_DP channel.	
	CRM_APB1EN[27]=1&		
PC13	(BPR_CTRL[0]=1	Once enabled, PC13 pin acts as RTC channel.	
	BPR_RTCCAL[8]= 1		
	BPR_RTCCAL[7]=1)		
PC14	CMR_BPDC[0]=1	Once enabled, PC14 pin acts as LEXT channel.	
PC15	CMR_BPDC[0]=1	Once enabled, PC15 pin acts as LEXT channel.	

7.2.5.2 Debug port priority

The programmed debug pins will remain its state during device debugging, regardless of their GPIO register configuration. By doing this, can the debug port be free from disturbance imposed by other peripherals.

To utilize more pins during this period, the above-mentioned remap configuration can be changed by setting the SWJTAG_MUX [2:0] bit in the IOMUX_REMAP register and SWJTAG_GMUX [2:0] bit in the IOMUX_REMAP7 register.

Table 7-4 Debug port map

SWJTAG_MUX [2: 0] or SWJTAG_GMUX [2: 0]	SWJI/O pin allocation					
		PA13/JTMS/ SWDIO	PA14/JTCK/ SWCLK	PA15/JTDI	PB3/JTDO/ TRACESWO	PB4/NJTRST
000	√	$\sqrt{}$	\checkmark	√	V	
001		$\sqrt{}$	$\sqrt{}$	V	х	
010	√	$\sqrt{}$	х	х	х	
100	х	х	х	х	х	
Others	-	-	-	-	-	

Note: $\sqrt{\text{indicates that this pin is forcibly allocated to debug port, while x indicates that this pin can be released to other peripherals.}$

7.2.5.3 Other peripheral output priority

For other peripherals, their output priority are as follows:

- Non-timer peripherals have priority over timers. In other words, when other peripherals and timers are mapped to the same pin at the same time, the timer can not be output.
- When multiple non-timer peripherals are mapped to the same pin, their output are overlapped to this pin.

7.2.6 External interrupt/wake-up lines

Each pin can be used as an external interrupt input. The corresponding pin should be configured as input mode.

7.3 IOMUX registers

Table 7-5 shows IOMUX register map and their reset values, These peripheral registers must be accessed by words (32 bits).

Table 7-5 IOMUX register map and reset value

Register	Offset	Reset value
IOMUX_EVTOUT	0x00	0x0000 0000
IOMUX_REMAP	0x04	0x0000 0000
IOMUX_EXINTC1	0x08	0x0000
IOMUX_EXINTC2	0x0C	0x0000
IOMUX_EXINTC3	0x10	0x0000
IOMUX_EXINTC4	0x14	0x0000
IOMUX_REMAP2	0x1C	0x0000 0000
IOMUX_REMAP3	0x20	0x0000 0000
IOMUX_REMAP4	0x24	0x0000 0000
IOMUX_REMAP5	0x28	0x0000 0000
IOMUX_REMAP6	0x2C	0x0000 0000
IOMUX_REMAP7	0x30	0x0000 0000
IOMUX_REMAP8	0x34	0x0000 0000

Note: IOMUX clock must be enabled before read/write access to IOMUX_EVCTRL, IOMUX_REMAPX and IOMUX_EXINTx.

7.3.1 Event output control register (IOMUX_EVTOUT)

Bit	Register	Reset value	Type	Description	
Bit 31: 8	Reserved	0x000000	resd	Kept at its default value.	
				Event output enable	
Bit 7	EVOEN	0x0	rw	Once enabled, the EVENTOUT signal of Cortex-M is directed to the allocated I/O port.	
Bit 6: 4 SE		0x0	rw	Selection IO port	
				Select the GPIO port for EVENTOUT signal output:	
				000: GPIOA	
	SELPORT			001: GPIOB	
				010: GPIOC	
				011: GPIOD	
				100: GPIOE	
		0x0	rw	Selection IO pin (x=AE)	
	SELPIN			Select the I/O pin of GPIOx for EVENTOUT output:	
				0000: Pin 0 0001: Pin 1	
				0010: Pin 2 0011: Pin 3	
D'' 0 0				0100: Pin 4 0101: Pin 5	
Bit 3: 0				0110: Pin 6 0111: Pin 7	
				1000: Pin 8 1001: Pin 9	
				1010: Pin 10 1011: Pin 11	
				1100: Pin 12 1101: Pin 13	
				1110: Pin 14 1111: Pin 15	

7.3.2 IOMUX remap register (IOMUX_REMAP)

Bit	Register	Reset value	Type	Description
Dit 21	CDI4 MILIV	0.0	2047	SPI1 IO multiplexing
Bit 31	SPI1_MUX	0x0	rw	Refer to bit 0 for more details.
<u> </u>				EMAC PTP PPS IO mutiplexing
				It indicates whether PPS_PTS is connected to PB5.
Bit 30	PTP_PPS_MUX	0x0	rw	0: PTP_PPS is not connected to PB5 pin.
				1: PTP_PPS is connected to PB5 pin.
				Note: This pin is only applied to AT32F407 series.
				TMR2 internal trigger 1 multiplexing
				This bit is used to select TMR2 ITR1.
Bit 29	TMR2ITR1_MUX	0x0	rw	0: TMR8_TRGO is used as TMR2ITR1 input.
	_			1: Ethernet PTP output is used as TMR2 ITR1 input.
				Note: This pin is only applied to AT32F407 series.
				SPI3 IO multiplexing
				This bit is used to select CS, SCK, MISO and MOS for SPI3 IO.
Bit 28	SPI3_MUX	0x0	rw	0: CS/PA15, SCK/PB3, MISO/PB4 and MOSI/PB5.
				1: CS/PA4, SCK/PC10, MISO/PC11 and MOSI/PC12.
				Note: This pin is only applied to AT32F407 series.
Bit 27	Reserved	0x0	resd	Kept at its default value.
<u> </u>	110001704	0.00	1004	SWD JTAG mutiplexing
				These bits are used to configure SWJTGA-related I/Os as GPIOs.
	SWJTAG_MUX	0x0	rw	000: Supports SWD and JTAG. All SWJTAG pins cannot be used as GPIOs.
Bit 26: 24				001: Supports SWD and JTAG. NJTRST is disabled. PB4 can be used as GPIO.
				010: Supports SWD but JTAG is disabled. PA15/PB3/PB4 can be used as GPIOs.
				100: SWD and JTAG are disabled. All SWJTAG pins can
				be used as GPIOs.
				Others: No effect.
				MII or RMII selection
				Select Ethernet MII or RMII interface.
Bit 23	MII_RMII_SEL	0x0	rw	0: MII
				1: RMII
				Note: This pin is only applied to AT32F407 series.
				CAN2 IO multiplexing
D'' 00				This bit is used to select IO multiplexing for CAN2_TX and CAN2_RX.
Bit 22	CAN2_MUX	0x0	rw	0: RX/PB12, TX/PB13
				1: RX/PB5, TX/PB6
				Note: This pin is only applied to AT32F407 series.
				EMAC IO multiplexing
				Select Ethernet MAC IO multiplexing function.
Bit 21	EMAC_MUX	0x0	rw	0: RX_DV/CRS_DV/PA7, RXD0/PC4, RXD1/PC5, RXD2/PB0 and RXD3/PB1
			1 44	1: RX_DV/CRS_DV/PD8, RXD0/PD9, RXD1/PD10, RXD2/PD11 and RXD3/PD12
				Note: This pin is only applied to AT32F407 series.
				ADC2 external trigger ordinary conversion multiplexing
Bit 20	ADC2_ETO_MUX	0x0	rw	Select external trigger input for ADC2 ordinary conversion.
טונ בט	7002_L10_INIOX	0.00	ı VV	0: ADC2 external trigger ordinary conversion is connected
				5.7.2 02 0.toma trigger ordinary conversion is confected

				to EXINT11
				1: ADC2 external trigger ordinary conversion is connected
				to TMR8 TRGO
				ADC2 external trigger preempted conversion mutiplexing
			rw	Select external trigger input for ADC2 preempted conversion.
Bit 19 A	ADC2_ETP_MUX	0x0		0: ADC2 external trigger preempted conversion is connected to EXINT15.
				1: ADC2 external trigger preempted conversion to TMR8 channel 4.
				ADC1 external trigger regular conversion mutiplexing
				Select external trigger input for ADC1 ordinary conversion.
Bit 18 A	ADC1_ETO_MUX	0x0	rw	0: ADC1 external trigger ordinary conversion is connected to EXINT11.
				1: ADC1 external trigger ordinary conversion TMR8_TRGO.
				ADC1 external trigger preempted conversion multiplexing
				Select external trigger input for ADC1 preempted conversion.
Bit 17 A	ADC1_ETP_MUX	0x0	rw	0: ADC1 external trigger preempted conversion is connected to EXINT15.
				1: ADC1 external trigger preempted conversion is connected to TMR8 channel 4.
				TMR5 channel4 multiplexing
				Select internal map for TMR5 channel 4.
Bit 16 T	TMR5CH4_MUX	0x0	rw	0: TMR5_CH4 is connected to PA3.
				1: TMR5_CH4 is connected to LICK. LICK can be calibrated.
				PD0/PD1 mapped on HEXT_IN / HEXT_OUT
				Select GPIO function map for PD0 and PD1.
Bit 15 F	PD01_MUX	0x0	rw	This is only applicable to 48-pin/64-pin packages.
				0: Not PD0 and PD1 mapping
				1: PD0 is mapped to HEXT_IN, while PD1 to HEXT_OUT.
	CAN_MUX		rw	CAN IO multiplexing
				Select IO multiplexing for CAN_TX and CAN_RX.
Bit 14: 13		0x0		00: RX/PA11, TX/PA12 01: Unused
				10: RX/ PB8, TX/ PB9
				11: RX/ PD0, TX/ PD1
				TMR4 IO multiplexing
				Select IO multiplexing for TMR4.
Bit 12 T	TMR4_MUX	0x0	rw	0: CH1/PB6, CH2/PB7, CH3/PB8 and CH4/PB9
				1: CH1/PD12, CH2/PD13, CH3/PD14 and CH4/PD15
•				TMR3 IO multiplexing
				Select IO multiplexing for TMR3.
				00: CH1/PA6, CH2/PA7, CH3/PB0 and CH4/PB1
D:# 44: 40 - 7	TMD2 MUV	0.40		01: Unused
Bit 11: 10 T	TMR3_MUX	0x0	rw	10: CH1/PB4, CH2/PB5, CH3/PB0 and CH4/PB1
				11: CH1/PC6, CH2/PC7, CH3/PC8 and CH4/PC9
				Note: IO multiplexing has no impact on TMR3_EXT on PD2.
				TMR2 IO multiplexing
Bit 9: 8 T	TMR2_MUX	0x0	rw	Select IO multiplexing for TMR2.
				00: CH1/EXT/PA0, CH2/PA1, CH3/PA2 and CH4/PA3

				01: CH1/EXT/PA15, CH2/PB3, CH3/PA2 and CH4/PA3 10: CH1/EXT/PA0, CH2/PA1, CH3/PB10 and CH4/PB11 11: CH1/EXT/PA15, CH2/PB3, CH3/PB10 and CH4/PB11
				TMR1 IO multiplexing
				Select IO multiplexing for TMR1.
				00: EXT/PA12, CH1/PA8, CH2/PA9 and CH3/PA10
				CH4/PA11, BRK/PB12, CH1C/PB13, CH2C/PB14, CH3C/PB15
Bit 7: 6	TMR1_MUX	0x0	rw	01: EXT/PA12, CH1/PA8, CH2/PA9, CH3/PA10, CH4/PA11, BRK/PA6, CH1C/PA7, CH2C/PB0, CH3C/PB1
				10: Unused
				11: EXT/PE7, CH1/PE9, CH2/PE11, CH3/PE13, CH4/PE14, BRK/PE15, CH1C/PE8, CH2C/PE10, CH3C/PE12
-				USART3 IO multiplexing
				Select IO multiplexing for USART3.
				00: TX/PB10, RX/PB11, CK/PB12, CTS/PB13, RTS/PB14
Bit 5: 4	USART3_MUX	0x0	rw	01: TX/PC10, RX/PC11, CK/PC12, CTS/PB13, RTS/PB14
				10: Unused
				11: TX/PD8, RX/PD9, CK/PD10, CTS/PD11, RTS/PD12
_				USART2 IO mutiplexing
D:1 0	LICADTO MILIV	0.40		Select IO multiplexing for USART2.
Bit 3	USART2_MUX	0x0	rw	0: CTS/PA0, RTS/PA1, TX/PA2, RX/PA3 and CK/PA4
				1: CTS/PD3, RTS/PD4, TX/PD5, RX/PD6 and CK/PD7
		0x0		USART1 IO multiplexing
Bit 2	USART1 MUX		n.v	Select USART1 IO multiplexing
DIL Z	USARTI_WUX		rw	0: TX/PA9, RX/PA10
				1: TX/PB6, RX/PB7
				I2C1 IO multiplexing
Bit 1	I2C1_MUX	0x0	rw	Select I2C1 IO multiplexing.
DILI	1201_100X	0.00	I VV	0: SCL/PB6, SDA/PB7 SMBA/PB5
				1: SCL/PB8, SDA/PB9 SMBA/PB5
				SPI1 IO multiplexing
				Select SPI1 IO multiplexing. SPI1_MUX[1] is in bit 31.
		0x0		00: CS/PA4, SCK/PA5, MISO/PA6, MOSI/PA7, MCK/PB0
Bit 0	SPI1_MUX		rw	01: CS/PA15, SCK/PB3, MISO/PB4, MOSI/PB5, MCK/PB0
				10: CS/PA4, SCK/PA5, MISO/PA6, MOSI/PA7, MCK/PB6
				11: CS/PA15, SCK/PB3, MISO/PB4, MOSI/PB5, MCK/PB6

7.3.3 IOMUX external interrupt configuration register1 (IOMUX_EXINTC1)

Bit	Register	Reset value	Type	Description
Bit 31: 16	Reserved	0x0000	resd	Kept at its default value.
				EXINT3 input source configuration
				Select the input source for EXINT3 external interrupt.
	EXINT3			0000: GPIOA pin3
			rw	0001: GPIOB pin3
Bit 15: 12		0x0000		0010: GPIOC pin3
				0011: GPIOD pin3
				0100: GPIOE pin3
				Others: Reserved.
	=>4>==	0x0000	rw	EXINT2 input source configuration
Bit 11: 8	EXINT2			Select the input source for EXINT2 external interrupt.

				0000: GPIOA pin2
				0001: GPIOB pin2
				0010: GPIOC pin2
				0011: GPIOD pin2
				0100: GPIOE pin2
				Others: Reserved.
				EXINT1 input source configuration
				Select the input source for EXINT1 external interrupt.
Bit 7: 4 EXINT1				0000: GPIOA pin1
				0001: GPIOB pin1
	0x0000	rw	0010: GPIOC pin1	
				0011: GPIOD pin1
				0100: GPIOE pin1
				Others: Reserved.
				EXINT0 input source configuration
				Select the input source for EXINT0 external interrupt.
				0000: GPIOA pin0
			rw	0001: GPIOB pin0
Bit 3: 0	EXINT0	0x0000		0010: GPIOC pin0
				0011: GPIOD pin0
				0100: GPIOE pin0
				Others: Reserved.

7.3.4 IOMUX external interrupt configuration register2 (IOMUX_EXINTC2)

Reserved	0x0000	resd	Kept at its default value. EXINT7 input source configuration
			FXINT7 input source configuration
			Select the input source for EXINT7 external interrupt.
			0000: GPIOA pin7
	0.0000		0001: GPIOB pin7
EXINT7	0x0000	rw	0010: GPIOC pin7
			0011: GPIOD pin7
			0100: GPIOE pin7
			Others: Reserved.
			EXINT6 input source configuration
			Select the input source for EXINT6 external interrupt.
	0x0000	rw	0000: GPIOA pin6
			0001: GPIOB pin6
EXINT6			0010: GPIOC pin6
			0011: GPIOD pin6
			0100: GPIOE pin6
			Others: Reserved.
			EXINT5 input source configuration
			Select the input source for EXINT5 external interrupt.
			0000: GPIOA pin5
			0001: GPIOB pin5
EXINT5	0x0000	rw	0010: GPIOC pin5
			0011: GPIOD pin5
			0100: GPIOE pin5 5
			Others: Reserved.
			EXINT4 input source configuration
EXINT4	0x0000	rw	Select the input source for EXINT4 external interrupt.
E	EXINT6 EXINT5	EXINT5 0x0000	EXINT5 0x0000 rw

0000: GPIOA pin4 0001: GPIOB pin4 0010: GPIOC pin4 0011: GPIOD pin4 0100: GPIOE pin4 Others: Reserved.

7.3.5 IOMUX external interrupt configuration register3 (IOMUX_EXINTC3)

Bit	Register	Reset value	Type	Description
Bit 31: 16	Reserved	0x0000	resd	Kept at its default value.
				EXINT11 input source configuration
				Select the input source for EXINT11 external interrupt.
				0000: GPIOA pin11
Bit 15: 12	EVINITAA	00000		0001: GPIOB pin11
BIL 15: 12	EXINT11	0x0000	rw	0010: GPIOC pin11
				0011: GPIOD pin11
				0100: GPIOE pin11
				Others: Reserved.
				EXINT10 input source configuration
				Select the input source for EXINT10 external interrupt.
				0000: GPIOA pin10
D:: 44. 0	EVINITA O	00000		0001: GPIOB pin10
Bit 11: 8	EXINT10	0x0000	rw	0010: GPIOC pin10
	EXINT9			0011: GPIOD pin10
				0100: GPIOE pin10
				Others: Reserved.
				EXINT9 input source configuration
				Select the input source for EXINT9 external interrupt.
				0000: GPIOA pin9
D:4.7.4		00000		0001: GPIOB pin9
Bit 7: 4		0x0000	rw	0010: GPIOC pin9
				0011: GPIOD pin9
				0100: GPIOE pin9
				Others: Reserved.
				EXINT8 input source configuration
				Select the input source for EXINT8 external interrupt.
				0000: GPIOA pin8
D'' 0 0		0.0000		0001: GPIOB pin8
Bit 3: 0	EXINT8	0x0000	rw	0010: GPIOC pin8
				0011: GPIOD pin8
				0100: GPIOE pin8
				Others: Reserved.

7.3.6 IOMUX external interrupt configuration register4 (IOMUX_EXINTC4)

Bit	Register	Reset value	Type	Description
Bit 31: 16	Reserved	0x0000	resd	Kept at its default value.
Bit 15: 12				EXINT15 input source configuration
	EXINT15	0x0000	rw	Select the input source for EXINT15 external interrupt.
				0000: GPIOA pin15
				0001: GPIOB pin15
				0010: GPIOC pin15

			0011: GPIOD pin15
			0100: GPIOE pin15
			Others: Reserved.
			EXINT14 input source configuration
			Select the input source for EXINT14 external interrupt.
			0000: GPIOA pin14
			0001: GPIOB pin14
EXIN I 14	0x0000	rw	0010: GPIOC pin144
			0011: GPIOD pin14
			0100: GPIOE pin14
			Others: Reserved.
			EXINT13 input source configuration
			Select the input source for EXINT13 external interrupt.
			0000: GPIOA pin13
			0001: GPIOB pin13
EXINT13	0x0000	rw	0010: GPIOC pin13
			0011: GPIOD pin13
			0100: GPIOE pin13
			Others: Reserved.
			EXINT12 input source configuration
		rw	Select the input source for EXINT12 external interrupt.
			0000: GPIOA pin12
			0001: GPIOB pin12
EXINT12	0x0000		0010: GPIOC pin12
			0011: GPIOD pin12
			0100: GPIOE pin12
			Others: Reserved.
	EXINT14 EXINT13	EXINT13 0x0000	EXINT13 0x0000 rw

7.3.7 IOMUX remap register2 (IOMUX_REMAP2)

Register	Reset value	Type	Description
Reserved	0x000	resd	Keep at its default value.
CDIM EN	0.40		SPIM enable
SPIM_EN	UXU	rw	Select whether to use SPI Flash.
			SDIO2_MUX[1: 0]: SDIO2 IO multiplexing
			00: D0/PC0 D1/PC1 D2/PC3 D4/PA4 D5/PA5 D6/PA6
SDIO2 MUX	0x0	rw	D7/PA7 CK/PC4 CMD/PC5
_			01: D0/PA4 D1/PA5 D2/PA6 D3/PA7 CK/PA2 CMD/PA3
			10,11: Unused
			I2C3_MUX: I2C3 IO mutiplexing
			Select IO multiplexing for I2C3.
I2C3_MUX	0x0	rw	0: SCL/PA8 SDA/PC9 SMBA/PA9
			1: SCL/PA8 SDA/PB4 SMBA/PA9
			SPI4_MUX: SPI4 IO multiplexing
SPI4_MUX		rw	Select IO multiplexing for SPI4.
	0x0		0: CS/PE4 SCK/PE2 MISO/PE5 MOSI/PE6 MCK/PC8
			1: CS/PE12 SCK/PE11 MISO/PE13 MOSI/PE14
			MCK/PC8
Reserved	0x00	resd	Keep its default value.
			XMC_NADV_MUX: XMC NADV connect
			Select whether to use XMC_NADV signal.
XMC_NADV_MUX	0x0		0: XMC_NADV is connected to the corresponding pin (by
		rw	default)
			1: XMC_NADV is not used. The corresponding pin canbe used for other peripherals.
	Reserved SPIM_EN SDIO2_MUX I2C3_MUX SPI4_MUX Reserved	Reserved 0x000 SPIM_EN 0x0 SDIO2_MUX 0x0 I2C3_MUX 0x0 SPI4_MUX 0x0 Reserved 0x00	Reserved 0x000 resd SPIM_EN 0x0 rw SDIO2_MUX 0x0 rw I2C3_MUX 0x0 rw SPI4_MUX 0x0 rw Reserved 0x00 resd

Bit 9: 6	Reserved	0x0	resd	Kept at its default value.	
	TMR9_MUX			TMR9_MUX: TMR9 IO multiplexing	
		0x0		Select IO multiplexing for TMR9.	
Bit 5			rw	0: CH1/PA2, CH2/PA3	
				1: CH1/PE5, CH2/PE6	
Bit 4: 0	Reserved	0x00	resd	Kept at its default value.	

7.3.8 IOMUX remap register3 (IOMUX_REMAP3)

Bit	Register	Reset value	Type	Description
Bit 31: 4	Reserved	0x0000000	resd	Kept at its default value.
				TMR9 IO general multiplexing
Bit 3: 0	TMR9_GMUX	0x0	rw	Select IO multiplexing for TMR9.
				0000: CH1/PA2, CH2/PA3
				0001: CH1/PE5, CH2/PE6

7.3.9 IOMUX remap register4 (IOMUX_REMAP4)

Bit	Register	Reset value	Type	Description
Bit 31: 20	Reserved	0x000	resd	Kept at its default value.
				TMR5 channel4 general multiplexing
Dit 10				Select TMR5 channel4 general multiplexing
Bit 19	TMR5CH4_GMUX	0x0	rw	0: TMR5_CH4 is connected to PA3.
				1: LICK is connected to TMR5_CH4 to get calibration.
Bit 18: 16	Reserved	0x0	resd	Kept at its default value.
				TMR4 IO general multiplexing
D:: 45 40	T14D4 0141114			Select IO multiplexing for TMR4.
Bit 15: 12	TMR4_GMUX	0x0	rw	0000: CH1/PB6 CH2/PB7 CH3/PB8 CH4/PB9
				0001: CH1/PD12 CH2/PD13 CH3/PD14 CH4/PD15
				TMR3 IO general multiplexing
D:: 44 0				Select IO multiplexing for TMR3.
Bit 11: 8	TMR3_GMUX	0x0	rw	0000: CH1/PA6 CH2/PA7 CH3/PB0 CH4/PB1
				0001: CH1/PB4 CH2/PB5 CH3/PB0 CH4/PB1
				TMR2 internal trigger 1 general multiplexing
				Select TMR2_ITR1 general multiplexing
				00: TMR8_TRGO is used as input source of TMR2 ITR1
				01: Reserved. Do not use.
Bit 7: 6	TMR2ITR1_GMUX	0x0	rw	10: Ethernet PTP output to TMR2_ITR1.
				11: SB SOF is used as input source of TMR2 ITR1 (This
				selection will cause TMR2_GMUX/TMR2_MUX failure.
				Pay more attention to this restriction)
				TMR2 IO general multiplexing
				Select IO multiplexing for TMR2.
D:+ F: 4	TMD0 OMILY	00		00: CH1_EXT/PA0 CH2/PA1 CH3/PA2 CH4/PA3
Bit 5: 4	TMR2_GMUX	0x0	rw	01: CH1_EXT/PA15 CH2/PB3 CH3/PA2 CH4/PA3
				10: CH1_EXT/PA0 CH2/PA1 CH3/PB10 CH4/PB11
				11: CH1_EXT/PA15 CH2/PB3 CH3/PB10 CH4/PB11
_				TMR1 IO general multiplexing
				Select IO multiplexing for TMR1.
				0000: EXT/PA12, CH1/PA8, CH2/PA9, CH3/PA10,
Bit 3: 0				CH4/PA11, BRK/PB12, CH1C/PB13, CH2C/PB14,
	TMR1_GMUX	0x0	rw	CH3C/PB15
			. ••	0001: EXT/PA12, CH1/PA8, CH2/PA9, CH3/PA10,
				CH4/PA11, BRK/PA6, CH1C/PA7, CH2C/PB0, CH3C/PB1
				0011: EXT/PE7, CH1/PE9, CH2/PE11, CH3/PE13,
				CH4/PE14, BRK/PE15, CH1C/PE8, CH2C/PE10, CH3C/PE12
				01100/1 L 12

Others: Unused.

7.3.10 IOMUX remap register5 (IOMUX_REMAP5)

	gister	Reset value	Type	Description
				SPI4 IO general multiplexing
				Select IO multiplexing for SPI4.
				0000: CS/PE4 SCK/PE2 MISO/PE5 MOSI/PE6 MCK/PC8
Bit 31: 28 SPI	I4_GMUX	0x0	rw	0001: CS/PE12 SCK/PE11 MISO/PE13 MOSI/PE14 MCK/PC8
Bit 01: 20 G11	11_0M0X	O.C.		0010: CS/PB6 SCK/PB7 MISO/PB8 MOSI/PB9 MCK/PC8
				0011: CS/PB6 SCK/PB7 MISO/PB8 MOSI/PB9 MCK/PA10
				Others: Unused.
				SPI3 IO general multiplexing
				Select IO multiplexing for SPI3.
				0000: CS/PA15, SCK/PB3, MISO/PB4, MOSI/PB5 MCK/PC7
Bit 27: 24 SPI	I3_GMUX	0x0	rw	0001: CS/PA4, SCK/PC10, MISO/PC11, MOSI/PC12 MCK/PC7
	_			0010: CS/PA15, SCK/PB3, MISO/PB4, MOSI/PB5 MCK/PB10
				0011: CS/PA4, SCK/PC10, MISO/PC11, MOSI/PC12 MCK/PB10
				Others: Unused
				SPI2 IO general multiplexing
				Select IO multiplexing for SPI2.
D:+ 22, 20 CDI	IO CMILIV	0x0	mar	0000: MCK/PC6
Bit 23: 20 SPI	I2_GMUX	UXU	rw	0001: MCK/PA3
				0010: MCK/PA6
				Others: Unused
				SPI1 IO general multiplexing
				Select IO multiplexing for SPI1.
				0000: CS/PA4, SCK/PA5, MISO/PA6, MOSI/PA7 MCK/PB0
Bit 19: 16 SPI	I1_GMUX	0x0	rw	0001: CS/PA15, SCK/PB3, MISO/PB4, MOSI/PB5 MCK/PB0
				0010: CS/PA4, SCK/PA5, MISO/PA6, MOSI/PA7 MCK/PB6
				0011: CS/PA15, SCK/PB3, MISO/PB4, MOSI/PB5 MCK/PB6
				Others: Unused
				I2C3 IO general multiplexing
				Select IO multiplexing for I2C3.
Bit 15: 12 I2C	3_GMUX	0x0	rw	0000: SCL/PA8 SDA/PC9 SMBA/PA9
				0001: SCL/PA8 SDA/PB4 SMBA/PA9
				Others: Unused
Bit 11: 8 Res	served	0x0	resd	Kept at its default value.
				I2C1 IO general multiplexing
				Select IO multiplexing for I2C1.
Bit 7: 4 I2C	:1_GMUX	0x0	rw	0000: SCL/PB6, SDA/PB7, SMBA/PB5;
				0001: SCL/PB8, SDA/PB9, SMBA/PB5。
				Others: Unused
Bit 3: 0 US/	ART5_GMUX	0x0	rw	USART5 IO general multiplexing

Select IO multiplexing for USART5.

0000: TX/PC12 RX/PD12 0001: TX/PB9 RX/PB8 Others: Unused

7.3.11 IOMUX remap register6 (IOMUX_REMAP6)

Bit	Register	Reset value	Type	Description
				IO general multiplexing
				Select IO multiplexing for UART4.
Bit 31: 28	UART4_GMUX	0x0	rw	0000: TX/PC10 RX/PC11
				0001: TX/PA0 RX/PA1
				Others: Unused
-				USART3 IO general multiplexing
				Select IO multiplexing for USART3.
				0000: TX/PB10, RX/PB11, CK/PB12, CTS/PB13 RTS/PB14
Bit 27: 24	USART3_GMUX	0x0	rw	0001: TX/PC10, RX/PC11, CK/PC12, CTS/PB13, RTS/PB14
				0011: TX/PD8, RX/PD9, CK/PD10, CTS/PD11, RTS/PD12
				Others: Unused
-				USART2 IO general multiplexing
				Select IO multiplexing for USART2.
Bit 23: 20	USART2_GMUX	0x0	rw	0000: CTS/PA0, RTS/PA1, TX/PA2, RX/PA3, CK/PA4
	-			0001: CTS/PD3, RTS/PD4, TX/PD5, RX/PD6, CK/PD7
				Others: Unused
				USART1 IO general multiplexing
				Select IO multiplexing for USART1.
Bit 19: 16	USART1_GMUX	0x0	rw	0000: TX/PA9, RX/PA10
				0001: TX/PB6, RX/PB7
				Others: Unused
				SDIO2 IO general multiplexing
				Select IO multiplexing for SDIO2.
				0000: D0/PC0 D1/PC1 D2/PC3 D4/PA4 D5/PA5
Bit 15:12	SDIO2_GMUX	0x0	rw	D6/PA6 D7/PA7 CK/PC4 CMD/PC5
				0001: D0/PA4 D1/PA5 D2/PA6 D3/PA7 CK/PA2
				CMD/PA3
				Others: Unused
Bit 11: 8	Reserved	0x0	resd	Kept at its default value.
				CAN2 IO general multiplexing
				Select IO multiplexing for CAN2.
Bit 7: 4	CAN2_GMUX	0x0	rw	0000: RX/PB12, TX/PB13
				0001: RX/PB5, TX/PB6
				Others: Unused
				CAN1 IO general multiplexing
				Select IO multiplexing for CAN1.
Bit 3: 0	CAN1_GMUX	0x0	rw	00: RX/PA11, TX/PA12
DIC 0. 0	O/IIII_ONIO/	OAO .	1 77	10: RX/ PB8, TX/ PB9
				11: RX/ PD0, TX/ PD1;
				Others: Unused

7.3.12 IOMUX remap register7 (IOMUX_REMAP7)

SMC NADV IO general multiplexing Select whether to use XMC_NADV signal. O: XMC_NADV is connected to the corresponding pin (b default) 1: XMC NADV is not used. The corresponding pin (b default) 1: XMC NADV is not used. The corresponding pin (b default) 1: XMC NADV is not used. The corresponding pin ca be used by other pheripherals. XMC IO general multiplexing Select IO multiplexing for XMC. 0000: NEWIPDS D0/PD14 D1/PD15 D2/PD0 D3/PD D4/PP2 D5/PP3 D6/PP3 D1/PP3 D1/PP3 D0/EP14 D4/P2 D5/P3 D6/PP3 D1/PP3 D1/PP3 D0/EP14 D4/P2 D5/P3 D6/PP3 D1/PP3 D1/PP3 D0/EP14 D4/P2 D5/P3 D6/PP3 D1/PP3 D1/PP3 D1/PP3 D0/EP14 D4/P2 D5/P3 D6/PP4 D1/PP3	Bit	Register	Reset value	Type	Description
Select whether to use XMC_NADV signal. O.XMC_NADV is onnected to the corresponding pin (b default) 1: XMC_NADV is onnected to the corresponding pin (b default) 1: XMC_NADV is not used. The corresponding pin (a be used by other pheripherals XMC IO general multiplexing Select 10 multiplexing for XMC. 0000: NEW/PDS D0P/D14 D1P/D15 D2/PD0 D3/PD D4/PE7 D5/PE8 D0P/PE1 D1P/PE1 D13/PD8 NOE:PD0 D4/PE7 D5/PE8 D0P/PE1 D1P/PE1 D13/PD8 NOE:PD0 D4/PE7 D5/PE8 D0P/PE1 D1P/PE1 D13/PD8 NOE:PD0 D4/PE2 D5/PE8 D0P/PE1 D1P/PE1 D19/PE1 D1	Bit 31: 28	Reserved	0x0	resd	
Bit 27 XMC_NADV_GMUX 0x0 Provided and provid					
Bit 27					
be used by other pheripherals. XMC IO general multiplexing Select IO multiplexing for XMC. 0000: NEW/PD5 D0/PD14 D1/PD5 D2/PD0 D3/PD D4/PE7 D5/PE8 D6/PE9 D7/PE10 D13/PD8 NOE/PD4 D4/PE7 D5/PE8 D6/PE9 D7/PE10 D13/PD8 NOE/PD4 D4/PE2 D5/PA3 D6/PA4 D7/PA5 D13/PB12 NOE/PC5 0010: NEW/PD2 D0/PB14 D1/PC5 D2/PC11 D3/PC1 D4/PA2 D5/PA3 D6/PA4 D7/PA5 D13/PB12 NOE/PC5 Others: Unused Bit 23: 21 Reserved 0x0 resd fefault value. PD0/PD1 mapped onto HEXT_IN / HEXT_OUT Select GPIO mapping for PD0 and PD1. This is applied to only 48-pin and 64-pin packages. 0: No PD0 and PD1 mapping for PD0 and PD1. This is applied to only 48-pin and 64-pin packages. 0: No PD0 and PD1 mapping 1: PD0 is mapped to HEXT_IN, while PD1 is mapped the HEXT_OUT. Select GPIO mapping for PD0 and PD1. Bit 19 Reserved 0x0 resd Kept at its default value. SWD JTAG IO general multiplexing These bits are used to configure SWJTAG-related IO as GPIO. 000: Supports SWD and JTAG. All SWJTAG pins cannobe used as GPIO. 001: Supports SWD and JTAG. NJTRST is disabled. PB can be used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins cannobe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins cannobe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins cannobe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins cannobe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins cannobe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins cannobe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins cannobe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins cannobe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins cannobe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins cannobe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins cannobe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins cannobe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins cannobe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins cannobe used as GPIO. 010: SWD and J	Bit 27	XMC_NADV_GMUX	0x0	rw	
Select IO multiplexing for XMC. 0000: NEW/PD5 D0/PD14 D1/PD15 D2/PD0 D3/PD D4/PE7 D5/PE8 06/PE9 D1/PE10 D13/PD8 NOE/PD4 D4/PE7 D5/PE8 06/PE9 D1/PE10 D13/PD8 NOE/PD4 D4/PE2 D5/PE3 D6/PE9 D1/PE10 D13/PD8 NOE/PD4 D4/PA2 D5/PA3 D6/PA4 D7/PA5 D13/PB12 NOE/PC5 0010: NEW/PC2 D0/PB14 D1/PC6 D2/PC11 D3/PC1 D4/PA2 D5/PA3 D6/PA4 D7/PA5 D13/PB12 NOE/PC5 Others: Unused Bit 23: 21 Reserved 0x0 resd Kept at its default value. PD0/PD1 mapped onto HEXT_IN / HEXT_OUT Select GPIO mapping for PD0 and PD1. This is applied to only 48-pin and 64-pin packages. 0: No PD0 and PD1 mapping 1: PD0 is mapped to HEXT_IN, while PD1 is mapped t HEXT_OUT. Bit 19 Reserved 0x0 resd Kept at its default value. SWD JTAG IO general multiplexing These bits are used to configure SWJTAG-related IO as GPIO. 000: Supports SWD and JTAG. All SWJTAG pins cannobe used as GPIO. 001: Supports SWD and JTAG. NJTRST is disabled. PB can be used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins cannobe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins cannobe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins cannobe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins cannobe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins cannobe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins cannobe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins cannobe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins cannobe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins cannobe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins cannobe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins cannobe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins cannobe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins cannobe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins cannobe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins cannobe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins cannobe used as GPIO. 010: SWD a					1: XMC_NADV is not used. The corresponding pin can be used by other pheripherals.
Bit 26: 24 XMC_GMUX 0x0 INV 0001: NEW/PD2 D0/PB14 D1/PD15 D2/PD0 D3/PD D4/P27 D5/PB2 D6/PB2 D7/PB10 D13/PD8 NDE/PD4 00101: NEW/PD2 D0/PB14 D1/PC6 D2/PC11 D3/PC1 D4/PA2 D5/PA3 D6/PA4 D7/PA5 D13/PB12 NOE/PC5 0010: NEW/PD2 D0/PB14 D1/PC6 D2/PC11 D3/PC1 D4/PA2 D5/PA3 D6/PA4 D7/PA5 D13/PB12 NOE/PC5 Others: Unused Rept at its default value. PD0/PD1 mapped onto HEXT_IN / HEXT_OUT Select GPIO mapping for PD0 and PD1. This is applied to only 48-pin and 64-pin packages. 0: No PD0 and PD1 mapping 1: PD0 is mapped to HEXT_IN, while PD1 is mapped to HEXT_OUT. Bit 19 Reserved 0x0 rest Kept at its default value. SWD JTAG IO general mutiplexing These bits are used to configure SWJTAG-related IO as GPIO. 001: Supports SWD and JTAG. All SWJTAG pins cannobe used as GPIO. 001: Supports SWD and JTAG. NJTRST is disabled. PB can be used as GPIO. 001: Supports SWD and JTAG are disabled. PA15/PB3/PB can be used as GPIO. 005: SWD and JTAG are disabled. All SWJTAG pins cannobe used as GPIO. 006: SWD and JTAG are disabled. All SWJTAG pins cannobe used as GPIO. 007 bers: No effect. Bit 19 ADC2 external trigger regular conversion general mutiplexing Select the input source for ADC2 external trigger regular conversion is connected to TMR8_TRGO. ADC2 external trigger regular conversion general mutiplexing Select the input source for ADC2 external trigger preempted conversion is connected to EXINT11 1: ADC2 external trigger preempted conversion is connected to EXINT15 1: ADC2 external trigger preempted conversion is connected to EXINT15 1: ADC2 external trigger preempted conversion is connected to EXINT15 1: ADC2 external trigger preempted conversion is connected to EXINT15 1: ADC2 external trigger preempted conversion is connected to EXINT15 1: ADC2 external trigger preempted conversion is connected to EXINT15					XMC IO general multiplexing
Bit 26: 24 XMC_GMUX 0x0 PW 0001: NEW/PD2 D0/PB14 D1/PC6 D2/PC11 D3/PC1 D4/PA2 D5/PA3 D6/PA4 D7/PA5 D13/PB12 NOE/PC5 010: NEW/PD2 D0/PB14 D1/PC6 D2/PC11 D3/PC1 D4/PA2 D5/PA3 D6/PA4 D7/PA5 D13/PB12 NOE/PC5 010: NEW/PC2 D0/PB14 D1/PC6 D2/PC11 D3/PC1 D4/PA2 D5/PA3 D6/PA4 D7/PA5 D13/PB12 NOE/PC5 Others: Unused Bit 23: 21 Reserved 0x0 resd Kept at its default value. PD0/PD1 mapped onto HEXT_IN / HEXT_OUT Select GP10 mapping for PD0 and PD1. This is applied to only 48-pin and 64-pin packages. 0: No PD0 and PD1 mapping 1: PD0 is mapped to HEXT_IN, while PD1 is mapped to HEXT_OUT. Bit 19 Reserved 0x0 resd Kept at its default value. SW/D JTAG IO general mutiplexing These bits are used to configure SW/JTAG-related IO as GP10. 000: Supports SWD and JTAG. All SW/JTAG pins cannot be used as GP10. 001: Supports SWD and JTAG. NJTRST is disabled. PB can be used as GP10. 100: SWD and JTAG are disabled. All SW/JTAG pins cannot be used as GP10. 100: SWD and JTAG are disabled. All SW/JTAG pins cannot be used as GP10. 100: SWD and JTAG are disabled. All SW/JTAG pins cannot be used as GP10. 100: SWD and JTAG are disabled. All SW/JTAG pins cannot be used as GP10. 100: SWD and JTAG are disabled. All SW/JTAG pins cannot be used as GP10. 100: SWD and JTAG are disabled. All SW/JTAG pins cannot be used as GP10. 100: SWD and JTAG are disabled. All SW/JTAG pins cannot used as GP10. 100: SWD and JTAG are disabled. All SW/JTAG pins cannot used as GP10. 100: SWD and JTAG are disabled. All SW/JTAG pins cannot used as GP10. 100: SWD and JTAG are disabled. All SW/JTAG pins cannot used as GP10. 100: SWD and JTAG are disabled. All SW/JTAG pins cannot used as GP10. 100: SWD and JTAG are disabled. All SW/JTAG pins cannot used as GP10. 100: SWD and JTAG are disabled. All SW/JTAG pins cannot used as GP10. 100: SWD and JTAG are disabled. All SW/JTAG pins cannot used as GP10. 100: SWD and JTAG are disabled. All SW/JTAG pins cannot used as GP10. 100: SWD and JTAG are disabled. All SW/JTAG pins cannot used as GP10. 100: SWD and JTAG					Select IO multiplexing for XMC.
Bit 23: 21 Reserved 0x0 resd Kept at its default value. Bit 20 PD01_GMUX 0x0 resd Kept at its default value. Bit 19 Reserved 0x0 resd Kept at its default value. Bit 18: 16 SWJTAG_GMUX 0x0 resd Kept at its default value. Bit 19 Reserved 0x0 resd Kept at its default value. Bit 19 Reserved 0x0 resd Kept at its default value. Bit 19 Reserved 0x0 resd Kept at its default value. Bit 19 Reserved 0x0 resd Kept at its default value. SWD JTAG IO general multiplexing These bits are used to configure SWJTAG-related IO as GPIO. 000: Supports SWD and JTAG. All SWJTAG pins cannot be used as GPIO. 001: Supports SWD and JTAG. NJTRST is disabled. PB. can be used as GPIO. 010: SwD and JTAG are disabled. All SWJTAG pins cannot be used as GPIO. 010: SwD and JTAG are disabled. All SWJTAG pins cannot be used as GPIO. 010: SwD and JTAG are disabled. All SWJTAG pins cannot be used as GPIO. 010: SwD and JTAG are disabled. All SWJTAG pins cannot be used as GPIO. 010: SwD and JTAG are disabled. All SWJTAG pins cannot be used as GPIO. 010: SwD and JTAG are disabled. All SWJTAG pins cannot used as GPIO. 010: SwD and JTAG are disabled. All SWJTAG pins cannot used as GPIO. 010: SwD and JTAG are disabled. All SWJTAG pins cannot used as GPIO. 010: SwD and JTAG are disabled. All SWJTAG pins cannot used as GPIO. 010: SwD and JTAG are disabled. All SWJTAG pins cannot used as GPIO. 010: SwD and JTAG are disabled. All SWJTAG pins cannot used as GPIO. 010: SwD and JTAG are disabled. All SWJTAG pins cannot used as GPIO. 010: SwD and JTAG are disabled. All SWJTAG pins cannot used as GPIO. 010: SwD and JTAG are disabled. All SWJTAG pins cannot used as GPIO. 010: SwD and JTAG are disabled. All SWJTAG pins cannot used as GPIO. 010: SwD and JTAG are disabled. All SWJTAG pins cannot used as GPIO. 010: SwD and JTAG are disabled. All SWJTAG pins cannot used as GPIO. 010: SwD and JTAG are disabled. All SWJTAG pins cannot used as GPIO. 010: SwD and JTAG are disabled. All swJTAG pins cannot used as GPIO. 02: SwD and TAG. 03: SwD an					0000: NEW/PD5 D0/PD14 D1/PD15 D2/PD0 D3/PD1 D4/PE7 D5/PE8 D6/PE9 D7/PE10 D13/PD8 NOE/PD4
Bit 23: 21 Reserved 0x0 resd Kept at its default value. PD0/PD1 mapped onto HEXT_IN / HEXT_OUT Select GPIO mapping for PD0 and PD1. This is applied to only 48-pin and 64-pin packages. 0: No PD0 and PD1 mapping in PD0 and PD1 is mapped to HEXT_OUT. Bit 19 Reserved 0x0 resd Kept at its default value. Bit 19 Reserved 0x0 resd Kept at its default value. Bit 19 Reserved 0x0 resd Kept at its default value. SWD JTAG IO general multiplexing These bits are used to configure SWJTAG-related IO as GPIO. 000: Supports SWD and JTAG. All SWJTAG pins cannobe used as GPIO. 010: Supports SWD. But JTAG is disabled. PB1: Can be used as GPIO. 010: Supports SWD. But JTAG is disabled. PA15/PB3/PB1: Can be used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins cannobe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins cannobe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins cannobe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins cannobe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins cannobe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins cannobe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins cannobe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins cannobe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins cannobe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins cannobe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins cannobe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins cannobe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins cannobe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins cannobe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins cannobe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins cannobe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins cannobe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins cannobe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins cannobe used as GPIO. 010:	Bit 26: 24	XMC_GMUX	0x0	rw	0001: NEW/PD2 D0/PB14 D1/PC6 D2/PC11 D3/PC12 D4/PA2 D5/PA3 D6/PA4 D7/PA5 D13/PB12 NOE/PC5
Others: Unused Bit 23: 21 Reserved 0x0 resd Kept at its default value. PD0/PD1 mapped onto HEXT_IN / HEXT_OUT Select GPIO mapping for PD0 and PD1. This is applied to only 48-pin and 64-pin packages. 0: No PD0 and PD1 mapped to HEXT_IN, while PD1 is mapped to HEXT_OUT. Bit 19 Reserved 0x0 resd Kept at its default value. SWD JTAG IO general mutiplexing These bits are used to configure SWJTAG-related IO as GPIO. 000: Supports SWD and JTAG. All SWJTAG pins cannot be used as GPIO. 010: Supports SWD But JTAG is disabled. PA15/PB3/PB can be used as GPIO. 100: SWD and JTAG are disabled. All SWJTAG pins cannot be used as GPIO. 100: SWD and JTAG are disabled. All SWJTAG pins can be used as GPIO. 100: SWD and JTAG are disabled. All SWJTAG pins can be used as GPIO. 100: SWD and JTAG are disabled. All SWJTAG pins can be used as GPIO. 100: SWD and JTAG are disabled. All SWJTAG pins can be used as GPIO. 100: SWD and JTAG are disabled. All SWJTAG pins can be used as GPIO. 100: SWD and JTAG are disabled. All SWJTAG pins can be used as GPIO. 100: SWD and JTAG are disabled. All SWJTAG pins can be used as GPIO. 100: SWD and JTAG are disabled. All SWJTAG pins can be used as GPIO. 100: SWD and JTAG are disabled. All SWJTAG pins can be used as GPIO. 100: SWD and JTAG are disabled. All SWJTAG pins can be used as GPIO. 100: SWD and JTAG are disabled. All SWJTAG pins can be used as GPIO. 100: SWD and JTAG are disabled. All SWJTAG pins can be used as GPIO. 100: SWD and JTAG are disabled. All SWJTAG pins can be used as GPIO. 100: SWD and JTAG are disabled. All SWJTAG pins can be used as GPIO. 100: SWD and JTAG are disabled. All SWJTAG pins can be used as GPIO. 100: SWD and JTAG are disabled. All SWJTAG pins can be used as GPIO. 100: SWD and JTAG are disabled. All SWJTAG pins can be used as GPIO. 100: SWD and JTAG are disabled. All SWJTAG pins can be used as GPIO. 100: SWD and JTAG are disabled. All SWJTAG pins can be used as GPIO. 100: SWD and JTAG are disabled. All SWJTAG pins can be used as GPIO. 100: SWD and JTAG are disabled. All					0010: NEW/PC2 D0/PB14 D1/PC6 D2/PC11 D3/PC12 D4/PA2 D5/PA3 D6/PA4 D7/PA5 D13/PB12 NOE/PC5
PD0/PD1 mapped onto HEXT_IN / HEXT_OUT Select GPIO mapping for PD0 and PD1. This is applied to only 48-pin and 64-pin packages. 0: No PD0 and PD1 mapping 1: PD0 is mapped to HEXT_IN, while PD1 is mapped to HEXT_OUT. Bit 19 Reserved 0x0 resd Kept at its default value. SWD JTAG IO general mutiplexing These bits are used to configure SWJTAG-related IO as GPIO. 000: Supports SWD and JTAG. All SWJTAG pins cannot be used as GPIO. 010: Supports SWD and JTAG. NJTRST is disabled. PB can be used as GPIO. 010: Supports SWD. But JTAG is disabled. PA15/PB3/PB can be used as GPIO. 100: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. 02: ADC2 external trigger regular conversio					
PD0/PD1 mapped onto HEXT_IN / HEXT_OUT Select GPIO mapping for PD0 and PD1. This is applied to only 48-pin and 64-pin packages. 0: No PD0 and PD1 mapping 1: PD0 is mapped to HEXT_IN, while PD1 is mapped to HEXT_OUT. Bit 19 Reserved 0x0 resd Kept at its default value. SWD JTAG IO general mutiplexing These bits are used to configure SWJTAG-related IO as GPIO. 000: Supports SWD and JTAG. All SWJTAG pins cannot be used as GPIO. 010: Supports SWD and JTAG. NJTRST is disabled. PB can be used as GPIO. 010: Supports SWD. But JTAG is disabled. PA15/PB3/PB can be used as GPIO. 100: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. 02: ADC2 external trigger regular conversio	Rit 23: 21	Reserved	0×0	reed	Kept at its default value.
Select GPIO mapping for PD0 and PD1. This is applied to only 48-pin and 64-pin packages. O: No PD0 and PD1 mapping 1: PD0 is mapped to HEXT_IN, while PD1 is mapped to HEXT_OUT. Bit 19 Reserved	DIL 20. 21	reserved	0.00	1030	·
This is applied to only 48-pin and 64-pin packages. O: No PD0 and PD1 mapping 1: PD0 is mapped to HEXT_IN, while PD1 is mapped to HEXT_OUT. Bit 19 Reserved					
Bit 19 Reserved 0x0 resd Kept at its default value. Bit 19 SWJTAG_GMUX 0x0 rw Gept at its default value. Bit 19 Reserved 0x0 resd Kept at its default value. SWD_JTAG_IO general mutiplexing These bits are used to configure SWJTAG-related IO as GPIO. 000: Supports SWD and JTAG. All SWJTAG pins cannot be used as GPIO. 010: Supports SWD and JTAG. NJTRST is disabled. PB can be used as GPIO. 010: Supports SWD. But JTAG is disabled. PA15/PB3/PB can be used as GPIO. 100: SWD and JTAG are disabled. All SWJTAG pins cannot be used as GPIO. 100: SWD and JTAG are disabled. All SWJTAG pins cannot be used as GPIO. 100: SWD and JTAG are disabled. All SWJTAG pins cannot be used as GPIO. 100: SWD and JTAG are disabled. All SWJTAG pins cannot used as GPIO. 100: SWD and JTAG are disabled. All SWJTAG pins cannot used as GPIO. 100: SWD and JTAG are disabled. All SWJTAG pins cannot used as GPIO. 100: SWD and JTAG are disabled. All SWJTAG pins cannot used as GPIO. 100: SWD and JTAG are disabled. All SWJTAG pins cannot used as GPIO. 100: SWD and JTAG are disabled. All SWJTAG pins cannot used as GPIO. 100: SWD and JTAG are disabled. All SWJTAG pins cannot used as GPIO. 100: SWD and JTAG are disabled. All SWJTAG pins cannot used as GPIO. 100: SWD and JTAG is disabled. PA15/PB3/PB can be used as GPIO. 100: SWD and JTAG is disabled. PA15/PB3/PB can be used as GPIO. 100: SWD and JTAG is disabled. PA15/PB3/PB can be used as GPIO. 100: SWD and JTAG is disabled. PA15/PB3/PB can be used as GPIO. 100: SWD and JTAG is disabled. PA15/PB3/PB can be used as GPIO. 100: SWD and JTAG is disabled. PA15/PB3/PB can be used as GPIO. 100: SWD and JTAG is disabled. PA15/PB3/PB can be used as GPIO. 100: SWD and JTAG is disabled. PA15/PB3/PB can be used as GPIO. 100: SWD and JTAG is disabled. PA15/PB3/PB can be used as GPIO. 100: SWD and JTAG is disabled. PA15/PB3/PB can be used as GPIO. 100: SWD and JTAG is disabled. PA15/PB3/PB can be used as GPIO. 101: SWD and JTAG is disabled. PA15/PB3/PB can be used as GPIO. 101: SWD and JTAG					•
1: PD0 is mapped to HEXT_IN, while PD1 is mapped to HEXT_OUT. Bit 19 Reserved 0x0 resd Kept at its default value. SWD JTAG IO general multiplexing These bits are used to configure SWJTAG-related IO as GPIO. 000: Supports SWD and JTAG. All SWJTAG pins cannobe used as GPIO. 001: Supports SWD and JTAG. NJTRST is disabled. PB can be used as GPIO. 100: SWD and JTAG is disabled. PA15/PB3/PB can be used as GPIO. 100: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. 100: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. 010: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. 010: SWD and JTAG are disabled. PB. 010: SWD and JTAG is disabled. PB. 010: SUD and JTAG is disabled. PB. 010: Supports SWD. But JTAG is disabled. PB. 010: SUD and JTAG is disabled. PB. 010: Supports SWD. But JTAG is disabled. PB. 010: Supo	Bit 20	PD01_GMUX	0x0	rw	
SWD JTAG IO general multiplexing These bits are used to configure SWJTAG-related IO as GPIO. 000: Supports SWD and JTAG. All SWJTAG pins cannobe used as GPIO. 001: Supports SWD and JTAG. NJTRST is disabled. PB can be used as GPIO. 010: Supports SWD. But JTAG is disabled. PA15/PB3/PB can be used as GPIO. 100: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. 100: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. Others: No effect. Bit 15: 10 Reserved 0x00 resd Kept at its default value. ADC2 external trigger regular conversion general multiplexing Select the input source for ADC2 external trigger regular conversion on conversion 0: ADC2 external trigger regular conversion is connected to TMR8_TRGO. ADC2 external trigger preempted conversion general multiplexing Select the input source for ADC2 external trigger preempted conversion general multiplexing Select the input source for ADC2 external trigger preempted conversion general multiplexing Select the input source for ADC2 external trigger preempted conversion is connected to EXINT15 1: ADC2 external trigger preempted conversion is connected to EXINT15 1: ADC2 external trigger preempted conversion is connected to EXINT15 1: ADC2 external trigger preempted conversion is connected to EXINT15					1: PD0 is mapped to HEXT_IN, while PD1 is mapped to
These bits are used to configure SWJTAG-related IO as GPIO. 000: Supports SWD and JTAG. All SWJTAG pins cannobe used as GPIO. 001: Supports SWD and JTAG. NJTRST is disabled. PB can be used as GPIO. 010: Supports SWD. But JTAG is disabled. PA15/PB3/PB can be used as GPIO. 100: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. 100: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. Others: No effect. Bit 15: 10 Reserved 0x00 resd Kept at its default value. ADC2 external trigger regular conversion general multiplexing select the input source for ADC2 external trigger regular conversion is connected to EXINT11 1: ADC2 external trigger regular conversion is connected to TMR8_TRGO. ADC2 external trigger preempted conversion general multiplexing select the input source for ADC2 external trigger regular conversion is connected to TMR8_TRGO. ADC2 external trigger preempted conversion is connected to TMR8_TRGO. ADC2 external trigger preempted conversion is connected to EXINT15 1: ADC2 external trigger preempted conversion is connected to EXINT15 1: ADC2 external trigger preempted conversion is connected to EXINT15 1: ADC2 external trigger preempted conversion is connected to EXINT15	Bit 19	Reserved	0x0	resd	Kept at its default value.
as GPIO. 000: Supports SWD and JTAG. All SWJTAG pins cannot be used as GPIO. 001: Supports SWD and JTAG. NJTRST is disabled. PB. can be used as GPIO. 010: Supports SWD. But JTAG is disabled. PA15/PB3/PB can be used as GPIO. 100: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. 100: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. Others: No effect. Bit 15: 10 Reserved 0x00 resd Kept at its default value. ADC2 external trigger regular conversion general multiplexing select the input source for ADC2 external trigger regular conversion is connected to EXINT11 1: ADC2 external trigger regular conversion is connected to TMR8_TRGO. ADC2 external trigger preempted conversion general multiplexing select the input source for ADC2 external trigger preempted conversion is connected to TMR8_TRGO. ADC2 external trigger preempted conversion is connected to EXINT15 1: ADC2 external trigger preempted conversion is connected to EXINT15 1: ADC2 external trigger preempted conversion is connected to TMR8 channel 4	•				SWD JTAG IO general mutiplexing
be used as GPIO. 001: Supports SWD and JTAG. NJTRST is disabled. PB can be used as GPIO. 010: Supports SWD. But JTAG is disabled. PA15/PB3/PB can be used as GPIO. 100: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO. Others: No effect. Bit 15: 10 Reserved 0x00 resd Kept at its default value. ADC2 external trigger regular conversion general multiplexing select the input source for ADC2 external trigger regular conversion is connected to EXINT11 1: ADC2 external trigger regular conversion is connected to TMR8_TRGO. ADC2 external trigger preempted conversion general multiplexing select the input source for ADC2 external trigger preempted conversion is connected to TMR8_TRGO. ADC2 external trigger preempted conversion general multiplexing select the input source for ADC2 external trigger preempted conversion is connected to EXINT15 1: ADC2 external trigger preempted conversion is connected to EXINT15 1: ADC2 external trigger preempted conversion is connected to TMR8 channel 4					These bits are used to configure SWJTAG-related IOs as GPIO.
Bit 18: 16 SWJTAG_GMUX 0x0 rw can be used as GPIO. 010: Supports SWD. But JTAG is disabled. PA15/PB3/PB can be used as GPIO. 100: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO Others: No effect. Bit 15: 10 Reserved 0x00 resd Kept at its default value. ADC2 external trigger regular conversion general multiplexing Select the input source for ADC2 external trigger regular conversion is connected to EXINT11 1: ADC2 external trigger regular conversion is connected to TMR8_TRGO. ADC2 external trigger preempted conversion general multiplexing Select the input source for ADC2 external trigger preempted conversion is connected to TMR8_TRGO. ADC2 external trigger preempted conversion is connected to EXINT15 1: ADC2 external trigger preempted conversion is connected to EXINT15 1: ADC2 external trigger preempted conversion is connected to EXINT15 1: ADC2 external trigger preempted conversion is connected to EXINT15 1: ADC2 external trigger preempted conversion is connected to TMR8 channel 4					000: Supports SWD and JTAG. All SWJTAG pins cannot be used as GPIO.
can be used as GPIO. 100: SWD and JTAG are disabled. All SWJTAG pins canbe used as GPIO Others: No effect. Bit 15: 10 Reserved 0x00 resd Kept at its default value. ADC2 external trigger regular conversion general multiplexing Select the input source for ADC2 external trigger regular conversion is connected to EXINT11 1: ADC2 external trigger regular conversion is connected to TMR8_TRGO. ADC2 external trigger regular conversion is connected to TMR8_TRGO. ADC2 external trigger preempted conversion general multiplexing Select the input source for ADC2 external trigger preempted conversion is connected to EXINT15 1: ADC2 external trigger preempted conversion is connected to EXINT15 1: ADC2 external trigger preempted conversion is connected to TMR8 channel 4	Bit 18: 16	SWJTAG_GMUX	0x0	rw	001: Supports SWD and JTAG. NJTRST is disabled. PB4 can be used as GPIO.
Canbe used as GPIO Others: No effect. Bit 15: 10 Reserved 0x00 resd Kept at its default value. ADC2 external trigger regular conversion general multiplexing Select the input source for ADC2 external trigger regular conversion O: ADC2 external trigger regular conversion is connected to EXINT11 1: ADC2 external trigger regular conversion is connected to TMR8_TRGO. ADC2 external trigger preempted conversion general multiplexing Select the input source for ADC2 external trigger preempted conversion is connected to EXINT15 O: ADC2 external trigger preempted conversion is connected to EXINT15 1: ADC2 external trigger preempted conversion is connected to EXINT15 1: ADC2 external trigger preempted conversion is connected to TMR8 channel 4					010: Supports SWD. But JTAG is disabled. PA15/PB3/PB4 can be used as GPIO.
Canbe used as GPIO Others: No effect. Bit 15: 10 Reserved 0x00 resd Kept at its default value. ADC2 external trigger regular conversion general multiplexing Select the input source for ADC2 external trigger regular conversion O: ADC2 external trigger regular conversion is connected to EXINT11 1: ADC2 external trigger regular conversion is connected to TMR8_TRGO. ADC2 external trigger preempted conversion general multiplexing Select the input source for ADC2 external trigger preempted conversion is connected to EXINT15 O: ADC2 external trigger preempted conversion is connected to EXINT15 1: ADC2 external trigger preempted conversion is connected to EXINT15 1: ADC2 external trigger preempted conversion is connected to TMR8 channel 4					100: SWD and JTAG are disabled. All SWJTAG pins
Bit 15: 10 Reserved 0x00 resd Kept at its default value. ADC2 external trigger regular conversion general multiplexing Select the input source for ADC2 external trigger regular conversion 0: ADC2 external trigger regular conversion is connected to EXINT11 1: ADC2 external trigger regular conversion is connected to TMR8_TRGO. ADC2 external trigger preempted conversion general multiplexing Select the input source for ADC2 external trigger preempted conversion is connected to CADC2 external trigger preempted conversion is connected to EXINT15 1: ADC2 external trigger preempted conversion is connected to EXINT15 1: ADC2 external trigger preempted conversion is connected to TMR8 channel 4					
ADC2 external trigger regular conversion general multiplexing Select the input source for ADC2 external trigger regular conversion 0: ADC2 external trigger regular conversion is connected to EXINT11 1: ADC2 external trigger regular conversion is connected to TMR8_TRGO. ADC2 external trigger preempted conversion general multiplexing Select the input source for ADC2 external trigger preempted conversion is connected to EXINT15 1: ADC2 external trigger preempted conversion is connected to EXINT15 1: ADC2 external trigger preempted conversion is connected to EXINT15 1: ADC2 external trigger preempted conversion is connected to TMR8 channel 4					Others: No effect.
multiplexing Select the input source for ADC2 external trigger regular conversion rw 0: ADC2 external trigger regular conversion is connected to EXINT11 1: ADC2 external trigger regular conversion is connected to TMR8_TRGO. ADC2 external trigger preempted conversion general multiplexing Select the input source for ADC2 external trigger preempted conversion o: ADC2 external trigger preempted conversion o: ADC2 external trigger preempted conversion is connected to EXINT15 1: ADC2 external trigger preempted conversion is connected to TMR8 channel 4	Bit 15: 10	Reserved	0x00	resd	Kept at its default value.
Conversion 0: ADC2_ETO_GMUX 0x0 rw 0: ADC2 external trigger regular conversion is connected to EXINT11 1: ADC2 external trigger preempted conversion general multiplexing Select the input source for ADC2 external trigger preempted conversion 0: ADC2 external trigger preempted conversion general multiplexing Select the input source for ADC2 external trigger preempted conversion 0: ADC2 external trigger preempted conversion is connected to EXINT15 1: ADC2 external trigger preempted conversion is connected to TMR8 channel 4					
Bit 8 ADC2_ETP_GMUX 0x0 Bit 8 ADC2_ETP_GMUX 0x0 ADC2 external trigger regular conversion is connected to EXINT15 1: ADC2 external trigger preempted conversion general multiplexing Select the input source for ADC2 external trigger preempted conversion 0: ADC2 external trigger preempted conversion is connected to EXINT15 1: ADC2 external trigger preempted conversion is connected to TMR8 channel 4					Select the input source for ADC2 external trigger regular conversion
TMR8_TRGO. ADC2 external trigger preempted conversion general multiplexing Select the input source for ADC2 external trigger preempted conversion or ADC2 external trigger preempted conversion is connected to EXINT15 1: ADC2 external trigger preempted conversion is connected to TMR8 channel 4	Bit 9	ADC2_ETO_GMUX	0x0	rw	0: ADC2 external trigger regular conversion is connected to EXINT11
multiplexing Select the input source for ADC2 external trigge preempted conversion O: ADC2 external trigger preempted conversion i connected to EXINT15 1: ADC2 external trigger preempted conversion i connected to TMR8 channel 4					1: ADC2 external trigger regular conversion is connected to TMR8_TRGO.
Select the input source for ADC2 external trigge preempted conversion O: ADC2 external trigger preempted conversion i connected to EXINT15 1: ADC2 external trigger preempted conversion i connected to TMR8 channel 4					ADC2 external trigger preempted conversion general multiplexing
Bit 8 ADC2_ETP_GMUX 0x0 rw 0: ADC2 external trigger preempted conversion i connected to EXINT15 1: ADC2 external trigger preempted conversion i connected to TMR8 channel 4					Select the input source for ADC2 external trigger
1: ADC2 external trigger preempted conversion i connected to TMR8 channel 4	Bit 8	ADC2_ETP_GMUX	0x0	rw	0: ADC2 external trigger preempted conversion is
connected to TMR8 channel 4					connected to EXINT15
Bit 7: 6 Reserved 0x0 resd Keep at its default value.					1: ADC2 external trigger preempted conversion is connected to TMR8 channel 4
	Bit 7: 6	Reserved	0x0	resd	Keep at its default value.

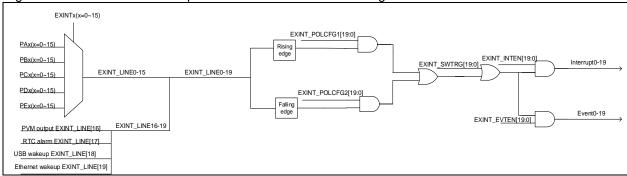
				ADC1 external trigger regular conversion general multiplexing Select the input source for ADC1 external trigger regular conversion.
Bit 5	ADC1_ETO_GMUX	0x0	rw	0: ADC1 external trigger regular conversion is connected to EXINT11
				1: ADC1 external trigger regular conversion is connected to TMR8_TRGO
				ADC1 External trigger preempted conversion general multiplexing
D'' 4	ADOL ETD ONLY			Select the input source for ADC1 External trigger preempted conversion.
Bit 4	ADC1_ETP_GMUX		rw	0: ADC1 External trigger preempted conversion is connected to EXINT15
				1: ADC1 External trigger preempted conversion is connected to TMR8 channel 4
D:1 0	EVE ODIN OEN			SPIM enable
Bit 3	EXT_SPIM_GEN		rw	Select whether to use SPI Flash.
				Select IO multiplexing for SPIM
	EXT_SPIM_GMUX	0x0 rw		000: SCK/PB1 CS/PA8 IO0/PA11 IO1/PA12 IO2/PB7 IO3/PB6
Bit 2: 0			rw	001: SCK/PB1 CS/PA8 IO0/PB10 IO1/PB11 IO2/PB7 IO3/PB6
				Others: Unused

7.3.13 IOMUX remap register8 (IOMUX_REMAP8)

Bit	Register	Reset value	Type	Description
				UART8 IO general multiplexing
				Select IO multiplexing for UART8.
Bit 31: 28	UART8 GMUX	0x0	rw	0000: TX/PE1 RX/PE0
	_			0001: TX/PC2 RX/PC3
				Others: Unused
				UART7 IO general multiplexing
				Select IO multiplexing for UART7.
Bit 27: 24	UART7 GMUX	0x0	rw	0000: TX/PE8 RX/PE7
	_			0001: TX/PB4 RX/PB3
				Others: Unused
				USART6 IO general multiplexing
	USART6_GMUX	0x0		Select IO multiplexing for USART6.
Bit 23: 20			rw	0000: TX/PC6 RX/PC7
				0001: TX/PA4 RX/PA5
				Others: Unused
				EMAC PTP PPS IO general multiplexing
				This bit is used to select whether PPS_PTS is connected
D:: 40	DTD DDC CMUV	0.40		to PB5.
Bit 19	PTP_PPS_GMUX	0x0	rw	0: PTP_PPS is not connected to PB5 pin.
				1: PTP_PPS is connected to PB5 pin.
				Note: This bit is applied to only AT32F407.
				MII or RMII selection
				This bit is used to select MII or RMII for Ethernet.
Bit 18	MII_RMII_SEL	0x0	rw	0: MII
				1: RMII
				Note: This bit is applied to only AT32F407.
D'' 47 46	EMAG 01#10/	0.0		EMAC IO general multiplexing
Bit 17: 16	EMAC_GMUX	0x0	rw	Select IO multiplexing for EMAC.

				0: RX_DV/CRS_DV/PA7, RXD0/PC4, RXD1/PC5,
				RXD2/PB0, RXD3/PB1
				1: RX_DV/CRS_DV/PD8, RXD0/PD9, RXD1/PD10,
				RXD2/PD11, RXD3/PD12
				Note: This bit is applied to only AT32F407.
Bit 15: 0	Reserved	0x0000	resd	Kept at its default value.

2021.12.01 Page 120 Ver 2.02



8 External interrupt/Event controller (EXINT)

8.1 EXINT introduction

EXINT consists of 20 interrupt lines EXINT_LINE[19:0], each of which can generate an interrupt or event by edge detection trigger or software trigger. EXINT can enable or disable an interrupt or event independently through software configuration, and utilizes different edge detection modes (rising edge, falling edge or both edges) as well as trigger modes (edge detection, software trigger or both tirggers) to respond to the trigger source in order to generate an interrupt or event.

Figure 8- 1 External interrupt/Event controller block diagram

Main features:

- EXINT 0~15 mapping IO can be configured independently
- Independent trigger selection on each interrupt line
- Independent enable bit on each interrupt
- Independent enable bit on each event
- Up to 20 software trigger that can be generated and cleared independently.
- Independent status bit on each interrupt
- Each interrupt can be cleared independently.

8.2 Function overview and configuration procedure

With up to 20 interrupt lines EXINT_LINE[19:0], EXINT can detect not only GPIO external interrupt sources but also four internal sources such as PVM output, RTC alarm events, USB wakeup events and Ethernet wakeup events through edge detection mechanism, where, GPIO interrupt sources can be selected with IOMUX_EXINTCx register. It should be noted that these input sources are mutually exclusive. For example, EXINT_LINE0 is allowed to select only one of PAO/PBO/PCO/PD0 pins, instead of taking both PAO and PBO as the input sources at the same time.

EXINT supports several edge detection modes, including rising edge, falling edge or both edges, selected by EXINT_POLCFG1 and EXINT_POLCFG2 register. Active edge trigger detected on the interrupt line can be used to generate an events or interrupt.

In addition, EXINT supports independent software trigger for the generation of an event or interrupt. This is achieved by setting the corresponding bits in the EXINT SWTRG register.

EXINT can enable or disable an interrupt or event independently through software configuration such as EXINT_INTEN and EXINT_EVTEN register, indicating that the corresponding interrupt or event must be enabled prior to either edge detection or software trigger.

EXINT also features an independent interrupt status bit. Reading access to EXINT_INTSTS register can obtain the corresponding interrupt status. The status flag is cleared by writing "1" to this register.

Interrupt initialization procedure

- Select an interrupt source by setting IOMUX_EXINTCx register (This is required if GPIO is used as an interrupt source)
- Select an trigger mode by setting EXINT POLCFG1 and EXINT POLCFG2 register
- Enable interrupt or event by setting EXINT INTEN and EXINT EVTEN register

• Generate software trigger by setting EXINT_SWTRG register (This is applied to only software trigger interrupt)

Interrupt clear procedure

• Writing "1" to the EXINT_INTSTS register to clear the interrupts generated, and the corresponding bits in the EXINT_SWTRG register.

8.3 EXINT registers

These peripheral registers must be accessed by words (32 bits).

Table 8-1 shows EXINT register map and their reset value.

Table 8- 1 External interrupt/Event controller register map and reset value

Register	Offset	Reset value
EXINT_INTEN	0x00	0x0000 0000
EXINT_EVTEN	0x04	0x0000 0000
EXINT_POLCFG1	0x08	0x0000 0000
EXINT_ POLCFG2	0x0C	0x0000 0000
EXINT_SWTRG	0x10	0x0000 0000
EXINT_INTSTS	0x14	0x0000 0000

8.3.1 Interrupt enable register (EXINT_INTEN)

Bit	Register	Reset value	Type	Description
Bit 31: 20	Reserved	0x000	resd	Forced to 0 by hardware.
				Interrupt enable or disable on line x
				0: Interrupt request is disabled.
Bit 19: 0	INTENx	0x00000	rw	1: Interrupt request is enabled.
				Note: Bit 19 is applied to only AT32F407 and is reserved otherwise.

8.3.2 Event enable register (EXINT_EVTEN)

Bit	Register	Reset value	Type	Description
Bit 31: 20	Reserved	0x000	resd	Forced to 0 by hardware.
				Event enable or disable on line x
				0: Event request is disabled.
Bit 19: 0	EVTENx	0x00000	rw	1: Event request is enabled.
				Note: Bit 19 is applied to only AT32F407 and is reserved otherwise.

8.3.3 Polarity configuration register1 (EXINT_ POLCFG1)

Bit	Register	Reset value	Type	Description
Bit 31: 20	Reserved	0x000	resd	Forced to 0 by hardware.
				Rising edge event configuration bit on line x
				These bits are used to select rising edge to trigger an interrupt and event on line x.
Bit 19: 0	RPx	0x00000	rw	0: Rising trigger on line x is disabled.
				1: Rising trigger on line x is enable.
				Note: Bit 19 is applied to only AT32F407 and is reserved otherwise.

8.3.4 Polarity configuration register2 (EXINT_ POLCFG2)

Bit	Register	Reset value	Type	Description
Bit 31: 20	Reserved	0x000	resd	Forced to 0 by hardware.
Bit 19: 0	EDv	0x00000	rw	Falling edge event configuration bit on line x
	FPx			These bits are used to select falling edge to trigger an

interrupt and event on line x.

0: Falling trigger on line x is disabled.

1: Falling trigger on line x is enabled.

Note: Bit 19 is applied to only AT32F407 and is reserved otherwise.

8.3.5 Software trigger register (EXINT_ SWTRG)

Bit	Register	Reset value	Type	Description
Bit 31: 20	Reserved	0x000	resd	Forced to 0 by hardware.
				Software triggle on line x
				If the corresponding bit in EXINT_INTEN register is 1, the software writes to this bit. The hardware sets the corresponding bit in the EXINT_INTSTS automatically to generate an interrupt.
Bit 19: 0	SWTx	0x00000	rw	If the corresponding bit in the EXINT_EVTEN register is 1, the software writes to this bit. The hardward generates an event on the corresponding interrupt line automatically.
				0: Default value
				1: Sotware trigger generated
				Note: This bit is cleared by writing 1 to the corresponding bit in the EXINT_INTSTS register.
				Note: Bit 19 is applied to only AT32F407 and is reserved otherwise.

8.3.6 Interrupt status register (EXINT_ INTSTS)

Bit	Register	Reset value	Type	Description
Bit 31: 20	Reserved	0x000	resd	Forced to 0 by hardware.
				Line x status bit
				0: No interrupt occurred.
Bit 19: 0	LINEx	0x00000	rw	1: Interrupt occurred.
				Note: This bit is cleared by writing 1. Bit 19 is applied to only AT32F407 and is reserved otherwise.

2021.12.01 Page 123 Ver 2.02

9 DMA controller (DMA)

9.1 Introduction

Direct memory access (DMA) controller is designed for 32-bit MCU applications with the aim of enhancing system performance and reducing the generation of interrupts.

There are two DMA controllers in the microcontroller. Each controller contains 7 DMA channels. Each channel manages memory access requests from one or more peripherals. An arbiter is available for coordinating the priority of each DMA request.

9.2 Main features

- AMBA compliant (Rev. 2.0)
- Only support AHB OKAY and ERROR responses
- HBUSREQ and HGRANT of AHB master interface are not supported
- Support 7 channels
- Peripheral-to-memory, memory-to-peripheral, and memory-to-memory transfers
- Support hardware handshake

Figure 9- 1 DMA block diagram

- Support 8-bit, 16-bit and 32- bit data transfers
- Programmable amount of data to be transferered: up to 65535
- Support flexible mapping

DMA1 **AHB** Master ch2-DMA request -ch3-ADC1 TMR1 DMA DMA ack ADC2 TMR2 request ch7 ADC3 TMR3 DAC TMR4 I2S2_EXT TMR5 AHB Arbiter I2S3_EXT TMR6 Slave I2C1 TMR7 **DMAMUX** TMR8 I2C2 DMA2 I2C3 USART2 SDIO1 USART3 DMA ack SDIO₂ UART4 **AHB** DMA request SPI1 UART5 Master ch2-SPI2 **USART6** ch3-SPI3 UART7 DMA ack SPI4 **UART8** ch7-I

Note: The number of DMA peripherals in Figure 9-1 may decrease depending on different models.

AHB

Slave

Arbiter

9.3 Function overview

9.3.1 DMA configuration

1. Set the peripheral address in the DMA_CxPADD register
The initial peripheral address for data transfer remains unchanged during transmission.

2. Set the memory address in the DMA CxMADDR register

The initial memory address for data transfer remains unchanged during transmission.

3. Configure the amount of data to be transferred in the DMA_CxDTCNT register Programmable data transfer size is up to 65535. This value is decremented after each data transfer.

4. Configure the channel setting in the DMA CxCTRL register Including channel priority, data transfer direction/width, address incremented mode, circular mode

and interrupt mode

Channel priority (CHPL)

There are four levels, including very high priority, high priority, medium priority and low priority. If the two channels have the same priority level, then the channel with lower number will get priority over the one with higher number. For example, channel 1 has priority over channel 2.

Data transfer direction (DTD)

Memory-to-peripheral (M2P), peripheral-to-memory (P2M)

Address incremented mode (PINCM/MINCM)

In incremented mode, the subsequent transfer address is the previous address plus transfer width (PWIDTH/MWIDTH).

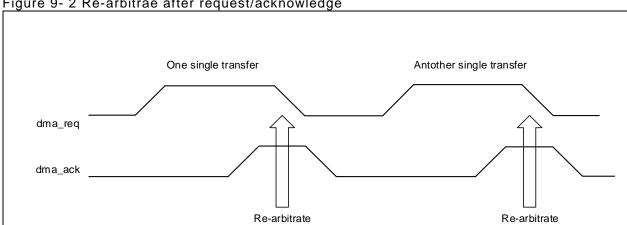
Circular mode (LM)

In circular mode, the contents in the DMA CxDTCNT register is automatically reloaded with the initially programmed value after the completion of the last transfer.

Memory-to-memory mode (M2M)

This mode indicates that DMA channels perform data transfer without requests from peripherals. Circular mode and memory-to-memory mode cannot be used at the same time.

5. Enable DMA transfer by setting the CHEN bit in the DMA CxCTRL register


9.3.2 Handshake mechanism

In P2M and M2P mode, the peripherals need to send a request signal to the DMA controller. The DMA channel will send the peripheral transfer request (single) until the signal is acknowledged. After the completion of peripheral transmission, the DMA controller sends the acknowledge signal to the peripheral. The peripheral then releases its request as soon as it receives the acknowledge signal. At the same time, the DMA controller releases the acknowledge signal as well.

9.3.3 Arbiter

When several channels are enabled simultaneously, the arbiter will restart arbitration after full data transfer by the master controller. The channel with very high priority waits until the channel of the master controller has completed data transfers before taking control of it. The master controller will re-arbitrate to serve other channels as long as the channel completes a single transfer based on the master controller priority.

Figure 9- 2 Re-arbitrae after request/acknowledge

9.3.4 Programmable data transfer width

Transfer width of the source data and destination data is programmable through the PWIDTH and MWIDTH bits in the DMA_CxCTRL register. When PWIDTH is not equal to MWIDTH, it can be aligned according to the settings of PWIDTH/ MWIDTH.

Figure 9- 3 PWIDTH: byte, MWIDTH: half-word

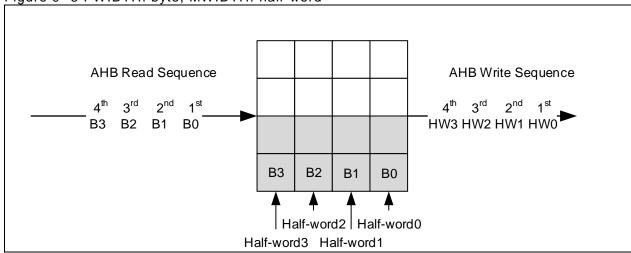


Figure 9- 4 PWIDTH: half-word, MWIDTH: word

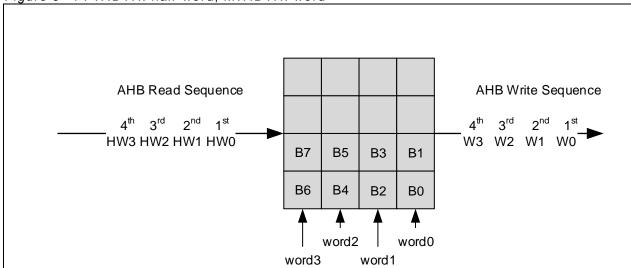



Figure 9- 5 PWIDTH: word, MWIDTH: byte

9.3.5 Errors

Table 9- 1 DMA error event

Tubio o T Bivirtoi	101 OVOIR
Error event	
Transfer error	AHB response error occurred during DMA read/write access

9.3.6 Interrupts

An interrupt can be generated on a DMA half-transfer, transfer complete and transfer error. Each channel has its specific interrupt flag, clear and enable bits, as shown in the table below.

Table 9- 2 DMA interrupt requests

Interrupt event	Event flag bit	Clear control bit	Enable control bit
Half transfer	HDTF	HDTFC	HDTIEN
Transfer completed	FDTF	FDTFC	FDTIEN
Transfer error	DTERRF	DTERRFC	DTERRIEN

Note: DMA 2 channel 4/channel 5, channel 6/channel 7 interrupts are mapped onto the same interrupt vector.

9.3.7 Fixed DMA request mapping

Several peripheral requests are mapped to the same DMA channel through logic ORed. This means that only one request can be enabled at a time.

The peripheral DMA requests can be independently activated/de-activated by setting the control bits in the corresponding peripheral registers.

Table 9- 3 DMA1 requests for each channel

Periphe rals	Channel 1	Channel 2	Channel 3	Channel 4	Channel 5	Channel 6	Channel 7
ADC1	ADC1						
SPI/I ² S		SPI1/I2S1_RX	SPI1/I2S1_TX	SPI2/I2S2_RX	SPI2/I2S2_TX		
USART		USART3_TX	USART3_RX	USART1_TX	USART1_RX	USART2_RX	USART2_TX
ı ² с		I2C3_TX	I2C3_RX	I2C2_TX	I2C2_RX	I2C1_TX	I2C1_RX
TMR1		TMR1_CH1	TMR1_CH2	TMR1_CH4 TMR1_TRIG TMR1_HALL	TMR1_UP	TMR1_CH3	
TMR2	TMR2_CH3	TMR2_UP			TMR2_CH1		TMR2_CH2 TMR2_CH4
TMR3		TMR3_CH3	TMR3_CH4 TMR3_UP			TMR3_CH1 TMR3_TRIG	
TMR4	TMR4_CH1			TMR4_CH2	TMR4_CH3		TMR4_UP

Table 9- 4 DMA2 requests for each channel

Periphe rals	Channel 1	Channel 2	Channel 3	Channel 4	Channel 5	Channel 6	Channel 7
ADC3					ADC3		
SPI/I ² S	SPI3/I2S3_R X	SPI3/I2S3_TX	SPI4/I2S4_RX	SPI4/I2S4_TX			
UART4			UART4_RX		UART4_TX		
SDIO				SDIO			
SDIO2					SDIO2		
TMR5	TMR5_CH4 TMR5_TRIG	TMR5_CH3 TMR5_UP		TMR5_CH2	TMR5_CH1		
TMR6/ DAC CH1			TMR6_UP/ DAC CH1				
TMR7/ DAC CH2				TMR7_UP/ DAC CH2			
TMR8	TMR8_CH3 TMR8_UP	TMR8_CH4 TMR8_TRIG TMR8_HALL	TMR8_CH1	_	TMR8_CH2		

9.3.8 Flexible DMA request mapping

In flexible request mapping mode (DMA_FLEX_EN = 1), the request source of each channel is programmed by CHx_SRC [$x=1\sim7$]. For example, to specify DMA channel 1 as USART3_TX, and channel 3 as USART3_RX, and others are unused, then it is necessary that DMA_FLEX_EN=1, CH1_SRC=30, CH3_SRC=29 and CH[2/4/5/6/7]_SRC=0.

The table below shows CHx_SRC values and their corresponding request sources.

Table 9-5 Flexible DMA requests for each channel

CHx_SRC	Request source	CHx_SRC	DMA source	CHx_SRC	Request source	CHx_SRC	Request source
0	No select	1	ADC1	2	reserved	3	ADC3
4	reserved	5	DAC1	6	DAC2	7	reserved
8	reserved	9	SPI1_RX	10	SPI1_TX	11	SPI2_RX
12	SPI2_TX	13	SPI3_RX	14	SPI3_TX	15	SPI4_RX
16	SPI4_TX	17	I2S2EXT_RX	18	I2S2EXT_TX	19	I2S3EXT_RX
20	I2S3EXT_TX	21	reserved	22	reserved	23	reserved
24	reserved	25	USART1_RX	26	USART1_TX	27	USART2_RX
28	USART2_TX	29	USART3_RX	30	USART3_TX	31	UART4_RX
32	UART4_TX	33	UART5_RX	34	UART5_TX	35	USART6_RX
36	USART6_TX	37	UART7_RX	38	UART7_TX	39	UART8_RX
40	UART8_TX	41	I2C1_RX	42	I2C1_TX	43	I2C2_RX
44	I2C2_TX	45	I2C3_RX	46	I2C3_TX	47	reserved
48	reserved	49	SDIO1	50	SDIO2	51	reserved
52	reserved	53	TMR1_TRIG	54	TMR1_HALL	55	TMR1_UP
56	TMR1_CH1	57	TMR1_CH2	58	TMR1_CH3	59	TMR1_CH4
60	reserved	61	TMR2_TRIG	62	reserved	63	TMR2_UP
64	TMR2_CH1	65	TMR2_CH2	66	TMR2_CH3	67	TMR2_CH4
68	reserved	69	TMR3_TRIG	70	reserved	71	TMR3_UP
72	TMR3_CH1	73	TMR3_CH2	74	TMR3_CH3	75	TMR3_CH4
76	reserved	77	TMR4_TRIG	78	reserved	79	TMR4_UP
80	TMR4_CH1	81	TMR4_CH2	82	TMR4_CH3	83	TMR4_CH4
84	reserved	85	TMR5_TRIG	86	reserved	87	TMR5_UP
88	TMR5_CH1	89	TMR5_CH2	90	TMR5_CH3	91	TMR5_CH4
92	reserved	93	reserved	94	reserved	95	TMR6_UP
96	reserved	97	reserved	98	reserved	99	reserved
100	reserved	101	reserved	102	reserved	103	TMR7_UP
104	reserved	105	reserved	106	reserved	107	reserved
108	reserved	109	TMR8_TRIG	110	TMR8_HALL	111	TMR8_UP
112	TMR8_CH1	113	TMR8_CH2	114	TMR8_CH3	115	TMR8_CH4
116	reserved	117	reserved	118	reserved	119	reserved
120	reserved	121	reserved	122	reserved	123	reserved
124	reserved	125	reserved	126	reserved	127	reserved
128	reserved	129	reserved	130	reserved	131	reserved
132	reserved	133	reserved	134	reserved	135	reserved
136	reserved	137	reserved	138	reserved	139	reserved

140	reserved	141	reserved	142	reserved	143	reserved
144	reserved	145	reserved	146	reserved	147	reserved
148	reserved	149	reserved	150	reserved	151	reserved
152	reserved	153	reserved	154	reserved	155	reserved
156	reserved	157	reserved	158	reserved	159	reserved
160	reserved	161	reserved	162	reserved	163	reserved
164	reserved	165	reserved	166	reserved	167	reserved
168	reserved	169	reserved	170	reserved	171	reserved
172	reserved	173	reserved	174	reserved	175	reserved

Note: The request mapping mode must be identical for DMA1 and DMA2 (DMA_FLEX_EN must be set either 1 or 0 for both DMA 1 and DMA 2)

9.4 DMA registers

Table 9-6 shows DMA register map and their reset values.

Table 9- 6 DMA register map and reset value

Register	Offset	Reset value
DMA_STS	0x00	0x0000 0000
DMA_CLR	0x04	0x0000 0000
DMA_C1CCTRL	0x08	0x0000 0000
DMA_C1DTCNT	0x0C	0x0000 0000
DMA_C1PADDR	0x10	0x0000 0000
DMA_C1MADDR	0x14	0x0000 0000
DMA_C2CTRL	0x1C	0x0000 0000
DMA_C2DTCNT	0x20	0x0000 0000
DMA_C2PADDR	0x24	0x0000 0000
DMA_C2MADDR	0x28	0x0000 0000
DMA_C3CTRL	0x30	0x0000 0000
DMA_C3DTCNT	0x34	0x0000 0000
DMA_C3PADDR	0x38	0x0000 0000
DMA_C3MADDR	0x3C	0x0000 0000
DMA_C4CTRL	0x44	0x0000 0000
DMA_C4DTCNT	0x48	0x0000 0000
DMA_C4PADDR	0x4C	0x0000 0000
DMA_C4MADDR	0x50	0x0000 0000
DMA_C5CTRL	0x58	0x0000 0000
DMA_C5DTCNT	0x5C	0x0000 0000
DMA_C5PADDR	0x60	0x0000 0000
DMA_C5MADDR	0x64	0x0000 0000
DMA_C6CTRL	0x6C	0x0000 0000
DMA_C6DTCNT	0x70	0x0000 0000
DMA_C6PADDR	0x74	0x0000 0000
DMA_C6MADDR	0x78	0x0000 0000

DMA_C7CTRL	0x80	0x0000 0000
DMA_C7DTCNT	0x84	0x0000 0000
DMA_C7PADDR	0x88	0x0000 0000
DMA_C7MADDR	0x8C	0x0000 0000
DMA_SRC_SEL0	0xA0	0x0000 0000
DMA_SRC_SEL1	0xA4	0x0000 0000

Note: In the following registers, all bits related to channel 6 and channel 7 are not relevant for DMA 2 fixed request mapping since it has only 5 channels. They are applied to DMA 2 flexible request mapping, instead, supporting up to 7 channels.

9.4.1 DMA interrupt status register (DMA_STS)

Bit	Register	Reset value	Type	Description
31: 28	Reserved	0x0	resd	Kept at its default value.
				Channel 7 data transfer error event flag
Bit 27	DTERRF7	0x0	ro	0: No transfer error occurred.
				1: Transfer error occurred. Channel half transfer event flag
Bit 26	HDTF7	0x0	ro	0: No half-transfer event occurred.
Dit 20	115117	OXO	10	1: Half-transfer event occurred.
				Channel 7 transfer complete event flag
Bit 25	FDTF7	0x0	ro	0: No transfer complete event occurred.
Dit 20	10117	OXO	10	1: Transfer complete event occurred.
				·
				Channel global event flag
Bit 24	GF7	0x0	ro	No transfer error, half transfer or transfer complete event occurred.
				 Transfer error, half transfer or transfer complete event occurred.
				Channel 6 data transfer error event flag
Bit 23	DTERRF6	0x0	ro	0: No transfer error occurred.
				1: Transfer error occurred.
				Channel 6 half transfer event flag
Bit 22	HDTF6	0x0	ro	0: No half-transfer event occurred.
				1: Half-transfer event occurred.
				Channel 6 transfer complete event flag
Bit 21	FDTF6	0x0	ro	0: No transfer complete event occurred.
				1: Transfer complete event occurred.
				Channel 6 global event flag
Bit 20	GF6	0x0	ro	0: No transfer error, half transfer or transfer complete event
				occurred.
				1: Transfer error, half transfer or transfer complete event
				Channel 5 data transfer error event flag
Bit 19	DTERRF5	0x0	ro	0: No transfer error occurred.
				1: Transfer error occurred.
				Channel 5 half transfer event flag
Bit 18	HDTF5	0x0	ro	0: No half-transfer event occurred.
				1: Half-transfer event occurred.
				Channel 5 transfer complete event flag
Bit 17	FDTF5	0x0	ro	0: No transfer complete event occurred.
				1: Transfer complete event occurred.

				Channel E glabal avent flog
				Channel 5 global event flag 0: No transfer error, half transfer or transfer complete event
Bit 16	GF5	0x0	ro	occurred.
				1: Transfer error, half transfer or transfer complete event
				Channel 4 data transfer error event flag
Bit 15	DTERRF4	0x0	ro	0: No transfer error occurred.
				1: Transfer error occurred.
				Channel 4 half transfer event flag
Bit 14	HDTF4	0x0	ro	0: No half-transfer event occurred.
				1: Half-transfer event occurred.
				Channel 4 transfer complete event flag
Bit 13	FDTF4	0x0	ro	0: No transfer complete event occurred.
			1: Transfer complete event occurred.	
				Channel 4 global event flag
Bit 12 GF4	GF4	0x0	ro	No transfer error, half transfer or transfer complete event occurred.
				1: Transfer error, half transfer or transfer complete event
				Channel 3 data transfer error event flag
Bit 11 DTERRE	DTERRF3	0x0	ro	0: No transfer error occurred.
				1: Transfer error occurred.
				Channel 3 half transfer event flag
Bit 10	HDTF3	0x0	ro	0: No half-transfer event occurred.
		one.		1: Half-transfer event occurred.
			ro	Channel 3 transfer complete event flag
Bit 9 FC	FDTF3	0x0		0: No transfer complete event occurred.
				1: Transfer complete event occurred.
				Channel 3 global event flag
		0x0	ro	0: No transfer error, half transfer or transfer complete even
Bit 8	GF3			occurred.
				1: Transfer error, half transfer or transfer complete event
				Channel 2 data transfer error event flag
Bit 7	DTERRF2	0x0	ro	0: No transfer error occurred.
				1: Transfer error occurred.
				Channel 2 half transfer event flag
Bit 6	HDTF2	0x0	ro	0: No half-transfer event occurred.
				1: Half-transfer event occurred.
				Channel 2 transfer complete event flag
Bit 5	FDTF2	0x0	ro	0: No transfer complete event occurred.
				1: Transfer complete event occurred.
				Channel 2 global event flag
				0: No transfer error, half transfer or transfer complete event
Bit 4	GF2	0x0	ro	occurred.
				1: Transfer error, half transfer or transfer complete event
				Channel 1 data transfer error event flag
Bit 3	DTERRF1	0x0	ro	0: No transfer error occurred.
				1: Transfer error occurred.
Bit 2				Channel 1 half transfer event flag
	HDTF1	0x0	ro	0: No half-transfer event occurred.
				1: Half-transfer event occurred.
				Channel 1 transfer complete event flag
Bit 1	FDTF1	0x0	ro	0: No transfer complete event occurred.
				1: Transfer complete event occurred.

Bit 0 GF1 0x0 ro Channel 1 global event flag

0: No transfer error, half transfer or transfer complete event occurred.

1: Transfer error, half transfer or transfer complete event

9.4.2 DMA interrupt flag clear register (DMA_CLR)

Bit	Register	Reset value	Type	Description
31: 28	Reserved	0x0	resd	Kept at its default value.
				Channel 7 data transfer error flag clear
Bit 27	DTERRFC7	0x0	rw1c	0: No effect
				1: Clear the DTERRF flag in the DMA_STS register
				Channel 7 half transfer flag clear
Bit 26	HDTFC7	0x0	rw1c	0: No effect
				1: Clear the HDTF7 flag in the DMA_STS register
				Channel 7 transfer complete flag clear
Bit 25	FDTFC7	0x0	rw1c	0: No effect
				1: Clear the FDTF7 flag in the DMA_STS register
				Channel 7 global interrupt flag clear
D:4 0.4	0507	00		0: No effect
Bit 24	GFC7	0x0	rw1c	1: Clear the DTERRF7, HDTF7, FDTF7 and GF7 flag in the DMA_STS register
				Channel 6 data transfer error flag clear
Bit 23	DTERRFC6	0x0	rw1c	0: No effect
				1: Clear the DTERRF6 flag in the DMA STS register
Bit 22				Channel 6 half transfer flag clear
	HDTFC6	0x0	rw1c	0: No effect
				1: Clear the HDTF6 flag in the DMA STS register Channel 6 transfer complete flag clear
Bit 21	FDTFC6	0x0	rw1c	0: No effect
				1: Clear the FDTF6 flag in the DMA STS register
				Channel 6 global interrupt flag clear
Bit 20	GFC6	0x0	rw1c	0: No effect
			11110	1: Clear the DTERRF6, HDTF6, FDTF6 and GF6 flag in the DMA_STS register
				Channel 5 data transfer error flag clear
Bit 19	DTERRFC5	0x0	rw1c	0: No effect
				1: Clear the DTERRF5 flag in the DMA_STS register
				Channel 5 half transfer flag clear
Bit 18	HDTFC5	0x0	rw1c	0: No effect
				1: Clear the HDTF5 flag in the DMA_STS register
				Channel 5 transfer complete flag clear
Bit 17	FDTFC5	0x0	rw1c	0: No effect
				1: Clear the FDTF5 flag in the DMA_STS register
				Channel 5 global interrupt flag clear
Dit 16	CECE	0x0	rw1c	0: No effect
Bit 16	GFC5	UXU	TWTC	1: Clear the DTERRF5, HDTF5, FDTF5 and GF5 in the DMA_STS register
				Channel 4 data transfer error flag clear
Bit 15	DTERRFC4	0x0	rw1c	0: No effect
				1: Clear the DTERRF4 flag in the DMA STS register
				Channel 4 half transfer flag lear
Bit 14	HDTFC4	0x0	rw1c	0: No effect
				1: Clear the HDTF4 flag in the DMA STS register

2021.12.01 Page 132 Ver 2.02

				Channel 4 transfer complete flag clear
Bit 13	FDTFC4	0x0	rw1c	0: No effect
				1: Clear the FDTF4 flag in the DMA STS register
			rw1c	Channel 4 global interrupt flag clear
Bit 12	GFC4	0x0		0: No effect
DIC 12	01 04	OXO	TW TO	1: Clear the DTERRF4, HDTF4, FDTF4 and GF4 flag in the DMA_STS register
				Channel 7 data transfer error flag clear
Bit 11	DTERRFC3	0x0	rw1c	0: No effect
				1: Clear the DTERRF7 flag in the DMA_STS register
				Channel 7 half transfer flag clear
Bit 10	HDTFC3	0x0	rw1c	0: No effect
				1: Clear the HDTF7 flag in the DMA_STS register
_				Channel 3 transfer complete flag clear
Bit 9	FDTFC3	0x0	rw1c	0: No effect
				1: Clear the FDTF3 flag in the DMA_STS register
				Channel 3 global interrupt flag clear
D:+ 0	CECa	0.40	mu10	0: No effect
Bit 8	GFC3	0x0	rw1c	1: Clear the DTERRF3, HDTF3, FDTF3 and GF3 flag in
				the DMA_STS register
				Channel 2 data transfer error flag clear
Bit 7	DTERRFC2	0x0	rw1c	0: No effect
				1: Clear the DTERRF2 flag in the DMA STS register
D:4 C	LIBTEON	0.40	m1 a	Channel 2 half transfer flag clear
Bit 6	HDTFC2	0x0	rw1c	0: No effect
				1: Clear the HDTF2 flag in the DMA STS register Channel 2 transfer complete flag clear
Bit 5	FDTFC2	0x0	rw1c	0: No effect
				1: Clear the FDTF2 flag in the DMA STS register
-				Channel 2 global interrupt flag clear
Dit 4	GFC2	0.40	m1 -	0: No effect
Bit 4		0x0	rw1c	1: Clear the DTERRF2, HDTF2, FDTF2 and GF2 in the
				DMA_STS register
				Channel 1 data transfer error flag clear
Bit 3	DTERRFC1	0x0	rw1c	0: No effect
				1: Clear the DTERRF1 flag in the DMA_STS register
				Channel 1 half transfer flag clear
Bit 2	HDTFC1	0x0	rw1c	0: No effect
				1: Clear the HDTF1 flag in the DMA_STS register
				Channel 1 transfer complete flag clear
Bit 1	FDTFC1	0x0	rw1c	0: No effect
				1: Clear the FDTF1 flag in the DMA_STS register
				Channel 1 global interrupt flag clear
Dit ∩	GEC1	0v0	nu1o	0: No effect
Bit 0	GFC1	0x0	rw1c	1: Clear the DTERRF1, HDTF1, FDTF1 and GF1 in the DMA_STS register

9.4.3 DMA channelx configuration register (DMA_CxCTRL) (x = 1····7)

Bit	Register	Reset value	Type	Description
Bit 31: 15	Reserved	0x00000	resd	Kept at its default value.
,				Memory to memory mode
Bit 14	M2M	0x0	rw	0: Disabled
				1: Enabled.

				Channel priority level
				00: Low
Bit 13: 12	CHPL	0x0	rw	01: Medium
				10: High
				11: Very high
				Memory data bit width
				00: 8 bits
Bit 11: 10	MWIDTH	0x0	rw	01: 16 bits
				10: 32 bits
				11: Reserved
				Peripheral data bit width
				00: 8 bits
Bit 9: 8	PWIDTH	0x0	rw	01: 16 bits
				10: 32 bits
				1: Reserved
	MINCM			Memory address increment mode
Bit 7		0x0	rw	0: Disabled
				1: Enabled.
	PINCM		rw	Peripheral address increment mode
Bit 6		0x0		0: Disabled
				1: Enabled.
				Circular mode
Bit 5	LM	0x0	rw	0: Disabled
Dit 0	LIVI	OXO	IW	1: Enabled.
				Data transfer direction
Bit 4	DTD	0x0	rw	0: Read from peripherals
DIL 4	טוט	UXU		
				1: Read from memory
D:+ 0	DTEDDIEN	00		Data transfer error interrupt enable
Bit 3	DTERRIEN	0x0	rw	0: Disabled
				1: Enabled. Half-transfer interrupt enable
Bit 2	HDTIEN	0x0	rw	0: Disabled
Dit 2	HEHEN	OAO	1 44	
				1: Enabled. Transfer complete interrupt enable
Bit 1	FDTIEN	0x0	rw	0: Disabled
RIT J	FULLEN	0.00	I VV	1: Enabled.
				Channel enable
D:+ 0	CHEN	00		0: Disabled
Bit 0	CHEN	0x0	rw	• • • • • • • • • • • • • • • • • • • •
				1: Enabled.

9.4.4 DMA channelx number of data register (DMA_CxDTCNT) $(x = 1 \cdots 7)$

Bit	Register	Reset value	Type	Description
Bit 31: 16	Reserved	0x0000	resd	Kept at its default value. Number of data to transfer
Bit 15: 0	CNT	0x0000	rw	The number of data to transfer is from 0x0 to 0xFFFF. This register can only written when the CHEN bit in the correspoinding channel is set 0. The value is decremented after each DMA transfer.
				Note: This register holds the number of data to transfer, instead of transfer size. The transfer size is calculated by data width.

9.4.5 DMA channelx peripheral address register (DMA_CxPADDR) ($x = 1 \cdots 7$)

Bit	Register	Reset value	Type	Description
Bit 31: 0	PADDR	0x0000 0000	rw	Peripheral base address Base address of peripheral data register is the source or destination of data transfer. Note: The register can only be written when the CHEN bit in the corresponding channel is set 0.

9.4.6 DMA channelx memory address register (DMA_CxMADDR) ($x = 1 \cdots 7$)

Bit	Register	Reset value	Туре	Description
				Memory base address
Bit 31: 0	MADDR	0x0000 0000	rw	Memory address is the source or destination of data transfer.
				Note: The register can only be written when the CHEN bit
				in the corresponding channel is set 0.

9.4.7 Channel source register (DMA_SRC_SEL0)

Bit	Register	Reset value	Type	Description
				CH4 source select
Bit 31: 24	CH4_SRC	0x00	rw	When DMA_FLEX_EN=1, CH4_SRC selects channel 4 source, please refer to 9.3.8 Flexible DMA request mapping
				CH3 source select
Bit 23: 16	CH3_SRC	0x00	rw	When DMA_FLEX_EN=1, CH3_SRC selects channel 3 source, please refer to 9.3.8 Flexible DMA request mapping
				CH2 source select
Bit 15: 8	CH2_SRC	0x00	rw	When DMA_FLEX_EN=1, CH2_SRC selects channel 2 source, please refer to 9.3.8 Flexible DMA request mapping
				CH1 source select
Bit 7: 0	CH1_SRC	0x00	rw	When DMA_FLEX_EN=1, CH1_SRC selects channe 1 source, please refer to 9.3.8 Flexible DMA request mapping

9.4.8 Channel source register1 (DMA_SRC_SEL1)

Bit	Register	Reset value	Туре	Description
Bit 31: 25	Reserved	0x00	resd	Kept at its default value.
Bit 24				DMA flexible request mapping enable
	DMA FLEX EN:	0x0	rw	0: DMA fixed request mapping mode
				1: DMA flexible request mapping mode
				CH7 source select
Bit 23: 16	CH7_SRC	0x00	rw	When DMA_FLEX_EN=1, CH7_SRC selects channel 7 source, please refer to 9.3.8 Flexible DMA request mapping
		0x00		CH6 source select
Bit 15: 8	CH6_SRC		rw	When DMA_FLEX_EN=1, CH6_SRC selects channel 6 source, please refer to 9.3.8 Flexible DMA request mapping

Bit 7: 0 CH5_SRC 0x00 rw CH5_SRC = CH5 source select When DMA_FLEX_EN=1, CH5_SRC selects channel source, please refer to 9.3.8 Flexible DMA request mapping

10 CRC calculation unit (CRC)

10.1 CRC introduction

The Cyclic Redundancy Check (CRC) is an independent peripheral with CRC check feature. It follows CRC32 standard.

The CRC_CTRL register is used to select input data reverse (word, REVOD=1) or output data reverse (byte, REVID=01; half-word, REVID=0; word: REVID=11). CRC calculation unit is also equipped with initialization function. After each CRC reset, the value in the CRC_IDT register is loaded with data register (CRC_DT) by CRC.

Users can write the data to go through CRC check and read the calculated result through CRC_DT register. Note that the calculation result is the combination of the previous result and the current value to be calculated.

Main features

- Use CRC-32 code
- 4 HCLK cycles for each CRC calculation
- Support input/output data format toggle
- Perform write/read operation through CRC DT register
- Set an initialization value with the CRC_IDT register. The value is loaded with CRC_DT register after each CRC reset.

10.2CRC registers

Table 10- 1 CRC register map and reset value

Register	Offset	Reset value
CRC_DT	0x00	0xFFFF FFFF
CRC_CDT	0x04	0x0000 0000
CRC_CTRL	0x08	0x0000 0000
CRC_IDT	0x10	0xFFFF FFFF

10.2.1 Data register (CRC_DT)

Bit	Register	Reset value	Type	Description
				Data register bits
Bit 31: 0	DT	0xFFFF FFFF	rw	Used as input register when writing new data. Return CRC calculation results when it is read.

10.2.2 Common data register (CRC_CDT)

Bit	Register	Reset value	Type	Description
Bit 31: 8	Reserved	0x000000	resd	Kept at its default value.
				Reverse output data
Bit 7	REVOD	0x0	resd	Set and cleared by software. This bit is used to control whether to reverse output data.
				0: No effect
				1: Word reverse
	REVID		rw	Reverse input data
				Set and cleared by software. This bit is used to control how to reverse input data.
Bit 6: 5		0x0		00: No effect
				01: Byte reverse
				10: Half-word reverse
				11: Word reverse
Bit 4: 1	Reserved	0x0	resd	Kept at its default value.

				Reset CRC calculation unit
Bit 0	RST	0x0	rw	Set by software. Cleared by hardware. To reset CRC calculation unit, the data register is set as 0xFFFF FFFF.
				0: No effect
				1: Reset

10.2.3 Control register (CRC_CTRL)

Bit	Register	Reset value	Type	Description
Bit 31: 8	Reserved	0x000000	resd	Kept at its default value.
				Reverse output data
Bit 7	REVOD	0x0	resd	Set and cleared by software. This bit is used to control whether to reverse output data.
				0: No effect
				1: Word reverse
				Reverse input data
				Set and cleared by software. This bit is used to control how to reverse input data.
Bit 6: 5	REVID	0x0	rw	00: No effect
				01: Byte reverse
				10: Half-word reverse
				11: Word reverse
Bit 4: 1	Reserved	0x0	resd	Kept at its default value.
	RST	0x0	rw	Reset CRC calculation unit
Bit 0				Set by software. Cleared by hardware. To reset CRC calculation unit, the data register is set as 0xFFFF FFFF.
				0: No effect
				1: Reset

10.2.4 Initialization register (CRC_IDT)

Bit	Register	Reset value	Type	Description
Bit 31: 0	IDT	0xFFFF FFFF	rw	Initialization data register When CRC reset is triggered by the RST bit in the CRC_CTRL register, the value in the initialization register is written into the CRC_RT register as an initial value.
				is written into the CRC_DT register as an initial value.

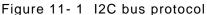
2021.12.01 Page 138 Ver 2.02

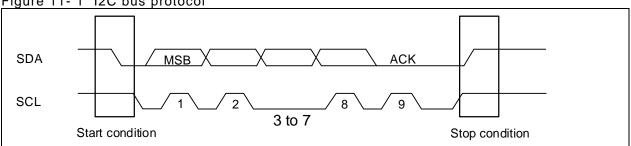
11 I²C interface

11.11²C introduction

I2C (inter-integrated circuit) bus interface manages the communication between the microcontroller and serial I²C bus. It supports master and slave modes, with up to 400 kbit/s of communication speed.

11.21²C main features

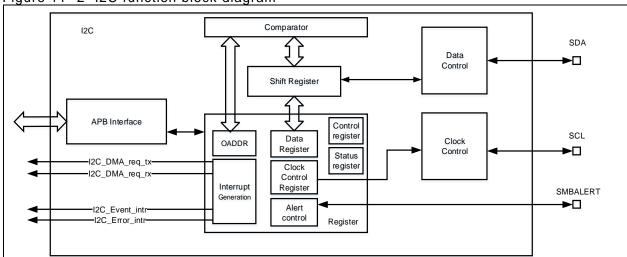

- I2C bus
 - Master and slave modes
 - Multimaster capability
 - Stand speed (100 kHz) and fast speed (400 kHz)
 - 7-bit and 10-bit address modes
 - Broadcast call mode
 - Status flag
 - Error flag
 - Clock stretching capability
 - Communication event interrupts
 - Error interrupts
- Support DMA transfer
- Support partial SMBus2.protocol
 - PEC generation and verification
 - SMBus reminder function
 - ARP(address resolution protocol)
 - Timeout mechanism
- PMBus


11.312C function overview

I²C bus consists of a data line (SDA) and clock line (SCL). It can achieve a maximum of 100 kHz speed in standard mode, while up to 400kHz in fast mode. A frame of data transmission begins with a Start condition and ends with a Stop condition. The bus is kept in busy state after receiving the Start condition, and becomes idle as long as it receives the Stop condition.

Start condition: SDA switches from high to low when SCL is set high. $\label{eq:scl}$

Stop condition: SDA switches from low to high when SCL is set high.



11.4I²C interface

Figure 11-2 shows the block diagram of I²C function

Figure 11- 2 I2C function block diagram

1. I²C clock

I²C is clocked by either APB1 or APB2. The I²C clock division is achieved by setting the CLKFREQ[7: 0] in the I2C_CTRL2 register. The minimum clock frequency varies from one mode to another, that is, at least 2 MHz in standard mode, but 4 MHz in fast mode.

2. Operation mode

I²C bus interface can operate both in master mode and slave mode. Switching from master mode to slave mode, vice versa, is supported as well. By default, the interface operates in slave mode. When GENSTART=1 is set (Start condition is activated), the I²C bus interface switches from slave mode to master mode, and returns to slave mode automatcially at the end of data transfer (Stop condition is triggered).

- Master transmitter
- Master receiver
- Slave transmitter
- Slave receiver

3. Communication process

- Master mode communication:
 - 1. Start condition generation
 - 2. Address transmission
 - 3. Data Tx or Rx
 - 4. Stop condition generation
 - 5. End of communication
- Slave mode communication:
 - 1. Wait until the address is matched.
 - Data Tx or Rx
 - 3. Wait for the generation of Stop condition
 - 4. End of communication

4. Address control

Both master and slave support 7-bit and 10-bit addressing modes.

Slave address mode:

- In 7-bit mode
 - ADDR2EN=0 stands for single address mode: only match OADDR1
 - DUALEN=1 stands for dual address mode: match OADDR1 and OADDR2

- In 10-bit mode
 - Only match OADDR1

Support special slave address:

- Broadcast call address (0b0000000x): This address is enabled when GCAEN=1.
- SMBus device default address (0b1100001x): This address is enabled for SMBus address resolution protocol in SMBus device mode.
- SMBus master default address (0b0001000x): This address is enabled for SMBus master notification protocol in SMBus master mode.
- SMBus alert address (0b0001100x): This address is enabled for SMBus alert response address protocol in SMBus master mode when SMBALERT = 1

Refer to SMBus2.0 protocol for more information.

Slave address matching procedure:

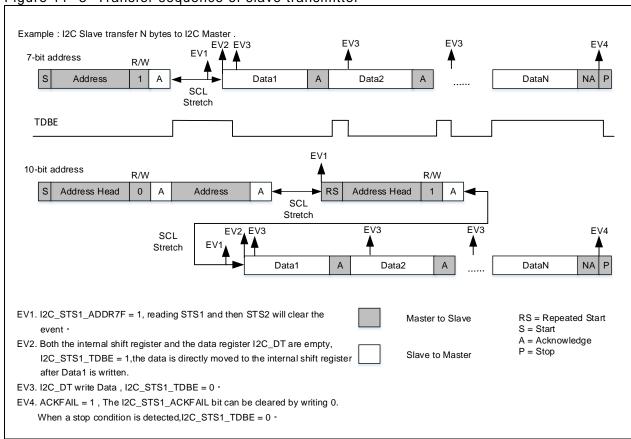
- Receive Start condition
- Address matching
- The slave sends ACK if address is matched.
- ADDR7F is set 1, with DIRF indicating the transmission direction
 - When DIRF=0, slave enters receiver mode, starting receiving data.
 - When DIRF=1, slave enters transmitter mode, starting transmitting data

5. Clock stretching capability

Clock stretching is enabled by setting the STRETCH bit in the I2C_CTRL1 register. Once enabled, when the slave cannot process data in a timely manner on certain conditions, it will pull down SCL line to low level to stop communication in order to prevent data lost.

- Transmitter mode:
 - Clock stretching enable: If no data is written to the I2C_DT register before the next byte transimission (the first SCL rising edge of the next data), the I²C interface will pull down SCL bus and wait until the data is written to the I2C_DT
 - Clock stretching disable: if no data is written to the I2C_DT register before the next byte transmission (the first SCL rising edge of next data), an underrun error will happen.
- Receiver mode
 - Clock stretching enable: When the shift register has received another byte before the data in the I2C_DT register is read, the I²C will hold the SCL bus low to wait for the software to read I2C_DT register
 - Clock stretching disable: The data in the I2C_DT register is not yet read when the shift register receives another byte. In this case, if another data is received, an overrun error occurs.

11.4.1 I²C slave communication flow


Initialization

Enable I²C peripheral clock, and configure the clock-related bits in the I2C_CTRL2 register for a correct timing, and then wait for I²C master to send a Start condition.

Transmitter

Figure 11-3 shows the transfer sequence of slave transmitter.

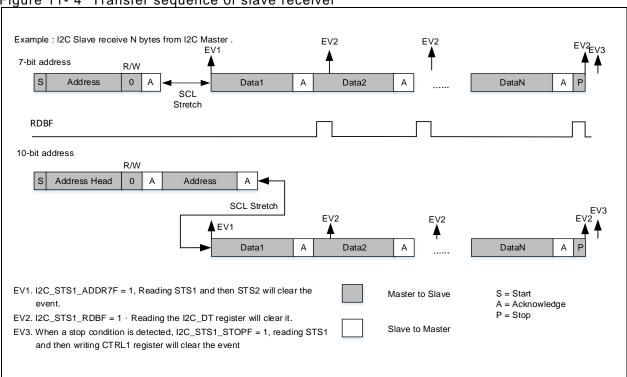
Figure 11-3 Transfer sequence of slave transmitter

7-bit address mode:

- 1. Wait for the master to send addresses
- 2. EV1: Address is matched (ADDR7F=1), and then the slave pulls the SCL bus low. Read STS1 and then STS2 by software will clear the ADDR7F bit. At this point, it enters transmission stage, in which both DT register and internal shift register are empty. The TDBE bit is set 1 by hardware.
- 3. EV2: When the data is written to the DT register, it is directly moved to the shift register and the SCL bus is released. The TDBE bit is still set 1 at this time.
- 4. EV3: At this point, the DT register is empty, but the shift register is not. Writing to the DT register will clear the TDBE bit.
- 5. EV4: After receiving the ACKFAIL event from the master, the ACKFIAL=1. Writing 0 to the ACKFIAL will clear the event.
- 6. End of communication.

10-bit address mode:

- 1. Wait for the master to send address
- 2. EV1: Address is matched (ADDR7F=1), and then the slave pulls the SCL bus low. Read STS1 and then STS2 by software will clear the ADDR7F bit. Wait for the master to re-send Start condition.
- 3. EV1: Address is matched (ADDR7F=1). Read STS1 and then STS2 will re-clear the ADDR7F bit. At this point, it enters transmission stage. Both DT register and shift register are empty. The TDBE is set 1 by hardware.



- EV2: When the data is written to DT register, it is directly moved to the shift register, and SCL bus is released. The TDBE is still set 1 at this time.
- EV3: At this point, the DT register is empty but the shift register is not. Writing to the DT register 5. will clear the TDBE bit.
- EV4: After receiving the ACKFAIL event from the master, ACKFIAL=1. Writing 0 to the ACKFIAL bit will clear the event.
- 7. End of communication.

Slave receiver

Figure 11-4 shows the transfer sequence of slave receiver.

Figure 11-4 Transfer sequence of slave receiver

7-bit address mode:

- 1. Wait for the master to send address.
- 2. EV1: Address is matched (ADDR7F=1), and the slave pulls the SCL bus low. Read STS1 and then STS2 by software will clear the ADDR7F bit. At this point, the SCL bus is released, and enters receive stage.
- The internal shift register receives the bus data and stores it to DT register.
- 4. EV2: After receiving the byte, the RDBF bit is set 1. Read the I2C_DT register will clear the RDBF bit.
- 5. EV3: After receiving the Stop condition from the master, STOPF=1. Read STS1 and then write to CTRL1 register will clear the event.
- 6. End of communication.

10-bit address mode:

- 1. Wait for the master to send address.
- 2. EV1: Address is matched (ADDR7F=1). The slave pulls the SCL bus low. Read STS1 and then STS2 by software will clear the ADDR7F bit. At this point, the SCL bus is released, and enters receive stage.
- 3. The internal shift register receives the bus data and stores it to DT register.
- 4. EV2: After receiving the byte, the RDBF bit is set 1. Read the I2C_DT register will clear the RDBF bit.

- 5. EV3: After receiving the Stop condition from the master, STOPF=1. Read STS1 and then write to CTRL1 register will clear the event.
- 6. End of communication.

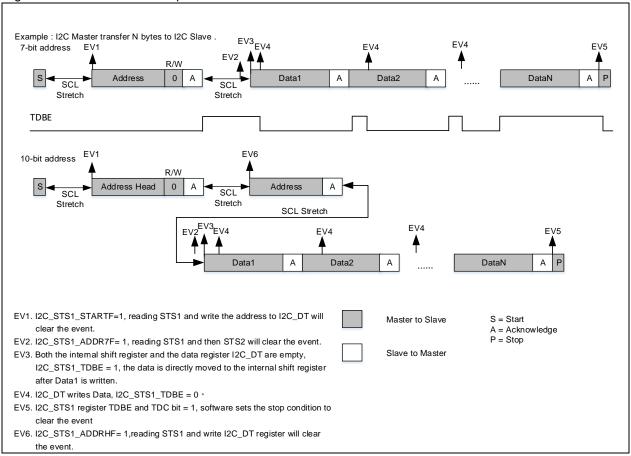
11.4.2 I²C master communication flow

Initialization

- Porgram input clock to generate correct timing through the CLKFREQ bit in the I2C_CTRL2 register;
- 2. Program I²C communication speed through the I2C_CLKCTRL bit in the clock control register;
- 3. Program the maximum rising time of bus through the I2C_TMRISE register;
- 4. Program the control register1 I2C CTRL1;
- 5. Enable peripherals, if the GENSTART bit is set, a Start condition is generated on the bus, and the device enters master mode.

Slave address transmission

Slave address is divided into 7-bit and 10-bit modes. Whether it is transmitter mode or receiver mode depends on the lowest address bit.


- 7-bit address mode:
 - Transmitter: When the lowest bit of the address sent is 0, the master enters transmitter mode. Receiver: When the lowest bit of the address sent is 1, the master enters receiver mode.
- 10-bit address mode:
 - Transmitter: First send address head 0b11110xx0 (where xx refers to address [9: 8]), and then slave address [7: 0], the master enters transmitter mode.

Receiver: First send slave address head 0b11110xx0 (where xx refers to address [9:8]) and then address [7: 0], followed by the address head 0b11110xx1 (where xx refers to address [9: 8]), the master enters receiver mode.

Master transmitter

Figure 11-5 Transfer sequence of master transmitter

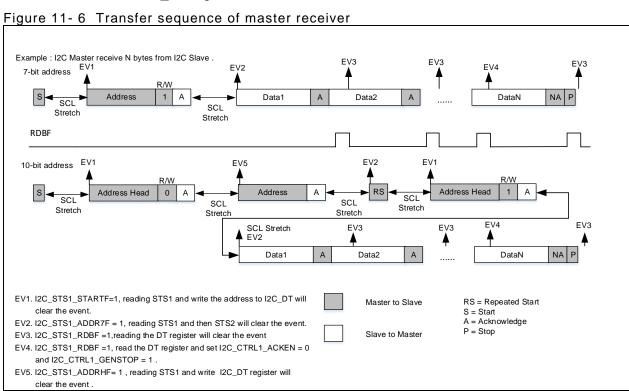
• 7-bit address mode:

- 1. Generate a Start condition (GENSTART=1)
- 2. EV1: Start condition is ready (STARTF=1). Read STS1 and write the address to DT register.
- 3. EV2: Address is matched successfully (ADDR7F=1). Read STS1 and then STS2 will clear the ADDR7F bit. In this case, the master enters transmit stage, and both DT register and internal shift register are empty. The TDBE bit is set 1 by hardware.
- 4. EV3: When the data is written to the DT register, it is directly moved to the shift register and the SCL bus is released. The TDBE bit is still set 1 at this time.
- 5. EV4: At this point, the DT register is empty but the shift register is full. Writing to the DT register will clear the TDBE bit.
- 6. The TDBE bit is set only after the second-to-last byte is sent.
- 7. EV5: TDC=1 indicates that the byte transmission is complete. The master sends Stop condition (STOPF=1). The TDBE bit and TDC bit is cleared by hardware.
- 8. End of communication.

• 10-bit address mode:

- 1. Generate Start condition (GENSTART=1)
- 2. EV1: Start condition is ready (STARTF=1). Read STS1 and write the address to DT register.
- 3. EV6: 10-bit address head sequence is sent. Read STS1 and write to DT register can clear the ADDRHF bit.
- 4. EV2: Address is matched successfully (ADDR7F=1). Read STS1 and then STS2 will clear the ADDR7F bit. In this case, the master enters transmit stage, and both DT register and internal shift register are empty. The TDBE bit is set 1 by hardware.
- 5. EV3: When the data is written to the DT register, it is directly moved to the shift register and the SCL bus is released. The TDBE bit is still set 1 at this time.
- 6. EV4: At this point, the DT register is empty but the shift register is full. Writing to the DT register

will clear the TDBE bit.


- 7. The TDBE bit is set only after the second-to-last byte is sent.
- 8. EV5: TDC=1 indicates that the byte transmission is complete. The master sends Stop condition (STOPF=1). The TDBE bit and TDC bit is cleared by hardware.
- 9. End of communication.

Master receiver

Data reception depends on I²C interrupt priority:

1. Very high priority

- When the second-to-last byte is being read, clear the ACKEN bit and set the GENSTOP bit in the I2C CTRL1 register to generate Stop condition.
- If only one byte is received, clear the ADDR7F flag and set the ACKEN and GENSTOP bit in the I2C CTRL1 register.
- After the byte is received, the I2C_STS1_RDBF bit is set 1 by hardware, and it is cleared after the software read the I2C_DT register.

7-bit address mode:

- 1. Generate a Start condition (GENSTART=1)
- 2. EV1: Start condition is ready (STARTF=1). Read STS1 and write the address to DT register.
- 3. EV2: Address is matched successfully (ADDR7F=1). Read STS1 and then STS2 will clear the ADDR7F bit. In this case, the master enters receive stage.
- 4. EV3: The RDBF bit is set 1 after the byte is received. It is cleared when the I2C_DT register is read.
- 5. EV4: The ACKEN bit is cleared and the GENSTOP is set as soon as the second-to-last byte is received.
- 6. EV3: The RDBF bit is set 1 after receiving the byte, and it is cleared when the I2C_DT register is read.
- 7. End of communication.

10-bit address mode:

- 1. Generate Start condition (GENSTART=1)
- 2. EV1: Start condition is ready (STARTF=1). Read STS1 and write the address to DT register.

- 3. EV5: 10-bit address head sequence is sent. Read STS1 and write to DT register can clear the ADDRHF bit.
- 4. EV2: Address is matched successfully (ADDR7F=1). Read STS1 and then STS2 will clear the ADDR7F bit, and the master re-send Start condition (GENSTART=1).
- EV1: Start condition is ready (STARTF=1). Read STS1 and write the address to DT register. 5.
- EV2: Address is matched successfully (ADDR7F=1). Read STS1 and then STS2 will clear the 6. ADDR7F bit. The master enters receive stage at this time.
- 7. EV3: The RDBF bit is set 1 after receiving the byte, and it is cleared when the I2C DT register is read.
- EV4: The ACKEN bit is cleared and the GENSTOP is set as soon as the second-to-last byte is 8. received.
- 9. EV3: The RDBF bit is set 1 after receiving the byte, and it is cleared when the I2C_DT register is read.
- 10. End of communication.
- When I2C interrupt priority is not very high but the number of bytes to receive is greatter
- The third-to-last byte (N-2) is not read when being received. It is read only after the ACKEN bit in the I2C CTRL1 register is cleared when the second-to-last byte (N-1) is received. Then the second-to-last byte (N-1) is read after the GENSTOP bit in the I2C CTRL1 register is set. Afterwards, the bus starts to receive the last one byte.

Figure 11-7 Transfer sequence of master receiver when N>2 Example : I2C Master rece 7-bit address EV1 Data1 DataN-2 DataN-1 NA P s scL Data2 DataN SCL SCI Stretch RDBF 10-bit address EV1 S SCL SCL SCL Stretch SCL Stretch EV2 Data1 DataN-2 DataN-1 SCL Stretch EV1. I2C_STS1_STARTF=1, reading STS1 and write the address to I2C_DT will Master to Slave RS = Repeated Start clear the event. S = Start EV2. I2C_STS1_ADDR7F = 1, reading STS1 and then STS2 will clear the ev A = Acknowledge EV3. I2C_STS1_RDBF = 1 · read the I2C_DT register to clear the event. Slave to Master EV4. I2C STS1_TDC = 1 · The I2C DT register data is DataN-2, the internal shift register data is DataN-1, set I2C_CTRL1_ACKEN = 0, after the software reads the data DataN-2, set I2C_CTRL1_GENSTOP = 1, and then read the data DataN-1. EV5. I2C_STS1_ADDRHF= 1 ,reading STS1 and write I2C_DT register will clear the event

7-bit address mode:

- 1. Generate a Start condition (GENSTART=1)
- 2. EV1: Start condition is ready (STARTF=1). Read STS1 and write the address to DT register.
- 3. EV2: Address is matched successfully (ADDR7F=1). Read STS1 and then STS2 will clear the ADDR7F bit, and the master enters receive stage.
- 4. EV3: The RDBF bit is set 1 after receiving the byte, and it is cleared when the I2C_DT register is read.
- EV4: TDC=1, the contens in the I2C DT is N-2, and that of the shift register is N-1. The 5. ACKEN is set 0 by software and the data N-2 is read, afterwards, the GENSTOP=1, and data N-1 is read.
- 6. EV3: The RDBF bit is set 1 after receiving the byte, and it is cleared when the I2C_DT register is read.

171517

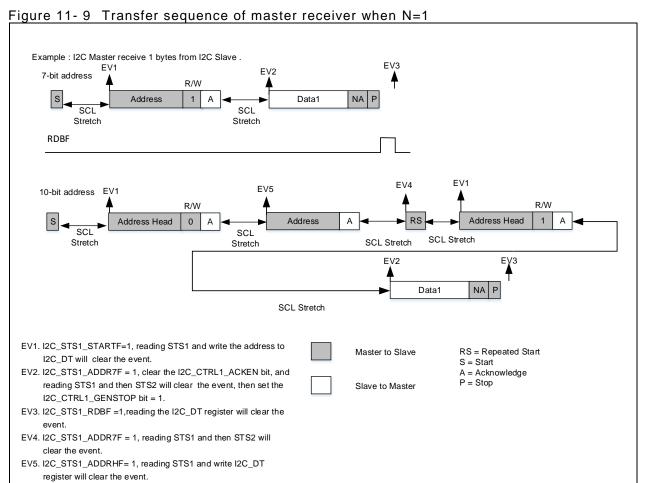
AT32F403A/407 Series Reference Manual

End of communication.

• 10-bit address mode:

- 1. Generate Start condition (GENSTART=1)
- 2. EV1: Start condition is ready (STARTF=1). Read STS1 and write the address to DT register.
- 3. EV5: 10-bit address head sequence is sent. Read STS1 and write to DT register can clear the ADDRHF bit.
- 4. EV2: Address is matched successfully (ADDR7F=1). Read STS1 and then STS2 will clear the ADDR7F bit, and the master re-send Start condition.
- EV1: Start condition is ready (STARTF=1). Read STS1 and write the address to the DT register.
- 6. EV2: Address is matched successfully (ADDR7F=1). Read STS1 and then STS2 will clear the ADDR7F bit, and the master enters receive stage.
- 7. EV3: The RDBF bit is set 1 after receiving the byte, and it is cleared when the I2C_DT register is read.
- 8. EV4: TDC=1, the contens in the I2C_DT is N-2, and that of the shift register is N-1. The ACKEN is set 0 by software and the data N-2 is read, afterwards, the GENSTOP=1, and data N-1 is read.
- EV3: The RDBF bit is set 1 after receiving the byte, and it is cleared when the I2C_DT register is read.
- 10. End of communication.
- 3. When I2C interrupt priority is not very high but the number of bytes to receive is equal to 2
- Set the MACKCTRL bit in the I2C_CTRL1 register before data reception. When the address is matched, clear ACKEN bit and then the ADDR7F bit. When the TDC bit is set 1, set the GENSTOP bit in the I2C_CTRL1 register, and then read the DT register.

Figure 11-8 Transfer sequence of master receiver when N=2 Example: I2C Master receive 1 bytes from I2C Slave EV3 7-bit address Α Data1 NA Address SCL SCL Stretch Stretch RDBF EV1 EV4 EV5 10-bit address EV1 R/W Address Address Head Α Address Head 0 Α SCL SCL SCL Stretch Stretch SCL Stretch Stretch EV2 NA Data1 SCL Stretch EV1. I2C_STS1_STARTF=1, reading STS1 and write the address to RS = Repeated Start Master to Slave I2C DT will clear the event S = Start EV2. I2C_STS1_ADDR7F = 1, clear the I2C_CTRL1_ACKEN bit, and A = Acknowledge P = Stop reading STS1 and then STS2 will clear the event, then set the Slave to Master I2C CTRL1 GENSTOP bit = 1. EV3. I2C_STS1_RDBF =1,reading the I2C_DT register will clear the event. EV4. I2C_STS1_ADDR7F = 1, reading STS1 and then STS2 will EV5. I2C_STS1_ADDRHF= 1, reading STS1 and write I2C_DT register will clear the event.


• 7-bit address mode:

- 1. Set MACKCTRL=1 in the I2C_CTRL1 register
- 2. Generate Start condition (GENSTART=1)
- 3. EV1: Start condition is ready (STARTF=1). Read STS1 and write the address to DT register.
- 4. EV2: Address is matched successfully (ADDR7F=1). Clear the ACKEN bit and read STS1 before reading STS2 and clearing ADDR7F bit, the master enters receive state at this time.
- 5. EV2: TDC=1, set GENSTOP=1, and then read the I2C_DT register twice.
- 6. End of communication.

• 10-bit address mode:

- 1. Set MACKCTRL=1 in the I2C_CTRL1 register
- 2. Generate Start condition (GENSTART=1)
- 3. EV1: Start condition is ready (STARTF=1). Read STS1 and write the address to DT register.
- 4. EV4: 10-bit address head is sent. Read STS1 and write to DT register can clear the ADDRHF bit.
- 5. EV2: Address is matched successfully (ADDR7F=1). Read STS1 and then STS2 will clear the ADDR7F bit, and the master re-send Start condition.
- 6. EV1: Start condition is ready (STARTF=1). Read STS1 and write the address to the DT register.
- 7. EV2: Address is matched successfully (ADDR7F=1). Clear the ACKEN bit and read STS1 before reading STS2 and clearing ADDR7F bit, the master enters receive state at this time.
- 8. EV3: TDC=1, set GENSTOP=1, and then read the I2C_DT register twice.
- 9. End of communication.
- 4. When I2C interrupt priority is not very high but the number of bytes to receive is equal to 1
- After the address is matched, clear the ACKEN bit and then ADDR7F bit, then set the GENSTOP bit in the I2C CTRL1 register. Wait until the RDBF bit is set 1 before reading the DT register.

7-bit address mode:

- 1. Generate a Start condition (GENSTART=1)
- 2. EV1: Start condition is ready (STARTF=1). Read STS1 and write the address to DT register.
- 3. EV2: Address is matched successfully (ADDR7F=1). Clear the ACKEN bit, read STS1 and then STS2 will clear the ADDR7F bit. Afterwards, set GENSTOP=1, the master enters receive stage at this time.
- 4. EV3: RDBF=1. It is cleared when the I2C_DT register is read.
- 5. End of communication.

10-bit address mode:

- 1. Generate a Start condition (GENSTART=1)
- 2. EV1: Start condition is ready (STARTF=1). Read STS1 and write the address to DT register.
- EV5: 10-bit address head is sent. Read STS1 and write to DT register can clear the ADDRHF bit.
- 4. EV4: Address is matched successfully (ADDR7F=1). Read STS1 and STS2 will clear the ADDR7F bit, the master re-sends Start condition (GENSTART=1).
- 5. EV1: Start condition is ready (STARTF=1). Read STS1 and write the address to the DT register.
- EV2: Address is matched successfully (ADDR7F=1). Clear the ACKEN bit, read STS1 and then STS2 will clear the ADDR7F bit. Afterwards, set GENSTOP=1, the master enters receive stage at this time.
- 7. EV3: RDBF=1. It is cleared when the I2C_DT register is read.
- 8. End of communication.

11.4.3 Utilize DMA for data transfer

I²C data transfer can be done using DMA controller. An interrupt is generated by enabling the transfer complete interrupt bit. The DATAIEN bit in the I2C_CTRL2 register must be set 0 when using DMA for data transfer. The following sequence is for data transfer with DMA.

Transmission using DMA

- 1. Set the peripheral address (DMA_CxPADDR= I2C_DT address)
- 2. Set the memory address (DMA_CxMADDR=data memory address)
- The transmission direction is set from memory to peripheral (DTD=1 in the DMA_CHCTRL register)
- 4. Configure the total number of bytes to be transferred in the DMA_CxDTCNT register
- 5. Configure other parameters such as priority, memory data width, peripheral data width, interrupts, etc in the DMA_CHCTRL register
- 6. Enable the DMA channel by setting CHEN=1 in the DMA CxCTRL register
- 7. Enable I²C DMA request by setting DMAEN=1 in the I2C_CTRL2 register. Once the TDBE bit in the I2C_STS1 register is set, the data is loaded from the programmed memory to the I2C_DT register through DMA
- 8. When the number of data transfers, programmed in the DMA controller, is reached (DMA_CxDTCNT=0), the data transfer is complete (An interrupt is generated if enabled).
- 9. Master transmitter: Once the TDC flag is set, the STOP condition is generated, indicating that transfer is complete.

Slave transmitter: Once the ACKFAIL flag is set, clear the ACKFAIL flag, transfer is complete.

Reception using DMA

- 1. Set the peripheral address (DMA_CxPADDR = I2C_DT address)
- Set the memory address (DMA_CxMADDR = memory address)
- The transmission direction is set from peripheral to memory (DTD=0 in the DMA_CHCTRL register)
- 4. Configure the total number of bytes to be transferred in the DMA_CxDTCNT register
- 5. Configure other parameters such as priority, memory data width, peripheral data width, interrupts, etc in the DMA_CHCTRL register
- 6. Enable the DMA channel by setting CHEN=1 in the DMA CxCTRL register
- 7. Enable I²C DMA request by setting DMAEN=1 in the I2C_CTRL2 register. Once the RDBE bit in the I2C_STS1 register is set, the data is loaded from the I2C_DT register to the programmed memory through DMA
- 8. When the number of data transfers, programmed in the DMA controller, is reached (DMA_CxDTCNT=0), the data transfer is complete (An interrupt is generated if enabled).
- 9. Master receiver: Clear the ACKFAIL flag, the STOP condition is generated, indicating that the transfer is complete (when the number of bytes to be transferred is greater >=2 and DMAEND=1, the NACK signal is generated automatically after transfer complete (DMA_CxDTCNT=0))

Slave receiver: Once the STOPF flag is set, clear the STOPF flag, and the transfer is complete.

11.4.4 SMBus

The System Management Bus (SMBus) is a two-wire interface through which various devices can communicate with each other. It is based on I²C. With SMBus, the device can provide manufacturer information, tell the system its model/part number, report different types of errors and accept control parameters and so on. For more information, refer to SMBus 2.0 protocol.

Differences between SMBus and I²C

1. SMBus requires a minimum speed of 10 kHz for the purpose of management and monitor. It is quite easy to know whether the bus is in Idle state or not as long as a parameter is input while running on a certain transmission speed, without the need of detecting the STOP signals one after

another, or even keeping STOP and other parameter monitor. There is no limit for I²C.

- 2. SMBus transmission speed ranges from 10 kHz to 100 kHz. In contrast,I2C has no minimum requirement, and its maximum speed varies from one mode to another, namely, 100 kHz in standard mode and 400 kHz in fast mode.
- 3. After reset, SMBus needs 35 ms of timeout, but there is no limit for I2C in this regard.

SMBus applications

- 1. The I²C interface is set in SMBus mode by setting PERMODE=1 in the I2C CTRL1 register.
- 2. Select SMBus mode:

SMBMODE=1: SMBus host SMBMODE=0: SMBus device

3. Other configurations are the same as those of I²C.

SMBus protocols are implemented by the user software, while I^2C interface only provide the address identification of these protocols

SMBus address resolution protocol (ARP)

SMBus address conflicts can be resolved by dynamically assigning a new uique address to each device. Refer to SMBus 2.0 protocol for more information about ARP.

Setting the ARPEN bit can enable the I^2C interface to recognize the default device address (0b1100001x). However, unique device identifier (UDID) and the detailed protocol implementation should be handled by software.

SMBus host notify protocol

The slave device can send data to the master device through SMBus host notify protocol. For example, the slave can notify the host to implement ARP with this protocol. Refer to SMBus 2.0 protocol for details on SMBus host notify protocol.

When the ARP mode is enabled (ARPEN=1) in host mode (SMBMODE=1), the I²C interface is enabled to recognize the 0b0001000x (default host address)

SMBus Alert

SMBus Alert is an optional signal that connects the ALERT pin between the host and the salve. With this signal, the slave notifies the host to access the slave. SMBALERT is a wired-AND signal. For more information about SMBus Alert, refer to SMBus 2.0 protocol.

The detailed sequences are as follows:

SMBus host:

- 1. Enable SMBus Alert mode by setting SMBALERT=1
- 2. Enable ALERT interrupt if necessary
- 3. When an alert event occurs on the ALERT pin (ALERT pin changes from high to low)
- 4. The host will generate ALERT interrupt if enabled
- 5. The host then processes the interrupt and accesses to all devices through ARA (Alert Response Address 0001100x) so as to get the slave addresses. Only the devices with pulled-down SMBALERT can acknowledge ARA.
- 6. The host then continues to operate based on the slave addresses available.

SMBus slave:

- 1. When an alert event occurs and the ALERT pin changes from high to low (SMBALERT=1), the slave responses to ARA (Alert Response Address) address (0001100x)
- 2. Enable ALERT interrupt if necessary (an interrupt is generated when receiving ARA address)
- 3. Wait until the host gets the slave addresses through ARA
- 4. Report its own address, but it continues to wait if the arbitration is lost.
- 5. Address is reported properly, and the ALERT pin is released (SMBALERT=0).

Packet error checking (PEC)

Packet erro checking (PEC) is used to guarantee the correctness and integrity of data transfer. This is done by using CRC-8 polynominal:

$$C(x) = x^8 + x^2 + x + 1$$

PEC calculation is enabled when PECEN=1 to check address and data. It becomes invalid when the arbitration is lost.

PEC transmission:

- Common mode: Set PECTRA=1 after the last TDBE event so that PEC is transferred after the last transmitted byte.
- DMA mode: The PEC is transferred automatically after the last transmitted byte. For example, if the number of data to be transferred is 8, then DMA_TCNTx=8.

PEC reception:

- Common mode: Set the PECTRA bit after the last RDBF event. The PECTRA must be set before the ACK pulse of the current byte is received.
- DMA mode: When receiving, it will automatically consider the last byte as PECVAL and check it. For example, if the number of data to be transferred is 8, then DMA_TCNTx=9.

In reception mode, the NACK will be generated when PEC fails.

11.4.5 I²C interrupt requests

The following table lists all the I²C interrupt requests.

Interrupt event	Event flag	Enable control bit
Start condition sent (Host)	STARTF	
Address sent (host) or address matched (slave)	ADDR7F	
10-bit address head sent (host)	ADDRHF	EVTIEN
Data transfer complete	TDC	
Stop condition received (slave)	STOPF	
Transmit data buffer empty	TDBE	EVTIEN and
Receive data buffer full	RDBF	DATAIEN
SMBus alert	ALERTF	
Timeout error	TMOUT	
PEC error	PECERR	
Overload/underload	OUF	ERRIEN
Acknowledge failure	ACKFAIL	
Arbitration lost	ARLOST	
Bus error	BUSERR	

11.4.6 I²C debug mode

When the microcontroller enters debug mode (CortexTM-M4F halted), the SMBUS timeout either continues to work or stops, depending on the I2Cx_SMBUS_TIMEOUT configuration bit in the DEBUG module.

11.51²C registers

These peripheral registers must be accessed by half-word (16 bits) or word (32 bits).

Table 11- 1 I²C register map and reset value

Register	Offset	Reset value
I2C_CTRL1	0x00	0x0000
I2C_CTRL2	0x04	0x0000
I2C_OADDR1	0x08	0x0000
I2C_OADDR2	0x0C	0x0000
I2C_DT	0x10	0x0000
I2C_STS1	0x14	0x0000
I2C_STS2	0x18	0x0000
I2C_CLKCTRL	0x1C	0x0000
I2C_TMRISE	0x20	0x0002

11.5.1 Control register1 (I2C_CTRL1)

Bit	Register	Reset value	Type	Description
				I ² C peripheral reset
				0: I ² C peripheral is not at reset state.
Bit 15	RESET	0x0	rw	1: I ² C peripheral is at reset state.
				Note: This bit can be used only when the BUSYF bit is "1", and no Stop condition is detected on the bus.
Bit 14	Reserved	0x0	resd	Kept at its default value.
				SMBus alert pin set
Bit 13	SMBALERT	0x0	rw	This bit is set or cleared by software. It is cleared by hardware when I2CEN=0.
Dit 10	OWD, WELLY	O/C		0: SMBus alert pin high.
				1: SMBus alert pin low.
				Request PEC transfer enable
Bit 12	PECTEN	0x0	rw	This bit is set or cleared by software. It is cleared by hardware after PECTEN is sent, or under Start/Stop condition.
				0: No PEC transfer
				1: PEC transfer
				Master receive mode acknowledge control
				0: ACKEN bit controls ACK of the current byte being transferred
Bit 11	MACKCTRL	0x0	rw	1: ACKEN bit controls ACK of the next byte to be transferred.
				This bit is used only when the number of bytes to receive is equal to 2 so as to ensure that the host responds to ACK in time.
				Acknowledge enable
				This bit is set or cleared by software.
Bit 10	ACKEN	0x0	rw	0: Disabled (no acknowldge sent)
				1: Enabled (acknowledge sent)
				Generate stop condition
Bit 9	GENSTOP	0x0	rw	This bit is set or cleared by software. It is cleared when a Stop condition is detected. It is set by hardware when a timeout error is detected. 0: No Stop condition is generated.
				1: Stop condition is generate.

				The salve releases the SCL and SDA lines when this bit is set in slave mode.
				Generate start condition
Bit 8	GENSTART	0x0	rw	This bit is set or cleared by software. It is cleared when a Start condition is sent.
				0: No Start condition is generated.
				1: Start condition is generated.
				Clock stretching mode
Bit 7	STRETCH	0x0	rw	0: Enabled
				1: Disabled
				General call address enable
Bit 6	GCAEN	0x0	rw	0: Enabled
				1: Disabled
				PEC calculation enable
Bit 5	PECEN	0x0	rw	0: Disabled
				1: Enabled
				SMBus address resolution protocol enable
		0x0		0: Disabled
Bit 4	ARPEN			1: Enabled
DIL 4	ARFEN		rw	SMBus host: response to host address 0001000x
				SMBus slave: response to default device address 0001100x
				SMBus device mode
Bit 3	SMBMODE	0x0	rw	0: SMBus slave
				1: SMBus host
Bit 2	Reserved	0x0	resd	Forced to be 0 by hardware.
				I ² C peripheral mode
Bit 1	PERMODE	0x0	rw	0: I ² C mode
				1: SMBus mode
				I ² C peripheral enable
				0: Disabled
		0x0		1: Enabled
Bit 0	I2CEN		rw	All bits are cleared as $I2CEN = 0$ at the end of the
				communication.
				In master mode, this bit must not be cleared before the end of the communication.

Note: When the GENSTART, GENSTP or PECTEN bit is set, the I2C_CTRL1 cannot be written by software until the corresponding bit has been cleared by hardware,otherwise, a second GENSTART, GENSTP or PECTEN request may be set.

11.5.2 Control register2 (I2C_CTRL2)

Bit	Register	Reset value	Type	Description
Bit 15: 13	Reserved	0x0	resd	Forced to be 0 by hardware.
				End of DMA transfer
Bit 12	DMAEND	0x0	rw	0: The next DMA transfer is no the last one.
				1: The next DMA transfer is the last one.
				DMA transfer enable
Bit 11	DMAEN	0x0	rw	0: Disabled
				1: Enabled
				Data transfer interrupt enable
D:: 40	D.4.T.4.E.4.			An interrupt is generated when TDBE =1 or RDBF=1.
Bit 10	DATAIEN	0x0	rw	0: Disabled
				1: Enabled
Bit 9	EVTIEN	0x0	rw	Event interrupt enable

tions:
tions:
tions:
tions:
o generate 2 MHz and
to

11.5.3 Own address register1 (I2C_OADDR1)

Bit	Register	Reset value	Type	Description
				Address mode
Bit 15	ADDR1MODE	0x0	rw	0: 7-bit address
				1: 10-bit address
Bit 14: 10	Reserved	0x00	resd	Kept at its default value.
Bit 9: 0				Own address1
	ADDR1	0x000	rw	In 7-bit address mode, bit 0 and bit [9: 8] don't care.

11.5.4 Own address register2 (I2C_OADDR2)

Bit	Register	Reset value	Type	Description
Bit 15: 8	Reserved	0x00	resd	Kept at its default value.
Bit 7: 1	40000	0x00	rw	Own address 2
	ADDR2			7-bit address
				Own address 2 enable
D:4 0	1000000	00		0: In 7-bit address mode, only OADDR1 is recognized.
Bit 0	ADDR2EN	0x0	rw	1: In 7-bit address mode, both OADDR1 and OADDR2 are recognized.

11.5.5 Data register (I2C_DT)

Bit	Register	Reset value	Type	Description
Bit 15: 8	Reserved	0x00	resd	Kept at its default value
Bit 7: 0	DT[7: 0]	0x00	rw	This field is used to store data received or to be

transferred.

Transmitter mode: Data transfer starts automatically when a byte is written to the DT register. Once the transfer starts (TDE=1), I²C will keep a continuous data transfer flow if the next data to be transferred is written to the DT register in a timely manner.

Receiver mode: Btyes received are copied into the DT register (RDNE=1). A continuous data transfer flow can be maintained if the DT register is read before the next word is received (RDNE=1).

Note: If an ARLOST event occurs on ACK pulse, the received byte is not copied into the data register, so it cannot be read.

11.5.6 Status register1 (I2C_STS1)

Bit	Register	Reset value	Type	Description
				SMBus alert flag
				In SMBus host mode:
				0: No SMBus alert
				1: SMBus alert event is received.
				In SMBus slave mode:
Bit 15	ALERTF	0x0	rw0c	It indicates the receiving status of the default device
				address (0001100x)
				0: Default device address is not received.
				1: Default device address is received.
				This bit is cleared by software, or by hardware when I2CEN=0.
				SMBus timeout flag
				0: No timeout error.
Dit 1.1	TMOLIT	0x0	m4/00	1: Timeout
Bit 14	TMOUT		rw0c	This bit is cleared by software, or by hardware when I2CEN=0.
				Note: This function is valid only in SMBUS mode.
Bit 13	Reserved	0x0	resd	Kept at its default value.
		0x0		PEC receive error flag
D:: 40				0: No PEC error
Bit 12	PECERR		rw0c	1: PEC error occurs.
				This bit is cleared by software.
				Overload / underload flag
				In transmission mode:
				0: Normal
				1: Underload
Bit 11	OUF	0x0	rw0c	In reception mode:
				0: Normal
				1: Overload
				This bit is cleared by software, or by hardware when I2CEN=0.
				Acknowledge failure flag
				0: No acknowledge failure
Bit 10	ACKEAU	0.40	O	1: Acknowledge failure occurs.
	ACKFAIL	0x0	rw0c	Set by hardware when no acknowledge is returned.
				This bit is cleared by software, or by hardware when I2CEN=0.
D.: 6	4 DI 007	0.0	_	Arbitration lost flag
Bit 9	ARLOST	0x0	rw0c	0: No arbitration lost is detected.

				1: Arbitration lost is detected.
				This bit is cleared by software, or by hardware when I2CEN=0.
				On ARLOST even, the I^2C interface switches to slave mode automatically.
				Bus error flag
				0: No Bus error occurs.
				1: Bus error occurs.
Bit 8	BUSERR	0x0	rw0c	Set by hardware when the interface detects a misplaced Start or Stop condition.
				This bit is cleared by software, or by hardware when I2CEN=0.
				Transmit data buffer empty flag
				0: The data is being transferred from the DT register to the shift register (the data is still loaded with the data at this point.)
Bit 7	TDBE	0x0	ro	1: The data has been moved from the DT register to the shift register. The data register is empty now.
				This flag is set when the DT register is empty, and cleared when writing to the DT register.
				Note: The TDBE bit is not cleared by writing the first data to be transmitted, or by writing data when the TDC is set, since the data register is still empty at this time.
				Receive data buffer full flag
				0: Data register is empty.
Bit 6	RDBF	0x0	ro	1: Data register is full (data received)
				This flag is cleared when the DT register is read.
				The RDBF bit is not set at ARLOST event.
Bit 5	Reserved	0x0	resd	Kept at its default value.
				Stop condition generation complete flag
				0: No Stop condition is detected.
				1: Stop condition is detected.
Bit 4	STOPF	0x0	ro	This bit is set by hardware when a Stop condition is detected on the bus by the slave if ACKEN=1.
				It is cleared by reading STS1 register followed by writing to the CTRL1 register.
				Master 9~8 bit address head match flag
				0: Master 9~8 bit address head mismatch
				1: Master 9~8 bit address head match
Bit 3	ADDRHF	0x0	ro	Set by hardware when the first byte is sent by master in 10-bit address mode.
				Cleared by a write to the CTRL1 register after the STS1 register is read by software, or by hardware when PEN=0. Note: The ADDR10 bit is not set after a NACK reception.
				Data transfer complete flag
				0: Data transfer is not completed yet (the shift register still holds data)
				1: Data transfer is completed (shift register is empty)
Bit 2	TDC	0x0	ro	This bit is cleared automatically by read or write access to the DT reginser, or when a Start or Stop condition is received.
				When STRETCH=0
				In reception mode, when a new byte (including ACK pulse) is received and the data register is not read yet (RDBF=1)
				In transmission mode, when a new byte is sent and the data register is not written yet (TDBE=1)

				The TDC is set under both conditions.
				0~7 bit address match flag
				0: Address is not sent in host ode or received in slave mode
Bit 1 ADDR7F	0x0	ro	1: Address is sent in host mode or address is received in slave mode.	
				Cleared by read access to STS2 register after the software reads STS1 register.
				Note: the ADDR7F bit is not set after a NACK reception.
_				Start condition generation complete flag
				0: No Start condition is generated.
Bit 0	STARTF	0x0	ro	1: Start condition is generated.
				Cleared by write access to the DT register after the software reads the STS1 register.

11.5.7 Status register2 (I2C_STS2)

Bit	Register	Reset value	Type	Description
	-			PEC value
Bit 15: 8	PECVAL	0x00	ro	Cleared when PECEN is reset.
				Received address 2 flag
				0: Received address matches the contents of OADDR1
Bit 7	ADDR2F	0x0	ro	1: Received address matches the contents of OADDR2
				Cleared when a Stop/Start condition is received, or by hardware when I2CEN=0.
				SMBus host address reception flag
				0: SMBus host address is not received.
Bit 6	HOSTADDRF	0x0	ro	1: SMBus host address is received.
				Cleared when a Stop/Start condition is received, or by hardware when I2CEN=0.
				SMBus device address reception flag
				0: SMBus device address is not received.
Bit 5	DEVADDRF	0x0	ro	1: SMBus device address is received.
				Cleared when a Stop/Start condition is received, or by hardware when I2CEN=0.
				General call address reception flag
				0: General call address is not received.
Bit 4	GCADDRF	0x0	ro	1: General call address is received.
				Cleared when a Stop/Start condition is received, or by hardware when I2CEN=0.
Bit 3	Reserved	0x0	resd	Keep at its default value.
				Transmission direction flag
Bit 2	DIRF	0x0	ro	0: Data reception
DIL 2	DIN			1: Data transmission Cleared by hardware when a Stop condition is received.
				Bus busy flag transmission mode
				0: Bus idle
Bit 1	BUSYF	0x0	ro	1: Bus busy
				Set by hardware on detection of SDA/SCL low, and cleared by hardware on detection of a Stop condition.
				Transmission mode
				0: Slave mode
Bit 0	TRMODE	0x0	ro	1: Master mode
DIL U	TRMODE	UXU	ro	Set by hardware when the GENSTART is set and a Start condition is sent. Cleared by hardware when a Stop condition is detected.

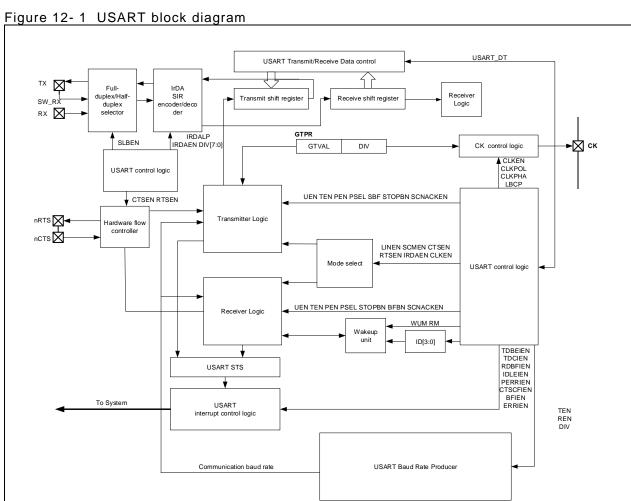
2021.12.01 Page 159 Ver 2.02

11.5.8 Clock control register (I2C_ CLKCTRL)

Bit	Register	Reset value	Type	Description
				Speed mode selection
				0: Standard mode (up to 100 kHz)
Bit 15	SPEEDMODE	0x0	rw	1: Fast mode (up to 400 kHz)
				In fast mode, an accurate 400kHz clock is generated when the I^2C clock frequency is an integer multiple of 10MHz.
				Fast mode duty cycle
Bit 14	DUTYMODE	0x0	rw	0: The ratio of High to low is 1:2.
				1: The ratio of low to high is 9:16.
Bit 13: 12	Reserved	0x0	resd	Kept at its default value.
				I ² C bus speed config
				In standard mode:
				High level= SPEED x T _{12C_CLK}
				Low level= SPEED x T _{I2C_CLK}
				In fast mode:
				DUTYMODE = 0:
				High level= SPEED x T _{12C_CLK} x 1
Bit 11: 0	SPEED	0x000	rw	Low level= SPEED x T _{I2C_CLK} x 2
				DUTYMODE = 1:
				High level= SPEED x T _{I2C_CLK} x 9
				Low level= SPEED x T _{I2C_CLK} x 16
				The minimum value allowed in standard mode is 4. In fast mode, the minimum value allowed is 1.
				The CLKCTRL register can be configured only when the I2C is disabled (I2CEN=0).

Note: The CLKCTRL register can be configured only when the I2C is disabled (I2CEN=0).

2021.12.01 Page 160 Ver 2.02



12 Universal synchronous/asynchronous receiver/transmitter (USART)

12.1 USART introduction

The universal synchronous/asynchronous receiver/transmitter (USART) serves an interface for communication by means of various configuration and peripherals with different data formats. It supports asynchronous full-duplex and half-duplex as well as synchronous transfer. With a programmable baud rate generator, USART offers up to 7.5MBits/s of baud rate by setting the system frequency and frequency divider, which is also convenient for users to configure the required communication frequency. In addition to standard NRZ asynchronous and synchronous receiver/transmitter communication protocols, USART also supports widely-used serial communication protocols such as LIN (Local Interconnection Network), IrDA (Infrared Data Association) SIRENDEC specification, Asynchronous SmartCard protocol defined in ISO7816-3 standard, and CTS/RTS (Clear To Send/Request To Send) hardware flow operation.

It also allows mutli-processor communication, and supports silent mode waken up by idle frames or ID matching to build up a USART network. Meanwhile, high-speed communication is possible by using DMA.

USART main features:

- Programmable full-duplex or half-duplex communication
 - Full-duplex, asynchronous communication
 - Half-duplex, single communication
- Programmable communication modes

- NRZ standard format (Mark/Space)
- LIN (Local Interconnection Network): LIN master with break generation capability and LIN slave with break detection capability
- IrDA SIR: Support 3/16 bit duration in normal mode, and configurable duration in infrared low-power mode
- —Asynchronous SmartCard protocol defined in ISO7816-3 standard: Support 0.5 or 1.5 stop bits in Smartcard mode
- RS-232 CTS/RTS (Clear To Send/Request To Send) hardware flow operation
- Multi-processor communication with silent mode (waken up by configuraing ID match and bus idle frame)
- Synchronous mode
- Programmable baud rate generator
 - Shared by transmission and reception, up to 7.5 MBits/s
- Programmable frame format
 - Programmable data word length (8 bits or 9 bits)
 - Programmable stop bits-support 1 or 2 stop bits
 - Programmable parity control: transmitter with parity bit transmission capability, and receiver with received data parity check capability
- Programmable DMA multi-processor communication
- Programmable separate enable bits for transmitter and receiver
- Programmable output CLK phase, polarity and frequency
- Detection flags
 - Receive buffer full
 - Transmit buffer empty
 - Transfer complete flag
- Four error detection flags
 - Overrun error
 - Noise error
 - Framing error
 - Parity error
- Programmable 10 interrupt sources with flags
 - CTSF changes
 - LIN break detection
 - Transmit data register empty
 - Transmission complete
 - Receive data register full
 - Idle bus detected
 - Overrun error
 - Framing error
 - Noise error
 - Parity error

12.2 Full-duplex/half-duplex selector

The full-duplex and half-duplex selector enables USART to perform data exchanges with peripherals in full-duplex or half-duplex mode, which is achieved by setting the corresponding registers.

In two-wire unindirectional full-duplex mode (by default), TX pin is used for data output, while the RX pin is used for data input. Since the transmitter and receiver are independent of each other, USART is allowed to send/receive data at the same time so as to achieve full-duplex communication.

When the HALFSEL is set 1, the single-wire bidirectional half-duplex mode is selected for communication. In this case, the LINEN, CLKEN, SCMEN and IRDAEN bits must be set 0. RX pin is inactive, while TX and SW_RX are interconnected inside the USART. For the USART part, TX pins is used for data output, and SW_RX for data input. For the peripheral part, bidirectional data transfer is executed through IO mapped by TX pin.

12.3 Mode selector

12.3.1 Introduction

USART mode selector allows USART to work in different operation modes through software configuration so as to enable data exchanges between USART and peripherals with different communication protocols.

USART supports NRZ standard format (Mark/Space), by default. It also supports LIN (Local Interconnection Network), IrDA SIR (Serial Infrared), Asynchronous Smartcard protocol in ISO7816-3 standard, RS-232 CTS/RTS (Clear To Send/Request To Send) hardware flow operation, silent mode and synchronous mode, depending on USART mode selection configuration.

12.3.2 Configuration procedure

Selection of operation mode is done by following the configuration process listed below. In addition, such configuration method, along with that of receiver and transmitter described in the subsequent sections, are used to make USART initialization configuration.

- 1. LIN mode: While LINEN bit is set 1, CLKEN, STOPBN[1: 0], SCMEN, SLHDEN, IRDAEN and DBN bits are all set 0. 11-bit or 12-bit break frame detection depends on whether the BFBN bit is set 1 or 0. When the SBF bit is set 1, the 13-bit low-level LIN synchronous break frame is transmitted.
- 2. Smartcard mode: SCMEN bit is set 1, LINEN, SLHDEN and IRDAEN bits are 0, DBN and PEN bits are set 1, and STOPBN[1: 0]=11. The polarity, phase and pulse number of the clock can be configured by setting the CLKPOL, CLKPHA and LBCP bits (Refer to Synchronous mode for details). The SCGT[7: 0] bit is used to select protection time. The SCNACKEN bit is used to select whether to send NACK when parity error occurs.
- 3. Infrared mode: IRDAEN is set 1, and the CLKEN, STOPBN[1: 0], SCMEN and SLHDEN bits are all 0. Set the IRDALP bit enables infrared low-power mode, and configures the desired low-power frequency in conjunction with the ISDIV[7:0].
- 4. Hardware flow control mode: Set the RTSEN and CTSEN bit will enable RTS and CTS flow control, respectively.
- 5. Silent mode: When the RM bit is set, it enters silent mode. When the WUM bit is set 1 or 0, it wakes up from silent mode through ID match and idle bus, respectively. The ID[3: 0] is configurable. When ID match is selected, if the MSB of data bit is set, it indicates that the current data is ID, the four LSB represents ID value.
- 6. Synchronous mode: Set the CLKEN bit enables synchronous mode and clock pin output. Select CK pin high or low in idle state by setting the CLKPOL bit (1 or 0). Whether to sample data on the second or first edge of the clock depends on the CLKPHA bit (1 or 0). The LBCP bit (1 or 0) is used to select whether to output clock on the last data bit. And the ISDIV[4: 0] is used to select the required clock output frequency.

12.4USART frame format and configuration

USART data frame consists of start bit, data bit and stop bit, with the last data bit being as a parity bit.

USART idle frame size is equal to that of the data frame under current configuration, but all bits are 1.

USART break frame size is the current data frame size plus its stop bit. All bits before the stop bit are 0. The DBN bit is used to program 8-bit (DBN=0) or 9-bit (DBN=1) data bits.

The STOPBN bit is used to program one bit (STOPBN=00), 0.5-bit (STOPBN=01), two-bit (STOPBN=10) and 1.5-bit (STOPBN=11) stop bits.

Set the PEN bit will enable parity control. PSEL=1 indicates Odd parity, while PSEL=0 for Even parity. Once the parity control is enabled, the MSB of the data bit will be replaced with parity bit, that is, the significant bits is reduced by one bit.

12.5 DMA transfer introduction

Enable transmit data buffer and receive data buffer using DMA to achieve continuous high-speed transmission for USART, which is detailed in subsequent sections. For more information on specific DMA configuration, refer to DMA chapter.

12.5.1 Transmission using DMA

- 1. Select a DMA channel: Select a DMA channel from DMA channel map table described in DMA chapter.
- 2. Configure the destination of DMA transfer: Configure the USART_DT register address as the destination address bit of DMA transfer in the DMA control register. Datat will be sent to this address after transmit request is received by DMA.
- Configure the source of DMA transfer: Configure the memory address as the source of DMA transfer
 in the DMA control register. Data will be loaded into the USART_DT register from the memory
 address after transmit request is received by DMA.
- 4. Configure the total number of bytes to be transferred in the DMA control register.
- 5. Configure the channel priority of DMA transfer in the DMA control register.
- 6. Configure DMA interrupt generation after half or full transfer in the DMA control register.
- 7. Enable DMA transfer channel in the DMA control register.

12.5.2 Reception using DMA

- 1. Select a DMA transfer channel: Select a DMA channel from DMA channel map table described in DMA chapter.
- 2. Configure the destination of DMA transfer: Configure the memory address as the destination of DMA transfer in the DMA control register. Data will be loaded from the USART_DT register to the programmed destination after reception request is received by DMA.
- 3. Configure the source of DMA transfer: Configure the USART_DT register address as the source of DMA transfer in the DMA control register. Data will be loaded from the USART_DT register to the programmed destination after reception request is received by DMA.
- 4. Configure the total number of bytes to be transferred in the DMA control register.
- 5. Configure the channel priority of DMA transfer in the DMA control register.
- 6. Configure DMA interrupt generation after half or full transfer in the DMA control register.
- 7. Enable a DMA transfer channel in the DMA control register.

12.6 Baud rate generation

12.6.1 Introduction

USART baud rate generator uses an internal counter based on PCLK. The DIV (USART_BAUDR [15:0] register) represents the overflow value of the counter. Each time the counter is full, it denotes one-bit data. Thus each data bit width refers to PCLK cycles x DIV.

The receiver and transmitter of USART share the same baud rate generator, and the receiver splits each data bit into 16 equal parts to achieve oversampling, so the data bit width should not be less than 16 PCLK periods, that is, the DIV value must be greater than 16.

12.6.2 Configuration

User can program the desired baud rate by setting different system clocks and writing different values into the USART BAUDR register. The calculation format is as follows:

$$\frac{\text{TX}}{\text{RX}}baud \ rate = \frac{f_{CK}}{\text{DIV}}$$

Where, f_{CK} refers to the system clock of USART (i.e. PCLK1/PCLK2)

Note: 1. Write access to the USART_BAUDR register before UEN. The baud rate register value should not be altered when UEN=1.

2. When USART receiver or transmitter is disabled, the internal counter will be reset, and baud rate interrupt will occur.

Table 12- 1 Error calculation for programmed baud rate

Baud		fPCLK=36I	ИНz		fPCLK=72	2MHz	
No.	Kbps	Actual	Value programmed in the baud register	Error%	Actual	Value programmed in the baud register	Error%
1	2.4	2.4	937.5	0%	2.4	1875	0%
2	9.6	9.6	234.375	0%	9.6	468.75	0%
3	19.2	19.2	117.1875	0%	19.2	234.375	0%
4	57.6	57.6	39.0625	0%	57.6	78.125	0%
5	115.2	115.384	19.5	0.15%	115.2	39.0625	0%
6	230.4	230.769	9.75	0.16%	230.769	19.5	0.16%
7	460.8	461.538	4.875	0.16%	461.538	9.75	0.16%
8	921.6	923.076	2.4375	0.16%	923.076	4.875	0.16%
9	2250	2250	1	0%	2250	2	0%
10	4500	NA	NA	NA	4500	1	0%
11	6250	NA	NA	NA	NA	NA	NA
12	7500	NA	NA	NA	NA	NA	NA

Baud		fPCLK=100	MHz		fPCLK=12	20MHz	
No.	Kbps	Actual	Value programmed in the baud register	Error %	Actual	Value programmed in the baud register	Error %
1	2.4	2.40004	2604.125	0%	2.4	3125	0%
2	9.6	9.60061	651	0%	9.6	781.25	0%
3	19.2	19.2012	325.5	0%	19.2	390.625	0%
4	57.6	57.6037	108.5	0%	57.61	130.1875	0%
5	115.2	115.207	54.25	0%	115.16	65.125	0%
6	230.4	230.415	27.125	0.01%	230.33	32.5625	0%
7	460.8	460.829	13.5625	0.01%	461.54	16.25	0.16%
8	921.6	925.926	6.75	0.47%	923.08	8.125	0.16%
9	2250	2272.73	2.75	1%	2264.15	3.3125	0.63%
10	4500	4545.45	1.375	1%	4444.44	1.6875	1.23%
11	6250	6250	1	0%	6315.79	1.1875	1.05%
12	7500	NA	NA	NA	7500	1	0%

12.7 Transmitter

12.7.1 Transmitter introduction

USART transmitter has its individual TEN control bit. The transmitter and receiver share the same baud rate that is programmable. There is a transmit data buffer (TDR) and a transmit shift register in the USART. The TDBE bit is set whenever the TDR is empty, and an interrupt is generated if the TDBEIEN is set.

The data written by software is stored in the TDR register. When the shift register is empty, the data will be moved from the TDR register to the shift register so that the data in the transmit shift register is output on the TX pin in LSB mode. The output format depends on the programmed frame format.

If synchronous transfer or clock output is selected, the clock pulse is output on the CK pin. If the hardware flow control is selected, the control signal is input on the CTS pin.

Note: 1. The TEN bit cannot be reset during data transfer, or the data on the TX pin will be corrupted.

2. After the TEN bit is enabled, the USART will automatically send an idle frame.

12.7.2 Transmitter configuration

- 1. USART enable: Set the UEN bit.
- 2. Full-duplex/half-duplex configuration: Refer to full-duplex/half-duplex selector for more information.
- 3. Mode configuration: Refer to mode selector for more information.
- 4. Frame format configuration: Refer to frame format for more information.
- 5. Interrupt configuration: Refer to interrupt generation for more information.
- 6. DMA transmission configuration: If the DMA mode is selected, the DMATEN bit (bit 3 in the USART_CTRL3register) is set, and configure DMA register accordingly.
- 7. Baud rate configuration: Refer to baud rate generation for details.
- 8. Transmitter enable: When the TEN bit is set, the USART transmitter will send an idle frame.
- 9. Write operation: Wait unit the TDBE bit is set, the data to be transferred will be loaded into the USART_DT register (This operatin will clear the TDBE bit). Repeat this step in non-DMA mode.
- 10. After the last data expected to be transferred is written, wait until the TDC is set, indicating the end of transfer. The USART cannot be disabled before the flag is set, or transfer error will occur.
- 11. When TDC=1, read access to the USART_STS register and write access to the USART_DT register will clear the TDC bit; This bit can also be cleared by writing "0", but this is valid only in DMA mode.

12.8 Receiver

12.8.1 Receiver introduction

USART receiver has its individual REN control bit (bit 2 in the USART_CTRL1 register). The transmitter and receiver share the same baud rate that is programmable. There is a receive data buffer (RDR) and a receive shift register in the USART.

The data is input on the RX pin of the USART. When a valid start bit is detected, the receiver ports the data received into the receive shift register in LSB mode. After a full data frame is received, based on the programmed frame format, it will be moved from the receive shift register to the receive data buffer, and the RDBF is set accordingly. An interrupt is generated if the RDBFIEN is set.

If hardware flow control is selected, the control signal is output on the RTS pin.

During data reception, the USART receiver will detect whether there are errors to occur, including framing error, overrun error, parity check error or noise error, depending on software configuration, and whether there are interrupts to generate using the interrupt enable bits.

12.8.2 Receiver configuration

Configuration procedure:

- 1. USART enalbe: UEN bit is set.
- 2. Full-duplex/half-duplex configuration: Refer to full-duplex/half-duplex selector for more information.
- 3. Mode configuration: Refer to mode selector for more information.
- 4. Frame format configuration: Refer to frame format for more information.
- 5. Interrupt configuration: Refer to interrupt generation for more information.
- 6. Reception using DMA: If the DMA mode is selected, the DMAREN bit is set, and configure DMA register accordingly.
- 7. Baud rate configuration: Refer to baud rate generation for details.
- 8. Receiver enable: REN bit is set.

Character repeption:

- The RDBF bit is set. It indicates that the content of the shift register is transferred to the RDR (Receiver Data Register). In other words, data is received and can be read (including its associated error flags)
- An interrupt is generated when the RDBFIEN is set.
- The erro flag is set when a framing error, noise error or overrun error is detected during reception.
- In DMA mode, the RDNE bit is set after every byte is received, and it is cleared when the data register is read by DMA.
- In non-DMA mode, the RDBF bit is cleared when read access to the USART_DT register by software. The RDBF flag can also be cleared by writing 0 to it. The RDBF bit must be cleared before the end of next frame reception to avoid overrun error.

Break frame reception:

- Non-LIN mode: It is handled as a framing error, and the FERR is set. An interrupt is generated if the corresponding interrupt bit is enabled. Refer to framing error decribed below for details.
- LIN mode: It is handled as a break frame, and the BFF bit is set. An interrupt is generated if the BFIEN is set.

Idle frame reception:

 It is handled as a data frame, and the IDLEF bit is set. An interrupt is generated if the IDLEIEN is set

When a framing error occurs:

- The FERR bit is set.
- The USART receiver moves the invalid data from the receive shift register to the receive data buffer.
- In non-DMA mode, both FERR and RDBF are set at the same time. The latter will generate an interrupt. In DMA mode, an interrupt is generated if the ERRIEN.

When an overrun error occurs:

- The ROERR bit is set.
- The data in the receive data buffer is not lost. The previous data is still available when the USART DT register is read.
- The content in the receive shift register is overwritten. Afterwards, any data received will be lost.
- An interrupt is generated if the RDBFIEN is set or both ERRIEN and DMAREN are set.
- The ROERR bit is cleared by reading the USART_STS register and then USART_DT register in order.

Note: If ROERR is set, it indicates that at least one piece of data is lost, with two possibilities:

If RDBF=1, it indicates that the last valid data is still stored in the receive data buffer, and can be read.

If RDBF=0, it indicates that the last valid data in the receive data buffer has already been read.

Note: The REN bit cannot be reset during data reception, or the byte that is currently being received will be lost.

12.8.3 Start bit and noise detection

A start bit detection occurs when the REN bit is set. With the oversampling techniques, the USART receiver samples data on the 3rd, 5th, 7th, 8th, 9th and 10th bits to detect the valid start bit and noise. Table 12-2 shows the data sampling over start bit and noise detection.

Table 12- 2 Data sampling over start bit and noise detection

Sampled value (3·5·7)	Sampled value (8·9·10)	NERR bit	Start bit validity
000	000	0	Valid
001/010/100	001/010/100	1	Valid
001/010/100	000	1	Valid
000	001/010/100	1	Valid
111/110/101/011	Any value	1	Invalid
Any value	111/110/101/011	1	Invalid

Note: If the sampling values on the 3rd, 5th, 7th, 8th, 9th, and 10th bits do not match the above mentioned requirements, the USART receiver does not think that a correct start bit is received, and thus it will abort the start bit detection and return to idle state waiting for a falling edge.

The USART receiver has the ability to detect noise. In the non-synchronous mode, the USART receiver samples data on the 7th, 8th and 9th bits, with its oversampling techniques, to distinguish valid data input from noise based on different sampling values, and recover data as well as set NERR (Noise Error Flag) bit.

Table 12- 3 Data sampling over valid data and noise detection

Sampled value	NERR bit	Received bit value	Data validity
000	0	0	Valid
001	1	0	Invalid
010	1	0	Invalid
011	1	1	Invalid
100	1	0	Invalid
101	1	1	Invalid
110	1	1	Invalid
111	0	1	Valid

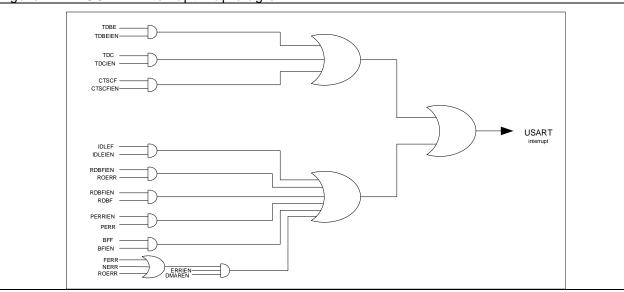
When noise is detected in a data frame:

- The NERR bit is set at the same time as the RDBF bit
- The invalid data is transferred from the receive shift register to the receive data buffer.
- No interrupt is generated in non-DMA mode. However, since the NERR bit is set at the same time as the RDBF bit, the RDBF bit will generae an interrupt. In DMA mode, an interrupt will be issued if the ERRIEN is set.

The NERR bit is cleared by read access to USART_STS register followed by the USART_DT read operation.

12.9Interrupt requests

USART interrupt generator is the control center of USART interrupts. It is used to monitor the interrupt source inside the USART in real time and the generation of interrupts according to the programmed interrupt control bits. Table 12-4 shows the USART interrupt source and interrupt enable control bit. An interrupt will be generated over an event when the corresponding interrupt enable bit is set.


Table 12- 4 USART interrupt request

Interrupt event	Event flag	Enable bit
Transmit data register empty	TDBE	TDBEIEN
CTS flag	CTSCF	CTSCFIEN

Transmit data complete	TDC	TDCIEN	
Receive data buffer full	RDBF	RDBFIFN	
Receiver overflow error	ROERR	RUDFIEN	
Idle flag	IDLEF	IDLEIEN	
Parity error	PERR	PERRIEN	
Break frame flag	BFF	BFIEN	
Noise error, overflow error or framing error	NERR or ROERR or FERR	ERRIEN (1)	

Figure 12- 2 USART interrupt map diagram

12.10 I/O pin control

The following five interfaces are used for USART communication.

RX: Serial data input.

TX: Serial data output. In single-wire half-duplex and Smartcard mode, the TX pin is used as an I/O for data transmission and reception.

CK: Transmitter clock output. The output CLK phase, polarity and frequency can be programmable.

CTS: Transmitter input. Send enable signal in hardware flow control mode.

RTS: Receiver output. Send request signal in hardware flow control mode.

12.11 USART registers

Table 12- 5 USART register map and reset value

Register	Offset	Reset value
USART_STS	0x00	0x0000 00C0
USART_DT	0x04	0x0000 0000
USART_BAUDR	0x08	0x0000 0000
USART_CTRL1	0x0C	0x0000 0000
USART_CTRL2	0x10	0x0000 0000
USART_CTRL3	0x14	0x0000 0000
USART_GTP	0x18	0x0000 0000

12.11.1 Status register (USART_STS)

Bit	Register	Reset value	Type	Description
Bit 31: 10	Reserved	0x000000	resd	Forced to be 0 by hardware.
Bit 9	CTCCE	0x0	rw0c	CTS change flag
	CTSCF			This bit is set by hardware when the CTS status line

				ala anno a likia ala ana lan a sik
				changes. It is cleared by software. 0: No change on the CTS status line
				1: A change occurs on the CTS status line.
				Break frame flag
Bit 8	BFF	0x0	rw0c	This bit is set by hardware when a break frame is detected. It is cleared by software.
				0: Break frame is not detected.
				1: Break frame is detected.
				Transmit data buffer empty
Bit 7	TDBE	0x1	ro	This bit is set by hardware when the transmit data buffer is empty. It is cleared by a USART_DT register write operation.
				0: Data is not transferred to the shift register.
				1: Data is transferred to the shift register.
				Transmit data complete
				This bit is set by hardware at the end of transmission. It is
Bit 6	TDC	0x1	rw0c	cleared by software. (Option 1: read access to USART_STS register followed by a USART_DT write operation; Option 2: Write "0" to this bit)
				0: Transmission is not completed.
				1: Transmission is completed.
				Receive data buffer full
Bit 5	RDBF	0x0	rw0c	This bit is set by hardware when the data is transferred from the shift register to the USART_DT register. It is cleared by software. (Option 1: read USART_DT register; Option 2: write "0" to this bit)
				0: Data is not received.
				1: Data is received.
				Idle flag
Bit 4	IDLEF	0x0	ro	This bit is set by hardware when an idle line is detected. It is cleared by software. (Read USART_DT register followed by a USART_DT read operation)
				0: No idle line is detected.
				1: Idle line is detected.
				Receiver overflow error
Bit 3	ROERR	0x0	ro	This bit is set by hardware when the data is received while the RDNE is still set. It is cleared by software. (Read USART_STS register followed by a USART_DT read operation)
				0: No overflow error
				1: Overflow error is detected.
				Note: When this bit iset, the DT regiter content will not be lost, but the subsequent data will be overwritten.
-				Noise error
Bit 2	NERR	0x0	ro	This bit is set by hardware when noise is detect on a received frame. It is cleared by software. (Read USART_STS register followed by a USART_DT read operation)
				0: No noise is detected.
				1: Noise is detected.
				Framing error
Bit 1	FERR	0x0	ro	This bit is set by hardware when a stop bit error (low), excessive noise or break frame is detected. It is cleared by software. USART_STS register followed by a USART_DT read operation)
				0: No framing error is detected.
				1: Framing error is detected.

Bit 0	PERR	0x0	ro	Parity error This bit is set by hardware when parity error occurs. It is cleared by software. USART_STS register followed by a USART_DT read operation) 0: No parity error occurs.
				1: Parity error occurs.

12.11.2 Data register (USART_DT)

Bit	Register	Reset value	Type	Description
Bit 31: 9	Reserved	0x000000	resd	Forced to be 0 by hardware.
				Data value
Bit 8: 0	DT	0x00	rw	his register provides read and write function. When transmitting with the parity bit enabled, the value written in the MSB bit will be replaced by the parity bit. When receiving with the parity bit enabled, the value in the MSB bit is the received parity bit.

12.11.3 Baud rate register (USART_BAUDR)

Note: If the TE or RE is disabled respectively, the baud counter stops counting.

Bit	Register	Reset value	Type	Description
Bit 31: 16	Reserved	0x0000	resd	Forced to be 0 by hardware.
Bit 15: 0	DIV	2 2222	rw	Divider
		0x0000		This field define the USART divider.

12.11.4Control register1 (USART_CTRL1)

Bit	Register	Reset value	Type	Description
Bit 31: 14	Reserved	0x00000	resd	Forced to be 0 by hardware.
				USART enable
Bit 13	UEN	0x0	rw	0: USART is disabled.
				1: USART is enable.
				Data bit num
D:: 40	551			This bit is used to program the number of data bits.
Bit 12	DBN	0x0	rw	0: 8 data bits
				1: 9 data bits
				Wakeup mode
D:: 44	14/114			This bit determines the way to wake up silent mode.
Bit 11	WUM	0x0	rw	0: Waken up by idle line
				1: Waken up by ID match
	PEN			Parity enable
Bit 10		0x0	rw	This bit is used to enable hardware parity control (generation of parity bit for transmission; detection of parity bit for reception). When this bit is enabled, the MSB bit of the transmitted data is replaced with the parity bit; Check whether the parity bit of the received data is correct.
				0: Parity control is disabled.
				1: Parity control is enabled.
		0x0	rw	Parity selection
Bit 9	PSEL			This bit selects the odd or even parity after the parity control is enabled.
-				0: Even parity
				1: Odd parity
		0x0	rw	PERR interrupt enable
Bit 8	PERRIEN			0: Interrupt is disabled.
				1: Interrupt is enabled.
Bit 7	TDBEIEN	0x0	rw	TDBE interrupt enable

				0: Interrupt is disabled.
				1: Interrupt is enabled.
				TDC interrupt enable
Bit 6	TDCIEN	0x0	rw	0: Interrupt is disabled.
				1: Interrupt is enabled.
			rw	RDBF interrupt enable
Bit 5	RDBFIEN	0x0		0: Interrupt is disabled.
				1: Interrupt is enabled.
				IDLE interrupt enable
Bit 4	IDLEIEN	0x0	rw	0: Interrupt is disabled.
				1: Interrupt is enabled.
				Transmitter enable
5 11.0				This bit enables the transmitter.
Bit 3	TEN	0x0	rw	0: Transmitter is disabled.
				1: Transmitter is enabled.
				Receiver enable
5 11.0				This bit enables the receiver.
Bit 2	REN	0x0	rw	0: Receiver is disabled.
				1: Receiver is enabled.
				Receiver mute
Bit 1	RM	0x0	rw	This bit determines if the receiver is in mute mode or not. It is set or cleared by software. When the idle line is used to wake up from mute mode, this bit is cleared by hardware after wake up. When the address match is used to wake up from mute mode, it is cleared by hardware after wake up. When address mismatches, this bit is set by hardware to enter mute mode again.
				0: Receiver is in active mode.
				1: Receiver is in mute mode.
				Send break frame
Bit 0	SBF	0x0	rw	This bit is used to send a break frame. It can be set or cleared by software. Generally speaking, it is set by software and cleared by hardware at the end of break frame transmission.
				0: No break frame is transmitted.
				1: Break frame is transmitted.

12.11.5 Control register2 (USART_CTRL2)

Bit	Register	Reset value	Type	Description
Bit 31: 15	Reserved	0x00000	resd	Forced to be 0 by hardware.
		0x0	rw	LIN mode enable
Bit 14	LINEN			0: LIN mode is disabled.
				1: LIN mode is enabled.
		0x0		STOP bit num
			rw	These bits are used to program the numter of stop bits.
D U 10 10				00: 1 stop bit
Bit 13: 12	STOPBN			01: 0.5 stop bit
				10: 2 stop bits
				11: 1.5 stop bits
		0x0	rw	Clock enable
				This bit is used to enable the clock pin for synchronous
Bit 11	CLKEN			mode or Smartcard mode.
				0: Clock is disabled.
				1: Clock is enabled.
Bit 10	CLKPOL	0x0	rw	Clock polarity

				In synchronous mode or Smartcard mode, this bit is used to select the polarity of the clock output on the clock pin in idle state.
				0: Clock output low
				1: Clock output high
				Clock phase
Bit 9	CLKPHA	0x0	rw	This bit is used to select the phase of the clock output on the clock pin in synchronous mode or Smartcard mode.
				0: Data capture is done on the first clock edge.
				1: Data capture is done on the second clock edge.
				Last bit clock pulse
				This bit is used to select whether the clock pulse of the last data bit transmitted is output on the clock pin in synchronous mode.
Bit 8	LBCP	0x0	rw	0: The clock pulse of the last data bit is no output on the
				clock pin.
				1: The clock pulse of the last data bis is output on the clock pin.
Bit 7	Reserved	0x0	resd	Keep at its default value.
				Break frame interrupt enable
Bit 6	BFIEN	0x0	rw	0: Disabled
				1: Enabled
				Break frame bit num
D:: 5	DEDAL	0.0		This bit is used to select 11-bit or 10-bit break frame.
Bit 5	BFBN	0x0	rw	0: 10-bit break frame
				1: 11-bit break frame
Bit 4	Reserved	0x0	resd	Keep at its default value.
Bit 3: 0	ID	00		USART identification
	ID	0x0	rw	Configurable USART ID.

Note: These three bits (CLKPOL, CLKPHA and LBCP) should not be changed while the transmission is enabled

12.11.6 Control register3 (USART_CTRL3)

Register	Reset value	Type	Description
Reserved	0x000000	resd	Forced to be 0 by hardware.
			CTSCF interrupt enable
CTSCFIEN	0x0	rw	0: Interrupt is disabled.
			1: Interrupt is enabled.
			CTS enable
CTSEN	0x0	rw	0: CTS is disabled.
			1: CTS is enabled.
			RTS enable
RTSEN	0x0	rw	0: RTS is disabled.
			1: RTS is enabled.
			DMA transmitter enable
DMATEN	0x0	rw	0: DMA transmitter is disabled.
			1: DMA transmitter is enabled.
			DMA receiver enable
DMAREN	0x0	rw	0: DMA receiver is disabled.
			1: DMA receiver is enabled.
			Smartcard mode enable
SCMEN	0x0	rw	0: Smartcard mode is disabled.
			1: Smartcard mode is enabled.
SCNACKEN	0x0	rw	Smartcard NACK enable
	CTSCFIEN CTSEN RTSEN DMATEN DMAREN SCMEN	CTSCFIEN 0x0 CTSEN 0x0 RTSEN 0x0 DMATEN 0x0 DMAREN 0x0 SCMEN 0x0	CTSCFIEN 0x0 rw CTSEN 0x0 rw RTSEN 0x0 rw DMATEN 0x0 rw DMAREN 0x0 rw SCMEN 0x0 rw

				This bit is used to send NACK when parity error occurs.
				NACK is disabled when parity error occurs.
				1: NACK is enabled when parity error occurs.
				Single-wire bidirectional half-duplex enable
Bit 3	SLBEN	0x0	rw	0: Single-wire bidirectional half-duplex is disabled.
				1: Single-wire bidirectional half-duplex is enabled.
				IrDA low-power mode
D 0				This bit is used to configure IrDA low-power mode.
Bit 2	IRDALP	0x0	rw	0: IrDA low-power mode is disabled.
				1: IrDA low-power mode is enabled.
		0x0	rw	IrDA enable
Bit 1	IRDAEN			0: IrDA is disabled.
				1: IrDA is enabled.
				Error interrupt enable
				An interrupt is generated when a framing error, overflow
Bit 0	ERRIEN	0x0	rw	error or noise error occurs.
				0: Error interrupt is disabled.
				1: Error interrupt is enabled.

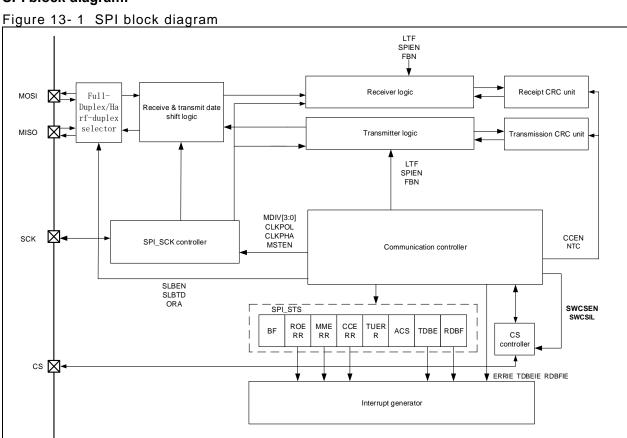
12.11.7 Guard time and divider register (GDIV)

Bit	Register	Reset value	Type	Description
Bit 31: 16	Reserved	0x0000	resd	Forced to be 0 by hardware.
				Smartcard guard time value
Bit 15: 8	SCGT	0x00	rw	This field specifies the guard time value. The transmission complete flag is set after this guard time in smartcard mode.
				IrDA/smartcard division
				In IrDA mode:
				8 bit [7: 0] is valid. It is valid in common mode and must be set to 00000001. In low-power mode, it divides the peripheral clock to serve as the period base of the pulse width;
				00000000: Reserved-Do not write.
				0000001: Divided by 1
				00000010: Divided by 2
Bit 7: 0	ISDIV	0x00	rw	 Smartcard mode:
				the lower 5 bit [4: 0] is valid. This division is used to divide the peripheral clock to provide clock for the Smartcard. Configured as follows:
				00000: Reserved–Do not write.
				00001: Divided by 2
				00010: Divided by 4
				00011: Divided by 6

2021.12.01 Page 174 Ver 2.02

13 Serial peripheral interface (SPI)

13.1 SPI introduction


The SPI interace supports either the SPI protocol or the I²S protocoal, depending on software configuration. This chapter gives an introduction of the main features and congiruation procedure of SPI used as SPI or I²S.

13.2 Function overview

13.2.1 SPI description

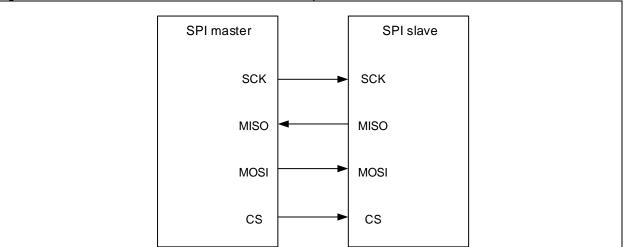
The SPI can be configured as host or slave based on software configuration, supporting full-duplex, reception-only full-duplex and transmission-only/reception-only half-duplex modes, DMA transfer, and automatic CRC function of SPI internal hardware.

SPI block diagram:

Main features as SPI:

- Full-duplex or half-duplex communication
 - Full-duplex synchronous communication (supporting reception-only mode to release IO for transmission)
 - Half-duplex synchronous communication (transfer direction is configurable: receive or transmit)
- Master or slave mode
- CS signal processing mode
 - CS signal processing by hardware
 - CS signal processing by software
- 8-bit or 16-bit frame format
- Communication frequency and prescalers (Frequency up to 48M, and prescalers up to f_{PCLK}/2)
- Programmable clock plarity and phase

- Programmable data transfer order (MSB-first or LSB-first)
- Programmable error interrupt flags (receiver overflow error, master mode error and CRC error)
- Programmable transmit data buffer empty interrupt and receive data buffer full interrupt
- Support transmission and reception using DMA
- Support hardware CRC transmission and error checking
- Busy status flag


13.2.2 Full-duplex/half-duplex selector

When used as an SPI interface, it supports four synchronous modes: two-wire unidirectional full-duplex, single-wire unidirectional receive only, single-wire bidirectional half-duplex transmit and single-wire bidirectional half-duplex receive.

Figure 13-2 shows the two-wire unidirectional full-duplex mode and SPI IO connection:

The SPI operats in two-wire unidirectional full-duplex mode when the SLBEN bit and the ORA bit is both 0. In this case, the SPI supports data transmission and reception at the same time. IO connection is as follows:

Figure 13- 2 SPI two-wire unidirectional full-duplex connection

In either master or slave mode, it is required to wait until the RDBF bit and TDBE bit is set, and BF=0 before disabling the SPI or entering power-saving mode (or disabling SPI system clock).

Figure 13-3 shows the single-wire unidirectional receive-only mode and SPI IO connection

The SPI operates in single-wire unidirectional receive-only mode when the SLBEN is 0 and the ORA is set. In this case, the SPI can be used only for data reception (transmission is not supported). The MISO pin transmits data in slave mode and receives data in master mode. The MOSI pin transmits data in master mode and receives data in salve mode.

Figure 13- 3 Single-wire unidirectional receive only in SPI master mode

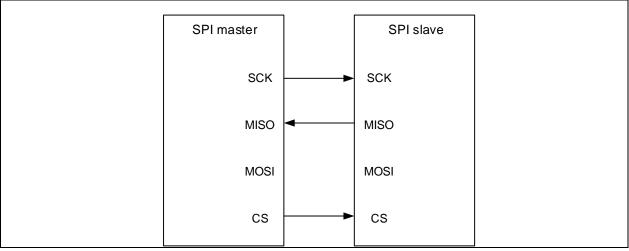
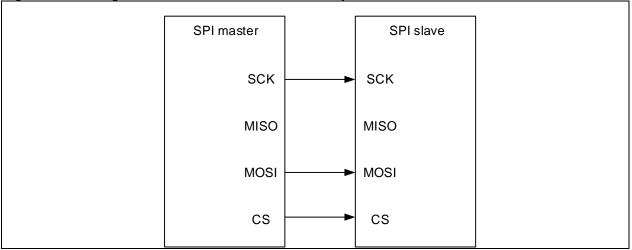



Figure 13- 4 Single-wire unidirectional receive only in SPI slave mode

In master mode, it is necessary to wait until the second-to-last RDBF bit is set and then another SPI_CPK period before disabling the SPI. The last RDBF must be set before entering power-saving mode (or disabling SPI system clock).

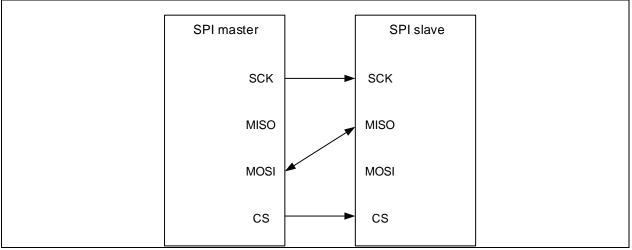

In slave mode, there is no need to check any flag before disabling the SPI. However, it is required to wait until the BF becomes 0 before entering power-saving mode.

Figure 13-5 shows single-wire bidirectional half-duplex mode and SPI IO connection

When the SLBEN is set, the SPI operates in single-wire bidirectional half-duplex mode. In this case, the SPI supports data reception and transmission alternately. In master mode, the MOSI pin transmits or receives data in master mode, while the MISO pin is released. In slave mode, the MISO pin transmits or receives data, but the MOSI pin is released.

The SLBTD bit is used by software to configure transfer direction. When the SLBTD bit is set, the SPI can be used only for data transmission; when the SLBTD bit is 0, the SPI can be used only for data reception.

Figure 13- 5 Single-wire bidirectional half-duplex mode

When the SPI is selected for data transmission in single-wire bidirectional half-duplex mode (master or slave), the TDBE bit must be set, and the BF must be 0 before disabling the SPI. The power-saving mode (or disabling SPI system clock) cannot be entered unless the SPI is disabled.

In master mode, when the SPI is selected for data reception in single-wire bidirectional half-duplex mode, it is required to wait until the second-to-last RDBF is set and then another SPI_SCK period before disabling the SPI. And the last RDBF must be set before entering power-saving mode (or disabling SPI system clock).

In slave mode, when the SPI is selected for data reception in single-wire bidirectional half-duplex mode, there is no need to check any flags before disabling the SPI. However, the BT must be 0 before entering power-saving mode (or disabling SPI system clock).

13.2.3 Chip select controller

The Chip select controller (CS) is used to enable hardware or software control for chip select signals through software configuration. This controller is used to select master/slave device in multi-processor mode, and to avoid conflicts on the data lines by enabling the SCK signal output followed by CS signal. The hardware and software configuration procedure is detailed as follows, along with their respective input/output in master and slave mode.

CS hardware configuration procedure:

In master mode with CS being as an output, HWCSOE=1, SWCSEN=0, the CS hardware control is enabled. If the SPI is enabled, low level is output on the CS pin. The CS signal is then released after the SPI is disabled and the transmission is complete.

In master mode with CS being as an input, HWCSOE=0, SWCSEN=0, the CS hardware control is enabled. At this point, the SPI is automatically disabled by hardware and enters slave mode as soon as the CS pin low is detected by master SPI. The mode error flag (MMERR bit) is set at the same time. An interrupt is generated if ERRIE=1. When the MMERR is set, the SPIEN and MSTEN cannot be set by software. The MMERR is cleared by read or write access to the SPI_STS register followed by write operation to the SPI_CTRL1 register.

In slave mode with CS being as an input, HWCSOE=0, SWCSEN=0, the CS hardware control is enabled. The slave selects whether to transmit / receive data based on the level on the CS pin. The slave is selected for data reception and transmission only when the CS pin is low.

CS software configuration procedure:

In master mode with CS being as an input, SWCSEN=1, the CS software control is enabled. When SWCSIL=0, the SPI is automatically disabled by hardware and enters slave mode. The mode error flag (MMERR bit) is set at this time. An interrupt is generated if ERRIE=1. When the MMERR bit is set, the SPIEN and MSTEN bits cannot be set by software. The MMERR bit is cleared by read or write access to the SPI STS register followed by write operation to the SPI CTRL1 register.

In slave mode with CS being as an input, SWCSEN=1, the CS software control is enabled. The SPI judges the CS signal with the SWCSIL bit, instead of CS pin. When SWCSIL=0, the slave is selected for data reception and transmission.

13.2.4 SPI_SCK controller

The SPI protocol adopts synchronous transmission. In master mode with the SPI being as SPI, it is required to generate a communication clock for data reception and transmission on the SPI, and the communication clock should be output to the slave via IO for data reception and transmission. In slave mode, the communication clock is provided by peripherals, and is input to the SPI via IO. In all, the SPI_SCK controller is used for the generation and distribution of SPI_SCK, with the configuration procedure detailed as follows:

SPI_SCK controller configuration procedure:

- Clock polarity and clock phase selection: It is selected by setting the CLKPOL and CLKPHA bit.
- Clock prescaler selection: Select the desired PCLK frequency by setting the CRM bit. Select the desired prescaler by setting the MDIV[3: 0] bit.
- Master/slave selection: Select SPI as master or slave by setting the MSTEN bit.

Note that the clock output is activated after the SPI is enabled in master reception-only mode, and it remains output until when the SPI is disabled and the reception is complete.

13.2.5 CRC

There is an independent transmission and reception CRC calculation unit in the SPI. When used as SPI through software configuration, the SPI enables CRC calculation and CRC check automatically while the user is reading or writing through DMA or CPU. During the transmission, if the received data is not consistent with, detected by hardware, the data in the SPI_RCRC register, and such data is exactly the CRC value, then the CCERR bit will be set. An interrupt is generated if ERRIE=1.

The CRC function and configuration procedure of the SPI are described as follows.

CRC configuration procedure

- CRC calculation polynominal is configured by setting the SPI CPOLY register.
- CRC enable: The CRC calculation is enabled by setting the CCEN bit. This operation will reset the SPI_RCRC and SPI_TCRC registers.
- Select if or when the NTC bit is set, depending on DMA or CPU data register. See the following descriptions.

Trasmission using DMA

When DMA is used to write the data to be transmitted, if the CCEN bit is enabled, the hardware calculates the CRC value automatically according to the value in the SPI_CPOLY register and each transmitted data, and sends the CRC value at the end of the last data transmission. This result is regarded as the value of the SPI_TCRC register.

Reception using DMA

When DMA is used to read the data to be received, if the CCEN bit is enabled, the hardware calculates the CRC value automatically according to the value in the SPI_CPOLY register and each received data, and waits until the completion of CRC data reception at the end of the last data reception before comparing the received CRC value with the value of the SPI_RCRC register. If check error occurs, the CCERR flag is set. An interrupt is generated if the ERRIE bit is enabled.

Transmission using CPU

Unlike DMA mode, after writing the last data to be transmitted, the CPU mode requires the NTC bit to be set by software before the end of the last data transmission.

Reception using CPU

In two-wire unidirectional full-duplex mode, follow CPU transmission mode to operate the NTC bit, the CRC calculation and check in CPU reception mode will be completed automatically.

In single-wire unidirectional reception-only mode and single-wire bidirectional reception-only mode, it is required to set the NTC bit before the software receives the last data when the second-to-last data is received.

13.2.6 DMA transfer

The SPI supports write and read operations with DMA. Refer to the following configuration procedure. Special attention should be paid to: when the CRC calculation and check is enabled, the number of data transferred by DMA is configured as the number of the data to be transferred. The number of data read with DMA is configured as the number of the data to be received. In this case, the hardware will send CRC automatically at the end of full transfer, and the receiver will also perform CRC check. Note that the received CRC data will be moved into the SPI_DT register by hardware, with the RDBF being set, and the DMA read request will be sent if then DAM transfer is enabled. Hence, it is recommended to read the SPI_DT register to get the CRC value at the end of CRC reception in order to avoid the upcoming transfer error.

Transmission with DMA

- Select DMA channel: Select a DMA channel for the current SPI from DMA channel map table described in DMA chapter.
- Configure the destination of DMA transfer: Configure the SPI_DT register address as the destination address bit of DMA transfer in the DMA control register. Datat will be sent to this address after transmit request is received by DMA.
- Configure the source of DMA transfer: Configure the memory address as the source of DMA transfer in the DMA control register. Data will be loaded into the SPI_DT register from the memory address after transmit request is received by DMA.
- Configure the total number of bytes to be transferred in the DMA control register.
- Configure the channel priority of DMA transfer in the DMA control register.
- Configure DMA interrupt generation after half or full transfer in the DMA control register.
- Enable DMA transfer channel in the DMA control register.

Reception with DMA

• Select DMA transfer channel: Select a DMA channel for the current SPI from DMA channel map table described in DMA chapter.

- Configure the destination of DMA transfer: Configure the memory address as the destination of DMA transfer in the DMA control register. Data will be loaded from the SPI_DT register to the programmed destination after reception request is received by DMA.
- Configure the source of DMA transfer: Configure the SPI_DT register address as the source of DMA transfer in the DMA control register. Data will be loaded from the SPI_DT register to the programmed destination after reception request is received by DMA.
- Configure the total number of bytes to be transferred in the DMA control register.
- Configure the total number of bytes to be transferred in the DMA control register.
- Configure DMA interrupt generation after half or full transfer in the DMA control registe
- Enable DMA transfer channel in the DMA control register.

13.2.7 Transmitter

The SPI transmitter is clocked by SPI_SCK controller. It can output different data frame formats, depending on software configuration. There is a SPI_DT register available in the SPI that is used to be written with the data to be transmitted. When the transmitter is clocked, the contents in the SPI_DT register are copied into the data buffer (Unlike SPI_DT, it is driven by SPI_SCK, and controlled by hardware,instead of software), and sent out in order based on the programmed frame format.

Both DMA and CPU can be used for write operation. For DMA transfer, refer to DMA transfer section for more details. For CPU transfer, attention should be paid to the TDBE bit. The reset value of this bit is 1, indicating that the SPI_DT register is empty. If the TDBEIE bit is set, an interrupt is generated. After the data is written, the TDBE is pulled low until the data is moved to the transmit data buffer before the TDBE is set once again. This means that the user can be allowed to write the data to be transmitted only when the TDBE is set.

After the transmitter is configured and the SPI is enabled, the SPI is ready for data transmission. Before going forward, it is necessary for the users to refer to full-duplex / half-duplex chapter to get detailed configuration information, go to the Chip select controller chapter for specific chip select mode, check the SPI_SCK controller chapter for information on communication clock, and refer to CRC and DMA transfer chapter to configure CRC and DMA (if necessary). The recommended configuration procedure are as follows.

Transmitter configuration procedure:

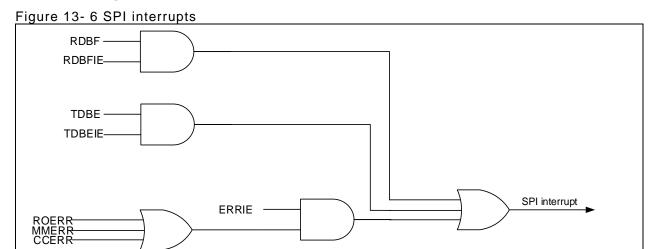
- Configure full-duplex/half-duplex selector
- Configure chip select controller
- Configure SPI SCK controller
- Configure CRC (if necessary)
- Configure DMA transfer (if necessary)
- If the DMA transfer mode is not used, the software will check whether to enable transmit data interrupt (TDBEIE =1) through the TDBE bit.
- Configure frame format: select MSB/LSB mmode with the LTF bit, and select 8/16-bit data with the FBN bit
- Enable SPI by setting the SPIEN

13.2.8 Receiver

The SPI receiver is clocked by the SPI_SCK controller. It can output different data frame formats through software configuration. There is a receive data buffer register, driven by the SPI_SCK, in the SPI receiver.

At the last CLK of each transfer, the data is moved from the shift register to the receive data buffer register. Then the transmitter sets the receive data complete flag to the SPI logic. When the flag is detected by the SPI logic, the data in the receive data buffer is copied into the SPI_DT register, with the RDBF being set. This means that the data is received, and it is already stored into the SPI_DT. In this case, read access to the SPI_DT register will clear the RDBF bit.

Both DMA and CPU can be used for read operation. For DMA transfer, refer to DMA transfer section for more details. For CPU transfer, attention should be paid to the RDBE bit. The reset value of this bit is 0, indicating that the SPI_DT register is empty. If the data is received and moved into the SPI_DT, the


RDBF is set, meaning that there are some data to be read in the SPI_DT register. An interrupt is generated if the RDBFIE bit is set.

When the next received data is ready to be moved to the SPI_DT register, if the previous received data is still not read (RDBF=1), then the data overflow occurs. The previous receive data is not lost, but the next received data will do. At this point, the ROERR is set. An interrupt is generated if the ERRIE is set. Read SPI_DT register and then the SPI_STS register will clear the ROERR bit. The recommended configuration procedure is as follows.

Receiver configuration procedure:

- Configure full-duplex/half-duplex selector
- Configure chip select controller
- Configure SPI SCK controller
- Configure CRC (if necessary)
- Configure DMA transfer (if necessary)
- If the DMA transfer mode is not used, the software will check whether to enable receive data interrupt (RDBEIE =1) through the RDBE bit.
- Configure frame format: select MSB/LSB mmode with the LTF bit, and select 8/16-bit data with the FBN bit
- Enable SPI by setting the SPIEN

13.2.9 Interrupt

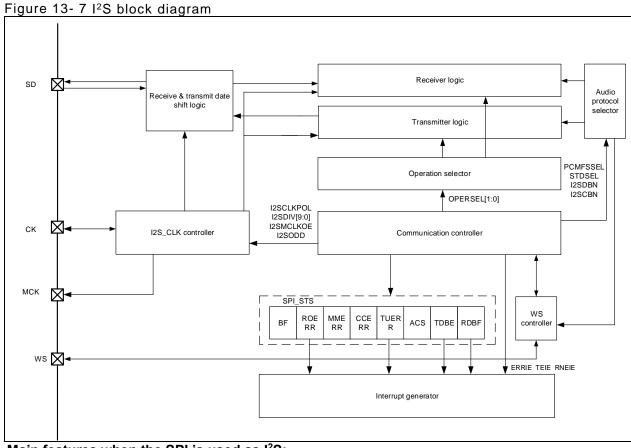
13.2.10IO pin control

Usually, the SPI is connected to external devices through four pins:

- MISO: Master In/Slave Out. The pin receives data in master mode, and transmit data in slave moe.
- MOSI: Master Out/Slave In. The pin transmits data in master mode, and receives data in slave mode.
- SCK: SPI communication clock. The pin serves as output in master mode, and input in slave mode.
- CS: Chip Select. This is an optional pin which selects master/slave mode.

Note: Some of SPI1/I²S1 and SPI3/I²S3 are shared with JTAG pins (SPIx_CS/I2Sx_WS shared with JTDI, SPIx_SCK/I2Sx_CK with JTDO), so these pins are not cotrolled by IO controller, and they are used as JTAG by default after each reset. To configure them as SPIx/I²Sx, the JTAG should be disabled (during debugging) and switched to SWD interface, or both the JTAG and SWD are disabled (during normal run)

13.2.11 Precautions


The software is required to read the DT register in order to get CRC value at the end of CRC reception.

13.312S functional description

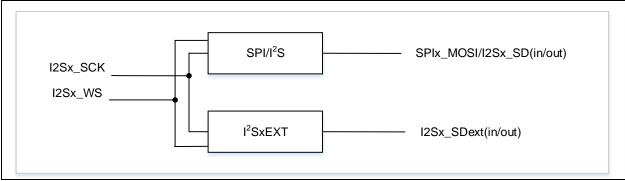
13.3.1 I²S introduction

The I2S can be configured by software as master repection/transmission, and slave reception/transmission, supporting foure kinds of audio protocols including Philips standard, MSB-aligned standard, LSB-aligned standard and PCM standard, respectively. The DMA transfer is also supported.

A single I2S supports half-duplex. However, it can work with the two additional instantiated I2S modules (I2S2EXT and I2S3EXT) to achieve full-duplex mode. In other words, combining the I2S2 with the I2S2EXT enables the I2S2 to support full-duplex mode. This is true for the I2S3 through the combination of the I2S3 with the I2S3EXT. Refer to I2S full-duplex section for more information.

Main features when the SPI is used as I2S:

- Programmable operation mode
 - Slave device transmission
 - Slave device reception
 - Master device transmission
 - Master device reception
- Programmable clock polarity
- Programmable clock frequency (8 KHz to 192 KHz)
- Prorammable data bits (16 bit, 24 bit, 32 bit)
- Programmable channel bits (16 bit, 24 bit)
- Programmable audio protocol
 - I²S Philips standard
 - MSB-aligned standard (left-aligned)


- LSB-aligned standard (right-aligned)
- PCM standard (long or short frame)
- I²S full-duplex
- DMA transfer
- Main peripheral clock with a fixed frequence of 256x Fs (audio sampling frequency)

13.3.2 I²S full-duplex

Two extra I2S modules (I2S2EXT and I2S3EXT) are used to support I2S full-duplex mode. Combine the I2S2 with the I2S2EXT, and I2S3 with I2S3EXT to support full-duplex mode.

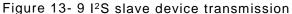
Note: I2S2EXT and I2S3EXT only used for I2S full-duplex mode.

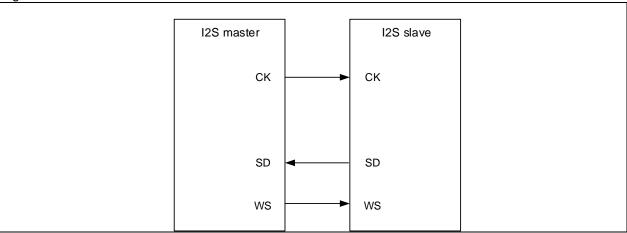
Figure 13-8 I2S full-duplex structure

I²Sx can be used as master, where x should be 2 or 3

- In half-duplex mode, only I²Sx can output SCK and WS
- In full-duplex mode, only I²Sx can output SCK and WS

I²SxEXT is only used for full-duplex mode, and I²SxEXT only for slave mode

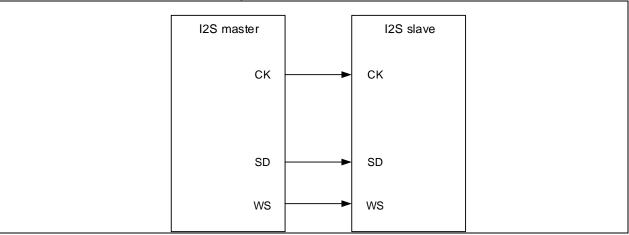

Both the I²Sx and I²SxEXT can be configured as transmit or receive mode.


13.3.3 Operation mode selector

The SPI, used as I2S selector, offers multiple operation modes for selection, namely, slave device transmission, slave device reception, master device transmission and master device reception. This is done by software configuration.

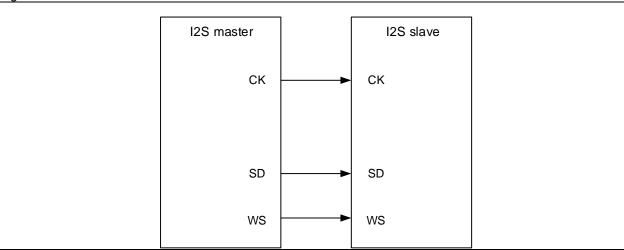
Slave device transmission:

Set the I2SMSEL bit, and OPERSEL[1:0] =00, the I2S will work in slave device transmission mode.



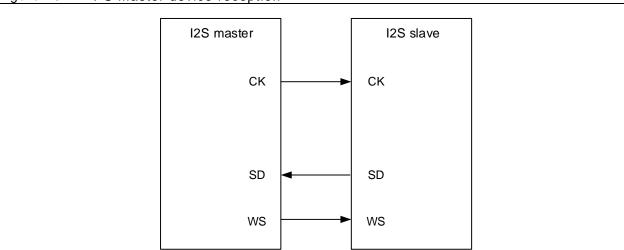
Slave device reception:

Set the I2SMSEL bit, and OPERSEL[1:0]=01, the I2S will work in slave device reception mode.


Figure 13- 10 I²S slave device reception

Master device transmission:

Set the I2SMSEL bit, and OPERSEL[1:0]=10, the I²S will work in master device transmission mode.


Figure 13- 11 I²S master device transmission

Master device reception:

Set the I2SMSEL bit, and OPERSEL[1: 0]=11, the I2S will work in master device repection mode.

Figure 13- 12 I²S master device reception

13.3.4 Audio protocol selector

While being used as I²S, the SPI supports multiple audio protocols. The user can control the audio protol selector through software configuration to select the desired audio protocol, with the data bits and channel bits being controlled by the audio protocol selector. Besides, the user can also select the data

bits and channel bits through software configuration. Meanwhile, the audio protocol selector manages the WS controller, output or detect the WS signal that meets the protocol requirements.

Select audio protocol by seeting the STDSEL bit

STDSLE=00: Philips standard

STDSLE=01: MSB-aligned standard (left-aligned) STDSLE=10: LSB-aligned standard (right-aligned)

STDSLE=11: PCM standard

Select PCM frame synchronization format: PCMFSSEL=1 for PCM long frame synchronization,
 PCMFSSEL=0 for short frame synchronization (this step is required when selecting PCM protocol)

Select data bits by setting the I2SDBN bit

I2SDBN=00: 16 bit I2SDBN =01: 24 bit I2SDBN =10: 32 bit

Select channel bits by setting the I2SCBN bit

I2SDBN =0: 16 bit I2SDBN =1: 32 bit

Note: Read/Write operation mode depends on the selected audio protocols, data bits and channel bits. The following lists all possible configuration combinations and their respective read and write operation mode.

• Philips standard, PCM standard, MSB-aligned or LSB-aligned standard, 16-bit data and 16-bit channel

The data bit is the same as the channel bit. Each channel requires one read/write operation from/ to the SPI DT register, and the number of DMA transfer is 1.

- Philips standard, PCM standard or MSB-aligned standard, 16-bit data and 32-bit channel The data bit is different from the channel bit. Each channel requires one read/write operation from/to the SPI_DT register, and the number of DMA transfer is 1. The first 16 bits (MSB) are the significant bits, and the 16-bit LSB is forced to 0 by hardware.
- Philips standard, PCM standard or MSB-aligned standard, 24-bit data and 32-bit channel The data bit is different from the channgle bit. Each channel requires two read/write operations from/to the SPI_DT register, and the number of DMA transfer is 2. The 16-bit MSB transmits and receives the first 16-bit data, the 16-bit LSB transmits and receives the 8-bit MSB data, with 8-bit LSB data being forced to 0 by hardware.
- Philips standard, PCM standard, MSB-aligned or LSB-aligned standard, 32-bit data and 32-bit channel

The data bit is the same as the channel bit. Each channel requires two read/write operations from/to the SPI_DT register, and the number of DMA transfer is 2. These 32-bit data are proceeded in two times, with 16-bit data each time.

• LSB-aligned standard, 16-bit data and 32-bit channel

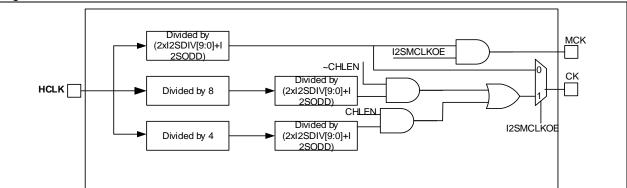
The data bit is different from the channel bit. Each channel requires one read/write operation from/to the SPI_DT register, and the number of DMA transfer is 1. The 16 bits (LSB) are the significant bits while the first 16-bit data (MSB) are forced to 0 by hardware.

• LSB-aligned standard, 24-bit data and 32-bit channel

The data bit is different from the channel bit. Each channel requires two read/write operations from/to the SPI_DT register, and the number of DMA transfer is 2. For the first 16-bit data, its 8-bit LSB are the significant bits, with the 8-bit MSB forced to 0 by hardware; the subsequent 16 bits transmit and receive the second 16-bit data.

13.3.5 I2S_CLK controller

The audio protocols the SPI supports adopts synchronous transmission. In master mode, it is required to generate a communication clock for data reception and transmission on the SPI, and the communication clock should be output to the slave via IO for data reception and transmission. In slave mode, the communication clock is provided by master, and is input to the SPI via IO. In all, the I2S_SCK controller is used for the generation and distribution of I2S_SCK, with the configuration procedure



detailed as follows:

When used as I2S master, the SPI can provide communication clock (CK) and main peripheral clock (MCK) shown in Figure 13-13. The CK and MCK are generated by HCLK divider, with the prescaler of the MCK determined by I2SDIV and I2SODD. The calculation formula is seen in Figure 13-13.

The prescaler of the CK depends on whether to provide the main clock for peripherals. To ensure that the main clock is always 256 times larger than the audio sampling frequency, The channel bits should be taken into account. When the main clock is needed, the CK should be divided by 8 (I2SCBN=0) or 4 (I2SCBN=1), then divided again by the same prescaler as that of the MCK, that is the final communication clock; When the main clock is not needed, the the prescaler of the CK is determined by I2SDIV and I2SODD, shown in Figure 13-13.

Figure 13- 13 CK & MCK source in master mode

Apart from the above-mentioned configuration, the following table lists the values of I2SDIV and I2SODD corresponding to some specific frequencies, as well as their respective error for the users to configure the I2SDIV and I2SODD.

Table 13- 1 Audio frequency precision using system clock

SysCLK	MCL	Target	16bit				32bit			
(MHz)	K	Fs (Hz)	I2S DIV	I2S_ODD	RealFs	Error	I2S DIV	I2S_ODD	RealFs	Error
240	NO	192000	19	1	192307	1.2%	10	0	187500	2.34%
240	NO	96000	39	0	96153	0.16%	19	1	96153	0.16%
240	NO	48000	78	0	48076	0.16%	39	0	48076	0.16%
240	NO	44100	85	0	44117	0.04%	42	1	44117	0.04%
240	NO	32000	117	0	32051	0.16%	58	1	32051	0.16%
240	NO	22050	170	0	22058	0.04%	85	0	22058	0.04%
240	NO	16000	234	1	15991	0.05%	117	0	16025	0.16%
240	NO	11025	340	0	11029	0.04%	170	0	11029	0.04%
240	NO	8000	469	0	7995	0.05%	234	1	7995	0.05%
240	YES	192000	2	1	187500	2.34%	2	1	187500	2.34%
240	YES	96000	5	0	93750	2.34%	5	0	93750	2.34%
240	YES	48000	10	0	46875	2.34%	10	0	46875	2.34%
240	YES	44100	10	1	44642	1.23%	10	1	44642	1.23%
240	YES	32000	14	1	32327	1.02%	14	1	32327	1.02%
240	YES	22050	21	1	21802	1.12%	21	1	21802	1.12%
240	YES	16000	29	1	15889	0.68%	29	1	15889	0.68%
240	YES	11025	42	1	11029	0.04%	42	1	11029	0.04%
240	YES	8000	58	1	8012	0.16%	58	1	8012	0.16%
200	No	192000	16	1	189393.9	1.36%	8	0	195312.5	1.73%
200	No	96000	32	1	96153.85	0.16%	16	1	94696.97	1.36%
200	No	48000	65	0	48076.92	0.16%	32	1	48076.92	0.16%
200	No	44100	71	0	44014.08	0.19%	35	1	44014.08	0.19%
200	No	32000	97	1	32051.28	0.16%	49	0	31887.76	0.35%

200	No	22050	141	1	22084.81	0.16%	71	0	22007.04	0.19%
200	No	16000	195	1	15984.65	0.10%	97	1	16025.64	0.16%
200	No	11025	283	1	11022.93	0.02%	141	1	11042.4	0.16%
200	No	8000	390	1	8002.561	0.03%	195	1	7992.327	0.10%
200	Yes	192000	3	0	130208.3	32.18%	3	0	130208.3	32.18%
200	Yes	96000	4	0	97656.25	1.73%	4	0	97656.25	1.73%
200	Yes	48000	8	0	48828.13	1.73%	8	0	48828.13	1.73%
200	Yes	44100	9	0	43402.78	1.58%	9	0	43402.78	1.58%
200	Yes	32000	12	0	32552.08	1.73%	12	0	32552.08	1.73%
200	Yes	22050	17	1	22321.43	1.23%	17	1	22321.43	1.23%
200	Yes	16000	24	1	15943.88	0.35%	24	1	15943.88	0.35%
200	Yes	11025	35	1	11003.52	0.19%	35	1	11003.52	0.19%
200	Yes	8000	49	0	7971.939	0.35%	49	0	7971.939	0.35%
100	No	192000	8	0	195312.5	1.73%	4	0	195312.5	1.73%
100	No	96000	16	1	94696.97	1.36%	8	0	97656.25	1.73%
100	No	48000	32	1	48076.92	0.16%	16	1	47348.48	1.36%
100	No	44100	35	1	44014.08	0.19%	17	1	44642.86	1.23%
100	No	32000	49	0	31887.76	0.35%	24	1	31887.76	0.35%
100	No	22050	71	0	22007.04	0.19%	35	1	22007.04	0.19%
100	No	16000	97	1	16025.64	0.16%	49	0	15943.88	0.35%
100	No	11025	141	1	11042.4	0.16%	71	0	11003.52	0.19%
100	No	8000	195	1	7992.327	0.10%	97	1	8012.821	0.16%
100	Yes	96000	2	0	97656.25	1.73%	2	0	97656.25	1.73%
100	Yes	48000	4	0	48828.13	1.73%	4	0	48828.13	1.73%
100	Yes	44100	4	1	43402.78	1.58%	4	1	43402.78	1.58%
100	Yes	32000	6	0	32552.08	1.73%	6	0	32552.08	1.73%
100	Yes	22050	9	0	21701.39	1.58%	9	0	21701.39	1.58%
100	Yes	16000	12	0	16276.04	1.73%	12	0	16276.04	1.73%
100	Yes	11025	17	1	11160.71	1.23%	17	1	11160.71	1.23%
100	Yes	8000	24	1	7971.939	0.35%	24	1	7971.939	0.35%
72	No	192000	6	0	187500	2.34%	3	0	187500	2.34%
72	No	96000	11	1	97826.09	1.90%	6	0	93750	2.34%
72	No	48000	32	1	34615.38	27.88%	11	1	48913.04	1.90%
72	No	44100	25	1	44117.65	0.04%	13	0	43269.23	1.88%
72	No	32000	35	0	32142.86	0.45%	17	1	32142.86	0.45%
72	No	22050	51	0	22058.82	0.04%	25	1	22058.82	0.04%
72	No	16000	70	1	15957.45	0.27%	35	0	16071.43	0.45%
72	No	11025	102	0	11029.41	0.04%	51	0	11029.41	0.04%
72	No	8000	140	1	8007.117	0.09%	70	1	7978.723	0.27%
72	Yes	96000	2	0	70312.5	26.76%	2	0	70312.5	26.76%
72	Yes	48000	3	0	46875	2.34%	3	0	46875	2.34%
72	Yes	44100	3	0	46875	6.29%	3	0	46875	6.29%
72	Yes	32000	4	1	31250	2.34%	4	1	31250	2.34%
72	Yes	22050	6	1	21634.62	1.88%	6	1	21634.62	1.88%
72	Yes	16000	9	0	15625	2.34%	9	0	15625	2.34%
72	Yes	11025	13	0	10817.31	1.88%	13	0	10817.31	1.88%
72	Yes	8000	17	1	8035.714	0.45%	17	1	8035.714	0.45%
- 1 4	169	0000	L ''	1	0000.7 14	U. T U /U	17		0000.7 14	U. T J /U

13.3.6 DMA transfer

The SPI supports write and read operations with DMA. Whether used as SPI or I²S, read/write request using DMA comes from the same peripheral. As a result, their configuration procedure are the same, described as follows.

Transmission with DMA

- Select DMA channel: Select a DMA channel for the current SPI from DMA channel map table described in DMA chapter.
- Configure the destination of DMA transfer: Configure the SPI_DT register address as the destination address bit of DMA transfer in the DMA control register. Datat will be sent to this address after transmit request is received by DMA.
- Configure the source of DMA transfer: Configure the memory address as the source of DMA transfer in the DMA control register. Data will be loaded into the SPI_DT register from the memory address after transmit request is received by DMA.
- Configure the total number of bytes to be transferred in the DMA control register.
- Configure the channel priority of DMA transfer in the DMA control register.
- Configure DMA interrupt generation after half or full transfer in the DMA control register.
- Enable DMA transfer channel in the DMA control register.

Reception with DMA

- Select DMA transfer channel: Select a DMA channel for the current SPI from DMA channel map table described in DMA chapter.
- Configure the destination of DMA transfer: Configure the memory address as the destination of DMA transfer in the DMA control register. Data will be loaded from the SPI_DT register to the programmed destination after reception request is received by DMA.
- Configure the source of DMA transfer: Configure the SPI_DT register address as the source of DMA transfer in the DMA control register. Data will be loaded from the SPI_DT register to the programmed destination after reception request is received by DMA.
- Configure the total number of bytes to be transferred in the DMA control register.
- Configure the total number of bytes to be transferred in the DMA control register.
- Configure DMA interrupt generation after half or full transfer in the DMA control registe
- Enable DMA transfer channel in the DMA control register.

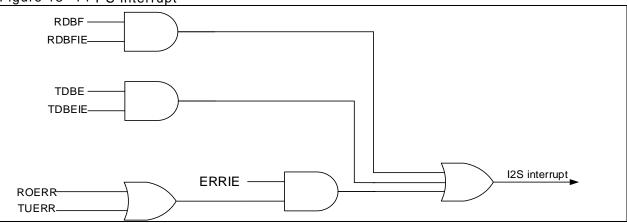
13.3.7 Transmitter/Receiver

Whether being used as SPI or I2S, there is no difference for CPU. The SPI (in whatever mode) shares the same base address, the same SPI_DT register, the same transmitter and receiver. The SPI transmitter and receiver is responsible fore sending and receiving the desired data frame according to the configuration of the communication controller. Thus their status flags such as TDBE, RDBF and ROERR, and their interrupt enable bits including TDBEIE, RDBFIE and ERRIE are identifical.

- Special attention must be paid to:
- CRC check is not available on the I²S. Any operation linked to CRC, including CCERR flag and the corresponding interrupts, is not supported.
- I²S protocol needs decode the current channel status. The ACS bit is used to judge whether the current transfer occurs on the left channel (ACS=0) or the right channel (ACS=1).
- TUERR bit indicates whether an underrun occurs. TUERR=1 means an underrun error occurs on the transmitter. An interrupt is generated when the ERRIE is set.
- Read/write operation to the SPI_DT register is different under different audio protocols, data bits and channel bits. Refer to the audio protocol selector section for more information.
- Pay more attention to the I²S disable operation under different configurations, shown as follows:
- I2SDBN=00, I2SCBN=1, STDSLE=10: wait for the second-to-last RDBF=1 and 17 CK periods before disabling the I^2S .
- I2SDBN=00, I2SCBN=1, STDSLE=00 or STDSLE=01 or STDSLE=11: wait for the last RDBF=1 and one CK period before the I²S.

— I2SDBN, I2SCBN,STDSLE combination: wait for the second-to-last RDBF=1 and one CK period before disabling the I^2S .

I²S transmitter configuration procedure:


- Configure operation mode selector
- Configure audio protocol selector
- Configure I2S_SCK controller
- Configure DMA transfer (if necessary)
- Set the I2SEN bit to enable I2S
- Follow above steps to configure the I²SxEXT (For I²S full-duplex mode)

I²S receiver configuration procedure:

- Configure operation mode selector
- Configure audio protocol selector
- Configure I2S SCK controller
- Configure DMA transfer (if necessary)
- Set the I2SEN bit to enable I2S
- Follow above steps to configure the I²SxEXT (For I²S full-duplex mode)

13.3.8 Interrupts

Figure 13- 14 I2S interrupt

13.3.9 IO pin control

The I²S needs three pins for transfer operatioin, namely, the SD, WS and CK. The MCLK pin is also required if need to provide main clock for peripherals. The I²S shares some pins with the SPI, described as follows:

- SD: Serial data (mapped on the MOSI pin) for bidirectional data transmission and reception.
- WS: Word select (mapped on the CS pin) for data control signal output in master mode, and input in slave mode.
- CK: Communication clock (mapped on the SCK pin) as clock signal output in master mode,and input in slave mode.
- MCLK: Master clock (mapped independently) is used to provide main clock for peripherals. The frequency of output clock signal is set to 256x Fs (audio sampling frequency)

13.4SPI registers

These peripheral registers must be accessed by half-word (16 bits) or word (32 bits).

Table 13- 2 SPI register map and reset value

Register	Offset	Reset value
SPI_CTRL1	0x00	0x0000
SPI_CTRL2	0x04	0x0000
SPI_STS	0x08	0x0002
SPI_DT	0x0C	0x0000
SPI_CPOLY	0x10	0x0007
SPI_RCRC	0x14	0x0000
SPI_TCRC	0x18	0x0000
SPI_I2SCTRL	0x1C	0x0000
SPI_I2SCLKP	0x20	0x0002

13.4.1 SPI control register1 (SPI_CTRL1) (Not used in I²S mode)

Bit	Register	Reset value	Type	Description
			-	Single line bidirectional half-duplex enable
Bit 15	SLBEN	0x0	rw	0: Disabled
				1: Enabled
				Single line bidirectional half-duplex transmission direction
Bit 14	SLBTD	0x0	rw	This bit and the SLBEN bit together determine the data output direction in "Single line bidirectional half-duplex" mode.
				0: Receive-only mode
				1: Transmit-only mode
_				RC calculation enable
Bit 13	CCEN	0x0	rw	0: Disabled
				1: Enabled
_				Transmit CRC next
Bit 12	NTC	0x0	rw	When this bit is set, it indicates that the next data transferred is CRC value.
				0: Next transmitted data is the normal value
				1: Next transmitted data is CRC value
		0x0	rw	Frame bit num
Bit 11	FBN			This bit is used to configure the number of data frame bit for transmission/reception.
				0: 8-bit data frame
				1: 16-bit data frame
				Receive-only active
Bit 10	ORA	0x0	rw	In two-wire unidirectional mode, when this bit is set, it indicates that Receive-only is active, but the transmit is not allowed.
				0: Transmission and reception
				1: Receive-only mode
-				Software CS enable
Bit 9	SWCSEN	0x0	rw	When this bit is set, the CS pin level is determined by the SWCSIL bit. The status of I/O level on the CK pin is invalid.
	 	UAU		0: Disabled
				1: Enabled
Bit 8	SWCSIL	0x0	rw	Software CS internal level

				This bit is valid only when the SWCSEN is set. It determines the level on the CS pin.
				In master mode, this bit must be set.
				0: Low level
				1: High level
-				LSB transmit first
				This bit is used to select for MST transfer first or LSB
Bit 7	LTF	0x0	rw	transfer first.
		57.0		0: MSB
				1: LSB
				SPI enable
Bit 6	SPIEN	0x0	rw	0: Disabled
Dit 0	02.1	OAG		1: Enabled
				Master clock frequency division
				In master mode, the peripheral clock divided by the
				prescaler is used as SPI clock. The MDIV[3] bit is in the
				SPI_CTRL2 register, MDIV[3: 0]:
				0000: Divided by 2
				0001: Divided by 4
				0010: Divided by 8
Bit 5: 3	MDIV	0x0	rw	0011: Divided by 16
				0100: Divided by 32
				0101: Divided by 64
				0110: Divided by 128
				0111: Divided by 256
				1000: Divided by 512
				1001: Divided by 1024
				Master enable
Bit 2	MSTEN	0x0	rw	0: Disabled (Slave)
		57.0		1: Enabled (Master)
				Clock polarity
				Indicates the polarity of clock output in idle state.
Bit 1	CLKPOL	0x0	rw	0: Low level
				1: High level
				Clock phase
				·
Bit 0	CLKPHA	0x0	rw	0: Data capture starts from the first clock edge

Note: The SPI_CTRL1 register must be 0 in I²S mode.

13.4.2 SPI control register2 (SPI_CTRL2)

Bit	Register	Reset value	Type	Description
Bit 15: 9	Reserved	0x00	resd	Forced to be 0 by hardware.
D:1 0	MDD/	0.0		Master clock frequency division
Bit 8	MDIV	0x0	rw	Refer to the MDIV[2: 0] of the SPI_CTRL1 register.
				Transmit data buffer empty interrupt enable
Bit 7	TDBEIE	0x0	rw	0: Disabled
				1: Enabled
				Receive data buffer full interrupt enable
Bit 6	RDBFIE	0x0	rw	0: Disabled
				1: Enabled
				Error interrupt enable
Bit 5	ERRIE	0x0	rw	This bit controls interrupt generation when errors occur (CCERR, MMERR, ROERR and TUERR)
				0: Disabled

				1: Enabled
Bit 4: 3	Reserved	0x0	resd	Kept at its default value
				Hardware CS output enable
Bit 2	HWCSOE	0x0	rw	This bit is valid only in master mode. When this bit is set, the I/O output on the CS pin is low; when this bit is 0, the I/O input on the CS pin must be set high.
				0: Disabled
				1: Enabled
				DMA transmit enable
Bit 1	DMATEN	0x0	rw	0: Disabled
				1: Enabled。
				DMA receive enable
Bit 0	DMAREN	0x0	rw	0: Disabled
				1: Enabled

13.4.3 SPI status register (SPI_STS)

Bit	Register	Reset value	Type	Description
Bit 15: 8	Reserved	0x00	resd	Forced to be 0 by hardware
				Busy flag
Bit 7	BF	0x0	ro	0: SPI is not busy.
				1: SPI is busy.
				Receiver overflow error
Bit 6	ROERR	0x0	ro	0: No overflow error
				1: Overflow error occurs.
				Master mode error
Bit 5	MMERR	0x0	ro	This bit is set by hardware and cleared by software (read/write access to the SPI_STS register, followed by write operation to the SPI_CTRL1 regitser)
				0: No mode error
				1: Mode error occurs.
				CRC error
Bit 4	CCERR	0x0	rw0c	Set by hardware, and cleared by software.
	COERR	UXU	TWOC	0: No CRC error
				1: CRC error occurs.
				Transmitter underload error
				Set by hardware, and cleared by software (read the SPI_STS register).
Bit 3	TUERR	0x0	ro	0: No underload error
				1: Underload error occurs.
				Note: This bit is only used in I ² S mode.
				Audio channel state
				This bit indicates the status of the current audio channel.
Bit 2	ACS	0x0	ro	0: Left channel
				1: Right channel
				Note: This bit is only used in I ² S mode.
				Transmit data buffer empty
Bit 1	TDBE	0x1	ro	0: Transmit data buffer is not empty.
				1: Transmit data buffer is not empty.
				Receive data buffer full
Bit 0	RDBF	0x0	ro	0: Transmit data buffer is not full.
				1: Transmit data buffer is full.

13.4.4 SPI data register (SPI_DT)

Bit	Register	Reset value	Type	Description
				Data value
Bit 15: 0	DT	0x0000	rw	This register controls read and write operations. When the data bit is set as 8 bit, only the 8-bit LSB [7: 0] is valid.

13.4.5 SPICRC register (SPI_CPOLY) (Not used in I²S mode)

Bit	Register	Reset value	Type	Description
				CRC polynomial
Bit 15: 0	CPOLY	0x0007	rw	This register contains the polynomial used for CRC calculation.
				Note: This register is valid only in SPI mode.

13.4.6 SPIRxCRC register (SPI_RCRC) (Not used in I2S mode)

Bit	Register	Reset value	Type	Description
				Receive CRC
Bit 15: 0	RCRC	0x0000	ro	When CRC calculation is enabled, this register contains the CRC value computed based on the received data. This register is reset when the CCEN bit in the SPI_CTRL1 register is cleared.
BIL 13. U RONG		RC 0x0000	.0	When the data frame format is set to 8-bit data, only the 8-bit LSB ([7: 0]) are calculated based on CRC8 standard; when 16-bit data bit is selected, follow CRC16 standard.
				Note: This register is only used in SPI mode.

13.4.7 SPITxCRC register (SPI_TCRC)

Bit	Register	Reset value	Type	Description
				Transmit CRC
Bit 15: 0	TCRC	0x0000	ro	When CRC calculation is enabled, this register contains the CRC value computed based on the transmitted data. This register is reset when the CCEN bit in the SPI_CTRL1 register is cleared.
				When the data frame format is set to 8-bit data, only the 8-bit LSB ([7: 0]) are calculated based on CRC8 standard; when 16-bit data bit is selected, follow CRC16 standard.
				Note: This register is only used in SPI mode.

13.4.8 SPI_I2S register (SPI_I2SCTRL)

Bit	Register	Reset value	Type	Description
Bit 15: 12	Reserved	0x0	resd	Forced to be 0 by hardware.
				I ² S mode select
Bit 11	I2SMSEL	0x0	rw	0: SPI mode
				1: I ² S mode
				I ² S enable
Bit 10	I2SEN	0x0	rw	0: Disabled
				1: Enabled
				I ² S operation mode select
				00: Slave transmission
Bit 9: 8	OPERSEL	0x0	rw	01: Slave reception
				10: Master transmission
				11: Master reception
				PCM frame synchronization
Bit 7	PCMFSSEL	0x0	rw	This bit is valid only when the PCM standard is used.
				0: Short frame synchronization

				1: Long frame synchronization
Bit 6	Reserved	0x0	resd	Kept at its default value
				I ² S standard select
				00: Philips standard
Bit 5: 4	STDSEL	0x0	rw	01: MSB-aligned standard (left-aligned)
				10: LSB-aligned standard (right-aligned)
				11: PCM standard
				I ² S clock polarity
				This bit indicates the clock polarity on the clock pin in idle
Bit 3	I2SCLKPOL	0x0	rw	state.
				0: Low
				1: High
"				I ² S data bit num
				00: 16-bit data length
Bit 2: 1	I2SDBN	0x0	rw	01: 24-bit data length
				10: 32-bit data length
				11: Not allowed.
				I ² S channel bit num
				This bit can be configured only when the I ² S is set to 16-
Bit 0	I2SCBN	0x0	rw	bit data; otherwise, it is fixed to 32-bit by hardware.
				0: 16-bit wide
				1: 32-bit wide

13.4.9 SPI_I2S prescaler register (SPI_I2SCLKP)

Bit	Register	Reset value	Type	Description
Bit 15: 12	Reserved	0x0	resd	Forced to be 0
				I ² S Master clock output enable
Bit 9	I2SMCLKOE	0x0	rw	0: Disabled
				1: Enabled
				IOdd factor for I ² S division
Bit 8	I2SODD	0x0	rw	0: Actual divider factor =I2SDIV*2;
				1: Actual divider factor =(I2SDIV*2)+1。
D:: 11 10				I ² S division
Bit 11: 10 Bit 7: 0	I2SDIV	0x02	rw	It is not allowed to configure I2SDIV[9: 0]=0 or I2SDIV[9: 0]=1

2021.12.01 Page 194 Ver 2.02

14 Timer

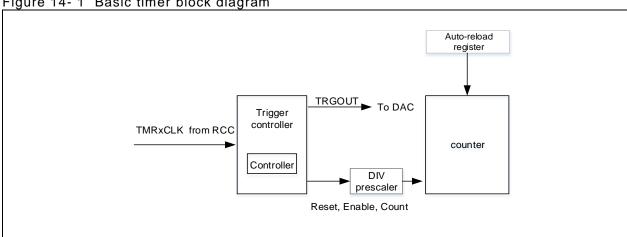
AT32F403A/407 timers include basic timers, general-purpose timers, and advanced-control timers. Please refer to Section $14.1 \sim$ Section 14.4 for the detailed function modes. All functions of different timers are shown in the following tables.

Table 14- 1 TMR functional comparison

Timer type	Timer	Counter bit	Count mode	Repetition	Prescaler	DMA requests	Capture/compare channel	PWM input mode	EXT input	Break input
Advanced- control timer	TMR1 TMR8	16	Up Down Up/Down	8-bit	1~65535	0	4	0	0	0
	TMR2 TMR5	16/32	Up Down Up/Down	Х	1~65535	0	4	0	0	Х
	TMR3 TMR4	16	Up Down Up/Down	Х	1~65535	0	4	0	0	Х
General- purpose timer	TMR9 TMR12	16	Up	Х	1~65535	Х	2	0	X	Х
	TMR10 TMR11 TMR13 TMR14	16	Up	х	1~65535	х	1	X	X	х
Basic timer	TMR6 TMR7	16	Up	х	1~65535	0	Х	Х	Х	Х

Timer type	Timer	Counter bit	Count mode	PWM output	Single pulse output	Complementary	Dead- time	Encoder interface connection	Interfacing with hall sensors	
Advanced- control timer	TMR1 TMR8	16	Up Down Up/Down	0	0	0	0	0	0	Timer synchronization
	TMR2 TMR5	16/32	Up Down Up/Down	0	0	Х	Х	0	0	Timer synchronization
	TMR3 TMR4	16	Up Down Up/Down	0	0	Х	Х	0	0	Timer synchronization
General- purpose timer	TMR9 TMR12	16	Up	0	0	Х	Х	Х	Х	Timer synchronization ADC/DAC
	TMR10 TMR11 TMR13 TMR14	16	Up	0	0	X	x	X	X	NA
Basic timer	TMR6 TMR7	16	Up	Х	Х	Х	Х	Х	Х	DAC

14.1 Basic timer (TMR6 and TMR7)

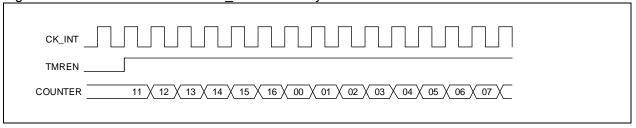

14.1.1 TMR6 and TMR7 introduction

Each of the basic timers (TMR6 and TMR7) includes a 16-bit up counter and the corresponding control logic. without being connected to external I/Os. They can be used for a basic timing and providing clocks for the digital-to-analog converter (DAC).

14.1.2 TMR6 and TMR7 main features

- Internal clock used as counter clock
- 16-bit up counter
- Synchronization circuit to trigger DAC (Unique characteristics)
- Interrrupt on overflow event and DMA request

Figure 14- 1 Basic timer block diagram

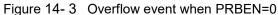


14.1.3 TMR6 and TMR7 function overview

14.1.3.1 Count clock

The counter clock of TMR6 and TMR7 is provided by the internal clock source (CK INT) divided by prescaler.

Figure 14-2 Control circuit with CK INT divided by 1



14.1.3.2 Counting mode

The basic timer only supports upcounting mode. It has an internal 16-bit counter in which the value is loaded with the TMRx PR register. The value in the TMRx PR is immediately moved to the shadow register by deault. When the periodic buffer is enabled (PRBEN=1), the value in the TMRx PR register is transferred to the shadow register only at an overflow event. The OVFEN and OVFS bits are used to configure the overflow event.

Setting the TMREN bit (TMREN=1) enables the timer to start counting. Base on synchronization logic, however, the actual enable signal TMR EN is set 1 clock cycle after the TMREN is set.

In upcounting mode, the counter counts from 0 to the value programmed in the TMRx PR register, restarts from 0, and generates a counter overflow event, with the OVFIF bit being set. If the overflow event is disabled, the counter is no longer reloaded with the preload and re-loaded value on counter overflow, otherwise, the prescaler and re-loaded value will be updated on overflow event.

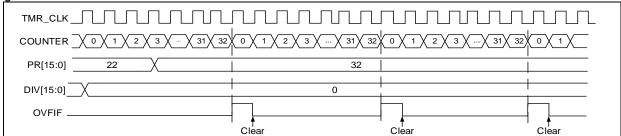
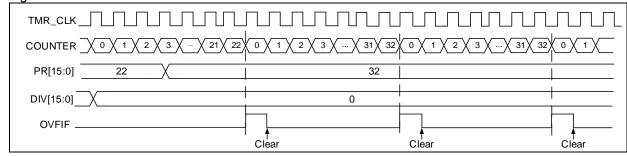
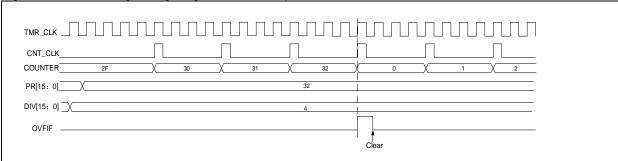




Figure 14-4 Overflow event when PRBEN=1

14.1.3.3 Debug mode

When the microcontroller enters debug mode (Cortex ®-M4F core halted), the TMRx counter stops counting when the TMRx_PAUSE bit is set.

14.1.4 TMR6 and TMR7 registers

These peripheral registers must be accessed by word (32 bits).

In Table 14-2, all the TMRx registers are mapped to a 16-bit addressable space.

Table 14- 2 TMR6 and TMR7— register table and reset value

Offset	Deact value
	Reset value
0x00	0x0000
0x04	0x0000
0x0C	0x0000
0x10	0x0000
0x14	0x0000
0x24	0x0000
0x28	0x0000
0x2C	0x0000
	0x00 0x04 0x0C 0x10 0x14 0x24

14.1.4.1 TMR6 and TMR7 control register1 (TMRx_CTRL1)

Bit	Register	Reset value	Type	Description
Bit 15: 8	Reserved	0x00	resd	Kept at its default value.
				Period buffer enable
Bit 7	PRBEN	0x0	rw	0: Period buffer is disabled.
				1: Period buffer is enabled.
Bit 6: 4	Reserved	0x0	resd	Kept at its default value.
				One cycle mode enable
				This bit is used to select whether to stop the counter at
Bit 3	OCMEN	0x0	rw	update event.
				0: Disabled
				1: Enabled
				Overflow event source
				This bit is used to configure overflow event or DMA
D:4 0	OVEC	0.40		request sources.
Bit 2	OVFS	0x0	rw	0: Counter overflow, setting the OVFSWTR bit or overflow
				event generated from the slave controller
				1: Only counter overflow generates an overflow event.
				Overflow event enable
				This bit is used to enable or disable OEV event generation.
				0: OEV event is enabled. An overflow event is generated by any of the following events:
				- Counter overflow
Bit 1	OVFEN	0x0	rw	- Setting the OVFSWTR bit
				- Overflow event generated from the slave controller
				1: OEV event is disabled.
				If the OVFSWTR bit is set, or a hardware reset is generated from the slave controller, the counter and the prescaler are reinitialized.
				Note: This bit is set and cleared by software.
•				TMR enable
Bit 0	TMREN	0x0	rw	0: Disabled
				1: Enabled

14.1.4.2 TMR6 and TMR7 control register2 (TMRx_CTRL2)

Bit	Register	Reset value	Type	Description
Bit 15: 7	Reserved	0x000	resd	Kept at its default value.
				Master TMR output selection
				This field is used to select the signals in master mode to be sent to slave timers.
Bit 6: 4	PTOS	0x0	rw	000: Reset
				001: Enable
				010: Update
Bit 3: 0	Reserved	0x0	resd	Kept at its default value.

14.1.4.3 TMR6 and TMR7 DMA/interrupt enable register (TMRx_IDEN)

Bit	Register	Reset value	Туре	Description	
Bit 15: 9	Reserved	0x00	resd	Kept at its default value.	
				Overflow event DMA request enable	
Bit 8	OVEDEN	0x0	rw	0: Disabled	
Dito	OVIDEN	ONO	. •••	1: Enabled	
Bit 7: 1	Reserved	0x00	resd	Kept at its default value.	

Overflow interrupt enable

Bit 0 OVFIEN 0x0 rw 0: Disabled
1: Enabled

14.1.4.4 TMR6 and TMR7 interrupt status register (TMRx_ISTS)

Bit	Register	Reset value	Туре	Description
Bit 15: 1	Reserved	0x0000	resd	Kept at its default value.
				Overflow interrupt flag
				This bit is set by hardware at an update event. It is cleared by software.
				0: No update event occurs.
Bit 0	OVFIF	0x0	rw0c	1: Update event occurs, and OVFEN=0, and OVFS=0 in the TMRx_CTRL1 register:
				 An update event occurs when OVFG=1 in the TMRx_SWEVE register
				 An update event occurs when the counter value (CVAL) is reinitialized by a trigger event.

14.1.4.5 TMR6 and TMR7 software event register (TMRx_SWEVT)

Bit	Register	Reset value	Type	Description
Bit 15: 1	Reserved	0x0000	resd	Kept at its default value.
				Overflow event triggered by software
			_	An overflow event is trigged by software.
Bit 0	OVFSWTR	0x0	rw0c	0: No effect
				1:Generate an overflow event by software write operation.

14.1.4.6 TMR6 and TMR7 counter value (TMRx_CVAL)

Bit	Register	Reset value	Type	Description
Bit 15: 0	CVAL	0x0000	rw	Counter value

14.1.4.7 TMR6 and TMR7 division (TMRx_DIV)

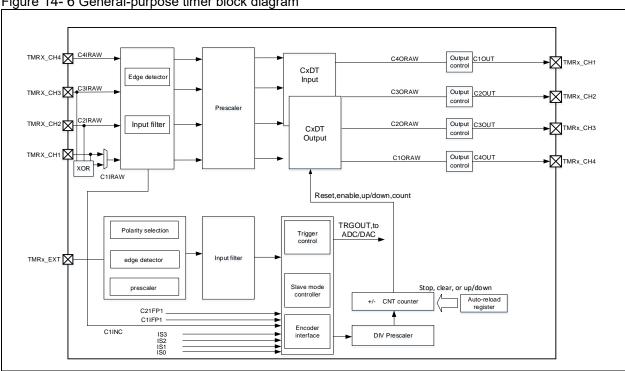
Bit	Register	Reset value	Type	Description
				Divider value
Bit 15: 0	DIV	0x0000	rw	The counter clock frequency $f_{CK_CNT} = f_{TMR_CLK} / (DIV[15: 0]+1)$. At each overflow event, DIV value is sent to the DIV register.

14.1.4.8 TMR6 and TMR7 period register (TMRx_PR)

Bit	Register	Reset value	Type	Description
				Period value
Bit 15: 0	PR	0x0000	rw	This indicates the period value of the TMRx counter. The timer stops working when the period value is 0.

14.2 General-purpose timer (TMR2 to TMR5)

14.2.1 TMRx introduction

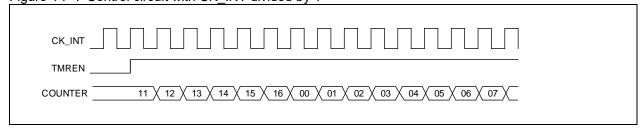

The general-purpose timer (TMR2 to TMR5) consists of a 16-bit counter supporting up, down, up/down (bidirectional) counting modes, four capture/compare registers, and four independent channels to achieve input capture and programmable PWM output.

14.2.2 TMRx main features

- Source of count clock is selectable: internal clock, external clock and internal trigger
- 16-bit up, down, up/down and encoder mode counter (TMR2/5 can be extended to 32-bit)
- 4 independent channels for input capture, output compare, PWM generation and one-pulse mode output
- Synchronization control between master and slave timers
- Interrupt/DMA is generated at overflow event, trigger event and channel event
- Support TMR burst DMA transfer

Figure 14- 6 General-purpose timer block diagram

14.2.3 TMRx functional overview

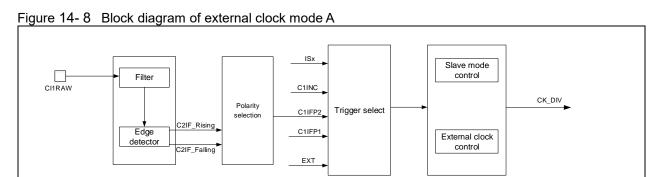

14.2.3.1 Count clock

The count clock of TMR2~TMR5 can be provided by the internal clock (CK_INT), external clock (external clock mode A and B) and internal trigger input (ISx)

Internal clock (CK INT)

By default, the CK_INT divided by the prescaler is used to drive the counter to start counting.

Figure 14-7 Control circuit with CK INT divided by 1


External clock (TRGIN/EXT)

The counter clock can be provided by two external clock sources, namely, TRGIN and EXT signals.

When SMSEL=3'111, external clock mode A is selected. Set the STIS[2: 0] bit to select TRGIN signal to drive the counter to start counting.

When ECMBEN=1, external clock mode B is selected. The counter starts counting driven by EXT signal.

Note: The delay between the signal on the input side and the actual clock of the counter is due to the synchronization circuit.

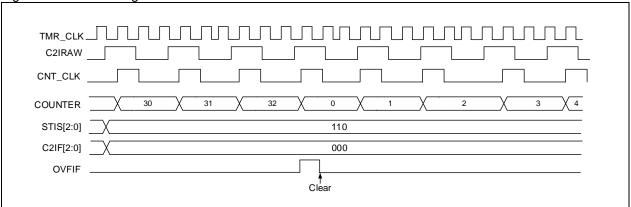
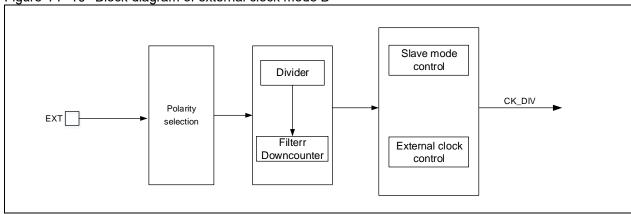
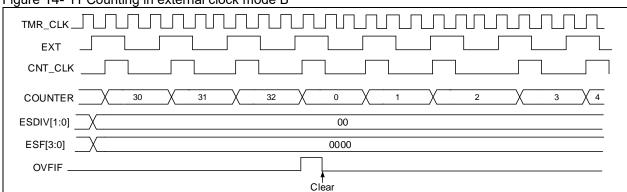




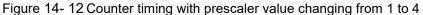
Figure 14- 10 Block diagram of external clock mode B

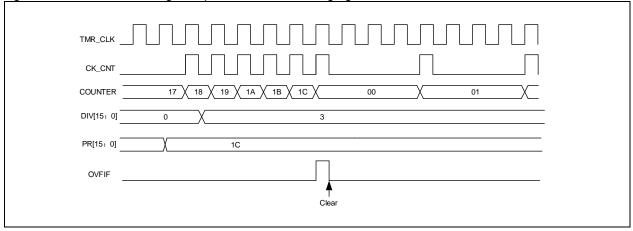
Note: The delay between the EXT signal on the input side and the actual clock of the counter is due to the synchronization circuit.

Figure 14- 11 Counting in external clock mode B

Internal trigger input (ISx)

Timer synchronization allows interconnection between several timers. The TMR_CLK of one timer can be provided by the TRGOUT signal output by another timer. Set the STIS[2: 0] bit to select internal trigger signal to enable counting.

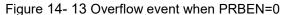

Each timer (TMR2 to TMR5) consists of a 16-bit prescaler, which is used to generate the CK_CNT that enables the counter to count. The frequency division relationship between the CK_CNT and TMR_CLK can be adjusted by setting the value of the TMRx_DIV register. The prescaler value can be modified at any time, but it takes effect only when the next overflow event occurs.


Table 14-3	TMRx	internal	trigger	connection
------------	------	----------	---------	------------

Slave controler	IS0 (STIS = 000)	IS1 (STIS = 001)	IS2 (STIS = 010)	IS3 (STIS = 011)
TMR2	TMR1	TMR8/USB_SOF(2)	TMR3	TMR4
TMR3	TMR1	TMR2	TMR5	TMR4
TMR4	TMR1	TMR2	TMR3	TMR8
TMR5	TMR2	TMR3	TMR4	TMR8

Note 1: If there is no corresponding timer in a device, the corresponding trigger signal ISx is not present.

Note 2: TMR8 or USB_SOF is available for IS1 to select, determined by the TMR2IS1_IRMP bit of the IOMUX MAP4 register.

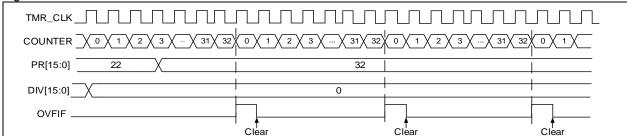
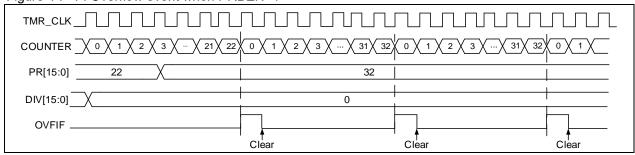

14.2.3.2 Counting mode

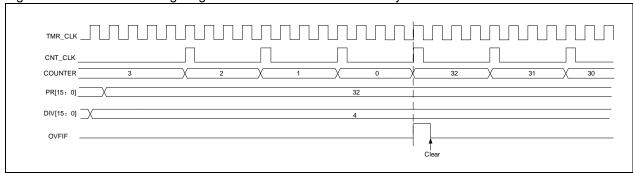
The timer (TMR2 to TMR5) supports several counting modes to meet different application scenarios. Each timer has an internal 16-bit up, down, up/down counter. TMR2/5 can be extended to 32-bit by setting the PMEN bit. The TMRx_PR register is loaded with the counter value. The value in the TMRx_PR is immediately moved to the shadow register by deault. When the periodic buffer is enabled (PRBEN=1), the value in the TMRx_PR register is transferred to the shadow register only at an overflow event. The OVFEN and OVFS bits are used to configure the overflow event.

Setting the TMREN bit (TMREN=1) enables the timer to start counting. Base on synchronization logic, however, the actual enable signal TMR_EN is set 1 clock cycle after the TMREN is set.

Upcounting mode

In upcounting mode, the counter counts from 0 to the value programmed in the TMRx_PR register, restarts from 0, and generates a counter overflow event, with the OVFIF bit being set. If the overflow event is disabled, the register is no longer reloaded with the preload and re-loaded value after counter overflow occurs, otherwise, the prescaler and re-loaded value will be updated at an overflow event.

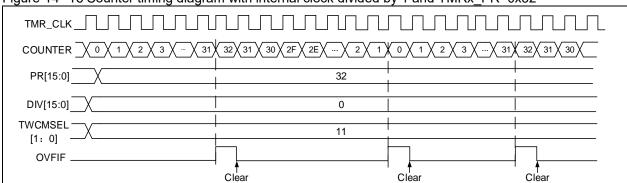




Figure 14- 14 Overflow event when PRBEN=1

Downcounting mode

In downcounting mode, the counter counts from the value programmed in the TMRx_PR register down to 0, and restarts from the value programmed, and generates a counter underflow event.

Figure 14- 15 Counter timing diagram with internal clock divided by 4

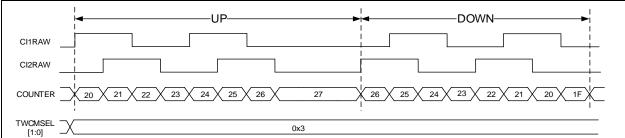


Up/down counting mode

In up/down counting mode, the counter counts up/down alternatively. When the counter counts from the value programmed in the TMRx_PR register down to 1, an underflow event is generated, and then restarts counting from 0; When the counter counts from 0 to the value of the TMRx_PR register -1, an overflow event is generated, and then restarts counting from the value of the TMRx_PR register. The OWCDIR bit indicates the current counting direction.

Note: The OWCDIR is ready-only in up/down counting mode.

Figure 14- 16 Counter timing diagram with internal clock divided by 1 and TMRx_PR=0x32


Encoder interface mode

To enble the encoder interface mode, write SMSEL[2: 0]= 3'b001/3'b010/3'b011. In this mode, the two inputs (C1IN/C2IN) are required. Depending on the level on one input, the counter counts up or down on the edge of the other input. The OWCDIR bit indicates the direction of the counter, as shown in the table below:

Table 14- 4 Couting direction versus encoder signals

A attiva a dara	Level on opposite signal	C1INFP1 signal		C2INFP2 signal	
Active edge	(C1INFP1 to C2IN, C2INFP2 to C1IN)	Rising	Falling	Rising	Falling
Count on CAIN only	High	Down	Up	No count	No count
Count on C1IN only	Low	Up	Down	No count	No count
Count on COIN only	High	No count	No count	Up	Down
Count on C2IN only	Low	No count	No count	Rising No count No count	Up
Count on both C1IN and	High	Down	Up	Up	Down
C2IN	Low	Up	Down No count Int No count Up Int No count Down Up Up	Up	

Figure 14- 17 Example of counter behavior in encoder interface mode (encoder mode C)

14.2.3.3 TMR input function

Each of TMR2~TMR5 timers has four independent channels, with each channel being configured as input or output. As input, the channel can be used for the filtering, selection, division and input capture of the input signals.

Figure 14- 18 Input/output channel 1 main circuit

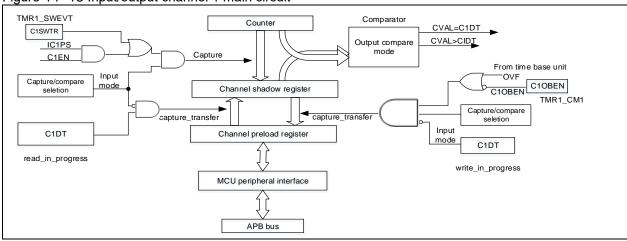
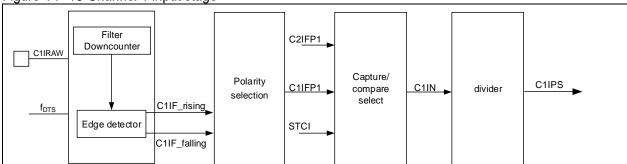



Figure 14- 19 Channel 1 input stage

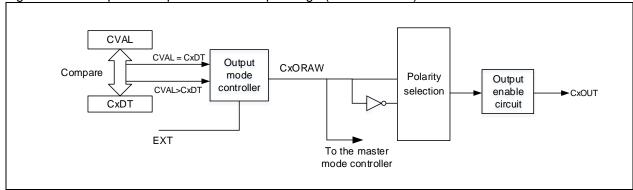
Input mode

In input mode, the TMRx_CxDT registers latch the current counter values after the selected triggle signal is detected, and the capture compare interrupt flag bit (CxIF) is set. An interrupt or a DMA request will be generated if the CxIEN and CxDEN bits are enabled. If the selected trigger signal is detected when the CxIF is set, the CxOF is set.

To capture the rising edge of C1IN input, following the configuration procedure mentioned below:

- Set C1C=01 in the TMRx_CxDT register to select the C1IN as channel 1 input
- Set the filter bandwidth of C1IN signal (CxDF[3: 0])
- Set the active edge on the C1IN channel by writing C1P=0 (rising edge) in the TMRx_CCTR register
- Program the capture frequency of C1IN signal (C1DIV[1: 0])
- Enable channel 1 input capture (C1EN=1)
- If needed, enable the relevant interrupt or DMA request by setting the C1IEN bit in the TMRx IDEN register or the C1DEN bit in the TMRx IDEN register

Timer Input XOR function


The 3 timer input pins (TMRx_CH1, TMRx_CH2 and TMRx_CH3) are connected to the channel 1 (selected by setting the C1INSE in the TMRx_CTRL2 register) through an XOR gate.

The XOR gate can be used to connect Hall sensors. For example, connect the three XOR inputs to the three Hall sensors respectively so as to calculate the position and speed of the rotation by analyzing three Hall sensor signals.

14.2.3.4 TMR output function

The TMR output consists of a comparator and an output controller. It is used to program the period, duty cycle and polarity of the output signal.

Figure 14- 20 Capture/compare channel output stage (channel 1 to 4)

Output mode

Write CxC[2: 0]≠2'b00 to configure the channel as output to implement multiple output modes. In this case, the counter value is compared with the value in the TMRx_CxDT register, and the intermediate signal CxORAW is generated according to the output mode selected by CxOCTRL[2: 0], which is sent to IO after being processed by the output control circuit. The period of the output signal is configured by the TMRx PR register, while the duty cycle by the TMRx CxDT register.

Output compare modes include:

- PWM mode: Set CxOCTRL=3'b110/111 to enable PWM mode. Each channel can be independently configured to output one PWM signal. In this case, the period of the output signal is configured by the TMRx_PR register, and the duty cycle by the CxDT register. The counter value is compared with the value of the TMRx_CxDT register, and the corresponding level signal is sent according to the counting direction. For more information on PWM mode A/B, refer to the description of the CxOCTRL[2: 0] bit. In up/down counting mode, the OWCDIR bit is used to indicate the counting direction.
- Forced output mode: Set CxOCTRL=3'b100/101 to enable forced output mode. In this case, the CxORAW is forced to be the programmed level, irrespective of the counter value. Despite this, the channel flag bit and DMA request still depend on the compare result.
- Output compare mode: Set CxOCTRL=3'b001/010/011 to enable output compare mode. In this
 case, when the counter value matches the value of the CxDT register, the CxORAW is forced
 high, low or toggling.
- One-pulse mode: This is a particular case of PWM mode. Set OCMEN=1 to enable one-pulse mode. In this mode, the comparison match is performed in the current counting period. The TMREN bit is cleared as soon as the current counting is completed. Therefore, only one pulse is output. When configured as in upcounting mode, the configureation must follow the rule: CVAL<CxDT≤PR; in downcounting mode, CVAL>CxDT is required.
- Fast output mode: Set CxOIEN=1 to enable this mode. If enabled, the CxORAW signal will not change when the counter value matches the CxDT, but at the beginning of the current counting period. In other words, the comparison result is advanced, so the comparison result between the counter value and the TMRx CxDT register will determine the level of CxORAW in advance.

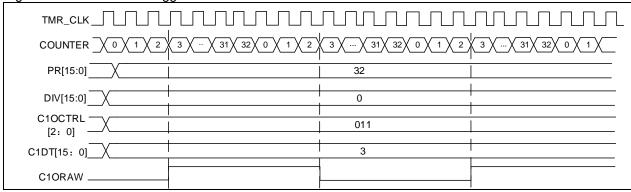

Figure 14- 21 gives an example of output compare mode (toggle) with C1DT=0x3. When the counter value is equal to 0x3, C1OUT toggles.

Figure 14- 22 gives an example of the combination between upcounting mode and PWM mode A. The output signal behaves when PR=0x32 but CxDT is configured with a different value.

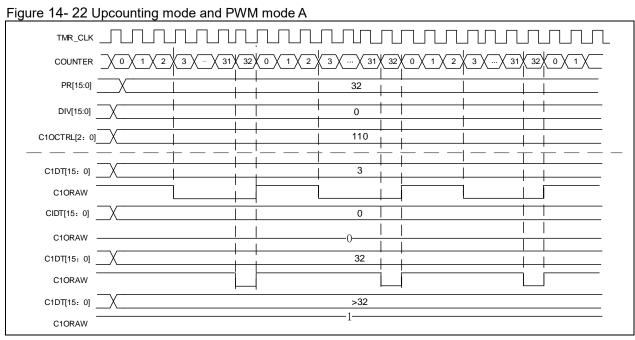

Figure 14- 23 gives an example of the combination between up/down counting mode and PWM mode A. The output signal behaves when PR=0x32 but CxDT is configured with a different value.

Figure 14- 24 gives an example of the combination between upcounting mode and one-pulse PWM mode B. The counter only counts only one cycle, and the output signal sents only one pulse.

Figure 14- 21 C1ORAW toggles when counter value matches the C1DT value

2021.12.01 Page 206 Ver 2.02

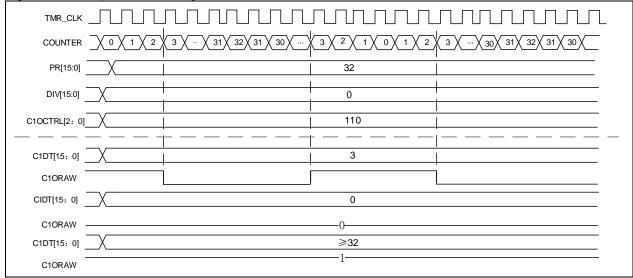
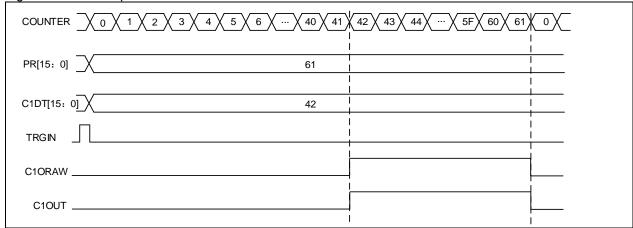
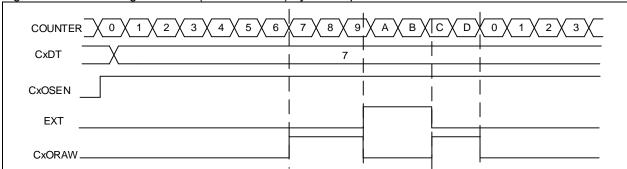



Figure 14- 24 One-pulse mode

CxORAW clear

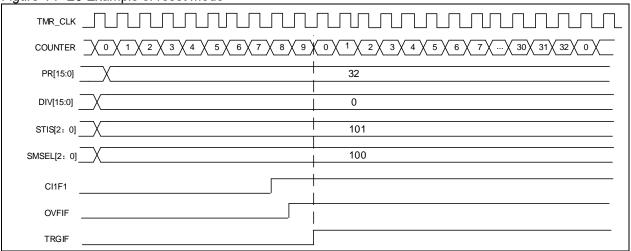

When the CxOSEN bit is set, the CxORAW signal for a given channel is cleared by applying a high level to the EXT input. The CxORAW signal remains unchanged until the next overflow event.

This function can only be used in output capture or PWM modes, and does not work in forced mode.

Figure 14-25 shows the example of clearing CxORAW signal. When the EXT input is high, the CxORAW signal, which was originally high, is driven low; when the EXT is low, the CxORAW signal outputs the corresponding level according to the comparison result between the counter value and CxDT value.

Figure 14- 25 Clearing CxORAW(PWM mode A) by EXT input

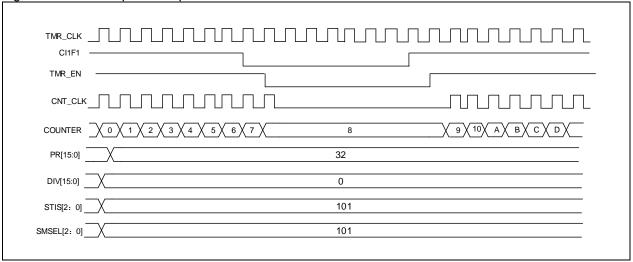
14.2.3.5 TMR synchronization


The timers are linked together internally for timer synchronization. Master timer is selected by setting the PTOS[2: 0] bit; Slave timer is selected by setting the SMSEL[2: 0] bit.

Slave mode include:

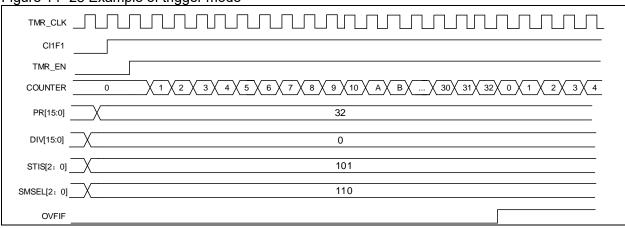
Slave mode: Reset mode

The counter and its prescaler can be reset by a selected trigger signal. An overflow event is generated when OVFS=0.


Figure 14- 26 Example of reset mode

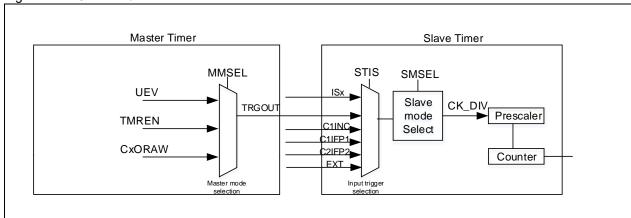
Slave mode: Suspend mode

In this mode, the counter is controlled by a selected trigger input. The counter starts counting when the trigger input is high and stops as soon as the trigger input is low.


Figure 14-27 Example of suspend mode

Slave mode: Trigger mode

The counter can start counting on the rising edge of a selected trigger input (TMR_EN=1)


Figure 14- 28 Example of trigger mode

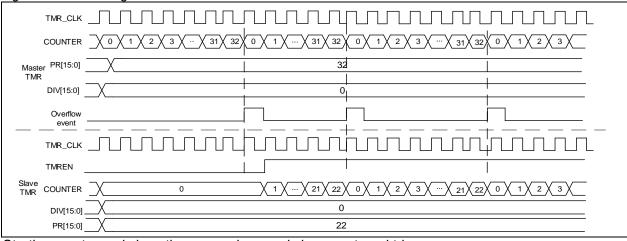
Master/slave timer interconnection

Both Master and slave timer can be configured in different master and slave modes respectively. The combination of both them can be used for various purposes. Figure 14-29 provides an example of interconnection between master timer and slave timer.

Figure 14- 29 Master/slave timer connection

Using master timer to clock the slave timer:

- Configure master timer output signal TRGOUT as an overflow event (PTOS[2: 0]=3'b010). The master timer outputs a pulse signal at each counter overflow event, which is used as the counting clock of the slave timer.
- Configure the master timer counting period (TMRx_PR registers)

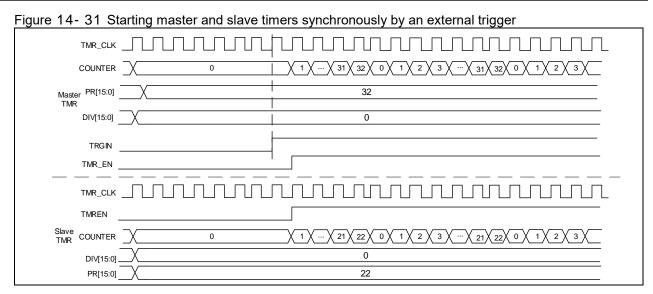


- Configure the slave timer trigger input signal TRGIN as master timer output (STIS[2: 0] in the TMRx STCTRL register)
- Configure the slave timer to use external clock mode A (SMSEL[2: 0]=3'b111 in the TMRx STCTRL register)
- Set TMREN =1 in both master timer and slave timer to enable them

Using master timer to start slave timer:

- Configure master timer output signal TRGOUT as an overflow event (PTOS[2: 0]=3'b010). The master timer outputs a pulse signal at each counter overflow event, which is used as the counting clock of the slave timer.
- Configure master timer counting period (TMRx PR registers)
- Configure slave timer trigger input signal TRGIN as master timer input
- Configure slave timer as trigger mode (SMSEL=3'b110 in the TMR2 STCTRL register)
- Set TMREN=1 to enable master timer.

Figure 14- 30 Using master timer to start slave timer



Starting master and slave timers synchronously by an external trigger:

In this example, configure the master timer as master/slave mode synchronously and enable its slave timer synchronization function. This mode is used for synchronization between master timer and slave timer.

- Set the STS bit of the master timer.
- Configure master timer output signal TRGOUT as an overflow event (PTOS[2: 0]=3'b010). The master timer outputs a pulse signal at each counter overflow event, which is used as the counting clock of the slave timer.
- Configure the slave timer mode of the master timer as trigger mode, and select C1IN as trigger source
- Configure slave timer trigger input signal TRGIN as master timer output
- Configure slave timer as trigger mode (SMSEL=3'b110 in the TMR2 STCTRL register)

2021.12.01 Page 210 Ver 2.02

14.2.3.6 Debug mode

When the microcontroller enters debug mode (CortexTM-M4F core halted), the TMRx counter stops counting by setting the TMRx_PAUSE in the DEBUG module.

14.2.4 TMRx registers

These peripheral registers must be accessed by word (32 bits).

All TMRx register are mapped into a 16-bit addressable space.

Table 14-5 TMRx register map and reset value

Register	Offset	Reset value
TMRx_CTRL1	0x00	0x0000
TMRx_CTRL2	0x04	0x0000
TMRx_STCTRL	0x08	0x0000
TMRx_IDEN	0x0C	0x0000
TMRx_ISTS	0x10	0x0000
TMRx_SWEVT	0x14	0x0000
TMRx_CM1	0x18	0x0000
TMRx_CM2	0x1C	0x0000
TMRx_CCTRL	0x20	0x0000
TMRx_CVAL	0x24	0x0000 0000
TMRx_DIV	0x28	0x0000
TMRx_PR	0x2C	0x0000 0000
TMRx_C1DT	0x34	0x0000 0000
TMRx_C2DT	0x38	0x0000 0000
TMRx_C3DT	0x3C	0x0000 0000
TMRx_C4DT	0x40	0x0000 0000
TMRx_DMACTRL	0x48	0x0000
TMRx_DMADT	0x4C	0x0000

14.2.4.1 Control register1 (TMRx_CTRL1)

Bit	Register	Reset value	Type	Description
Bit 15: 11	Reserved	0x00	resd	Kept at its default value.
				Plus Mode Enable
				This bit is used to enable TMRx plus mode. In this mode
				TMRx_CVAL, TMRx_PR and TMRx_CxDT are extended
Bit 10	PMEN	0x0	rw	from 16-bit to 32-bit.
DIL 10	INILIN	0.0	I VV	0: Disabled
				1: Enabled
				Note: This function is only valid for TMR2 and TMR5. It is not applicable to other TMRs.
				Clock division
				00: Normal
Bit 9: 8	CLKDIV	0x0	rw	01: Divided by 2
				10: Divided by 4
				11: Reserved
-				Period buffer enable
Bit 7	PRBEN	0x0	rw	0: Period buffer is disabled
				1: Period buffer is enabled
				Two-way counting mode selection
				00: One-way counting mode, depending on the OWCDIR
				bit
Bit 6: 5				01: Two-way counting mode1, count up and down
	TWCMSEL	0x0	rw	alternately, the output flag bit is set only when the counter
				counts down
D. C. C				10: Two-way counting mode2, count up and down
				alternately, the output flag bit is set only when the counter counts up
				11: Two-way counting mode3, count up and down
				alternately, the output flag bit is set when the counter
				counts up / down
				One-way count direction
Bit 4	OWCDIR	0x0	rw	0: Up
				1: Down
				One cycle mode enable
				This bit is use to select whether to stop counting at an
Bit 3	OCMEN	0x0	rw	update event
				0: The counter does not stop at an update event
				1: The counter stops at an update event
				Overflow event source
				This bit is used to select overflow event or DMA request
D:: 0	0) /50			sources.
Bit 2	OVFS	0x0	rw	0: Counter overflow, setting the OVFSWTR bit or overflow
				event generated by slave timer controller
				1: Only counter overflow generates an overflow event
				Overflow event enable
Bit 1	OVFEN	0x0	rw	0: Enabled
				1: Disabled
				TMR enable
Bit 0	TMREN	0x0	rw	0: Disabled

14.2.4.2 Control register2 (TMRx_CTRL2)

Bit	Register	Reset value	Type	Description
Bit 15: 8	Reserved	0x00	resd	Kept at its default value.
				C1IN selection
D:4 7	CAINICEI	0.40		0: CH1 pin is connected to C1IRAW input
Bit 7	C1INSEL	0x0	rw	1: The XOR result of CH1, CH2 and CH3 pins is connected to C1IRAW input
				Master TMR output selection
	PTOS			This field is used to select the TMRx signal sent to the slave timer.
		0x0		000: Reset
				001: Enable
Bit 6: 4			rw	010: Update
	-			011: Compare pulse
				100: C1ORAW signal
				101: C2ORAW signal
				110: C3ORAW signal
				111: C4ORAW signal
				DMA request source
Bit 3	DRS	0x0	rw	0: Capture/compare event
				1: Overflow event
Bit 2: 0	Reserved	0x0	resd	Kept at its default value.

14.2.4.3 Slave timer control register (TMRx_STCTRL)

Bit	Register	Reset value	Type	Description
				External signal polarity
Bit 15	ESP	0x0	rw	0: High or rising edge
				1: Low or falling edge
				External clock mode B enable
D:4.4.4	FOMDEN	00	rw	This bit is used to enable external clock mode B
Bit 14	ECMBEN	0x0	I VV	0: Disabled
				1: Enabled
				External signal divide
				This field is used to select the frequency division of an external trigger
Bit 13: 12	ESDIV	0x0	rw	00: Normal
				01: Divided by 2
				10: Divided by 4
				11: Divided by 8
				External signal filter
				This field is used to filter an external signal. The external signal can be sampled only after it has been generated N times
				0000: No filter, sampling by f_{DTS}
				0001: f _{SAMPLING} =f _{CK INT} , N=2
				0010: f _{SAMPLING} =f _{CK INT} , N=4
Bit 11: 8	ESF	0x0	rw	0011: $f_{SAMPLING} = f_{CK_INT}$, N=8
				0100: $f_{SAMPLING} = f_{DTS}/2$, N=6
				0101: $f_{SAMPLING} = f_{DTS}/2$, N=8
				0110: $f_{SAMPLING} = f_{DTS}/4$, N=6
				0111: f _{SAMPLING} =f _{DTS} /4, N=8
				1000: f _{SAMPLING} =f _{DTS} /8, N=6
				1001: f _{SAMPLING} =f _{DTS} /8, N=8

				1010: f — f /16 N—F
				1010: f _{SAMPLING} =f _{DTS} /16, N=5
				1011: f _{SAMPLING} =f _{DTS} /16, N=6
				1100: $f_{SAMPLING} = f_{DTS}/16$, N=8
				1101: f _{SAMPLING} =f _{DTS} /32, N=5
				1110: f _{SAMPLING} =f _{DTS} /32, N=6
				1111: f _{SAMPLING} =f _{DTS} /32, N=8
				Subordinate TMR synchronization
D:4 7	OTO	00	rw	If enabled, master and slave timer can be synchronized.
Bit 7	STS	0x0	I VV	0: Disabled
				1: Enabled
				Subordinate TMR input selection
				This field is used to select the subordinate TMR input.
				000: Internal selection 0 (IS0)
				001: Internal selection 1 (IS1)
				010: Internal selection 2 (IS2)
				011: Internal selection 3 (IS3)
Bit 6: 4	STIS	0x0	rw	100: C1IRAW input detector (C1INC)
				101: Filtered input 1 (C1IF1)
				110: Filtered input 2 (C1IF2)
				111: External input (EXT)
				Pleaser refer to Table 14-3 and 14-5 for more information
				on ISx for each timer.
Bit 3	Reserved	0x0	resd	Kept at its default value
				Subordinate TMR mode selection
				000: Slave mode is disabled
				001: Encoder mode A
				010: Encoder mode B
				011: Encoder mode C
				100: Reset mode — Rising edge of the TRGIN input
				reinitializes the counter
Bit 2: 0	SMSEL	0x0	rw	101: Suspend mode — The counter starts counting when the TRGIN is high
				110: Trigger mode — A trigger event is generated at the rising edge of the TRGIN input
				111: External clock mode A — Rising edge of the TRGIN
				input clocks the counter
				Note: Please refer to count mode section for the details on encoder mode A/B/C.

14.2.4.4 DMA/interrupt enable register (TMRx_IDEN)

Bit	Register	Reset value	Type	Description	•
Bit 15	Reserved	0x0	resd	Kept at its default value	
				Trigger DMA request enable	
Bit 14	TDEN	0x0	rw	0: Disabled	
				1: Enabled	
Bit 13	Reserved	0x0	resd	Kept at its default value	
				Channel 4 DMA request enable	
Bit 12	C4DEN	0x0	rw	0: Disabled	
				1: Enabled	
				Channel 3 DMA request enable	
Bit 11	C3DEN	0x0	rw	0: Disabled	
				1: Enabled。	
				Channel 2 DMA request enable	
Bit 10	C2DEN	0x0	rw	0: Disabled	
-					

				1: Enabled	
				Channel 1 DMA request enable	
Bit 9	C1DEN	0x0	rw	0: Disabled	
				1: Enabled	
				Overflow event DMA request enable	
Bit 8	OVFDEN	0x0	rw	0: Disabled	
				1: Enabled	
Bit 7	Reserved	0x0	resd	Kept at its default value	
•				Trigger interrupt enable	
Bit 6	TIEN	0x0	rw	0: Disabled	
				1: Enabled	
Bit 5	Reserved	0x0	resd	Kept at its default value	
				Channel 4 interrupt enable	
Bit 4	C4IEN	0x0	rw	0: Disabled	
				1: Enabled	
				Channel 3 interrupt enable	
Bit 3	C3IEN	0x0	rw	0: Disabled	
				1: Enabled	
-				Channel 2 interrupt enable	
Bit 2	C2IEN	0x0	rw	0: Disabled	
				1: Enabled	
				Channel 1 interrupt enable	
Bit 1	C1IEN	0x0	rw	0: Disabled	
				1: Enabled	
-				Overflow interrupt enable	
Bit 0	OVFIEN	0x0	rw	0: Disabled	
				1: Enabled	

14.2.4.5 Interrupt status register (TMRx_ISTS)

Reserved	0x0		
	07.0	resd	Kept at its default value
0.455		rw0c	Channel 4 recapture flag
C4RF	0x0		Please refer to C1RF description.
2005		rw0c	Channel 3 recapture flag
J3RF	0x0		Please refer to C1RF description.
2005		rw0c	Channel 2 recapture flag
J2RF	UXU		Please refer to C1RF description.
			Channel 1 recapture flag
			This bit indicates whether a recapture is detected when
C1RF	0x0	rw0c	C1IF=1. This bit is set by hardware, and cleared by writing "0".
			0: No capture is detected
			1: Capture is detected.
Reserved	0x0	resd	Kept at its default value
			Trigger interrupt flag
			This bit is set by hardware on a trigger event. It is cleard by writing "0".
TRGIF	0x0	rw0c	0: No trigger event occurs
			1: Trigger event is generated.
			Trigger event: an active edge is detected on TRGIN input,
			or any edge in suspend mode.
Reserved	0x0	resd	Kept at its default value
C4IF	0x0	rw0c	Channel 4 interrupt flag
	Reserved	C2RF 0x0 C1RF 0x0 Reserved 0x0 CRGIF 0x0	C2RF 0x0 rw0c C1RF 0x0 rw0c Reserved 0x0 resd RGIF 0x0 rw0c Reserved 0x0 resd

				Please refer to C1IF description.
Bit 3	0015	0.0	rw0c	Channel 3 interrupt flag
	C3IF	0x0	TWOC	Please refer to C1IF description.
Bit 2	0015		rw0c	Channel 2 interrupt flag
	C2IF	0x0	TWOC	Please refer to C1IF description.
				Channel 1 interrupt flag
				If the channel 1 is configured as input mode:
				This bit is set by hardware on a capture event. It is cleared by software or read access to the TMRx_C1DT
				0: No capture event occurs
Bit 1	C1IF	0x0	rw0c	1: Capture event is generated
				If the channel 1 is configured as output mode:
				This bit is set by hardware on a compare event. It is cleared by software.
				0: No compare event occurs
				1: Compare event is generated
				Overflow interrupt flag
Bit 0 O				This bit is set by hardware on an overflow event. It is cleared by software.
				0: No overflow event occurs
	OVFIF	0x0	rw0c	1: Overflow event is generated. If OVFEN=0 and OVFS=0 in the TMRx_CTRL1 register:
				 An overflow event is generated when OVFG= 1 in the TMRx_SWEVE register;
				 An overflow event is generated when the counter CVAL is reinitialized by a trigger event.

14.2.4.6 Software event register (TMRx_SWEVT)

Bit	Register	Reset value	Type	Description
Bit 15: 7	Reserved	0x000	resd	Kept at its default value.
	TRGSWTR		rw	Trigger event triggered by software
D': 0				This bit is set by software to generate a trigger event.
Bit 6		0x0		0: No effect
				1: Generate a trigger event.
Bit 5	Reserved	0x0	resd	Kept at its default value.
D'' 4	C4SWTR	0x0	wo	Channel 4 event triggered by software
Bit 4				Please refer to C1M description.
Bit 3	C3SWTR		wo	Channel 3 event triggered by software
		0x0		Please refer to C1M description.
Bit 2	C2SWTR	00	wo	Channel 2 event triggered by software
		0x0		Please refer to C1M description
	C1SWTR	0.0	wo	Channel 1 event triggered by software
D': 4				This bit is set by software to generate a channel 1 event.
Bit 1		0x0		0: No effect
				1: Generate a channel 1 event.
Bit 0	OVFSWTR	0x0	wo	Overflow event triggered by software
				This bit is set by software to generate an overflow event.
				0: No effect
				1: Generate an overflow event.

14.2.4.7 Channel mode register1 (TMRx_CM1)

Output compare mode:

Bit	Register	Reset value	Type	Description
Bit 15	C2OSEN	0x0	rw	Channel 2 output switch enable

Bit 14: 12	C2OCTRL	0x0	rw	Channel 2 output control
Bit 11	C2OBEN	0x0	rw	Channel 2 output buffer enable
Bit 10	C20IEN	0x0	rw	Channel 2 output enable immediately
				Channel 2 configuration This field is used to define the direction of the channel 2 (input or output), and the selection of input pin when C2EN='0': 00: Output
Bit 9: 8	C2C	0x0	rw	01: Input,, C2IN is mapped on C2IRAW
				10: Input, C2IN is mapped on C1IRAW 11: Input, C2IN is mapped on STCI. This mode works only when the internal trigger input is selected by STIS register.
Bit 7	C10SEN	0x0	rw	Channel 1 output switch enable 0: C1ORAW is not affected by EXT 1: Once high level is detect on EXT input, clear C1ORAW.
Bit 6: 4	C10CTRL	0x0	rw	Channel 1 output control This field defines the behavior of the original signal C10RAW. 000: Disconnected. C10RAW is disconnected from C10UT; 001: C10RAW is high when TMRx_CVAL=TMRx_C1DT 010: C10RAW is low when TMRx_CVAL=TMRx_C1DT 011: Switch C10RAW level when TMRx_CVAL=TMRx_C1DT 100: C10RAW is forced low 101: C10RAW is forced high. 110: PWM mode A - OWCDIR=0, C10RAW is high once TMRx_C1DT>TMRx_CVAL, else low; - OWCDIR=1, C10RAW is low once TMRx_ C1DT <tmrx_cval, -="" 111:="" b="" c10raw="" c1dt="" else="" high;="" is="" low="" mode="" once="" owcdir="0," pwm="" tmrx_="">TMRx_CVAL, else high; 111: PWM mode B - OWCDIR=1, C10RAW is low once TMRx_ C1DT >TMRx_CVAL, else high; - OWCDIR=1, C10RAW is high once TMRx_ C1DT <tmrx_cval, -="" 000',="" <tmrx_cval,="" also="" but="" by="" c10raw="" c10raw,="" c10raw.="" c10ut="" c1dt="" cctrl.<="" changes="" configurations="" connected="" else="" high="" high;="" in="" is="" level="" low.="" not="" note:="" of="" once="" only="" othern="" output="" owcdir="1," polarity="" set="" subject="" td="" than="" the="" tmrx_="" to=""></tmrx_cval,></tmrx_cval,>
Bit 3	C10BEN	0x0	rw	Channel 1 output buffer enable 0: Buffer function of TMRx_C1DT is disabled. The new value written to the TMRx_C1DT takes effect immediately. 1: Buffer function of TMRx_C1DT is enabled. The value to be written to the TMRx_C1DT is stored in the buffer register, and can be sent to the TMRx_C1DT register only on an overflow event.
Bit 2	C10IEN	0x0	rw	Channel 1 output enable immediately In PWM mode A or B, this bit is used to accelerate the channel 1 output's response to the trigger event. 0: Need to compare the CVAL with C1DT before generating an output 1: No need to compare the CVAL and C1DT. An output is generated immediately when a trigger event occurs.

Bit	Register	Reset value	Type	Description
Input ca	apture mode:			
				11: Input, C1IN is mapped on STCI. This mode works only when the internal trigger input is selected by STIS.
				10: Input, C1IN is mapped on C2IRAW
				01: Input, C1IN is mapped on C1IRAW
Bit 1: 0	C1C	0x0	rw	00: Output
				This field is used to define the direction of the channel 1 (input or output), and the selection of input pin when C1EN='0':
				Channel 1 configuration

				when the internal trigger input is selected by STIS.
Input car	oture mode:			
Bit	Register	Reset value	Type	Description
Bit 15: 12	C2DF	0x0	rw	Channel 2 digital filter
Bit 11: 10	C2IDIV	0x0	rw	Channel 2 input divider
_				Channel 2 configuration
				This field is used to define the direction of the channel 2 (input or output), and the selection of input pin when C2EN='0':
Bit 9: 8	C2C	0x0	rw	00: Output
				01: Input, C2IN is mapped on C2IRAW
				10: Input, C2IN is mapped on C1IRAW
				11: Input, C2IN is mapped on STCI. This mode works only when the internal trigger input is selected by STIS.
				Channel 1 digital filter
				This field defines the digital filter of the channel 1. N stands for the number of filtering, indicating that the input edge can pass the filter only after N sampling events.
				0000: No filter, sampling is done at f_{DTS}
				1000: f _{SAMPLING} =f _{DTS} /8, N=6
				0001: $f_{SAMPLING} = f_{CK_INT}$, N=2
				1001: f _{SAMPLING} =f _{DTS} /8, N=8
				0010: $f_{SAMPLING} = f_{CK_INT}$, N=4
				1010: f _{SAMPLING} =f _{DTS} /16, N=5
Bit 7: 4	C1DF	0x0	rw	0011: $f_{SAMPLING} = f_{CK_INT}$, N=8
				1011: f _{SAMPLING} =f _{DTS} /16, N=6
				0100: f _{SAMPLING} =f _{DTS} /2, N=6
				1100: f _{SAMPLING} =f _{DTS} /16, N=8
				0101: $f_{SAMPLING} = f_{DTS}/2$, N=8
				1101: f _{SAMPLING} =f _{DTS} /32, N=5
				0110: $f_{SMPLING} = f_{DTS}/4$, N=6
				1110: f _{SAMPLING} =f _{DTS} /32, N=6
				0111: $f_{SAMPLING} = f_{DTS}/4$, N=8
				1111: f _{SAMPLING} =f _{DTS} /32, N=8
				Channel 1 input divider
				This field defines Channel 1 input divider.
.	2417114			00: No divider. An input capture is generated at each active edge.
Bit 3: 2	C1IDIV	0x0	rw	01: An input compare is generated every 2 active edges
				10: An input compare is generated every 4 active edges
				11: An input compare is generated every 8 active edges
				Note: the divider is reset once C1EN='0'
				Channel 1 configuration
Bit 1: 0	C1C	0x0	rw	This field is used to define the direction of the channel 1 (input or output), and the selection of input pin when C1EN='0':

00: Output

01: Input, C1IN is mapped on C1IRAW

10: Input, C1IN is mapped on C2IRAW

11: Input, C1IN is mapped on STCI. This mode works only when the internal trigger input is selected by STIS.

14.2.4.8 Channel mode register2 (TMRx_CM2)

Output compare mode:

Bit	Register	Reset value	Type	Description
Bit 15	C4OSEN	0x0	rw	Channel 4 output switch enable
Bit 14: 12	C4OCTRL	0x0	rw	Channel 4 output control
Bit 11	C4OBEN	0x0	rw	Channel 4 output buffer enable
Bit 10	C40IEN	0x0	rw	Channel 4 output enable immediately
				Channel 4 configuration
				This field is used to define the direction of the channel 1 (input or output), and the selection of input pin when C4EN='0':
Bit 9: 8	C4C	0x0	rw	00: Output
				01: Input, C4IN is mapped on C4IRAW
				10: Input, C4IN is mapped on C3IRAW
				11: Input, C4IN is mapped on STCI. This mode works only when the internal trigger input is selected by STIS.
Bit 7	C3OSEN	0x0	rw	Channel 3 output switch enable
Bit 6: 4	C3OCTRL	0x0	rw	Channel 3 output control
Bit 3	C3OBEN	0x0	rw	Channel 3 output buffer enable
Bit 2	C30IEN	0x0	rw	Channel 3 output enable immediately
_				Channel 3 configuration
				This field is used to define the direction of the channel 1 (input or output), and the selection of input pin when C3EN='0':
Bit 1: 0	C3C	0x0	rw	00: Output
		OAC .		01: Input, C3IN is mapped on C3IRAW
				10: Input, C3IN is mapped on C4IRAW
				11: Input, C3IN is mapped on STCI. This mode works only when the internal trigger input is selected by STIS.

Input capture mode:

Bit	Register	Reset value	Type	Description
Bit 15: 12	C4DF	0x0	rw	Channel 4 digital filter
Bit 11: 10	C4IDIV	0x0	rw	Channel 4 input divider
				Channel 4 configuration
				This field is used to define the direction of the channel 1 (input or output), and the selection of input pin when C4EN='0':
Bit 9: 8	C4C	0x0	rw	00: Output
				01: Input, C4IN is mapped on C4IRAW
				10: Input, C4IN is mapped on C3IRAW
				11: Input, C4IN is mapped on STCI. This mode works only when the internal trigger input is selected by STIS.
Bit 7: 4	C3DF	0x0	rw	Channel 3 digital filter
Bit 3: 2	C3IDIV	0x0	rw	Channel 3 input divider
				Channel 3 configuration
Bit 1:0	C3C	0x0	rw	This field is used to define the direction of the channel 1 (input or output), and the selection of input pin when C3EN='0':
				00: Output

01: Input, C3IN is mapped on C3IRAW

10: Input, C3IN is mapped on C4IRAW

11: Input, C3IN is mapped on STCI. This mode works only when the internal trigger input is selected by STIS.

14.2.4.9 Channel control register (TMRx_CCTRL)

Bit	Register	Reset value	Type	Description
Bit 15: 14	Reserved	0x0	resd	Kept at its default value.
D:: 40	0.45	0.0		Channel 4 polarity
Bit 13	C4P	0x0	rw	Pleaser refer to C1P description.
D:: 40	0.4511			Channel 4 enable
Bit 12	C4EN	0x0	rw	Pleaser refer to C1EN description.
Bit 11: 10	Reserved	0x0	resd	Default value
D:+ 0	000	00		Channel 3 polarity
Bit 9	C3P	0x0	rw	Pleaser refer to C1P description.
D': 0	00511			Channel 3 enable
Bit 8	C3EN	0x0	rw	Pleaser refer to C1EN description.
Bit 7: 6	Reserved	0x0	resd	Kept at its default value.
D': 5	C2P	0x0	rw	Channel 2 polarity
Bit 5				Pleaser refer to C1P description.
D': 4		0.0		Channel 2 enable
Bit 4	C2EN	0x0	rw	Pleaser refer to C1EN description.
Bit 3: 2	Reserved	0x0	resd	Kept at its default value.
				Channel 1 polarity
				When the channel 1 is configured as output mode:
				0: C1OUT is active high
				1: C1OUT is active low
Bit 1	C1P	0x0	rw	When the channel 1 is configured as input mode:
				0: C1IN active edge is on its rising edge. When used as external trigger, C1IN is not inverted.
				1: C1IN active edge is on its falling edge. When used as external trigger, C1IN is inverted.
				Channel 1 enable
Bit0	C1EN	0x0	rw	0: Input or output is disabled
				1: Input or output is enabled

Table 14- 6 Standard CxOUT channel output control bit

CxEN bit	CxOUT output state
0	Output disabled (CxOUT=0, Cx_EN=0)
1	CxOUT = CxORAW + polarity, Cx_EN=1

Note: The state of the external I/O pins connected to the standard CxOUT channel depends on the CxOUT channel state and the GPIO and IOMUX registers.

14.2.4.10 Counter value (TMRx_CVAL)

Bit	Register	Reset value	Type	Description
				Counter value
Bit 31: 16	CVAL	0x0000	rw	When TMR2 or TMR5 enables plus mode (the PMEN bit in the TMR_CTRL1 register), the CVAL is expanded to 32 bits.
Bit 15: 0	CVAL	0x0000	rw	Counter value

14.2.4.11 Division value (TMRx_DIV)

Bit	Register	Reset value	Type	Description
				Divider value
Bit 15: 0	DIV	0x0000	rw	The counter clock frequency $f_{CK_CNT} = f_{TMR_CLK} / (DIV[15: 0]+1)$.
				DIV contains the value written at an overflow event.

14.2.4.12 Period register (TMRx_PR)

Bit	Register	Reset value	Type	Description
				Period value
Bit 31: 16	PR	0x0000	rw	When TMR2 or TMR5 enables plus mode (the PMEN bit in the TMR_CTRL1 register), the PR is expanded to 32 bits.
				Period value
Bit 15: 0	PR	0x0000	rw	This defines the period value of the TMRx counter. The timer stops working when the period value is 0.

14.2.4.13 Channel 1 data register (TMRx_C1DT)

Bit	Register	Reset value	Type	Description
•				Channel 1 data register
Bit 31: 16	C1DT	0x0000	rw	When TMR2 or TMR5 enables plus mode (the PMEN bit in the TMR_CTRL1 register), the C1DT is expanded to 32 bits.
			rw	Channel 1 data register
				When the channel 1 is configured as input mode:
				The C1DT is the CVAL value stored by the last channel 1 input event (C1IN)
Bit 15: 0	C1DT	C1DT 0x0000		When the channel 1 is configured as output mode:
				C1DT is the value to be compared with the CVAL value. Whether the written value takes effective immediately depends on the C1OBEN bit, and the corresponding output is generated on C1OUT as configured.

14.2.4.14 Channel 2 data register (TMRx_C2DT)

Bit	Register	Reset value	Type	Description
				Channel 2 data register
Bit 31: 16	C2DT	0x0000	rw	When TMR2 or TMR5 enables plus mode (the PMEN bit in the TMR_CTRL1 register), the C2DT is expanded to 32 bits.
				Channel 2 data register
	C2DT 0x0000		rw	When the channel 2 is configured as input mode:
				The C2DT is the CVAL value stored by the last channel 2 input event (C1IN)
Bit 15: 0		0x0000		When the channel 2 is configured as output mode:
			C2DT is the value to be compared with the CVAL value. Whether the written value takes effective immediately depends on the C2OBEN bit, and the corresponding output is generated on C2OUT as configured.	

14.2.4.15 Channel 3 data register (TMRx_C3DT)

Bit	Register	Reset value	Type	Description
				Channel 3 data register
Bit 31: 16	C3DT	0x0000	rw	When TMR2 or TMR5 enables plus mode (the PMEN bit in the TMR_CTRL1 register), the C3DT is expanded to 32 bits.
Bit 15: 0	C3DT	0x0000	rw	Channel 3 data register

When the channel 3 is configured as input mode:

The C3DT is the CVAL value stored by the last channel 3 input event (C1IN)

When the channel 3 is configured as output mode:

C3DT is the value to be compared with the CVAL value. Whether the written value takes effective immediately depends on the C3OBEN bit, and the corresponding output is generated on C3OUT as configured.

14.2.4.16 Channel 4 data register (TMRx_C4DT)

Bit	Register	Reset value	Type	Description
				Channel 4 data register
Bit 31: 16	C4DT	0x0000	rw	When TMR2 or TMR5 enables plus mode (the PMEN bit in the TMR_CTRL1 register), the C4DT is expanded to 32 bits.
				Channel 4 data register
				When the channel 4 is configured as input mode:
	C4DT 0x0000	0x0000		The C4DT is the CVAL value stored by the last channel 4 input event (C1IN)
Bit 15: 0			rw	When the channel 4 is configured as output mode:
			C4DT is the value to be compared with the CVAL value. Whether the written value takes effective immediately depends on the C4OBEN bit, and the corresponding output is generated on C4OUT as configured.	

14.2.4.17 DMA control register (TMRx_DMACTRL)

Bit	Register	Reset value	Type	Description
Bit 15: 13	Reserved	0x0	resd	Kept at its default value.
				DMA transfer bytes
				This field defines the number of DMA transfers:
D.: 10 0				00000: 1 byte 00001: 2 bytes
Bit 12: 8	DTB	0x00	rw	00010: 3 bytes 00011: 4 bytes
				10000: 17 bytes 10001: 18 bytes
Bit 7: 5	Reserved	0x0	resd	Kept at its default value.
			rw	DMA transfer address offset
				ADDR is defined as an offset starting from the address o the TMRx_CTRL1 register.
Bit 4: 0	ADDR	0x00		00000: TMRx_CTRL1,
DIT 4. 0	7.001.	0,000		00001: TMRx_CTRL2,
				00010: TMRx_STCTRL,

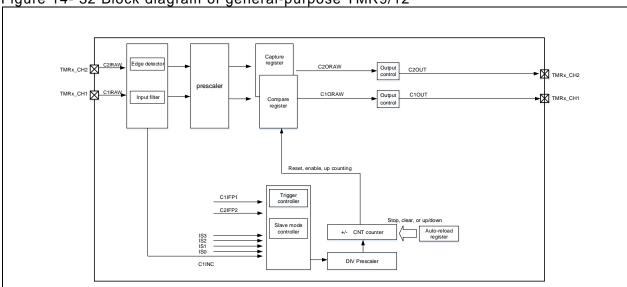
14.2.4.18 DMA data register (TMRx_DMADT)

Bit	Register	Reset value	Type	Description
				DMA data register
Bit 15: 0	DMADT	0x0000	rw	A read or write operation to the DMADT register accesses the TMR registers at the following address:
			TMRx peripheral address + ADDR*4 to TMRx peripheral address + ADDR*4 + DTB*4.	

14.3 General-purpose timer (TMR9 to TMR14)

14.3.1 TMRx introduction

The general-purpose timer (TMR9 to TMR14) consists of a 16-bit counter supporting upcounting mode. These timers can be synchronized.

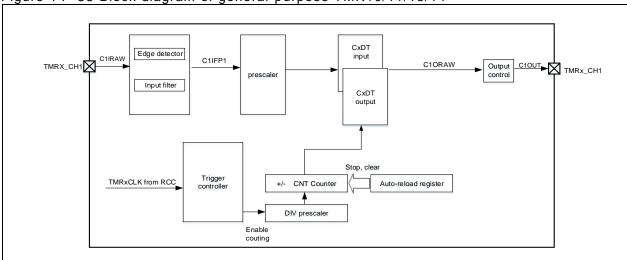

14.3.2 TMRx main features

14.3.2.1 TMR9 and TMR12 main features

The main functions of general-purpose TMR9 and TMR12 include:

- Souce of counter clock: internal clock and external clock
- 16-bit up counter
- 2 independent channels for input capture, output compare, PWM generation and one-pulse mode output
- Synchronization control between master and slave timers
- Interrrupt is generated at overflow event, trigger event and channel event

Figure 14- 32 Block diagram of general-purpose TMR9/12



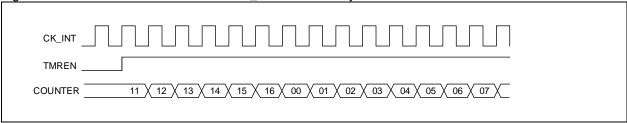
14.3.2.2 TMR10, TMR11, TMR13 and TMR14 main features

The main functions of general-purpose TMRx (TMR10, TMR11, TMR13 and TMR14) include:

- Souce of counter clock: internal clock
- 16-bit up counter
- 1 independent channel for input capture, output compare, PWM generation
- Synchronization control between master and slave timers
- Interrrupt is generated at overflow event and channel event

Figure 14- 33 Block diagram of general-purpose TMR10/11/13/14

14.3.3 TMRx functional overview

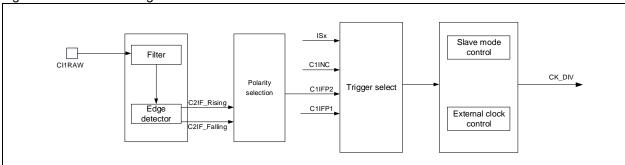

14.3.3.1 Count clock

The count clock of general-purpose timers can be provided by the internal clock (CK_INT), external clock (external clock mode A) and internal trigger input (ISx)

Internal clock (CK_INT)

By default, the CK_INT divided by the prescaler is used to drive the counter to start counting.

Figure 14- 34 Control circuit with CK_INT divided by 1



External clock (TMR9/12 only)

The counter clock can be provided by TRGIN signal.

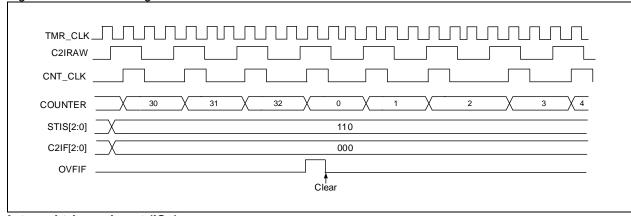
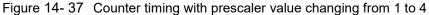

When SMSEL=3'111, external clock mode A is selected. Set the STIS[2: 0] bit to select TRGIN signal to drive the counter to start counting.

Figure 14-35 Block diagram of external clock mode A

Note: The delay between the signal on the input side and the actual clock of the counter is due to the synchronization circuit.

Figure 14-36 Counting in external clock mode A

Internal trigger input (ISx)


Timer synchronization allows interconnection between several timers. The TMR_CLK of one timer can be provided by the TRGOUT signal output by another timer. Set the STIS[2: 0] bit to select internal trigger signal to enable counting.

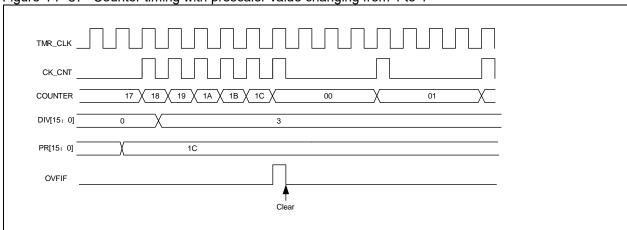

Each timer consists of a 16-bit prescaler, which is used to generate the CK_CNT that enables the counter to count. The frequency division relationship between the CK_CNT and TMR_CLK can be adjusted by setting the value of the TMRx_DIV register. The prescaler value can be modified at any time, but it takes effect only when the next overflow event occurs.

Table 14-7 TMRx internal trigger connection

Slave controler	IS0 (STIS=000)	IS1 (STIS = 001)	IS2 (STIS = 010)	IS3 (STIS = 011)
TMR9	TMR2_TRGOUT	TMR3_TRGOUT	TMR10_OC	TMR11_OC
TMR12	TMR4_TRGOUT	TMR5_TRGOUT	TMR13_OC	TMR14_OC

Note: If there is no corresponding timer in a device, the corresponding trigger signal ISx is not present.

14.3.3.2 Counting mode

The general-purpose timer consists of a 16-bit counter supporting upcounting mode. The TMRx_PR register is loaded with the counter value. The value in the TMRx_PR is immediately moved to the shadow register by deault. When the periodic buffer is enabled (PRBEN=1), the value in the TMRx_PR register is transferred to the shadow register only at an overflow event. The OVFEN and OVFS bits are used to configure the overflow event.

Setting TMREN=1 to enable the timer to start counting. Base on synchronization logic, however, the actual enable signal TMR_EN is set 1 clock cycle after the TMREN is set.

Upcounting mode

In upcounting mode, the counter counts from 0 to the value programmed in the TMRx_PR register, restarts from 0, and generates a counter overflow event, with the OVFIF bit being set. If the overflow event is disabled, the register is no longer reloaded with the preload and re-loaded value after counter overflow occurs, otherwise, the prescaler and re-loaded value will be updated at an overflow event.

Figure 14- 38 Overflow event when PRBEN=0

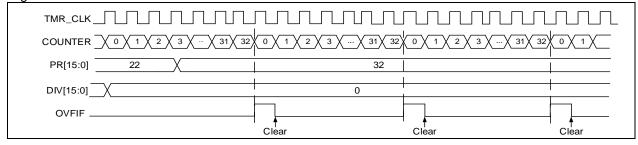
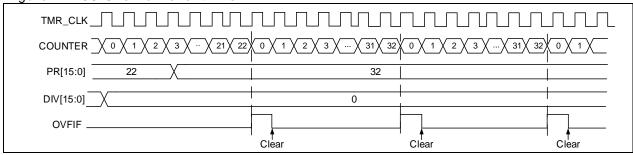



Figure 14-39 Overflow event when PRBEN=1

14.3.3.3 TMR input function

Each timer of TMR9 and TMR12 has two independent channels, while each of TMR10, TMR11, TMR13 and TMR14 has an independent channel. Each channel can be configured as input or output. As input, the channel can be used for the filtering, selection, division and input capture of the input signals.

Figure 14- 40 Input/output channel 1 main circuit

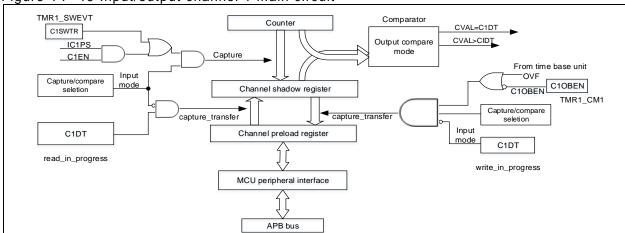
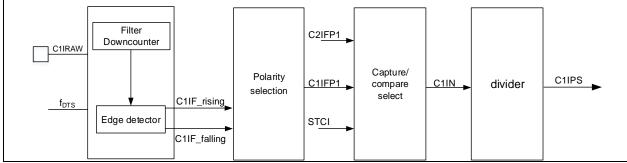
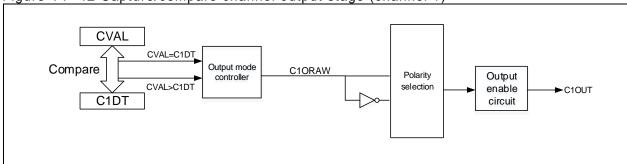



Figure 14-41 Channel 1 input stage

Input mode

In input mode, the TMRx_CxDT registers latch the current counter values after the selected triggle signal is detected, and the capture compare interrupt flag bit (CxIF) is set. An interrupt will be generated if the CxIEN bit is enabled. If the selected trigger signal is detected when the CxIF is set, the CxOF is set.

To capture the rising edge of C1IN input, following the configuration procedure mentioned below:


- Set C1C=01 in the TMRx CxDT register to select the C1IN as channel 1 input
- Set the filter bandwidth of C1IN signal (CxDF[3: 0])
- Set the active edge on the C1IN channel by writing C1P=0 (rising edge) in the TMRx_CCTR register
- Program the capture frequency of C1IN signal (C1DIV[1: 0])
- Enable channel 1 input capture (C1EN=1)
- If needed, enable the relevant interrupt by setting the C1IEN bit in the TMRx_IDEN register

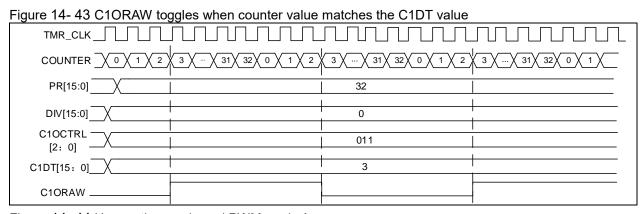
14.3.3.4 TMR output function

The TMR output consists of a comparator and an output controller. It is used to program the period, duty cycle and polarity of the output signal.

Figure 14- 42 Capture/compare channel output stage (channel 1)

Output mode

Write CxC[2: 0]≠2'b00 to configure the channel as output to implement multiple output modes. In this case, the counter value is compared with the value in the TMRx_CxDT register, and the intermediate signal CxORAW is generated according to the output mode selected by CxOCTRL[2: 0], which is sent to IO after being processed by the output control circuit. The period of the output signal is configured by the TMRx PR register, while the duty cycle by the TMRx CxDT register.


Output compare modes include:

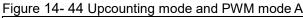

- **PWM mode:** Set CxOCTRL=3'b110/111 to enable PWM mode. Each channel can be independently configured to output one PWM signal. In this case, the period of the output signal is configured by the TMRx_PR register, and the duty cycle by the CxDT register. The counter value is compared with the value of the TMRx_CxDT register, and the corresponding level signal is sent according to the counting direction. For more information on PWM mode A/B, refer to the description of the CxOCTRL[2: 0] bit. In up/down counting mode, the OWCDIR bit is used to indicate the counting direction.
- Forced output mode: Set CxOCTRL=3'b100/101 to enable forced output mode. In this case, the CxORAW is forced to be the programmed level, irrespective of the counter value. Despite this, the channel flag bit and DMA request still depend on the compare result.
- Output compare mode: Set CxOCTRL=2'b001/010/011 to enable output compare mode. In this case, when the counter value matches the value of the CxDT register, the CxORAW is forced high, low or toggling.
- One-pulse mode (TMR9/12 only): This is a particular case of PWM mode. Set OCMEN=1 to enable one-pulse mode. In this mode, the comparison match is performed in the current counting period. The TMREN bit is cleared as soon as the current counting is completed. Therefore, only one pulse is output. When configured as in upcounting mode, the configureation must follow the rule: CVAL<CxDT≤PR; in downcounting mode, CVAL>CxDT is required.
- Fast output mode (TMR9/12 only): Set CxOIEN=1 to enable this mode. If enabled, the CxORAW signal will not change when the counter value matches the CxDT, but at the beginning of the current counting period. In other words, the comparison result is advanced, so the comparison result between the counter value and the TMRx_CxDT register will determine the level of CxORAW in advance.

Figure 14- 43 gives an example of output compare mode (toggle) with C1DT=0x3. When the counter value is equal to 0x3, C1OUT toggles.

Figure 14- 44 gives an example of the combination between upcounting mode and PWM mode A. The output signal behaves when PR=0x32 but CxDT is configured with a different value.

Figure 14- 45 gives an example of the combination between upcounting mode and one-pulse PWM mode B. The counter only counts only one cycle, and the output signal sents only one pulse.

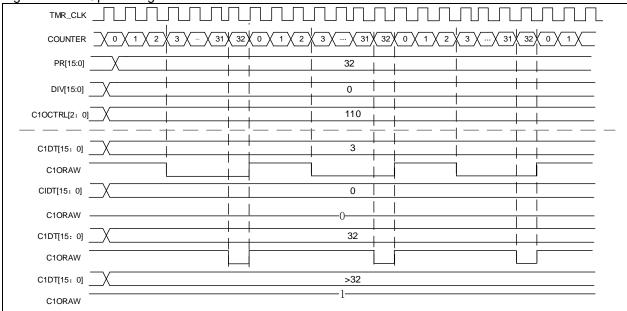
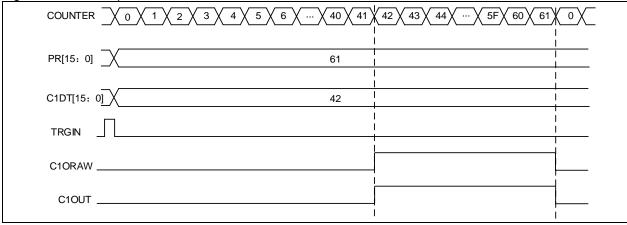
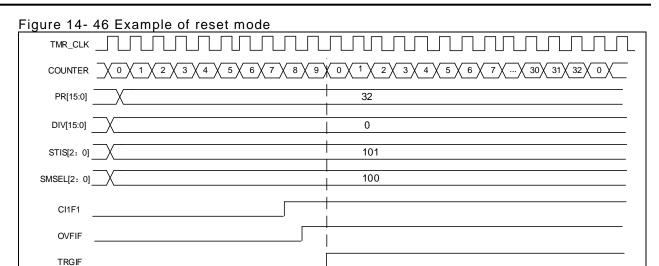



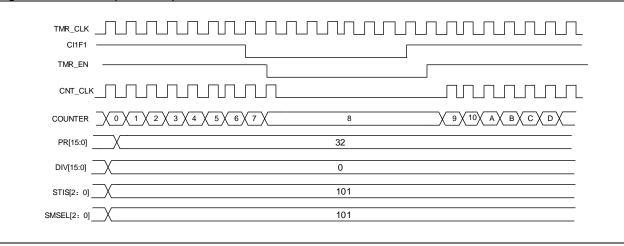
Figure 14-45 One-pulse mode



14.3.3.5 TMR synchronization

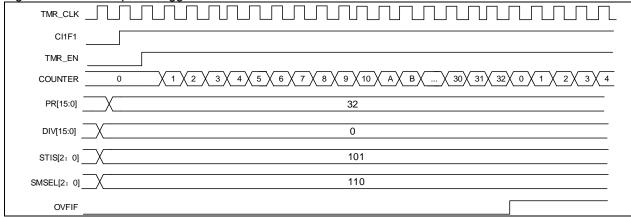
TMR9 and TMR12 are linked together internally for timer synchronization. Slave timer is selected by setting the SMSEL[2: 0] bit.

Slave mode: Reset mode


The counter and its prescaler can be reset by a selected trigger signal. An overflow event is generated when OVFS=0.

Slave mode: Suspend mode

In this mode, the counter is controlled by a selected trigger input. The counter starts counting when the trigger input is high and stops as soon as the trigger input is low.


Figure 14- 47 Example of suspend mode

Slave mode: Trigger mode

The counter can start counting on the rising edge of a selected trigger input (TMR EN=1)

Figure 14-48 Example of trigger mode

Please refer to section 14.2.3.5 for more information on timer synchronization.

14.3.3.6 Debug mode

When the microcontroller enters debug mode (CortexTM-M4F core halted), the TMRx counter stops counting by setting the TMRx_PAUSE in the DEBUG module.

14.3.4 TMR9 and TMR12 registers

These peripheral registers must be accessed by word (32 bits). All TMRx register are mapped into a 16-bit addressable space.

Table 14-8 TMRx register map and reset value

Bit	Register	Reset value
TMRx_CTRL1	0x00	0x0000
TMRx_STCTRL	0x08	0x0000
TMRx_IDEN	0x0C	0x0000
TMRx_ISTS	0x10	0x0000
TMRx_SWEVT	0x14	0x0000
TMRx_CM1	0x18	0x0000
TMRx_CCTRL	0x20	0x0000
TMRx_CVAL	0x24	0x0000
TMRx_DIV	0x28	0x0000
TMRx_PR	0x2C	0x0000
TMRx_C1DT	0x34	0x0000 0000
TMRx_C2DT	0x38	0x0000 0000

14.3.4.1 Control register1 (TMRx_CTRL1)

Bit	Register	Reset value	Type	Description
Bit 15: 10	Reserved	0x00	resd	Kept at its default value
				Clock divider
				00: Normal
Bit 9: 8	CLKDIV	0x0	rw	01: Divided by 2
				10: Divided by 4
				11: Reserved
				Period buffer enable
Bit 7	PRBEN	0x0	rw	0: Period buffer is disabled
				1: Period buffer is enabled
Bit 6: 4	Reserved	0x0	resd	Kept at its default value
	OCMEN	0x0	rw	One cycle mode enable
				This bit is use to select whether to stop counting at an
Bit 3				update event
				0: The counter does not stop at an update event
				1: The counter stops at an update event
				Overflow event source
				This bit is used to select overflow event or DMA request
Bit 2	OVES	0x0	* 14.4	sources.
DIL Z	OVFS	UXU	rw	0: Counter overflow, setting the OVFSWTR bit or overflow event generated by slave timer controller
				1: Only counter overflow generates an overflow event
				Overflow event enable
Bit 1	OVFEN	0x0	rw	0: Enabled
	• · · · · · · · · · · · · · · · · · · ·			1: Disabled
				TMR enable
Bit 0	TMREN	0x0	rw	0: Enabled
				1: Disabled
-				Overflow event enable 0: Enabled 1: Disabled TMR enable 0: Enabled

14.3.4.2 Slave timer control register (TMRx_STCTRL)

Bit	Register	Reset value	Туре	Description
Bit 15:7	Reserved	0x000	resd	Kept at its default value
				Subordinate TMR input selection
				This field is used to select the subordinate TMR input.
				000: Internal selection 0 (IS0)
				001: Internal selection 1 (IS1)
				010: Internal selection 2 (IS2)
Bit 6: 4	STIS	0.40	mar	011: Internal selection 3 (IS3)
DIL 0. 4	3113	0x0	rw	100: C1IRAW input detector (C1INC)
				101: Filtered input 1 (C1IF1)
				110: Filtered input 2 (C1IF2)
				111: Reserved
				Pleaser refer to Table 14-7 for more information on ISx for
				each timer.
Bit 3	Reserved	0x0	resd	Kept at its default value
				Subordinate TMR mode selection
				000: Slave mode is disabled
				001: Encoder mode A
				010: Encoder mode B
				011: Encoder mode C
				100: Reset mode $-$ Rising edge of the TRGIN input
				reinitializes the counter
Bit 2: 0	SMSEL	0x0	rw	101: Suspend mode — The counter starts counting when the TRGIN is high
				110: Trigger mode — A trigger event is generated at the rising edge of the TRGIN input
				111: External clock mode A — Rising edge of the TRGIN
				input clocks the counter
				Note: Please refer to count mode section for details on encoder mode A/B/C.

14.3.4.3 DMA/interrupt enable register (TMRx_IDEN)

Bit	Register	Reset value	Type	Description
Bit 15:7	Reserved	0x0	resd	Kept at its default value.
				Trigger interrupt enable
Bit 6	TIEN	0x0	rw	0: Disabled
				1: Enabled
Bit 5:3	Reserved	0x0	resd	Kept at its default value.
				Channel 2 interrupt enable
Bit 2	C2IEN	0x0	rw	0: Disabled
				1: Enabled
_				Channel 1 interrupt enable
Bit 1	C1IEN	0x0	rw	0: Disabled
				1: Enabled
				Overflow interrupt enable
Bit 0	OVFIEN	0x0	rw	0: Disabled
				1: Enabled

14.3.4.4 Interrupt status register (TMRx_ISTS)

Bit	Register	Reset value	Type	Description
Bit 15: 11	Reserved	0x0	resd	Kept at its default value.
Bit 10	C2RF		rw0c	Channel 2 recapture flag
		0x0		Please refer to C1RF description.

				Channel 1 recapture flag
				This bit indicates whether a recapture is detected when
				C1IF=1. This bit is set by hardware, and cleared by writing
Bit 9	C1RF	0x0	rw0c	"0".
				0: No capture is detected
				1: Capture is detected.
Bit 8: 7	Reserved	0x0	resd	Kept at its default value.
				Trigger interrupt flag
				This bit is set by hardware on a trigger event. It is cleard by writing "0".
Bit 6	TRGIF	0x0	rw0c	0: No trigger event occurs
				1: Trigger event is generated.
				Trigger event: an active edge is detected on TRGIN input, or any edge in suspend mode.
Bit 5:3	Reserved	0x0	resd	Kept at its default value.
Bit 2	C2IF	0x0	rw0c	Channel 2 interrupt flag
				Please refer to C1IF description.
				Channel 1 interrupt flag
				If the channel 1 is configured as input mode:
		0x0		This bit is set by hardware on a capture event. It is cleared by software or read access to the TMRx_C1DT
			rw0c	0: No capture event occurs
Bit 1	C1IF			1: Capture event is generated
				If the channel 1 is configured as output mode:
				This bit is set by hardware on a compare event. It is cleared by software.
				0: No compare event occurs
				1: Compare event is generated
				Overflow interrupt flag
Bit 0	OVFIF	0x0	rw0c	This bit is set by hardware on an overflow event. It is cleared by software.
				0: No overflow event occurs
				1: Overflow event is generated.
				1: Overflow event is generated.

14.3.4.5 Software event register (TMRx_SWEVT)

Bit	Register	Reset value	Type	Description
Bit 15: 7	Reserved	0x000	resd	Kept at its default value.
				Trigger event triggered by software
D:: 0	TDOOMTD	0.0		This bit is set by software to generate a trigger event.
Bit 6	TRGSWTR	0x0	rw	0: No effect
				1: Generate a trigger event.
Bit 5:3	Reserved	0x0	resd	Kept at its default value.
	C2SWTR	0x0	wo	Channel 2 event triggered by software
Bit 2				Please refer to C1M description
	C1SWTR	0x0		Channel 1 event triggered by software
D:: 4			WO	This bit is set by software to generate a channel 1 event.
Bit 1				0: No effect
				1: Generate a channel 1 event.
				Overflow event triggered by software
Bit 0	OVFSWTR	0x0	wo	This bit is set by software to generate an overflow event.
				0: No effect
				1: Generate an overflow event.

14.3.4.6 Channel mode register1 (TMRx_CM1)

The channel can be used in input (capture mode) or output (compare mode). The direction of a channel is defined by the corresponding CxC bits. All the other bits of this register have different functons in input and output modes. The CxOx describes its function in output mode when the channel is in output mode, while the CxIx describes its function in output mode when the channel is in input mode. Attention must be given to the fact that the same bit can have different functions in input mode and output mode.

Output compare mode:

Output	compare mode:			
Bit	Register	Reset value	Type	Description
Bit 15	Reserved	0x0	resd	Kept at its default value.
Bit 14: 12	C2OCTRL	0x0	rw	Channel 2 output control
Bit 11	C2OBEN	0x0	rw	Channel 2 output buffer enable
Bit 10	C2OIEN	0x0	rw	Channel 2 output enable immediately
				Channel 2 configuration
				This field is used to define the direction of the channel 2 (input or output), and the selection of input pin when C2EN='0':
				00: Output
Bit 9: 8	C2C	0x0	rw	01: Input,, C2IN is mapped on C2IRAW
				10: Input, C2IN is mapped on C1IRAW
				11: Input, C2IN is mapped on STCI. This mode works only when the internal trigger input is selected by STIS register.
Bit 7	Reserved	0x0	resd	Kept at its default value.
				Channel 1 output control
				This field defines the behavior of the original signal C1ORAW.
				000: Disconnected. C1ORAW is disconnected from C1OUT;
				001: C1ORAW is high when TMRx_CVAL=TMRx_C1DT
				010: C1ORAW is low when TMRx_CVAL=TMRx_C1DT
				011: Switch C1ORAW level when TMRx_CVAL=TMRx_C1DT
				100: C1ORAW is forced low
				101: C1ORAW is forced high.
				110: PWM mode A
Bit 6: 4	C1OCTRL	0x0	rw	 OWCDIR=0, C1ORAW is high once TMRx_C1DT>TMRx_CVAL, else low;
				 OWCDIR=1, C1ORAW is low once TMRx_ C1DT <tmrx_cval, else="" high;<="" li=""> </tmrx_cval,>
				111: PWM mode B
				 OWCDIR=0, C1ORAW is low once TMRx_ C1DT >TMRx_CVAL, else high;
				 OWCDIR=1, C1ORAW is high once TMRx_ C1DT
				<tmrx_cval, else="" low.<="" td=""></tmrx_cval,>
				Note: In the configurations othern than 000', the C1OUT
				is connected to C10RAW. The C10UT output level is not
				only subject to the changes of C1ORAW, but also the output polarity set by CCTRL.
				Channel 1 output buffer enable
Bit 3	C10BEN	0x0	rw	0: Buffer function of TMRx_C1DT is disabled. The new value written to the TMRx_C1DT takes effect immediately.
				Buffer function of TMRx_C1DT is enabled. The value to be written to the TMRx_C1DT is stored in the buffer.

				register, and can be sent to the TMRx_C1DT register only on an overflow event.
				Channel 1 output enable immediately
				In PWM mode A or B, this bit is used to accelerate the channel 1 output's response to the trigger event.
Bit 2	C10IEN	0x0	rw	0: Need to compare the CVAL with C1DT before generating an output
				1: No need to compare the CVAL and C1DT. An output is generated immediately when a trigger event occurs.
				Channel 1 configuration
				This field is used to define the direction of the channel 1 (input or output), and the selection of input pin when C1EN='0':
Bit 1: 0	C1C	0x0	rw	00: Output
				01: Input, C1IN is mapped on C1IRAW
				10: Input, C1IN is mapped on C2IRAW
			11: Input, C1IN is mapped on STCI. This mode works only when the internal trigger input is selected by STIS.	

Bit	Register	Reset value	Type	Description
Bit 15: 12	C2DF	0x0	rw	Channel 2 digital filter
Bit 11: 10	C2IDIV	0x0	rw	Channel 2 input divider
-				Channel 2 configuration
				This field is used to define the direction of the channel 2 (input or output), and the selection of input pin when C2EN='0':
Bit 9: 8	C2C	0x0	rw	00: Output
2	0_0	one.		01: Input, C2IN is mapped on C2IRAW
				10: Input, C2IN is mapped on C1IRAW
				11: Input, C2IN is mapped on STCI. This mode works only when the internal trigger input is selected by STIS.
				Channel 1 digital filter
	C1DF			This field defines the digital filter of the channel 1. N stands for the number of filtering, indicating that the input edge can pass the filter only after N sampling events.
				0000: No filter, sampling is done at f_{DTS}
		0x0		1000: $f_{SAMPLING} = f_{DTS}/8$, N=6
				0001: $f_{SAMPLING} = f_{CK_INT}$, N=2
				1001: f _{SAMPLING} =f _{DTS} /8, N=8
				0010: $f_{SAMPLING} = f_{CK_INT}$, N=4
				1010: f _{SAMPLING} =f _{DTS} /16, N=5
Bit 7: 4			rw	0011: $f_{SAMPLING} = f_{CK_INT}$, N=8
				1011: f _{SAMPLING} =f _{DTS} /16, N=6
				0100: $f_{SAMPLING} = f_{DTS}/2$, N=6
				1100: f _{SAMPLING} =f _{DTS} /16, N=8
				0101: f _{SAMPLING} =f _{DTS} /2, N=8
				1101: f _{SAMPLING} =f _{DTS} /32, N=5
				0110: f _{SMPLING} =f _{DTS} /4, N=6
				1110: f _{SAMPLING} =f _{DTS} /32, N=6
				0111: f _{SAMPLING} =f _{DTS} /4, N=8
				1111: f _{SAMPLING} =f _{DTS} /32, N=8
-				Channel 1 input divider
Dit 2. 2	CAIDIV	0.40	m	This field defines Channel 1 input divider.
Bit 3: 2	C1IDIV	0x0	rw	00: No divider. An input capture is generated at each active edge.

				01: An input compare is generated every 2 active edges
				10: An input compare is generated every 4 active edges
				11: An input compare is generated every 8 active edges
				Note: the divider is reset once C1EN='0'
				Channel 1 configuration
				This field is used to define the direction of the channel 1 (input or output), and the selection of input pin when C1EN='0':
Bit 1: 0	C1C 0x0	0x0	rw	00: Output
				01: Input, C1IN is mapped on C1IRAW
				10: Input, C1IN is mapped on C2IRAW
				11: Input, C1IN is mapped on STCI. This mode works only when the internal trigger input is selected by STIS.

14.3.4.7 Channel control register (TMRx_CCTRL)

Bit	Register	Reset value	Type	Description
Bit 15: 6	Reserved	0x0	resd	Kept at its default value.
D:: 5	000	0.0		Channel 2 polarity
Bit 5	C2P	0x0	rw	Pleaser refer to C1P description.
D:4 4	COEN	00		Channel 2 enable
Bit 4	C2EN	0x0	rw	Pleaser refer to C1EN description.
Bit 3: 2	Reserved	0x0	resd	Kept at its default value.
				Channel 1 polarity
				When the channel 1 is configured as output mode:
				0: C1OUT is active high
				1: C1OUT is active low
Bit 1	C1P	0x0	rw	When the channel 1 is configured as input mode:
				0: C1IN active edge is on its rising edge. When used as external trigger, C1IN is not inverted.
				1: C1IN active edge is on its falling edge. When used as external trigger, C1IN is inverted.
				Channel 1 enable
Bit0	C1EN	0x0	rw	0: Input or output is disabled
				1: Input or output is enabled

Table 14- 9 Standard CxOUT channel output control bit

CxEN bit	CxOUT output state
0	Output disabled (CxOUT=0)
1	CxOUT = CxORAW + polarity

Note: The state of the external I/O pins connected to the standard CxOUT channel depends on the CxOUT channel state and the GPIO and IOMUX registers.

14.3.4.8 Counter value (TMRx_CVAL)

Bit	Register	Reset value	Туре	Description
Bit 15: 0	CVAL	0x0000	rw	Counter value

14.3.4.9 Division value (TMRx_DIV)

Bit	Register	Reset value	Type	Description
				Divider value
Bit 15: 0	DIV	0x0000	rw	The counter clock frequency $f_{CK_CNT} = f_{TMR_CLK} / (DIV[15: 0]+1)$.
				DIV contains the value written at an overflow event.

2021.12.01 Page 235 Ver 2.02

14.3.4.10 Period register (TMRx_PR)

Bit	Register	Reset value	Type	Description
				Period value
Bit 15: 0	PR	0x0000	rw	This defines the period value of the TMRx counter. The timer stops working when the period value is 0.

14.3.4.11 Channel 1 data register (TMRx_C1DT)

Bit	Register	Reset value	Type	Description
Bit 31: 16	Reserved	0x0000	resd	Kept at its default value.
				Channel 1 data register
				When the channel 1 is configured as input mode:
				The C1DT is the CVAL value stored by the last channel 1 input event (C1IN)
Bit 15: 0	C1DT	0x0000	rw	When the channel 1 is configured as output mode:
				C1DT is the value to be compared with the CVAL value. Whether the written value takes effective immediately depends on the C1OBEN bit, and the corresponding output is generated on C1OUT as configured.

14.3.4.12 Channel 2 data register (TMRx_C2DT)

Bit	Register	Reset value	Type	Description
Bit 31: 16	C2DT	0x0000	resd	Kept at its default value.
				Channel 2 data register
				When the channel 2 is configured as input mode:
				The C2DT is the CVAL value stored by the last channel 2 input event (C1IN)
Bit 15: 0	C2DT	0x0000	rw	When the channel 2 is configured as output mode:
				C2DT is the value to be compared with the CVAL value. Whether the written value takes effective immediately depends on the C2OBEN bit, and the corresponding output is generated on C2OUT as configured.

14.3.5 TMR10,TMR11, TMR13 and TMR14 registers

These peripheral registers must be accessed by word (32 bits). All TMRx register are mapped into a 1-bit addressable space.

Table 14- 10 TMRx register map and reset value

Offset	Reset value
0x00	0x0000
0x0C	0x0000
0x10	0x0000
0x14	0x0000
0x18	0x0000
0x20	0x0000
0x24	0x0000
0x28	0x0000
0x2C	0x0000
0x34	0x0000
	0x00 0x0C 0x10 0x14 0x18 0x20 0x24 0x28 0x2C

14.3.5.1 Control register1 (TMRx_CTRL1)

Bit	Register	Reset value	Type	Description
Bit 15: 10	Reserved	0x00	resd	Kept at its default value
				Clock divider
				00: Normal
Bit 9: 8	CLKDIV	0x0	rw	01: Divided by 2
				10: Divided by 4
				11: Reserved
				Period buffer enable
Bit 7	PRBEN	0x0	rw	0: Period buffer is disabled
				1: Period buffer is enabled
Bit 6: 4	Reserved	0x0	resd	Default value
				One cycle mode enable
		0x0	rw	This bit is use to select whether to stop counting at an
Bit 3	OCMEN			update event
				0: The counter does not stop at an update event
				1: The counter stops at an update event
				Overflow event source
		0x0	rw	This bit is used to select overflow event or DMA request sources.
Bit 2	OVFS			0: Counter overflow, setting the OVFSWTR bit or overflow event generated by slave timer controller
				1: Only counter overflow generates an overflow event
				Overflow event enable
Bit 1	OVFEN	0x0	rw	0: Enabled
				1: Disabled
				TMR enable
Bit 0	TMREN	0x0	rw	0: Enabled
•				1: Disabled

14.3.5.2 DMA/interrupt enable register (TMRx_IDEN)

Bit	Register	Reset value	Type	Description
Bit 15:2	Reserved	0x0	resd	Kept at its default value
				Channel 1 interrupt enable
Bit 1	C1IEN	0x0	rw	0: Disabled
				1: Enabled
				Overflow interrupt enable
Bit 0	OVFIEN	0x0	rw	0: Disabled
				1: Enabled

14.3.5.3 Interrupt status register (TMRx_ISTS)

Bit	Register	Reset value	Type	Description
Bit 15: 10	Reserved	0x0	resd	Kept at its default value.
				Channel 1 recapture flag
Bit 9	C1RF	0x0	rw0c	This bit indicates whether a recapture is detected when C1IF=1. This bit is set by hardware, and cleared by writing "0".
				0: No capture is detected
				1: Capture is detected.
Bit 8: 2	Reserved	0x0	resd	Kept at its default value.
				Channel 1 interrupt flag
D:4	0415	00		If the channel 1 is configured as input mode:
Bit 1	C1IF	0x0	rw0c	This bit is set by hardware on a capture event. It is cleared by software or read access to the TMRx_C1DT

				0: No capture event occurs
				1: Capture event is generated
				If the channel 1 is configured as output mode:
				This bit is set by hardware on a compare event. It is cleared by software.
				0: No compare event occurs
				1: Compare event is generated
				Overflow interrupt flag
Bit 0	OVFIF	0x0	rw0c	This bit is set by hardware on an overflow event. It is cleared by software.
2 0	.	07.0		0: No overflow event occurs
				1: Overflow event is generated.

14.3.5.4 Software event register (TMRx_SWEVT)

Bit	Register	Reset value	Type	Description
Bit 15: 2	Reserved	0x000	resd	Kept at its default value.
Bit 1				Channel 1 event triggered by software
	04014/TD	0x0	WO	This bit is set by software to generate a channel 1 event.
	C1SWTR			0: No effect
				1: Generate a channel 1 event.
				Overflow event triggered by software
D:/ 0	OVEOVATE	0x0	wo	This bit is set by software to generate an overflow event.
Bit 0	OVFSWTR			0: No effect
				1: Generate an overflow event.

14.3.5.5 Channel mode register1 (TMRx_CM1)

The channel can be used in input (capture mode) or output (compare mode). The direction of a channel is defined by the corresponding CxC bits. All the other bits of this register have different functons in input and output modes. The CxOx describes its function in output mode when the channel is in output mode, while the CxIx describes its function in output mode when the channel is in input mode. Attention must be given to the fact that the same bit can have different functions in input mode and output mode.

Output compare mode:

Bit	Register	Reset value	Type	Description
Bit 15:7	Reserved	0x0	resd	Kept at its default value.
				Channel 1 output control
				This field defines the behavior of the original signal C1ORAW.
				000: Disconnected. C1ORAW is disconnected from C1OUT;
				001: C1ORAW is high when TMRx_CVAL=TMRx_C1DT
				010: C1ORAW is low when TMRx_CVAL=TMRx_C1DT
				011: Switch C1ORAW level when
				TMRx_CVAL=TMRx_C1DT
				100: C1ORAW is forced low
Bit 6: 4	C1OCTRL	0x0	rw	101: C1ORAW is forced high.
				110: PWM mode A
				- OWCDIR=0, C1ORAW is high once
				TMRx_C1DT>TMRx_CVAL, else low;
				— OWCDIR=1, C1ORAW is low once TMRx_ C1DT <tmrx_cval, else="" high;<="" p=""></tmrx_cval,>
				111: PWM mode B
				- OWCDIR=0, C1ORAW is low once TMRx_
				C1DT >TMRx_CVAL, else high;
				$-$ OWCDIR=1, C1ORAW is high once TMRx_ C1DT
				<tmrx_cval, else="" low.<="" td=""></tmrx_cval,>

C1C	0x0	rw	(input or output), and the selection of input pin when C1EN='0': 00: Output 01: Input, C1IN is mapped on C1IRAW 10: Input, C1IN is mapped on C2IRAW 11: Input, C1IN is mapped on STCI. This mode works only when the internal trigger input is selected by STIS.
C1C	0x0	rw	C1EN='0': 00: Output 01: Input, C1IN is mapped on C1IRAW 10: Input, C1IN is mapped on C2IRAW 11: Input, C1IN is mapped on STCI. This mode works only
C1C	0x0	rw	C1EN='0': 00: Output 01: Input, C1IN is mapped on C1IRAW 10: Input, C1IN is mapped on C2IRAW
C1C	0x0	rw	C1EN='0': 00: Output 01: Input, C1IN is mapped on C1IRAW
C1C	0x0	rw	C1EN='0':
			This field is used to define the direction of the channel 1
			Channel 1 configuration
			1: No need to compare the CVAL and C1DT. An output is generated immediately when a trigger event occurs.
C10IEN	0x0	rw	Need to compare the CVAL with C1DT before generating an output
			In PWM mode A or B, this bit is used to accelerate the channel 1 output's response to the trigger event.
			Channel 1 output enable immediately
CTOBEN	UXU	TW	1: Buffer function of TMRx_C1DT is enabled. The value to be written to the TMRx_C1DT is stored in the buffer register, and can be sent to the TMRx_C1DT register only on an overflow event.
C1OREN	0.0	r\\\	0: Buffer function of TMRx_C1DT is disabled. The new value written to the TMRx_C1DT takes effect immediately.
			Channel 1 output buffer enable
			Note: In the configurations othern than 000', the C1OUT is connected to C1ORAW. The C1OUT output level is not only subject to the changes of C1ORAW, but also the output polarity set by CCTRL.
	C1OBEN C1OIEN		

Bit	Register	Reset value	Type	Description
Bit 15: 8	Reserved	0x0	resd	Kept at its default value.
				Channel 1 digital filter
				This field defines the digital filter of the channel 1. N stands for the number of filtering, indicating that the input edge can pass the filter only after N sampling events.
				0000: No filter, sampling is done at f_{DTS}
				1000: f _{SAMPLING} =f _{DTS} /8, N=6
				0001: $f_{SAMPLING} = f_{CK_INT}$, N=2
				1001: f _{SAMPLING} =f _{DTS} /8, N=8
				0010: $f_{SAMPLING} = f_{CK_INT}$, N=4
				1010: f _{SAMPLING} =f _{DTS} /16, N=5
Bit 7: 4	C1DF	0x0	rw	0011: $f_{SAMPLING} = f_{CK_INT}$, N=8
				1011: f _{SAMPLING} =f _{DTS} /16, N=6
				0100: $f_{SAMPLING} = f_{DTS}/2$, N=6
				1100: f _{SAMPLING} =f _{DTS} /16, N=8
				0101: $f_{SAMPLING} = f_{DTS}/2$, N=8
				1101: f _{SAMPLING} =f _{DTS} /32, N=5
				0110: $f_{SMPLING} = f_{DTS}/4$, N=6
				1110: f _{SAMPLING} =f _{DTS} /32, N=6
				0111: $f_{SAMPLING} = f_{DTS}/4$, N=8
				1111: f _{SAMPLING} =f _{DTS} /32, N=8
				Channel 1 input divider
				This field defines Channel 1 input divider.
Bit 3: 2	C1IDIV	0x0	rw	00: No divider. An input capture is generated at each active edge.
				01: An input compare is generated every 2 active edges

				10: An input compare is generated every 4 active edges
				11: An input compare is generated every 8 active edges
				Note: the divider is reset once C1EN='0'
				Channel 1 configuration
				This field is used to define the direction of the channel 1 (input or output), and the selection of input pin when C1EN='0':
Bit 1: 0	C1C	0x0	rw	00: Output
				01: Input, C1IN is mapped on C1IRAW
				10: Input, C1IN is mapped on C2IRAW
				11: Input, C1IN is mapped on STCI. This mode works only when the internal trigger input is selected by STIS.

14.3.5.6 Channel control register (TMRx_CCTRL)

			Ţ	
Bit	Register	Reset value	Type	Description
Bit 15: 2	Reserved	0x0	resd	Kept at its default value.
				Channel 1 polarity
				When the channel 1 is configured as output mode:
				0: C1OUT is active high
				1: C1OUT is active low
Bit 1	C1P	0x0	rw	When the channel 1 is configured as input mode:
				0: C1IN active edge is on its rising edge. When used as external trigger, C1IN is not inverted.
				1: C1IN active edge is on its falling edge. When used as external trigger, C1IN is inverted.
				Channel 1 enable
Bit0	C1EN	0x0	rw	0: Input or output is disabled
				1: Input or output is enabled

Table 14- 11 Standard CxOUT channel output control bit

CxEN bit	CxOUT output state
0	Output disabled (CxOUT=0)
1	CxOUT = CxORAW + polarity

Note: The state of the external I/O pins connected to the standard CxOUT channel depends on the CxOUT channel state and the GPIO and IOMUX registers.

14.3.5.7 Counter value (TMRx_CVAL)

Bit	Register	Reset value	Type	Description
Bit 15: 0	CVAL	0x0000	rw	Counter value

14.3.5.8 Division value (TMRx_DIV)

Bit	Register	Reset value	Type	Description
	DIV		rw	Divider value
Bit 15: 0		0x0000		The counter clock frequency $f_{CK_CNT} = f_{TMR_CLK} / (DIV[15: 0]+1)$.
				DIV contains the value written at an overflow event.

14.3.5.9 Period register (TMRx_PR)

Bit	Register	Reset value	Type	Description
				Period value
Bit 15: 0	PR	0x0000	rw	This defines the period value of the TMRx counter. The timer stops working when the period value is 0.

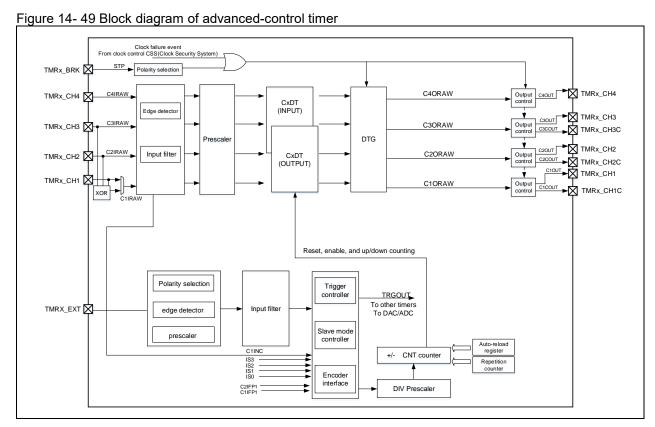
2021.12.01 Page 240 Ver 2.02

14.3.5.10 Channel 1 data register (TMRx_C1DT)

Bit	Register	Reset value	Type	Description
				Channel 1 data register
Bit 15: 0		0x0000	rw	When the channel 1 is configured as input mode:
				The C1DT is the CVAL value stored by the last channel 1 input event (C1IN)
	C1DT			When the channel 1 is configured as output mode:
				C1DT is the value to be compared with the CVAL value. Whether the written value takes effective immediately depends on the C1OBEN bit, and the corresponding output is generated on C1OUT as configured.

14.4 Advanced-control timers (TMR1 and TMR8)

14.4.1 TMR1 and TMR8 introduction

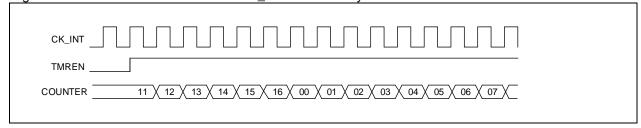

Each of the advanced-control timer (TMR1 and TMR8) consists of a 16-bit counter supporting up, down, up/down (bidirectional) counting modes, four capture/compare registers, and four independent channels to achieve embedded dead-time, input capture and programmable PWM output.

14.4.2 TMR1 and TMR8 main features

The main functions of general-purpose TMR1 and TMR8 include:

- Souce of counter clock: internal clock, external clock an internal trigger input
- 16-bit up, down, up/down, repetition and encoder mode counter
- 4 independent channels for input capture, output compare, PWM generation, one-pulse mode output and embedded dead-time
- 3 independent channes for complementary output
- TMR break function
- Synchronization control between master and slave timers
- Interrrupt/DMA is generated at overflow event, trigger event, break signal input and channel event
- Support TMR burst DMA transfer

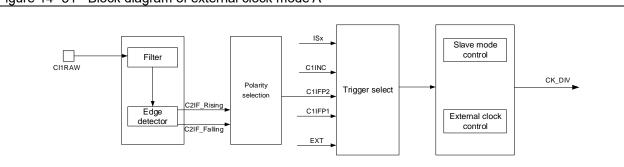
14.4.3 TMR1 and TMR8 functional overview


14.4.3.1 Count clock

The count clock of TMR1 and TMR8 can be provided by the internal clock (CK_INT), external clock (external clock mode A and B) and internal trigger input (ISx)

Internal clock (CK_INT)

By default, the CK INT divided by the prescaler is used to drive the counter to start counting.


External clock (TRGIN/EXT)

The counter clock can be provided by two external clock sources, namely, TRGIN and EXT signals.

When SMSEL=3'111, external clock mode A is selected. Set the STIS[2: 0] bit to select TRGIN signal to drive the counter to start counting.

When ECMBEN=1, external clock mode B is selected. The counter starts counting driven by EXT signal.

Figure 14-51 Block diagram of external clock mode A

Note: The delay between the signal on the input side and the actual clock of the counter is due to the synchronization circuit.

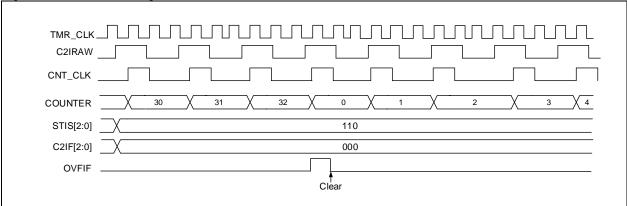
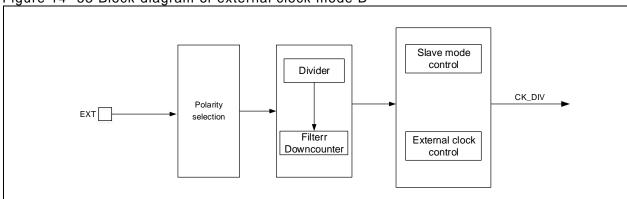
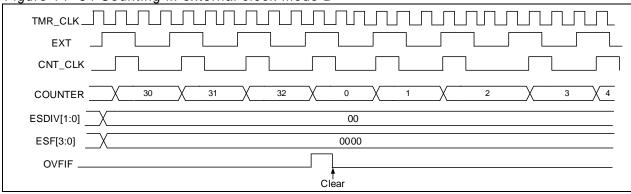




Figure 14- 53 Block diagram of external clock mode B

Note: The delay between the ext signal on the input side and the actual clock of the counter is due to the synchronization circuit.

Figure 14- 54 Counting in external clock mode B

Internal trigger input (ISx)

Timer synchronization allows interconnection between several timers. The TMR_CLK of one timer can be provided by the TRGOUT signal output by another timer. Set the STIS[2: 0] bit to select internal trigger signal to enable counting.

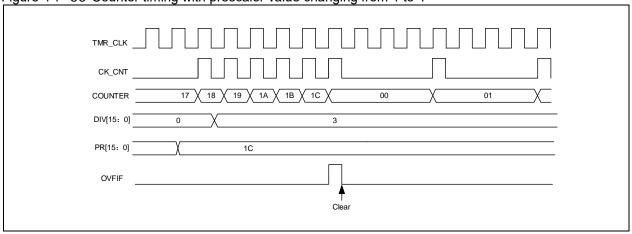

Each timer consists of a 16-bit prescaler, which is used to generate the CK_CNT that enables the counter to count. The frequency division relationship between the CK_CNT and TMR_CLK can be adjusted by setting the value of the TMRx_DIV register. The prescaler value can be modified at any time, but it takes effect only when the next overflow event occurs.

Table 14- 12 TMRx internal trigger connection

Slave timer	IS0 (STIS=000)	IS1 (STIS=001)	IS2 (STIS=010)	IS3 (STIS=011)
TMR1	TMR5	TMR2	TMR3	TMR4
TMR8	TMR1	TMR2	TMR4	TMR5
Reserved	TMR8	TMR2	TMR4	TMR5

Figure 14- 55 Counter timing with prescaler value changing from 1 to 4

14.4.3.2 Counting mode

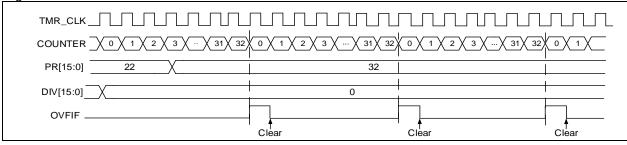
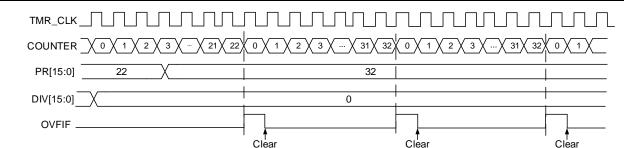
The advanced-control timer consists of a 16-bit counter supporting up, down, up/down counting modes. The TMRx_PR register is loaded with the counter value. The value in the TMRx_PR is immediately moved to the shadow register by deault. When the periodic buffer is enabled (PRBEN=1), the value in the TMRx_PR register is transferred to the shadow register only at an overflow event. The OVFEN and OVFS bits are used to configure the overflow event.

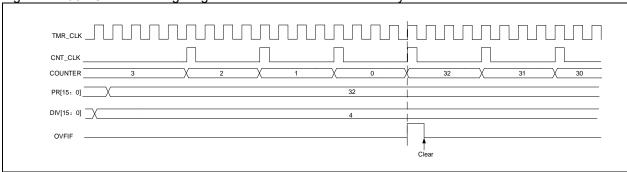
Setting TMREN=1 to enable the timer to start counting. Base on synchronization logic, however, the actual enable signal TMR_EN is set 1 clock cycle after the TMREN is set.

Upcounting mode

In upcounting mode, the counter counts from 0 to the value programmed in the TMRx_PR register, restarts from 0, and generates a counter overflow event, with the OVFIF bit being set. If the overflow event is disabled, the register is no longer reloaded with the preload and re-loaded value after counter overflow occurs, otherwise, the prescaler and re-loaded value will be updated at an overflow event.

Figure 14- 56 Overflow event when PRBEN=0


Figure 14- 57 Overflow event when PRBEN=1

Downcounting mode

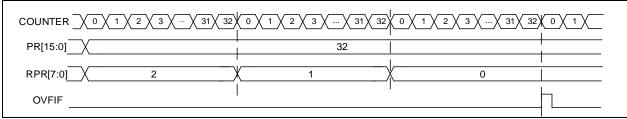
In downcounting mode, the counter counts from the value programmed in the TMRx_PR register down to 0, and restarts from the value programmed in the TMRx_PR register, and generates a counter underflow event.

Figure 14-58 Counter timing diagram with internal clock divided by 4

Up/down counting mode

In up/down counting mode, the counter counts up/down alternatively. When the counter counts from the value programmed in the TMRx_PR register down to 1, an underflow event is generated, and then restarts counting from 0; when the counter counts from 0 to the value of the TMRx_PR register -1, an overflow event is generated, and then restarts counting from the value of the TMRx_PR register. The OWCDIR bit indicates the current counting direction.

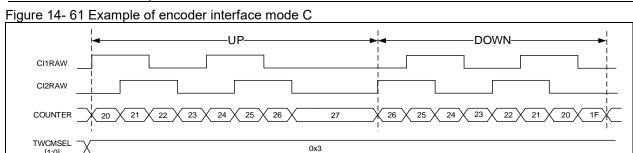
Note: The OWCDIR is ready-only in up/down counting mode.


Figure 14- 59 Counter timing diagram with internal clock divided by 1 and TMRx_PR=0x32

Repetition counter mode:

The repletion counter mode is enabled when the repetition counter value is not equal to 0. In this mode, the repetition counter is decremented at each counter overflow. An overflow event is generated when the repetition counter reaches 0. The frequency of the overflow event can be adjusted by setting the repetition counter value.

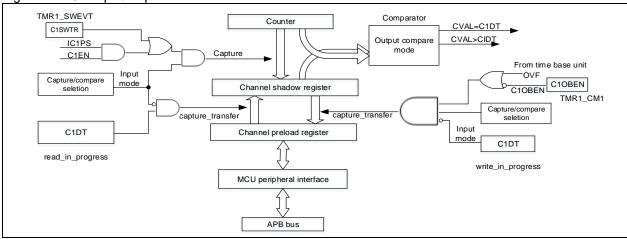
Figure 14-60 OVFIF when RPR=2



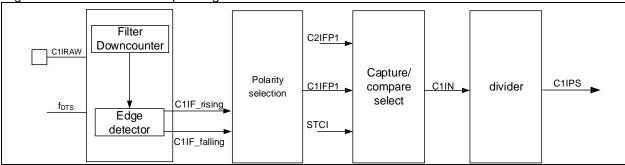
Encoder interface mode

To enble the encoder interface mode, write SMSEL[2: 0]= 3'b001/3'b010/3'b011. In this mode, the two inputs (C1IN/C2IN) are required. Depending on the level on one input, the counter counts up or down on the edge of the other input. The OWCDIR bit indicates the direction of the counter, as shown in the table below:

Table 14- 13 Couting direction versus encoder signals


A stitue and see	Level on opposite signal	C1INFP1 signal		C2INFP2 signal	
Active edge	(C1INFP1 to C2IN, C2INFP2 to C1IN)	Rising	Falling	Rising	Falling
Count on CAIN only	High	Down	Up	No count	No count
Count on C1IN only	Low	Up	Down	No count	No count
Count on COIN only	High	No count	No count	Up	Down
Count on C2IN only	Low	No count	No count	Down	Up
Count on both C1IN and	High	Down	Up	Up	Down
C2IN	Low	Up	Down	Down	Up




14.4.3.3 TMR input function

Each timer of TMR1 and TMR8 has four independent channels. Each channel can be configured as input or output. As input, the channel can be used for the filtering, selection, division and input capture of the input signals.

Figure 14- 62 Input/output channel 1 main circuit

Input mode

In input mode, the TMRx_CxDT registers latch the current counter values after the selected triggle signal is detected, and the capture compare interrupt flag bit (CxIF) is set. An interrupt/DMA request will be generated if the CxIEN bit and CxDEN bit are enabled. If the selected trigger signal is detected when the CxIF is set, the CxOF is set.

To capture the rising edge of C1IN input, following the configuration procedure mentioned below:

- Set C1C=01 in the TMRx CxDT register to select the C1IN as channel 1 input
- Set the filter bandwidth of C1IN signal (CxDF[3: 0])
- Set the active edge on the C1IN channel by writing C1P=0 (rising edge) in the TMRx_CCTR register
- Program the capture frequency of C1IN signal (C1DIV[1: 0])
- Enable channel 1 input capture (C1EN=1)
- If needed, enable the relevant interrupt or DMA request by setting the C1IEN bit in the TMRx_IDEN register or the C1DEN bit in the TMRx_IDEN register

Timer Input XOR function

The timer input pins (TMRx_CH1, TMRx_CH2 and TMRx_CH3) are connected to the channel 1 (selected by setting the C1INSE in the TMRx_CTRL2 register) through an XOR gate.

The XOR gate can be used to connect Hall sensors. For example, connect the three XOR inputs to the three Hall sensors respectively so as to calculate the position and speed of the rotation by analyzing three Hall sensor signals.

14.4.3.4 TMR output function

The TMR output consists of a comparator and an output controller. It is used to program the period, duty cycle and polarity of the output signal. The advanced-control timer output function varies from one channel to one channel.

Figure 14- 64 Channel output stage (channel 1 to 3)

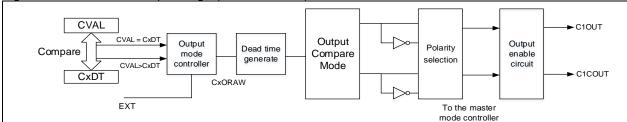
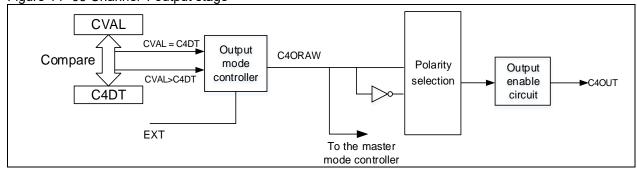



Figure 14-65 Channel 4 output stage

Output mode

Write CxC[2: 0] \$\neq 2\$'b00 to configure the channel as output to implement multiple output modes. In this case, the counter value is compared with the value in the TMRx_CxDT register, and the intermediate signal CxORAW is generated according to the output mode selected by CxOCTRL[2: 0], which is sent to IO after being processed by the output control circuit. The period of the output signal is configured by the TMRx_PR register, while the duty cycle by the TMRx_CxDT register.

Output compare modes include:

- PWM mode: Set CxOCTRL=2'b110/111 to enable PWM mode. Each channel can be independently configured to output one PWM signal. In this case, the period of the output signal is configured by the TMRx_PR register, and the duty cycle by the CxDT register. The counter value is compared with the value of the TMRx_CxDT register, and the corresponding level signal is sent according to the counting direction. For more information on PWM mode A/B, refer to the description of the CxOCTRL[2: 0] bit. In up/down counting mode, the OWCDIR bit is used to indicate the counting direction.
- Forced output mode: Set CxOCTRL=2'b100/101 to enable forced output mode. In this case, the CxORAW is forced to be the programmed level, irrespective of the counter value. Despite this, the channel flag bit and DMA request still depend on the compare result.
- Output compare mode: Set CxOCTRL=2'b001/010/011 to enable output compare mode. In this
 case, when the counter value matches the value of the CxDT register, the CxORAW is forced
 high, low or toggling.
- One-pulse mode: This is a particular case of PWM mode. Set OCMEN=1 to enable one-pulse mode. In this mode, the comparison match is performed in the current counting period. The TMREN bit is cleared as soon as the current counting is completed. Therefore, only one pulse is output. When configured as in upcounting mode, the configureation must follow the rule: CVAL<CxDT≤PR; in downcounting mode, CVAL>CxDT is required.
- Fast output mode: Set CxOIEN=1 to enable this mode. If enabled, the CxORAW signal will not change when the counter value matches the CxDT, but at the beginning of the current counting period. In other words, the comparison result is advanced, so the comparison result between the counter value and the TMRx CxDT register will determine the level of CxORAW in advance.

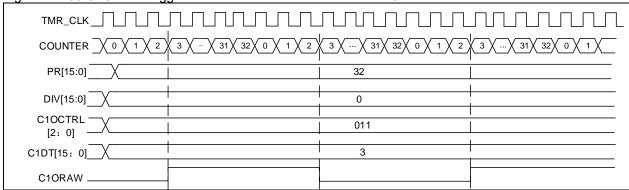
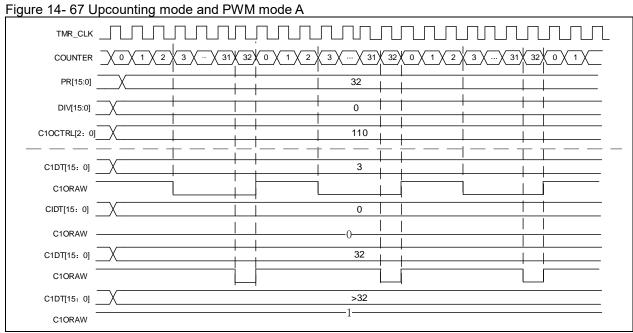

Figure 14- 66 gives an example of output compare mode (toggle) with C1DT=0x3. When the counter value is equal to 0x3, C1OUT toggles.

Figure 14- 67 gives an example of the combination between upcounting mode and PWM mode A. The output signal behaves when PR=0x32 but CxDT is configured with a different value.


Figure 14- 68 gives an example of the combination between up/down counting mode and PWM mode A. The output signal behaves when PR=0x32 but CxDT is configured with a different value.

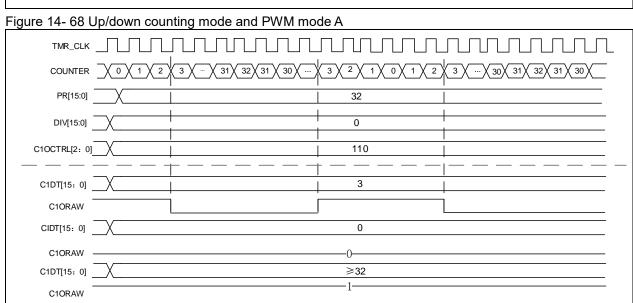
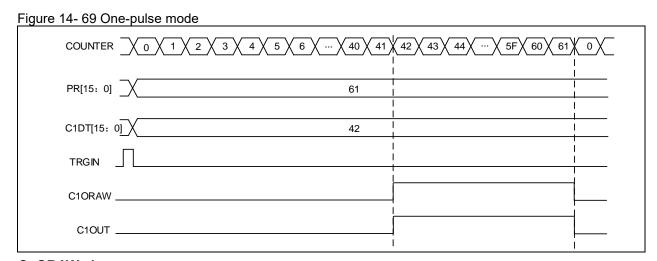
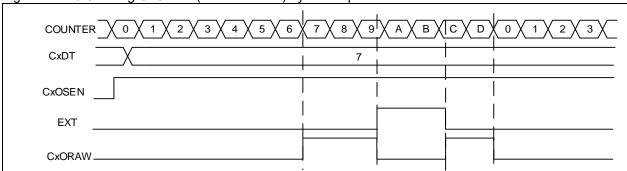

Figure 14- 69 gives an example of the combination between upcounting mode and one-pulse PWM mode B. The counter only counts only one cycle, and the output signal sents only one pulse.

Figure 14- 66 C1ORAW toggles when counter value matches the C1DT value





CxORAW clear

When the CxOSEN bit is set, the CxORAW signal for a given channel is cleared by applying a high level to the EXT input. The CxORAW signal remains unchanged until the next overflow event.

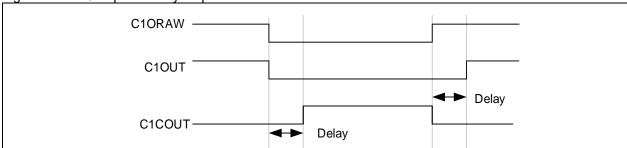
This function can only be used in output capture or PWM modes, and does not work in forced mode. Figure 14-70 shows the example of clearing CxORAW. When the EXT input is high, the CxORAW signal, which was originally high, is driven low; when the EXT is low, the CxORAW signal outputs the corresponding level according to the comparison result between the counter value and CxDT value.

Figure 14-70 Clearing CxORAW(PWM mode A) by EXT input

Dead-time insertion

The channel 1 to 3 of the advanced-control timers contains a set of reverse channel output. This function is enabled by the CxCEN bit and its polarity is defined by CxCP. Refer to Table 14- 14 for more information about the output state of CxOUT and CxCOUT.

The dead-time is activated when switching to IDLEF state (OEN falling down to 0).

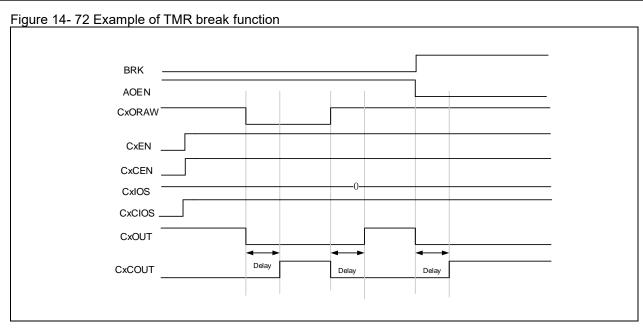

Setting both CxEN and CxCEN bits, and using DTC[7:0] bit to insert dead-time of different durations. After the dead-time insertion, the rising edge of the CxOUT is delayed compared to the rising edge of the reference signal; the rising edge of the CxCOU is delayed compared to the falling edge of the reference signal.

If the delay is greater than the width of the active output, and if C1OUT and C1COUT are to generate corresponding pulses, the dead-time should be less than the width of the active output.

Figure 14-71 gives an example of dead-time insertion when CxP=0, CxCP=0, OEN=1, CxEN=1 and CxCEN=1.

Figure 14- 71 Complementary output with dead-time insertion

14.4.3.5 TMR break function

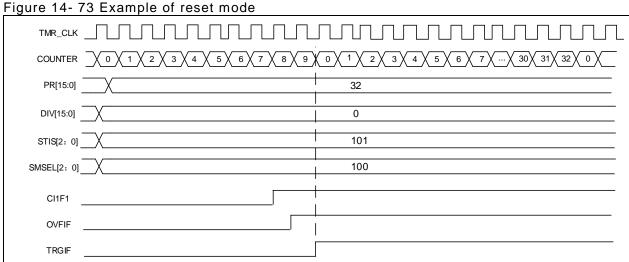

When the break function is enabled (BRKEN=1), the CxOUT 和 CxCOUT are jointly controlled by OEN, FCSODIS, FCSOEN, CxIOS and CxCIOS. But, CxOUT and CxCOUT cannot be set both to active level at the same time. Please refer to 14-15 for more details.

The break souce can be the break input pin or a clock failure event. The polarity is controlled by the BRKV bit.

When a break event occurs, there are the following actions:

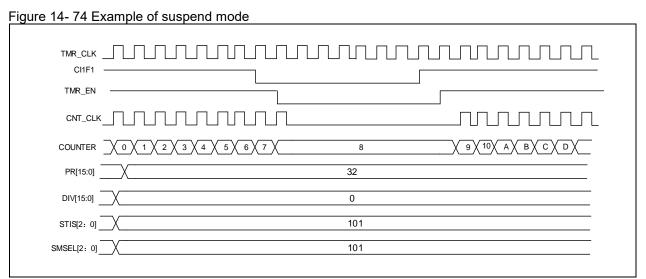
- The OEN bit is cleared asynchronously, and the channel output state is selected by setting the FCSODIS bit. This function works even if the MCU oscillator is off.
- Once OEN=0, the channel output level is defined by the CxIOS bit. If FCSODIS=0, the timer output is disabled, otherwise, the output enable remains high.
- When complementary outputs are used:
 - The outputs are first put in reset state, that is, inactive state (depending on the polarity). This
 is done asynchronously so that it works even if no clock is provided to the timer.
 - If the timer clock is still active, then the dead-time generator is activated. The CxIOS and CxCIOS bits are used to program the level after dead-time. Even in this case, the CxIOS and CxCIOS cannot be driven to their actival level a the same time. It should be note that because of synchronization on OEN, the dead-time duration is usually longer than usual (around 2 clk_tmr clock cycles)
 - If FCSODIS=0, the timer releases the enable output, otherwise, it keeps the enable output; the
 enable output becomes high as soon as one of the CxEN and CxCEN bits becomes high.
- If the break interrupt or DMA request is enabled, the break statue flag is set, and a break interrupt or DMA request can be generated.
- If AOEN=1, the OEN bit is automatically set again at the next overflow event.

Note: When the break input is active, the OEN cannot be set, nor the status flag, BRKIF can be cleared.

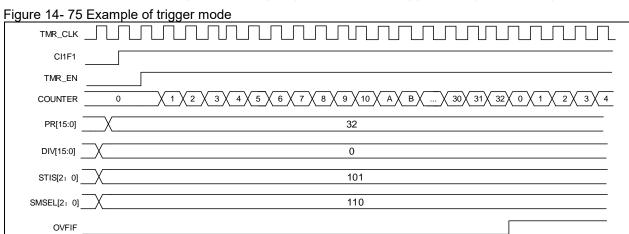

14.4.3.6 TMR synchronization

The timers are linked together internnaly for timer synchronization. Master timer is selected by setting the PTOS[2: 0] bit; Slave timer is selected by setting the SMSEL[2: 0] bit.

Slave modes include:


Slave mode: Reset mode

The counter and its prescaler can be reset by a selected trigger signal. An overflow event can be generated when OVFS=0.


Slave mode: Suspend mode

In this mode, the counter is controlled by a selected trigger input. The counter starts counting when the trigger input is high and stops as soon as the trigger input is low.

Slave mode: Trigger mode

The counter can start counting on the rising edge of a selected trigger input (TMR_EN=1)

Please refer to 14.2.3.5 fore more details.

14.4.3.7 Debug mode

When the microcontroller enters debug mode (CortexTM-M4F core halted), the TMRx counter stops counting by setting the TMRx_PAUSE in the DEBUG module.

14.4.4 TMR1 and TMR8 registers

These peripheral registers must be accessed by word (32 bits).

All TMR1 and TMR8 register are mapped into a 16-bit addressable space.

Table 14- 14 TMR1 and TMR8 register map and reset value

Register	Offset	Reset value
TMRx_CTRL1	0x00	0x0000
TMRx_CTRL2	0x04	0x0000
TMRx_STCTRL	0x08	0x0000
TMRx_IDEN	0x0C	0x0000
TMRx_ISTS	0x10	0x0000
TMRx_SWEVT	0x14	0x0000
TMRx_CM1	0x18	0x0000
TMRx_CM2	0x1C	0x0000
TMRx_CCTRL	0x20	0x0000

TMRx_CVAL	0x24	0x0000
TMRx_DIV	0x28	0x0000
TMRx_PR	0x2C	0x0000
TMRx_RPR	0x30	0x0000
TMRx_C1DT	0x34	0x0000
TMRx_C2DT	0x38	0x0000
TMRx_C3DT	0x3C	0x0000
TMRx_C4DT	0x40	0x0000
TMRx_BRK	0x44	0x0000
TMRx_DMACTRL	0x48	0x0000
TMRx_DMADT	0x4C	0x0000

14.4.4.1 TMR1 and TMR8 control register1 (TMRx_CTRL1)

Bit	Register	Reset value	Type	Description
Bit 15: 10	Reserved	0x00	resd	Kept at its default value.
				Clock division
				00: Normal
Bit 9: 8	CLKDIV	0x0	rw	01: Divided by 2
				10: Divided by 4
				11: Reserved
				Period buffer enable
Bit 7	PRBEN	0x0	rw	0: Period buffer is disabled
				1: Period buffer is enabled
				Two-way counting mode selection
				00: One-way counting mode, depending on the OWCDIR bit
D# 0. F	TMOMOEI	00		01: Two-way counting mode1, count up and down alternately, the output flag bit is set only when the counter counts down
Bit 6: 5	TWCMSEL	0x0	rw	10: Two-way counting mode2, count up and down alternately, the output flag bit is set only when the counter counts up
				11: Two-way counting mode3, count up and down alternately, the output flag bit is set when the counter counts up / down
				One-way count direction
Bit 4	OWCDIR	0x0	rw	0: Up;
				1: Down
				One cycle mode enable
Bit 3	OCMEN	0x0	rw	This bit is use to select whether to stop counting at an update event
Dit 0	OOMEN	0.0	1 VV	0: The counter does not stop at an update event
				1: The counter stops at an update event
				Overflow event source
				This bit is used to select overflow event or DMA request sources.
Bit 2	OVFS	0x0	rw	0: Counter overflow, setting the OVFSWTR bit or overflow event generated by slave timer controller
				1: Only counter overflow generates an overflow event
				Overflow event enable
Bit 1	OVFEN	0x0	rw	0: Enabled
וווו	OVILIV	OAO	1 44	1: Disabled

				TMR enable	
Bit 0	TMREN	0x0	rw	0: Disabled	
				1: Enabled	

14.4.4.2 TMR1 and TMR8 control register2 (TMRx_CTRL2)

Bit	Register	Reset value	Туре	Description
Bit 15	Reserved	0x00	resd	Kept at its default value.
Bit 14	C4IOS	0x0	rw	Channel 4 idle output state
Bit 13	C3CIOS	0x0	rw	Channel 3 complementary idle output state
Bit 12	C3IOS	0x0	rw	Channel 3 idle output state
Bit 11	C2CIOS	0x0	rw	Channel 2 complementary idle output state
Bit 10	C2IOS	0x0	rw	Channel 2 idle output state
				Channel 1 complementary idle output state
				OEN = 0 after dead-time:
Bit 9	C1CIOS	0x0	rw	0: C1OUTL=0
				1: C1OUTL=1
				Channel 1 idle output state
				OEN = 0 after dead-time:
Bit 8	C1IOS	0x0	rw	0: C1OUT=0
				1: C1OUT=1
				C1IN selection
				0: CH1 pin is connected to C1IRAW input
Bit 7	C1INSEL	0x0	rw	1: The XOR result of CH1, CH2 and CH3 pins is connected
				to C1IRAW input
				Master TMR output selection
				This field is used to select the TMRx signal sent to the
				slave timer.
				000: Reset
				001: Enable
Bit 6: 4	PTOS	0x0	rw	010: Update
				011: Compare pulse
				100: C1ORAW signal
				101: C2ORAW signal
				110: C3ORAW signal
				111: C4ORAW signal
				DMA request source
Bit 3	DRS	0x0	rw	0: Capture/compare event
				1: Overflow event
-				Channel control bit flash selection
				This bit only acts on channels that have
				complementaryoutput. If the channel contro bits are
Bit 2	CCFS	0x0	rw	buffered:
				0: Control bits are updated by setting the HALL bit
				1: Control bits are updated by setting the HALL bit or a
				rising edge on TRGIN.
Bit 1	Reserved	0x0	resd	Kept at its default value.
				Channel buffer control
Bit 0	CBCTRL	0x0	rw	This bit acts on channels that have complementary output.
			. **	0: CxEN, CxCEN and CxOCTRL bits are not buffered.
				1: CxEN, CxCEN and CxOCTRL bits are not buffered.

14.4.4.3 TMR1 and TMR8 slave timer control register (TMRx_STCTRL)

Bit	Register	Reset value	Type	Description
				External signal polarity
Bit 15	ESP	0x0	rw	0: High or rising edge
				1: Low or falling edge
				External clock mode B enable
D# 4.4	COMPEN	00		This bit is used to enable external clock mode B
Bit 14	ECMBEN	0x0	rw	0: Disabled
				1: Enabled
				External signal divide
				This field is used to select the frequency division of an external trigger
Bit 13: 12	ESDIV	0x0	rw	00: Normal
				01: Divided by 2
				10: Divided by 4
				11: Divided by 8
-				External signal filter
				This field is used to filter an external signal. The external signal can be sampled only after it has been generated N times
				0000: No filter, sampling by f_{DTS}
				0001: $f_{SAMPLING} = f_{CK_INT}$, N=2
				0010: $f_{SAMPLING} = f_{CK_INT}$, N=4
				0011: $f_{SAMPLING} = f_{CK_INT}$, N=8
				0100: $f_{SAMPLING} = f_{DTS}/2$, N=6
				0101: $f_{SAMPLING} = f_{DTS}/2$, N=8
Bit 11: 8	ESF	0x0	rw	
				0110: f _{SAMPLING} =f _{DTS} /4, N=6
				0111: f _{SAMPLING} =f _{DTS} /4, N=8
				1000: f _{SAMPLING} =f _{DTS} /8, N=6
				1001: f _{SAMPLING} =f _{DTS} /8, N=8
				1010: f _{SAMPLING} =f _{DTS} /16, N=5
				1011: f _{SAMPLING} =f _{DTS} /16, N=6
				1100: f _{SAMPLING} =f _{DTS} /16, N=8
				1101: f _{SAMPLING} =f _{DTS} /32, N=5
				1110: f _{SAMPLING} =f _{DTS} /32, N=6
				1111: f _{SAMPLING} =f _{DTS} /32, N=8
				Subordinate TMR synchronization
Bit 7	STS	0x0	rw	If enabled, master and slave timer can be synchronized.
Dit 1	010	OAO	I VV	0: Disabled
				1: Enabled
				Subordinate TMR input selection
				This field is used to select the subordinate TMR input.
				000: Internal selection 0 (IS0)
				001: Internal selection 1 (IS1)
				010: Internal selection 2 (IS2)
Bit 6: 4	STIS	0x0	r\A/	011: Internal selection 3 (IS3)
טונ ט. 4	0110	UAU	rw	100: C1IRAW input detector (C1INC)
				101: Filtered input 1 (C1IF1)
				110: Filtered input 2 (C1IF2)
				111: External input (EXT)
				Pleaser refer to Table 14-3 and 14-5 for more information on ISx for each timer.
Bit 3	Reserved	0x0	resd	Kept at its default value.
			. Jou	·

				Subordinate TMR mode selection 000: Slave mode is disabled 001: Encoder mode A 010: Encoder mode B
				011: Encoder mode C 100: Reset mode — Rising edge of the TRGIN input
Bit 2: 0	SMSEL	0x0	rw	reinitializes the counter 101: Suspend mode — The counter starts counting when the TRGIN is high
				110: Trigger mode — A trigger event is generated at the rising edge of the TRGIN input
				111: External clock mode A — Rising edge of the TRGIN input clocks the counter
				Note: Please refer to count mode section for the details on encoder mode A/B/C.

14.4.4.4 TMR1 and TMR8 DMA/interrupt enable register (TMRx_IDEN)

Bit	Register	Reset value	Type	Description	
Bit 15	Reserved	0x0	resd	Kept at its default value.	
•				Trigger DMA request enable	_
Bit 14	TDEN	0x0	rw	0: Disabled	
				1: Enabled	
-				HALL DMA request enable	
Bit 13	HALLDE	0x0	rw	0: Disabled	
				1: Enabled	
•				Channel 4 DMA request enable	_
Bit 12	C4DEN	0x0	rw	0: Disabled	
				1: Enabled	
-				Channel 3 DMA request enable	
Bit 11	C3DEN	0x0	rw	0: Disabled	
				1: Enabled。	
				Channel 2 DMA request enable	
Bit 10	C2DEN	0x0	rw	0: Disabled	
				1: Enabled	
-				Channel 1 DMA request enable	
Bit 9	C1DEN	0x0	rw	0: Disabled	
				1: Enabled	
-				Overflow event DMA request enable	
Bit 8	OVFDEN	0x0	rw	0: Disabled	
				1: Enabled	
				Break interrupt enable	
Bit 7	BRKIE	0x0	rw	0: Disabled	
				1: Enabled	
				Trigger interrupt enable	
Bit 6	TIEN	0x0	rw	0: Disabled	
				1: Enabled	
				HALL interrupt enable	
Bit 5	HALLIEN	0x0	rw	0: Disabled	
				1: Enabled	
				Channel 4 interrupt enable	
Bit 4	C4IEN	0x0	rw	0: Disabled	
				1: Enabled	
Bit 3	C3IEN	0x0	rw	Channel 3 interrupt enable	

				0: Disabled	
				1: Enabled	
				Channel 2 interrupt enable	
Bit 2	C2IEN	0x0	rw	0: Disabled	
				1: Enabled	
				Channel 1 interrupt enable	
Bit 1	C1IEN	0x0	rw	0: Disabled	
				1: Enabled	
				Overflow interrupt enable	
Bit 0	OVFIEN	0x0	rw	0: Disabled	
				1: Enabled	

14.4.4.5 TMR1 and TMR8 interrupt status register (TMRx_ISTS)

Bit	Register	Reset value	Type	Description
Bit 15: 13	Reserved	0x0	resd	Kept at its default value.
	0.175	0.0	_	Channel 4 recapture flag
Bit 12	C4RF	0x0	rw0c	Please refer to C1RF description.
	0005			Channel 3 recapture flag
Bit 11	C3RF	0x0	rw0c	Please refer to C1RF description.
D:: 40	0005			Channel 2 recapture flag
Bit 10	C2RF	0x0	rw0c	Please refer to C1RF description.
				Channel 1 recapture flag
Bit 9	C1RF	0x0	rw0c	This bit indicates whether a recapture is detected when C1IF=1. This bit is set by hardware, and cleared by writing "0".
				0: No capture is detected
				1: Capture is detected.
Bit 8	Reserved	0x0	resd	Default value
-				Break interrupt flag
Bit 7	BRKIF	0x0	rw0c	This bit indicates whether the break input is active or not. It is set by hardware and cleared by writing "0" 0: Inactive level
				1: Active level
				Trigger interrupt flag
				This bit is set by hardware on a trigger event. It is cleard by writing "0".
Bit 6	TRGIF	0x0	rw0c	0: No trigger event occurs
				1: Trigger event is generated.
				Trigger event: an active edge is detected on TRGIN input, or any edge in suspend mode.
				HALL interrupt flag
D:: 5		0.0	0	This bit is set by hardware on HALL event. It is cleared by writing "0".
Bit 5	HALLIF	0x0	rw0c	0: No Hall event occurs.
				1: Hall event is detected.
				HALL even: CxEN, CxCEN and CxOCTRL are updated.
Bit 4	C4IF	0x0	rw0c	Channel 4 interrupt flag
DIL 4	C4IF	0.00	TWOC	Please refer to C1IF description.
Bit 3	C3IF	0x0	rw0c	Channel 3 interrupt flag
טונ ט	CSIF	0.00	TWOC	Please refer to C1IF description.
Dit 2	C2IF	0x0	rw0o	Channel 2 interrupt flag
Bit 2	UZIF	UXU	rw0c	Please refer to C1IF description.
Rit 1	C1IE	0×0	rw0c	Channel 1 interrupt flag
Bit 1	C1IF	0x0	rw0c	If the channel 1 is configured as input mode:

				This bit is set by hardware on a capture event. It is cleared
				by software or read access to the TMRx_C1DT
				0: No capture event occurs
				1: Capture event is generated
				If the channel 1 is configured as output mode:
				This bit is set by hardware on a compare event. It is cleared by software.
				0: No compare event occurs
				1: Compare event is generated
				Overflow interrupt flag
				This bit is set by hardware on an overflow event. It is cleared by software.
				0: No overflow event occurs
Bit 0	OVFIF	0x0	rw0c	1: Overflow event is generated. If OVFEN=0 and OVFS=0 in the TMRx_CTRL1 register:
				 An overflow event is generated when OVFG= 1 in the TMRx_SWEVE register;
				 An overflow event is generated when the counter CVAL is reinitialized by a trigger event.

14.4.4.6 Software event register (TMRx_SWEVT)

Bit	Register	Reset value	Type	Description
Bit 15: 8	Reserved	0x000	resd	Kept at its default value.
				Break event triggered by software
D:+ 7	DDIKOMED	0.40		This bit is set by software to generate a break event.
Bit 7	BRKSWTR	0x0	wo	0: No effect
				1: Generate a break event.
				Trigger event triggered by software
D:/ 0	TDOOMTD	0.0		This bit is set by software to generate a trigger event.
Bit 6	TRGSWTR	0x0	rw	0: No effect
				1: Generate a trigger event.
_				HALL event triggered by software
				This bit is set by software to generate a HALL event.
D:: =				0: No effect
Bit 5	HALLSWTR	0x0	WO	1: Generate a HALL event.
				Note: This bit acts only on channels that have
				complementary output.
Dit 4	0.4004/TD	0.0		Channel 4 event triggered by software
Bit 4	C4SWTR	0x0	wo	Please refer to C1M description.
D:+ 0	COCINTO	00	wo	Channel 3 event triggered by software
Bit 3	C3SWTR	0x0		Please refer to C1M description.
D:: 0	COOLITE			Channel 2 event triggered by software
Bit 2	C2SWTR	0x0	wo	Please refer to C1M description
•				Channel 1 event triggered by software
D:: 4	0.4014/TD			This bit is set by software to generate a channel 1 event.
Bit 1	C1SWTR	0x0	WO	0: No effect
				1: Generate a channel 1 event.
				Overflow event triggered by software
- 1	0.4504455			This bit is set by software to generate an overflow event.
Bit 0	OVFSWTR	0x0	wo	0: No effect
				1: Generate an overflow event.

14.4.4.7 TMR1 and TMR8 channel mode register1 (TMRx_CM1)

The channel can be used in input (capture mode) or output (compare mode). The direction of a channel is defined by the corresponding CxC bits. All the other bits of this register have different functons in input and output modes. The CxOx describes its function in output mode when the channel is in output mode, while the CxIx describes its function in output mode when the channel is in input mode. Attention must be given to the fact that the same bit can have different functions in input mode and output mode.

Output compare mode:

Bit	Register	Reset value	Type	Description
Bit 15	C2OSEN	0x0	rw	Channel 2 output switch enable
Bit 14: 12	C2OCTRL	0x0	rw	Channel 2 output control
Bit 11	C2OBEN	0x0	rw	Channel 2 output buffer enable
Bit 10	C20IEN	0x0	rw	Channel 2 output enable immediately
				Channel 2 configuration
				This field is used to define the direction of the channel 2 (input or output), and the selection of input pin when C2EN='0':
D': 0 0	000			00: Output
Bit 9: 8	C2C	0x0	rw	01: Input,, C2IN is mapped on C2IRAW
				10: Input, C2IN is mapped on C1IRAW
				11: Input, C2IN is mapped on STCI. This mode works only when the internal trigger input is selected by STIS register.
				Channel 1 output switch enable
Bit 7	C1OSEN	0x0	F14/	0: C1ORAW is not affected by EXT input.
DIL 1	CIOSEN	UXU	rw	1: Once a high level is detect on EXT input, clear C1ORAW.
				Channel 1 output control
				This field defines the behavior of the original signal C1ORAW.
				000: Disconnected. C1ORAW is disconnected from C1OUT;
				001: C1ORAW is high when TMRx_CVAL=TMRx_C1DT 010: C1ORAW is low when TMRx_CVAL=TMRx_C1DT
		0x0		011: Switch C1ORAW level when TMRx_CVAL=TMRx_C1DT
				100: C1ORAW is forced low
				101: C1ORAW is forced high.
				110: PWM mode A
Bit 6: 4	C1OCTRL		rw	 OWCDIR=0, C1ORAW is high once TMRx_C1DT>TMRx_CVAL, else low;
				- OWCDIR=1, C1ORAW is low once TMRx_ C1DT
				<tmrx_cval, else="" high;<="" td=""></tmrx_cval,>
				111: PWM mode B
				 OWCDIR=0, C1ORAW is low once TMRx_ C1DT >TMRx_CVAL, else high;
				 OWCDIR=1, C1ORAW is high once TMRx_ C1DT <tmrx_cval, else="" li="" low.<=""> </tmrx_cval,>
				Note: In the configurations othern than 000', the C10UT is connected to C10RAW. The C10UT output level is not only subject to the changes of C10RAW, but also the output polarity set by CCTRL.
				Channel 1 output buffer enable
Bit 3	C10BEN	0x0	rw	0: Buffer function of TMRx_C1DT is disabled. The new value written to the TMRx_C1DT takes effect immediately.

				1: Buffer function of TMRx_C1DT is enabled. The value to be written to the TMRx_C1DT is stored in the buffer register, and can be sent to the TMRx_C1DT register only on an overflow event.
				Channel 1 output enable immediately
				In PWM mode A or B, this bit is used to accelerate the channel 1 output's response to the trigger event.
Bit 2	C10IEN	0x0	rw	0: Need to compare the CVAL with C1DT before generating an output
				1: No need to compare the CVAL and C1DT. An output is generated immediately when a trigger event occurs.
				Channel 1 configuration
				This field is used to define the direction of the channel 1 (input or output), and the selection of input pin when C1EN='0':
Bit 1: 0	C1C	0x0	rw	00: Output
				01: Input, C1IN is mapped on C1IRAW
				10: Input, C1IN is mapped on C2IRAW
				11: Input, C1IN is mapped on STCI. This mode works only when the internal trigger input is selected by STIS.

	apture mode:			
Bit	Register	Reset value	Type	Description
Bit 15: 12	C2DF	0x0	rw	Channel 2 digital filter
Bit 11: 10	C2IDIV	0x0	rw	Channel 2 input divider
				Channel 2 configuration
				This field is used to define the direction of the channel 2 (input or output), and the selection of input pin when C2EN='0':
Bit 9: 8	C2C	0x0	rw	00: Output
				01: Input, C2IN is mapped on C2IRAW
				10: Input, C2IN is mapped on C1IRAW
				11: Input, C2IN is mapped on STCI. This mode works only when the internal trigger input is selected by STIS.
				Channel 1 digital filter
	C1DF			This field defines the digital filter of the channel 1. N stands for the number of filtering, indicating that the input edge can pass the filter only after N sampling events.
				0000: No filter, sampling is done at f_{DTS}
				1000: f _{SAMPLING} =f _{DTS} /8, N=6
		0x0		0001: $f_{SAMPLING} = f_{CK_INT}$, N=2
				1001: f _{SAMPLING} =f _{DTS} /8, N=8
				0010: $f_{SAMPLING} = f_{CK\ INT}$, N=4
				1010: f _{SAMPLING} =f _{DTS} /16, N=5
Bit 7: 4			rw	0011: $f_{SAMPLING} = f_{CK_INT}$, N=8
				1011: f _{SAMPLING} =f _{DTS} /16, N=6
				0100: f _{SAMPLING} =f _{DTS} /2, N=6
				1100: f _{SAMPLING} =f _{DTS} /16, N=8
				0101: f _{SAMPLING} =f _{DTS} /2, N=8
				1101: f _{SAMPLING} =f _{DTS} /32, N=5
				0110: f _{SMPLING} =f _{DTS} /4, N=6
				1110: f _{SAMPLING} =f _{DTS} /32, N=6
				0111: $f_{SAMPLING} = f_{DTS}/4$, N=8
				1111: f _{SAMPLING} =f _{DTS} /32, N=8
				Channel 1 input divider
Bit 3: 2	C1IDIV	0x0	rw	This field defines Channel 1 input divider.

				00: No divider. An input capture is generated at each active edge.
				01: An input compare is generated every 2 active edges
				10: An input compare is generated every 4 active edges
				11: An input compare is generated every 8 active edges
				Note: the divider is reset once C1EN='0'
				Channel 1 configuration
				This field is used to define the direction of the channel 1 (input or output), and the selection of input pin when C1EN='0':
Bit 1: 0	C1C	0x0	rw	00: Output
				01: Input, C1IN is mapped on C1IRAW
				10: Input, C1IN is mapped on C2IRAW
				11: Input, C1IN is mapped on STCI. This mode works only when the internal trigger input is selected by STIS.

14.4.4.8 Channel mode register2 (TMRx_CM2)

The channel can be used in input (capture mode) or output (compare mode). The direction of a channel is defined by the corresponding CxC bits. All the other bits of this register have different functons in input and output modes. The CxOx describes its function in output mode when the channel is in output mode, while the CxIx describes its function in output mode when the channel is in input mode. Attention must be given to the fact that the same bit can have different functions in input mode and output mode.

Output compare mode:

Bit	Register	Reset value	Type	Description
Bit 15	C4OSEN	0x0	rw	Channel 4 output switch enable
Bit 14: 12	C4OCTRL	0x0	rw	Channel 4 output control
Bit 11	C4OBEN	0x0	rw	Channel 4 output buffer enable
Bit 10	C40IEN	0x0	rw	Channel 4 output enable immediately
				Channel 4 configuration
				This field is used to define the direction of the channel 1 (input or output), and the selection of input pin when C4EN='0':
Bit 9: 8	C4C	0x0	rw	00: Output
				01: Input, C4IN is mapped on C4IRAW
				10: Input, C4IN is mapped on C3IRAW
				11: Input, C4IN is mapped on STCI. This mode works only when the internal trigger input is selected by STIS.
Bit 7	C3OSEN	0x0	rw	Channel 3 output switch enable
Bit 6: 4	C3OCTRL	0x0	rw	Channel 3 output control
Bit 3	C3OBEN	0x0	rw	Channel 3 output buffer enable
Bit 2	C30IEN	0x0	rw	Channel 3 output enable immediately
				Channel 3 configuration
				This field is used to define the direction of the channel 1 (input or output), and the selection of input pin when C3EN='0':
Bit 1: 0	C3C	0x0	rw	00: Output
		OAC .		01: Input, C3IN is mapped on C3IRAW
				10: Input, C3IN is mapped on C4IRAW
				11: Input, C3IN is mapped on STCI. This mode works only when the internal trigger input is selected by STIS.

Input capture mode:

Bit	Register	Reset value	Type	Description
Bit 15: 12	C4DF	0x0	rw	Channel 4 digital filter
Bit 11: 10	C4IDIV	0x0	rw	Channel 4 input divider

				Channel 4 configuration
				This field is used to define the direction of the channel 1
				(input or output), and the selection of input pin when
				C4EN='0':
Bit 9: 8	C4C	0x0	rw	00: Output
				01: Input, C4IN is mapped on C4IRAW
				10: Input, C4IN is mapped on C3IRAW
				11: Input, C4IN is mapped on STCI. This mode works only
				when the internal trigger input is selected by STIS.
Bit 7: 4	C3DF	0x0	rw	Channel 3 digital filter
Bit 3: 2	C3IDIV	0x0	rw	Channel 3 input divider
				Channel 3 configuration
				This field is used to define the direction of the channel 1
				(input or output), and the selection of input pin when
				C3EN='0':
Bit 1:0	C3C	0x0	rw	00: Output
				01: Input, C3IN is mapped on C3IRAW
				10: Input, C3IN is mapped on C4IRAW
				11: Input, C3IN is mapped on STCI. This mode works only
				when the internal trigger input is selected by STIS.

14.4.4.9 Channel control register (TMRx_CCTRL)

Bit	Register	Reset value	Type	Description
Bit 15: 14	Reserved	0x0	resd	Kept its default value.
D:: 40	040	0x0		Channel 4 polarity
Bit 13	C4P		rw	Pleaser refer to C1P description.
D:: 40	O4EN.	00		Channel 4 enable
Bit 12	C4EN	0x0	rw	Pleaser refer to C1EN description.
D'' 44	0000	0.0		Channel 3 complementary polarity
Bit 11	C3CP	0x0	rw	Please refer to C1P description.
D:: 40	OOOEN	00		Channel 3 complementary enable
Bit 10	C3CEN	0x0	rw	Please refer to C1EN description.
D:+ 0	000	00		Channel 3 polarity
Bit 9	C3P	0x0	rw	Pleaser refer to C1P description.
D:4 0	COEN	0x0		Channel 3 enable
Bit 8	C3EN		rw	Pleaser refer to C1EN description.
D:: 7	0000	0x0	rw	Channel 2 complementary polarity
Bit 7	C2CP			Please refer to C1P description.
D:4 0	OOOEN	0x0	rw	Channel 2 complementary enable
Bit 6	C2CEN			Please refer to C1EN description.
D:4 5	000	0x0	rw	Channel 2 polarity
Bit 5	C2P			Pleaser refer to C1P description.
D:4.4	COEN	0x0	rw	Channel 2 enable
Bit 4	C2EN			Pleaser refer to C1EN description.
			rw	Channel 1 complementary polarity
Bit 3	C1CP	0x0		0: C1COUT is active high.
				1: C1COUT is active low.
				Channel 1 complementary enable
Bit 2	C1CEN	0x0	rw	0: Output is disabled.
				1: Output is enabled.
				Channel 1 polarity
Dit 4	CAD	0.40		When the channel 1 is configured as output mode:
Bit 1	C1P	0x0	rw	0: C1OUT is active high
				1: C1OUT is active low

2021.12.01 Page 263 Ver 2.02

When the channel 1 is configured as input mode:

0: C1IN active edge is on its rising edge. When used as external trigger, C1IN is not inverted.

1: C1IN active edge is on its falling edge. When used as external trigger, C1IN is inverted.

Channel 1 enable

Bit0 C1EN 0x0 rw 0: Input or output is disabled

1: Input or output is enabled

Table 14- 15 Complementary output channel CxOUT and CxCOUT control bits with break function

		Control bit			Output state (1)		
OEN bit	FCSODIS bit	FCSOEN bit	CxEN bit	CxCEN bit	CxOUT output state	CxCOUT output state	
		0	0	0	Output disabled (no driven by the timer) CxOUT=0, Cx_EN=0	Output disabled (no driven by the timer) CxCOUT=0, CxCEN=0	
		0	0	1	Output disabled (no driven by the timer) CxOUT=0, Cx_EN=0	CxORAW + polarity, CxCOUT= CxORAW xor CxCP, CxCEN=1	
		0	1	0	CxORAW+ polarity CxOUT= CxORAW xor CxP Cx_EN=1	Output disabled (no driven by the timer) CxCOUT=0, CxCEN=0	
		0	1	1	CxORAW+polarity+dead- time, Cx_EN=1	CxORAW inverted+polarity+dead- time, CxCEN=1	
1	X	1	0	0	Output disabled (no driven by the timer) CxOUT=CxP, Cx_EN=0	Output disabled (no driven by the timer) CxCOUT=CxCP, CxCEN=0	
		1	0	1	Off-state (Output enabled with inactive level) CxOUT=CxP, Cx_EN=1	CxORAW + polarity, CxCOUT= CxORAW xor CxCP, CxCEN=1	
		1	1	0	CxORAW + polarity, CxOUT= CxORAW xor CxP Cx_EN=1	Off-state (Output enabled with inactive level) CxCOUT=CxCP, CxCEN=1	
		1	1	1	CxORAW+ polarity+dead- time, Cx_EN=1	CxORAW inverted+polarity+dead- time, CxCEN=1	
	0		0	0	Output disabled (no driven by the timer)		
	0	1	0	1	Asynchronously: CxOUT=C CxCOUT=CxCP, CxCEN=0;		
	0	- - - - - - - - - - -	1	0	If the clock is present: after	a dead-time,	
0	0		1	1	CxOUT=CxIOS, CxCOUT= CxIOS and CxCIOS do not of CxCOUT active level.		
0	1		0	0	Off-state (Output enabled w		
	1	1	0	1	Asynchronously: CxOUT =C CxCOUT=CxCP, CxCEN=1;	_	
	1	1	1	0	If the clock is present: after CXOUT=CXIOS, CXCOUT=	CxCIOS, assuming that	
	1	- - -	1	1	CxIOS and CxCIOS do not on CxCOUT active level.	correspond to CxOUT and	

Note: If the two outputs of a channel are not used (CxEN = CxCEN = 0), CxIOS, CxCIOS, CxP and CxCP must be cleared.

Note: The state of the external I/O pins connected to the complementary CxOUT and CxCOUT channels depends on the CxOUT and CxCOUT channel state and the GPIO and the IOMUX registers.

14.4.4.10 TMR1 and TMR8 counter value (TMRx_CVAL)

Bit	Register	Reset value	Type	Description
Bit 15: 0	CVAL	0x0000	rw	Counter value

14.4.4.11 TMR1 and TMR8 division value (TMRx_DIV)

Bit	Register	Reset value	Туре	Description
				Divider value
Bit 15: 0	DIV	0x0000	rw	The counter clock frequency $f_{CK_CNT} = f_{TMR_CLK} / (DIV[15: 0]+1)$.
				The value of this register is transferred to the actual prescaler register when an overflow event occurs.

14.4.4.12 TMR1 and TMR8 period register (TMRx_PR)

Bit	Register	Reset value	Type	Description
				Period value
Bit 15: 0	PR	0x0000	rw	This defines the period value of the TMRx counter. The timer stops working when the period value is 0.

14.4.4.13 TMR1 and TMR8 repetition period register (TMRx_RPR)

Bit	Register	Reset value	Туре	Description
Bit 15: 8	Reserved	0x00	resd	Kept at its default value.
				Repetition of period value
Bit 7: 0	RPR	0x00	rw	This field is used to reduce the generation rate of overflow events. An overflow event is generated when the repetition counter reaches 0.

14.4.4.14 TMR1 and TMR8 channel 1 data register (TMRx_C1DT)

Bit	Register	Reset value	Type	Description
				Channel 1 data register
				When the channel 1 is configured as input mode:
				The C1DT is the CVAL value stored by the last channel 1 input event (C1IN)
Bit 15: 0	C1DT	0x0000	rw	When the channel 1 is configured as output mode:
				C1DT is the value to be compared with the CVAL value. Whether the written value takes effective immediately depends on the C1OBEN bit, and the corresponding output is generated on C1OUT as configured.

14.4.4.15 TMR1 and TMR8 channel 2 data register (TMRx_C2DT)

Bit	Register	Reset value	Type	Description
				Channel 2 data register
				When the channel 2 is configured as input mode:
				The C2DT is the CVAL value stored by the last channel 2 input event (C1IN)
Bit 15: 0	C2DT	0x0000	rw	When the channel 2 is configured as output mode:
				C2DT is the value to be compared with the CVAL value. Whether the written value takes effective immediately depends on the C2OBEN bit, and the corresponding output is generated on C2OUT as configured.

14.4.4.16 TMR1 and TMR8 channel 3 data register (TMRx_C3DT)

Bit	Register	Reset value	Type	Description
				Channel 3 data register
				When the channel 3 is configured as input mode:
				The C3DT is the CVAL value stored by the last channel 3 input event (C1IN)
Bit 15: 0	C3DT	0x0000	rw	When the channel 3 is configured as output mode:
				C3DT is the value to be compared with the CVAL value. Whether the written value takes effective immediately depends on the C3OBEN bit, and the corresponding output is generated on C3OUT as configured.

14.4.4.17 TMR1 and TMR8 channel 4 data register (TMRx_C4DT)

Bit	Register	Reset value	Type	Description
				Channel 4 data register
				When the channel 4 is configured as input mode:
				The C4DT is the CVAL value stored by the last channel 4 input event (C1IN)
Bit 15: 0	Bit 15: 0 C3DT (0x0000	rw	When the channel 3 is configured as output mode:
				C4DT is the value to be compared with the CVAL value. Whether the written value takes effective immediately depends on the C4OBEN bit, and the corresponding output is generated on C4OUT as configured.

14.4.4.18 TMR1 and TMR8 break register (TMRx_BRK)

Bit Re	egister	Reset value	Type	Description
				Output enable
Bit 15 OE	EN	0x0	rw	This bit acts on the channels as output. It is used to enable CxOUT and CxCOUT outputs.
				0: Disabled
				1: Enabled
				Automatic output enable
D:: 4.4 A.	OEN	0.40		OEN is set automatically at an overflow event.
Bit 14 AC	OEN	0x0	rw	0: Disabled
				1: Enabled
				Break input validity
D:: 40 DE		00		This bit is used to select the active level of a break input.
Bit 13 BF	RKV	0x0	rw	0: Break input is active low.
				1 Break input is active high.
		0x0		Break enable
D:: 40 DE	DIZENI			This bit is used to enable break input.
Bit 12 BF	RKEN		rw	0: Break input is disabled.
				1: Break input is enabled.
				Frozen channel status when holistic output enable
Bit 11 FC	CSOEN	0x0	rw	This bit acts on the channels that have complementary output. It is used to set the channel state when the timer is inactive and MOEN=1.
Dit 11	300211	OXO		0: CxOUT/CxCOUT outputs are disabled.
				1: CxOUT/CxCOUT outputs are enabled. Output inactive
				level.
				Frozen channel status when holistic output disable
Bit 10 FC	CSODIS	0x0	rw	This bit acts on the channels that have complementary output. It is used to set the channel state when the timer is inactive and MOEN=0.
				0: CxOUT/CxCOUT outputs are disabled.
Bit 10 FC	CSODIS	0x0	rw	1: CxOUT/CxCOUT outputs are enabled level. Frozen channel status when holistic output. This bit acts on the channels that have output. It is used to set the channel state is inactive and MOEN=0.

				1: CxOUT/CxCOUT outputs are enabled. Output idle
				level.
				Write protection configuration
				his field is used to enable write protection.
				00: Write protection is OFF.
				01: Write protection level 3, and the following bits are write protected:
				TMRx_BRK: DTC, BRKEN, BRKV and AOEN
				TMRx_CTRL2: CxIOS and CxCIOS
Bit 9: 8	WPC	0x0	rw	10: Write protection level 2. The following bits and all bits in leve 3 are write protected:
				TMRx_CCTRL: CxP and CxCP
				TMRx_BRK: FCSODIS and FCSOEN
				11: Write protection level 1. The following bits and all bits in level 2 are write protected:
				TMRx_CMx: C2OCTRL and C2OBEN
				Note: Once WPC>0, its content remains frozen until the next system reset.
•				Dead-time configuration
				This field defines the duration of the dead-time insertation. The 3-bit MSB of DTC[7: 0] is used for function selection:
Bit 7: 0	DTC	0x00	rw	0xx: DT = DTC [7: 0] * TDTS
				10x: DT = (64+ DTC [5: 0]) * TDTS * 2
				110: DT = (32+ DTC [4: 0]) * TDTS * 8
				111: DT = (32+ DTC [4: 0]) * TDTS * 16
				111. D1 = (02+ D10 [4. 0]) 1D10 10

Note: Based on lock configuration, AOEN, BRKV, BRKEN, FCSODIS, FCSOEN and DTC[7:0] can all be write protected. Thus it is necessary to configure write protection when writing to the TMRx_BRK register for the first time.

14.4.4.19 TMR1 and TMR8 DMA control register (TMRx_ DMACTRL)

Bit	Register	Reset value	Type	Description
Bit 15:13	Reserved	0x0	resd	Kept at its default value.
				DMA transfer bytes
				This field defines the number of DMA transfers:
5 1				00000: 1 byte 00001: 2 bytes
Bit 12:8	DTB	0x00	rw	00010: 3 bytes 00011: 4 bytes
				10000: 17 bytes 10001: 18 bytes
Bit 7:5	Reserved	0x0	resd	Kept at its default value.
	ADDR		rw	DMA transfer address offset
				ADDR is defined as an offset starting from the address of the TMRx_CTRL1 register:
Bit 4: 0		0x00		00000: TMRx_CTRL1
		CACC		00001: TMRx_CTRL2
				00010: TMRx_STCTRL

2021.12.01 Page 267 Ver 2.02

14.4.4.20 TMR1 and TMR8 DMA data register (TMRx_ DMADT)

Bit	Register	Reset value	Type	Description
Bit 15: 0	DMADT	0x0000	rw	DMA data register A write/read operation to the DMADT register accesses any TMR register located at the following address: TMRx peripheral address + ADDR*4 to TMRx peripheral address + ADDR*4 + DTB*4

2021.12.01 Page 268 Ver 2.02

15 Window watchdog timer (WWDT)

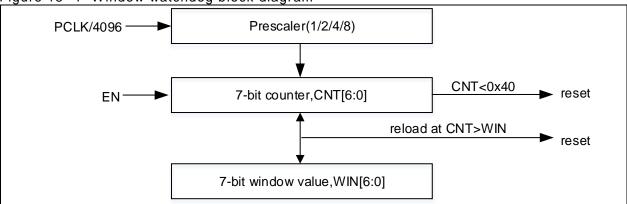
15.1 WWDT introduction

The window watchdog downcounter must be reloaded in a limited time window to prevent the watchdog circuits from generating a system reset. The window watch dog is used to detect the occurrence of system malfunctions.

The window watchdog timer is clocked by a divided APB1_CLK. The presion of the APB1_CLK enables the window watchdog to take accurate control of the limited window.

15.2WWDT main features

- 7-bit downcounter
- If the watchdog is enabled, a system reset is generated when the value of the downcounter is less than 0x40 or when the downcounter is reloaded outside the window.
- The downcounter can be reloaded by enabling the counter interrupt.


15.3 WWDT functional overview

If the watchdog is enabled, a system reset is generated at the following contions:

When the 7-bit downcounter scrolls from 0x40 to 0x3F;

When the counter is reloaded while the 7-bit downcounter is greater than the value programmed in the window register.

Figure 15-1 Window watchdog block diagram

To prevent sytem reset, the counter must be reloaded only when its value is less than the value stored in the window register and greater than 0x40.

The WWDT counter is clocked by a divided APB1_CLK, with the division factor being defined by the DIV[1: 0] bit in the WWDT_CFG register. The counter value determines the maximum counter period before the watchdow generates a reset. The WIN[6: 0] bit can be used to configure the window value.

WWDT offers reload counter interrupt feature. If enabled, the WWDT will set the RLDF flag when the counter value reaches 0x40h, and an interrupt is generated accordingly. The interrupt service routine (ISTS) can be used to reload the counter to prevent a system reset. Note that if CNT[6]=0, setting the WWDTEN bit will generate a system reset, so the CNT[6] bit must be always set (CNT[6]=1) while writing to the WWDT_CTRL register to prevent the occurrence of an immediate reset once the window watchdog is enabled.

The formula to calculate the window watchdog time out:

 $T_{WWDT} = T_{PCLK1} \times 4096 \times 2^{DIV[1:0]} \times (CNT[5:0] + 1); (ms)$

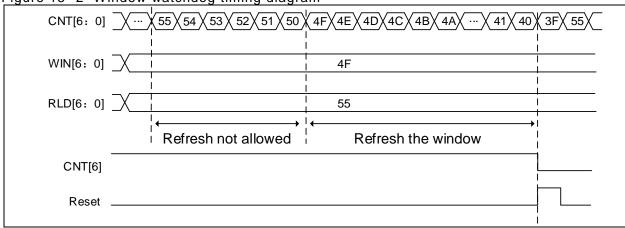

Where: T_{PCLK1} refers to APB1 clock period, in ms.

Table 15-1 Minimum and maximum timeout value when PCLK1=72 MHz

Prescaler	Min. Timeout value	Max. Timeout value
0	56.5µs	3.64ms
1	113.5µs	7.28ms
2	227.5µs	14.56ms
3	455µs	29.12ms

Figure 15-2 Window watchdog timing diagram

15.4 Debug mode

When the microcontroller enters debug mode (CortexTM-M4F core halted), the WWDT counter stops counting by setting the WWDT PAUSE in the DEBUG module.

15.5WWDT registers

These peripheral registers must be accessed by word (32 bits).

Table 15- 2 WWDT register map and reset value

Register	Offset	Reset value
WWDT_CTRL	0x00	0x7F
WWDT_CFG	0x04	0x7F
WWDT_STS	0x08	0x00

15.5.1 Control register (WWDT_CTRL)

Bit	Register	Reset value	Type	Description
Bit 31: 8	Reserved	0x000000	resd	Kept at its default value.
				Window watchdog enable
				0: Disabled
Bit 7	WWDTEN	0x0	rw1s	1: Enabled
				This bit is set by software, but can be cleared only after reset.
				Downcounter
Bit 6: 0	CNT	0x7F	rw	When the counter counts down to 0x3F, a reset is generated.

15.5.2 Configuration register (WWDT_CFG)

Bit	Register	Reset value	Type	Description
Bit 31: 10	Reserved	0x000000	resd	Kept at its default value.
Bit 9			rw	Reload counter interrupt
	RLDIEN	0x0		0: Disabled
				1: Enabled
	5.1.7	0x0	rw	Clock division value
Bit 8: 7	DIV			00: PCLK1 divided by 4096

				01: PCLK1 divided by 8192
				10: PCLK1 divided by 16384
				11: PCLK1 divided by 32768
				Window value
Bit 6: 0	WIN	0x7F r	w	if the counter is reloaded while its value is greater than the window register value, a reset is generated. The counter must be reloaded between 0x40 and WIN[6: 0].

15.5.3 Status register (WWDT_STS)

Bit	Register	Reset value	Type	Description
Bit 31: 1	Reserved	0x0000 0000	resd	Kept at its default value.
				Reload counter interrupt flag
Bit 0	RLDF	0x0	rw0c	This flag is set when the downcounter reaches 0x40.
				'This bit is set by hardware and cleared by software.

2021.12.01 Page 271 Ver 2.02

16 Watchdog timer (WDT)

16.1 WDT introduction

The WDT is driven by a dedicated low-speed clock (LICK). Due to the lower clock accuracy of LICK, the WDT is best suited to the applications that have lower timing accuracy and can run independently outside the main application.

16.2WDT main features

- 12-bit downcounter
- The counter is clocked by LICK (can work in Stop and Standby modes)
- If the WDT is enabled, a system reset is generated when the counter value reaches 0

16.3WDT functional overview

WDT enable:

Both software and hardware operations can be used to enable WDT. In other words, the WDT can be enabled by writing 0xCCCC to the WDT_CMD register; or when the user enables the hardware watchdog through user system data area, the WDT will be automatically enabled after power-on reset.

WDT reset:

When the counter value of the WDT counts down to 0, a WDT reset be generated. Thus the WDT_CMD register must be written with the value 0xAAAA at regular intervals to reload the counter value to avoid the WDT reset.

WDT write-protected:

The WDT_DIV and WDT_RLD registers are write-protected. Writing the value 0x5555 to the WDT_CMD register will unlock write protection. The update status of these two registers are indicated by the DIVF and RLDF bits in the WDT_STS register. If a different value is written to the WDT_CMD register, these two registers will be re-protected. Writing the value 0xAAAA to the WDT_CMD register also enables write protection.

WDT clock:

The WDT counter is clocked by the LICK. The LICK is an internal RC clock with a typical value of 40kHz, with its range falling between 30kHz and 60kHz. The timeout period is also within a certain range, so a margin should be taken into account when configuring timeout period. The LICK can be calibrated to obtain the WDT timeout with a relatively accuracy. For more details, please refer to section 4.1.1.

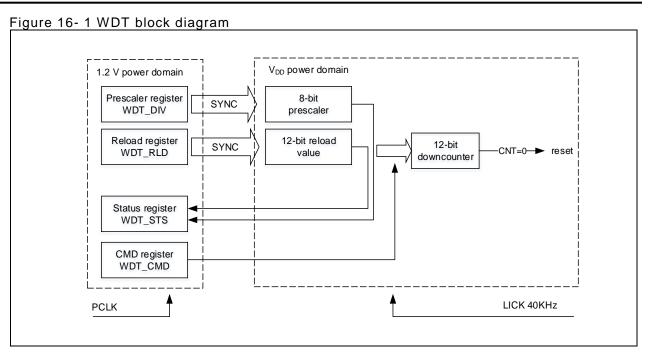


Table 16-1 WDT timeout period (LICK=40kHz)

Prescaler divider	DIV[2: 0] bits	Min.timeout (ms) RLD[11: 0] = 0x000	Max. timeout (ms) RLD[11: 0] = 0xFFF
/4	0	0.1	409.6
/8	1	0.2	819.2
/16	2	0.4	1638.4
/32	3	0.8	3276.8
/64	4	1.6	6553.6
/128	5	3.2	13107.2
/256	(6 or 7)	6.4	26214.4

16.4 Debug mode

When the microcontroller enters debug mode (CortexTM-M4F core halted), the WDT counter stops counting by setting the WDT_PAUSE in the DEBUG module.

16.5WDT registers

These peripheral registers must be accessed by words (32 bits).

Table 16- 2 WDT register and reset value

Register	Offset	Reset value
WDT_CMD	0x00	0x0000 0000
WDT_DIV	0x04	0x0000 0000
WDT_RLD	0x08	0x0000 0FFF
WDT_STS	0x0C	0x0000 0000

16.5.1 Command register (WDT_CMD)

(Reset in Standby mode)

Bit	Register	Reset value	Type	Description
Bit 31: 16	Reserved	0x0000	resd	Kept at its default value.
				Command register
				0xAAAA: Reload counter
Bit 15: 0	CMD	0x0000	WO	0x5555: Unlock write-protected WDT_DIV and WDT_RLD
				0xCCCC: Enable WDT. If the hardware watchdog has been enabled, ignore this operation.

16.5.2 Divider register (WDT_DIV)

Bit	Register	Reset value	Type	Description
Bit 31: 3	Reserved	0x0000 0000	resd	Kept at its default value.
				Clock division value
	DIV			000: LICK divided by 4
				001: LICK divided by 8
		0x0		010: LICK divided by 16
				011: LICK divided by 32
Bit 2: 0			na/	100: LICK divided by 64
DIL 2. U			rw	101: LICK divided by 128
				110: LICK divided by 256
				111: LICK divided by 256
				The write protection must be unlocked in order to enable write access to the register. The register can be read only when DIVF=0.

16.5.3 Reload register (WDT_RLD)

(Reset in Standby mode)

1.10001	Gramany meany			
Bit	Register	Reset value	Type	Description
Bit 31: 12	Reserved	0x00000	resd	Kept at its default value.
				Reload value
Bit 11: 0	RLD	0xFFF	rw	The write protection must be unlocked in order to enable write access to the register. The register can be read only when RLDF=0.

16.5.4 Status register (WDT_STS)

Bit	Register	Reset value	Туре	Description
Bit 31: 2	Reserved	0x0000 0000	resd	Kept at its default value.
				Reload value update complete flag
				0: Reload value update complete
Bit 1	RLDF	0x0	ro	1: Reload value update is in process.
				The reload register WDT_RLD can be written only when
				RLDF=0
				Division value update complete flag
				0: Division value update complete
Bit 0	DIVF	0x0	ro	1: Division value update is in process.
				The divider register WDT_DIV can be written only when
				DIVF=0

17 Real-time clock (RTC)

17.1 RTC introduction

The real-time clock provides a calendar clock function. It has an internal 32-bit incremental couner that is increased by one at each second. In other words, this counter serves as a second clock. The current seond value can be converted into time and date to provide a calendar function. The time and date can be modified by modifying the counter value.

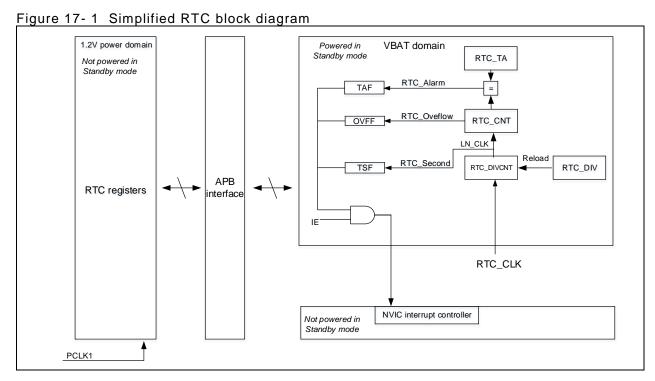
The RTC module is in battery powered domain, which means that it keeps running and free from the influence of system reset and VDD power off as long as VBAT is powered.

17.2RTC main features

- 20-bit prescaler
- 32-bit counter
- Three RTC clock sources: HEXT/128, LEXT and LICK
- Three interrupts: Second interrupt, Alarm interrupt and Overflow interrrupt

Note: The frequency of the RTC clock must be one forth slower than the PCLK1 clock.

17.3RTC structure


RTC consists of an APB1 interface and a RTC counter logic, as shown in Figure 17-1.

APB1 interface: It is used to interface with the APB1 bus and battery powered domain for the configuration and read operation of the RTC registers.

RTC counter logic: It consists of a 20-bit divider and a 32-bit programmable counter. The prescaler is used to generate the RTC count clock, LN_CLK, which is usually set to 1 second in order to convert the counter value into a calendar. As the RTC counter logic is in the VBAT domain and driven by the RTC_CLK, the RTC still keeps running even if the APB1 interface is disabled. If the RTC_CLK frequency is 32.768kHz, write the value 0x7FFF in the prescaler load register can produce a LN_CLK of 1Hz.

The RTC counter logic is independent from the APB1 interface. The RTC registers can be configured through the APB1 interface and synchronized to the RTC counter module through the RTC_CLK; The associated flag bits arising from the RTC counter module is synchronized to the RTC registers by the PCLK1. The RTC counter module is driven by the RTC_CLK. Set RTCEN=1 to enable RTC_CLK. Configure the RTC_CLK clock source by setting the RTCSEL[1: 0]. To re-configure the RTC_CLK, it must wait until the reset of the battery powered domain before configuration.

17.4RTC functional overview

17.4.1 Configuring RTC registers

After power-on reset, all RTC registers are write protected. Write access to the RTC registers is allowed only when the write protection is unlocked.

Configuration procedure:

- Enable power and battery powered domain interface clock by setting PWCEN =1 and BPREN=1 in the CRM_APB1EN register
- Unlock write protection in the battery powered domain by setting BPWEN=1 in the PWC_CTRL register

Configuring DIV, CNT and ALA registers:

To enable write operation to these registers, the first step is to enter configuration mode (CFGEN = 1). Setting CFGEN = 0 to exit configuration mode, the values in these registers are actually written to the battery powered domain, which takes at least three RTCCLK cycles to complete.

Based on synchronization circuit, a new value can be written to the RTC registers onlh when the previous RTC configuration is completed (CFGF=1).

Configuration procedure:

- 1. Wait until the end of register configuration (CFGF=1)
- 2. Enter configuration mode (CFGEN=1)
- 3. Configure the corresponding RTC registers
- 4. Exit configuration mode (CFGEN=0)
- 5. Wait until the end of register configuration (CFGF=1)

The registers including DIV, ALA, CNT and DIVCNT are reset only by the reset signals in the battery powered domain. The rest of the registers are asynchronously reset by system reset or power reset.

17.4.2 Reading RTC registers

Based on synchronization circuit, when reading the RTC registers, the correct values have yet been uploaded from the battery powered domain to the APB1 interface if one of the following events occurred:

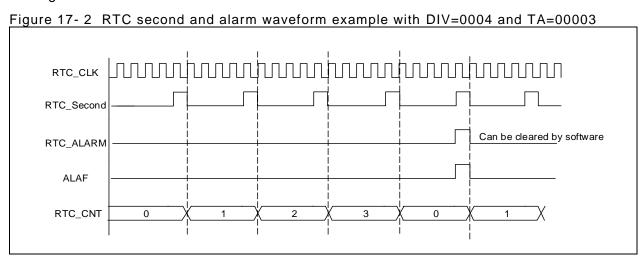
A system reset or power reset has occurred;

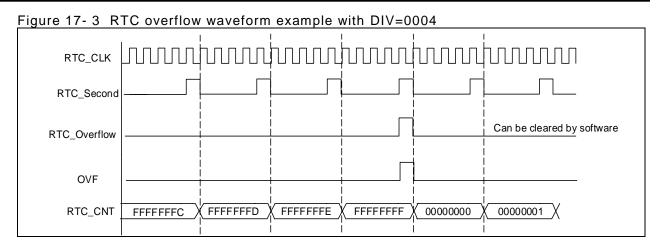
The microcontroller has woken up from Standby or Stop modes.

At this time, the software must wait until UPDF=1 before read operation, otherwise, an error value is returned.

17.4.3 RTC interrupts

RTC supports the following interrupt requests:


- Second interrupt: If Second interrupt is enabled (TSIEN=1), a second interrupt is generated at each LN_CLK period.
- Alarm interrupt: If Alarm interrupt is enabled (TAIEN=1), an alarm interrupt is generated when the value in the TA register is equal to the CTN value.
- Overflow interrupt: If Overflow interrupt is enabled (OVFIEN=1), an overflow interrupt is generated when the counter reaches the value 0xFFFFFFF.


The RTC global interrupt vector (RTC_IRQn) and alarm interrupt vector (RTCAlarm_IRQn) are both supported. To wake up from DEEPSLEEP mode using the RTC alarm interrupt, the RTC alarm interrupt must be enabled to use the RTCAlarm_IRQn vector, and the EXINT 17 is configured as interrupt mode at the same time; To wake from DEEPSLEEP mode using the RTC alarm event, the EXINT 17 must be configured as event mode, but without the need of enabling the RTC alarm interrupt. When the RTC alarm event is used to wake up from Standby mode, it is unnecessary to enable alarm interrupt and EXINT 17.

RTC flag bits are described as follows:

- RTC Second flag (TSF): It indicates the update of RTC counter. The Second flag is set one RTC_CLK period before the update of the RTC counter
- RTC Alarm flag (TAF): The flag is set one RTC_CLK period before the counter value reaches the RTC alarm value in the alarm register increased by one (TA+1)
- RTC Overflow flag (OVFF): The flag is set one RTC_CLK period before the RTC counter value reaches the value 0x00000000

When the RTC interrupts are generated, clearing the corresponding flag bits means that the interrupt requests have been received. The flag bits can only be set by hardware, and cleared by software. After reset, all interrupts will be disabled. The flag bits will no longer be updated when the APB1 clock stops running.

17.5RTC registers

These peripheral registers must be accessed by word (32 bits).

RTC registers are 16-bit addressable registers.

Table 17- 1 RTC register map and reset values

Register	Offset	Reset value
RTC_CTRLH	0x00	0x0000
RTC_CTRLL	0x04	0x0020
RTC_DIVH	0x08	0x0000
RTC_DIVL	0x0C	0x8000
RTC_DIVCNTH	0x10	0x0000
RTC_DIVCNTL	0x14	0x8000
RTC_CNTH	0x18	0x0000
RTC_CNTL	0x1C	0x0000
RTC_TAH	0x20	0xFFFF
RTC_TAL	0x24	0xFFFF

17.5.1 RTC control register high (RTC_CTRLH)

Bit	Register	Reset value	Type	Description	
Bit 15: 3	Reserved	0x0000	resd	Kept at its default value.	
				Overflow interrupt enable	
D:: 0	0) (515)	0.0		This bit is used to enable overflow interrupt.	
Bit 2	OVFIEN	0x0	rw	0: Disabled	
				1: Enabled	
	TAIEN	0x0	rw	Time alarm interrupt enable	
D:1.4				This bit is used to enable alarm interrupt.	
Bit 1				0: Disabled	
				1: Enabled	
		0x0	rw	Time second interrupt enable	
Bit 0				This bit is used to enable second interrupt.	
	TSIEN			0: Disabled	
				1: Enabled。	

Note: This register is reset after system reset. Refer to 17.4.1 for more details.

17.5.2 RTC control register low (RTC_CTRLL)

Pogistor	Poset value	Type	Description
			Kept at its default value.
Neserved	0,000	Tesu	RTC configuration finish
CFGF	0x1	ro	Indicates whether the last write operation on the RTC registers has been completed or not. Write access to the RTC registers is allowed only when this bit is set. 0: Last write operation on RTC registers is ongoing 1: Last write operation on RTC registers ends.
CFGEN	0x0	rw	RTC Configuration enable This bit is set to enter configuration mode in order to enable write access to the CNT, ALA, DIVCNT registers.
			0: Exit configuration mode
			1: Enter configuration mode
			RTC update finish flag
UPDF	0x0	rw0c	This bit indicates wheter the update of the RTC registers has been completed or not. This bit is set by hardware when the CNT and DIVCNT are updated. Before any read operation, this bit must be cleared by software, and the user must wait until this bit is set.
			0: RTC registers not updated.
			1: RTC registers updated.
			Overflow flag
OVFF	0x0	rw0c	This bit is set when the counter overflows. An interrupt is generarted if OVFIEN =1.
		14400	0: Overflow not detected.
			1: Overflow occurred.
			Time alarm flag
TAF	0x0	rw0c	This bit is set when an alarm event is detected. An interrupt is generated if TAIEN =1.
			0: Alarm not detected.
			1: Alarm detected.
			Time second flag
TSF	0x0	rw0c	This bit is set when a second event is detected. An interrupt is generated if TSIEN =1.
			0: Second event not detected.
			1: Second event detected.
	CFGEN UPDF OVFF	Reserved 0x000 CFGF 0x1 CFGEN 0x0 UPDF 0x0 TAF 0x0	Reserved 0x000 resd CFGF 0x1 ro CFGEN 0x0 rw UPDF 0x0 rw0c TAF 0x0 rw0c

17.5.3 RTC divider register (RTC_ DIVH/RTC_DIVL)

RTC divider register high (RTC DIVH)

Bit	Register	Reset value	Type	Description
Bit 15: 4	Reserved	0x000	resd	Kept at its default value.
				RTC divider
Bit 3: 0	DIV	0x0	WO	This field is used to define the counter clock frequency according to the formula: fLN CLK = fRTCCLK/(DIV[19: 0]+1)

RTC divider register high (RTC DIVL)

Bit	Register	Reset value	Type	Description
				RTC divider
Bit 15: 0 DI	DIV	0x8000	wo	This field is used to define the counter clock frequency according to the formula:
2		one o o		fLN_CLK = fRTCCLK/(DIV[19: 0]+1)
				Note: the zero value is not recommended.

17.5.4 RTC divider counter register (RTC_ DIVCNTH/RTC_DIVCNTL)

RTC divider counter register high (RTC_DIVCNTH)

Bit	Register	Reset value	Type	Description
Bit 15: 4	Reserved	0x000	resd	Kept at its default value.
Bit 3: 0	DIVCNT	0x0	ro	RTC clock divider counter

RTC divider counter register low (RTC DIVCNTL)

Bit	Register	Reset value	Type	Description
Bit 15: 0	DIVCNT	0x8000	ro	RTC clock divider counter

17.5.5 RTC counter value register (RTC_CNTH/RTC_CNTL)

RTC counter value register high (RTC CNTH)

Bit	Register	Reset value	Type	Description
				RTC counter value
Bit 15: 0	CNT	0x0000	rw	This field is used to configure or read the high part of the RTC counter value.

RTC counter value register low (RTC_CNTL)

Bit	Register	Reset value	Type	Description
				RTC counter value
Bit 15: 0	CNT	0x0000	rw	This field is used to configure or read the low part of the RTC counter value.

17.5.6 RTC alarm register (RTC_TAH/RTC_TAL)

RTC alarm register high (RTC_TAH)

Bit	Register	Reset value	Type	Description
D:: 45.0			WO	Time alarm clock value
Bit 15: 0	TA	0xFFFF		This field is used to define the high part of the alarm value.

RTC alarm register low (RTC_TAL)

Bit	Register	Reset value	Type	Description
Bit 15: 0	TA	0xFFFF	WO	Time alarm clock value This field is used to define the low part of the alarm value.

18 Battery powered registers (BPR)

18.1 BPR introduction

The battery powered registers are located in the battery powered domain and powered by VDD/VBAT. These registers are forty two 16-bit registers. Upon a tamper event or when battery powered domain reset occurs, the contents in these registers are cleared so as to ensure the highest level of data security.

18.2BPR main features

- Forty two 16-bit registers
- Reset at a tamper event
- Configurable PC13 pin multiplexed function output

18.3BPR functional overview

To enable access to the battery powered registers, the PWCEN, BPREN and BPWEN must be set.

The BPR provides tamper detection function for the purpose of data security. If enabled, the polarity of the TAMPER pin is configured with TPP bit. Once a tamper event is detected, the TPEF bit will be set, and the battery powered registers will be cleared accordingly; If the tamper interrupt is enabled, an interrupt will be generated, with the TPIF bit being set.

In addition, the BPR also has RTC calibration feature that can be slowed down up to 121 ppm by setting the CALVAL[6: 0] bits. If the RTC calibration output is enabled, the RTC clock with a frequency divided by 64 can be output on the TAMPER pin (CCOS=1).

Note: When TPP=0 or 1, if the TAMPER pin is already high or low before it is enabled by setting the TPEN bit, an extra tamper event is generated when TPEN=1, despite the fact that there was no rising or falling edge on the TAMPER pin.

18.4BPR registers

These peripheral registers must be accessed by word (32 bits).

BPR registers are 16-bit addressable registers.

Table 18- 1 BPR register map and reset values

Register	Offset	Reset value
BPR_DT1	0x04	0x0000 0000
BPR_DT2	0x08	0x0000 0000
BPR_DT3	0x0C	0x0000 0000
BPR_DT4	0x10	0x0000 0000
BPR_DT5	0x14	0x0000 0000
BPR_DT6	0x18	0x0000 0000
BPR_DT7	0x1C	0x0000 0000
BPR_DT8	0x20	0x0000 0000
BPR_DT9	0x24	0x0000 0000
BPR_DT10	0x28	0x0000 0000
BPR_RTCCAL	0x2C	0x0000 0000
BPR_CTRL	0x30	0x0000 0000
BPR_CTRLSTS	0x34	0x0000 0000
BPR_DT11	0x40	0x0000 0000
BPR_DT12	0x44	0x0000 0000
BPR_DT13	0x48	0x0000 0000

BPR_DT14	0x4C	0x0000 0000
BPR_DT15	0x50	0x0000 0000
BPR_DT16	0x54	0x0000 0000
BPR_DT17	0x58	0x0000 0000
BPR_DT18	0x5C	0x0000 0000
BPR_DT19	0x60	0x0000 0000
BPR_DT20	0x64	0x0000 0000
BPR_DT21	0x68	0x0000 0000
BPR_DT22	0x6C	0x0000 0000
BPR_DT23	0x70	0x0000 0000
BPR_DT24	0x74	0x0000 0000
BPR_DT25	0x78	0x0000 0000
BPR_DT26	0x7C	0x0000 0000
BPR_DT27	0x80	0x0000 0000
BPR_DT28	0x84	0x0000 0000
BPR_DT29	0x88	0x0000 0000
BPR_DT30	0x8C	0x0000 0000
BPR_DT31	0x90	0x0000 0000
BPR_DT32	0x94	0x0000 0000
BPR_DT33	0x98	0x0000 0000
BPR_DT34	0x9C	0x0000 0000
BPR_DT35	0xA0	0x0000 0000
BPR_DT36	0xA4	0x0000 0000
BPR_DT37	0xA8	0x0000 0000
BPR_DT38	0xAC	0x0000 0000
BPR_DT39	0xB0	0x0000 0000
BPR_DT40	0xB4	0x0000 0000
BPR_DT41	0xB8	0x0000 0000
BPR_DT42	0xBC	0x0000 0000

18.4.1 Battery powered data register x (BPR_DTx) (x = 1 \cdots 42)

Bit	Register	Reset value	Type	Description
				Battery powered domain data
D:: 45 0	D.T.	00000		This field is used for data storage.
Bit 15: 0	DT	0x0000	rw	The BPR_DTx registers can be set only by a battery powered domain reset or by a tamper event.

18.4.2 RTC calibration register (BPR_ RTCCAL)

Bit	Register	Reset value	Type	Description
Bit 15: 12	Reserved	0x0	resd	Kept at its default value. Output mode
Bit 11	OUTM	0x0	rw	This bit is used to select the output mode of alarm output or second output:
				0: Pulse output (The output pulse width is one RTC clock period)

				Toggle output (The corresponding pin output level changes at each time when an alarm event or second event is detected) Note: This bit is reset only by a battery powered domain reset.
				Calibration clock output selection
				0: Calibration clock output is disabled
Bit 10	ccos	0x0	rw	Calibration clock output is enabled
Dit 10				Note: This bit is cleared only by a battery powered domain reset.
				Output selection
				This bit is used to select either the RTC alarm event or the second event.
Bit 9	OUTSEL	0x0	rw	0: RTC alarm event output
				1: Second event output
				Note: This bit is cleared only by a battery powered domain reset.
				Output enable
				0: Disabled
	OUTEN		rw	1: Enabled
Bit 8		0x0		Note: This bit is cleared only by a battery powered domain reset. It is used to enable the event that is output on the TAMPER pin. The TAMPER function can not be used if the output is enabled.
	CALOUT	0x0	rw	Calibration clock output
				0: No effect
Bit 7				1: Output the RTC clock with a frequency divided by 64 on the TAMPER pin.
				The TAMPER function can not be used when the calibration clock output is enabled.
				Note: This bit is cleared when the VDD supply is powered off.
				Calibration value
Bit 6: 0	CALVAL	0x00	rw	This value indicates the number of clock filtered in one cycle (2 ²⁰ clocks). The clock frequency is reduced with a minium accuracy of 1000000/2 ²⁰ ppm. The RTC clock can be slowed down from 0 to 121 ppm.

18.4.3 BPR control register (BPR_ CTRL)

Bit	Register	Reset value	Type	Description
Bit 15: 2	Reserved	0x0000	resd	Kept at its default value.
				TAMPER pin polarity
				This bit defines the polarity of the TAMPER pin. The contents in the data registers are cleared when an active level is detected.
Bit 1	TPP	0x0	rw	0: Active high
				1: Active low
				Note: To avoid unwanted tamper event, it is recommended to modify the polarity of the TAMPER pin when it is disabled.
Bit 0				TAMPER pin enable
	TPEN	0x0	rw	0: Disabled. The TAMPER pin can be used as GPIO.
				1: Enabled

18.4.4 BPR control/status register (BPR_ CTRLSTS)

Bit	Register	Reset value	Type	Description
Bit 15: 10	Reserved	0x00	resd	Kept at its default value.
				Tamper interrupt flag
				This bit is set when a tamper event is detected and the TPIEN is set.
Bit 9	TPIF	0x0	ro	0: No tamper event
				1: A tamper event is detect.
				Note: This bit is reset only a system reset or exit Standby mode.
			ro	Tamper event flag
				This bit is set when a tamper event is detected.
Bit 8	TPEF	0.40		0: No tamper event
DILO	IPEF	0x0		1: A tamper event is detected
				Note: A tamper event will reset the BPR_DTx registers. Do not write the BPR_DTx registers when TPEF=1.
Bit 7: 3	Reserved	0x00	resd	Kept at its default value.
				Tamper pin interrupt enable
				0: Disabled
Bit 2	TPIEN	0x0	rw	1: Enabled
				Note: A tamper interrupt does not wake up the core from low-power modes.
		0x0	WO	Tamper interrupt flag clear
D:4.4	TDIFOLD			Setting this bit clears the TAMPER interrupt.
Bit 1	TPIFCLR			0: No effect
				1: Clear the tamper interrupt
Bit 0		0x0	wo	Tamper event flag clear
	TDEECL D			Setting this bit clears the TAMPER event flag.
	TPEFCLR			0: No effect
				1: Clear the tamper event flag

19 Analog-to-digital converter (ADC)

19.1 ADC introduction

The ADC is a peripheral that converts an analog input signal into a 12-bit digital signal. Its sampling rate is as high as 2 MSPS. It has up to 18 channels for sampling and conversion.

19.2 ADC main features

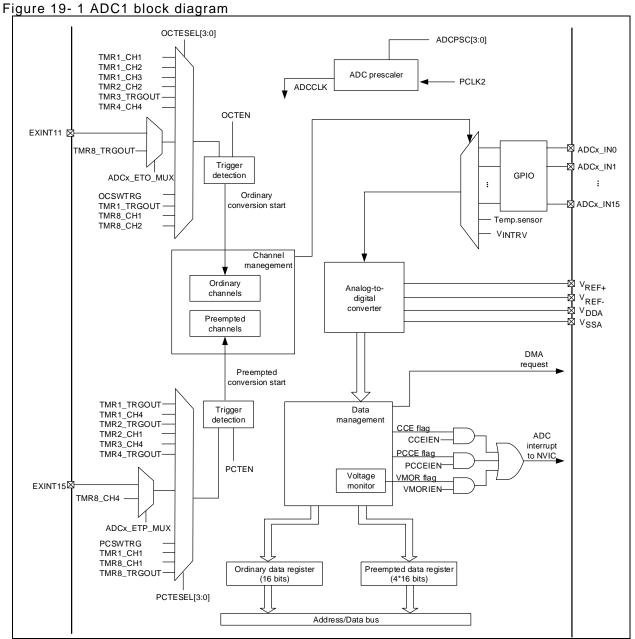
In terms of analog part:

- 12-bit resolution
- Self-calibration time: 154 ADC clock cycles
- ADC conversion time
- ADC conversion time is $0.5~\mu s$ at 28 MHz (If the system clock is at 240 MHz, then the ADC clock maximum frequency is at 20 M, and the conversion time is $0.7~\mu s$)
- ADC supply requirement: 2.6 V to 3.6 V
- ADC input range: V_{REF-} ≤ V_{IN} ≤ V_{REF+}

In terms of digital control:

- Regular channels and injected channels with different priority
- Regular channels and injected channels both have their own trigger detection circuit
- Each channel can independently define its own sampling time
- Conversion sequence supports various conversion modes
- Optional data alignment mode
- Programmable voltage monitor threshold
- Regual channels with DMA transfers
- Interrupt generation at one of the following events:
 - End of the conversion of preempted group
 - End of the conversion of channels
 - Voltage outside the threshold programmed
 - ADC Master/slave mode

19.3 ADC structure


Figure 19- 1 shows the block diagram of ADC1.

Differences between ADC2 and ADC1:

- 1. ADC2 is not connected to the internal temperature sensor and internal reference voltage
- ADC2 has no DMA request. Refer to section 19.4.4.2 for more details

Differences between ADC3 and ADC1:

- 1. ADC3 is not connected to the internal temperature sensor and internal reference voltage
- 2. ADC3 has different external analog input channel pins from ADC1. Refer to 19.4.1 for more details
- 3. ADC3 has different trigger sources from ADC1. Refer to section 19.4.2.2 for more details

Input pin description:

- V_{DDA} : Analog supply, ADC analog supply, can be tied to V_{DD} , or $2.6V \le V_{DDA} \le V_{DD}$ (3.6V)
- V_{SSA}: Analog supply ground, ADC analog supply ground, must be tied to V_{SS}
- $V_{REF+:}$ Analog reference positive, high/positive reference voltage for the ADC, $2.0V \le V_{REF+} \le V_{DDA}$
- ullet V_{REF-:} Analog reference negative, low/negative reference voltage for the ADC, must be tied to V_{SS}
- ADCx IN: Analog input signal channels

19.4ADC functional overview

19.4.1 Channel management

Analog signal channel input:

There are 18 analog signal channel inputs for each of the ADCs, expressed by ADC Inx (x=0 to 17).

 ADC1_IN0 to ADC1_IN15 are referred to as the external analog input, ADC1_IN16 as the internal temperature sensor, and ADC1_IN17 as the internal reference voltage.

- ADC2_IN0 to ADC2_IN15 are referred to as the external analog input, and ADC2_IN16 and ADC2_IN17 as Vss
- ADC3_IN0 to ADC3_IN3, and ADC3_IN10 to ADC3_IN13 are referred to as the external analog input, the rest of them are Vss.

Channel conversion

The conversions are divided into two groups: ordinary and preempted. The preempted group has priority over the ordinary group.

If the preempted channel trigger occurs during the ordinary channel conversion, then the ordinary channel conversion is interrupted, giving the priority to the preempted channel, and the ordinary channel continues its conversion at the end of the preempted channel conversion. If the ordinary channel trigger occurs during the preempted channel conversion, the ordinary channel conversion won't start until the end of the preempted channel conversion.

Program the ADC_Inx into the ordinary channel sequence (ADC_OSQx) and the preempted channel sequence (ADC_PSQ), and the same channel can be repeated, the total number of sequences is determined by OCLEN and PCLEN, then it is ready to enable the ordinary channel or preempted channel conversion.

19.4.1.1 Internal temperature sensor

The temperature sensor is connected to ADC1_IN16. Before the temperature sensor channel conversion, it is required to enable the ITSRVEN bit in the ADC_CTRL2 register and wait after power-on time.

Obtain the temperature

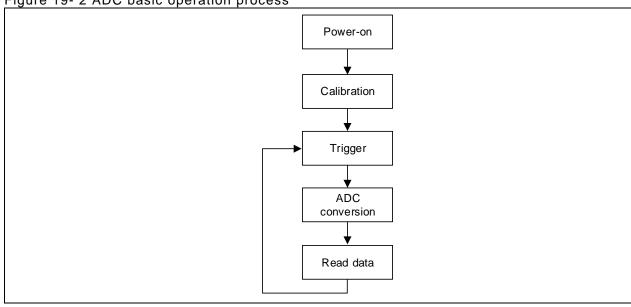
Obtain the temperature using the following formula:

Temperature (in $^{\circ}$ C) = {(V 25 - V_{SENSE}) / Avg_Slope} + 25.

Where,

 $V_{25} = V_{SENSE}$ value for 25° C and

Avg_Slope = Average Slope for curve between Temperature vs. V_{SENSE} (given in mV/° C).


19.4.1.2 Internal reference voltage

The internal reference voltage of the typical value 1.2 V is connected to ADC1_IN17. It is required to enable the ITSRVEN bit in the ADC_CTRL2 register before the internal reference channel conversion. The converted data of such channel can be used to calculate the external reference voltage.

19.4.2 ADC operation process

Figure 19-2 shows the basic operation process of the ADC. It is recommended to do the calibration after the initial power-on in order to improve the accuracy of sampling and conversion. After the calibration, trigger is used to enable ADC sampling conversion. Read data at the end of the conversion.

Figure 19- 2 ADC basic operation process

19.4.2.1 Power-on and calibration

Power-on

Set the ADCxEN bit in the CRM APB2EN register to enable ADC clocks: PCLK2 and ADCCLK.

Program the desired ADCCLK frequency by setting the ADCDIV bit in the CRM CFG register. The ADCCLK is derived from PCLK2 frequency division.

Note: ADCCLK must be less than 28 MHz.

Then set the ADCEN bit in the ADC CTRL2 register to supply the ADC, and wait until the t_{STAB} is reached before subsequent operations. Clear the ADCEN bit will stop the ADC conversion and result in a reset. In the meantime, the ADC is switched off to save power.

Calibration

After power-on, the calibration is enabled by setting the ADCAL bit in the ADC CTRL2 register. When the calibration is over, the ADCAL bit is cleared by hardware and the conversion is performed by software trigger.

After each calibration, the calibration value is stored in the ADC ODT register, and then value is automatically sent back to the ADC so as to eliminate capacitance errors. The storage of the calibration value will not set the CCE flag, or generate interrupts or DMA requests.

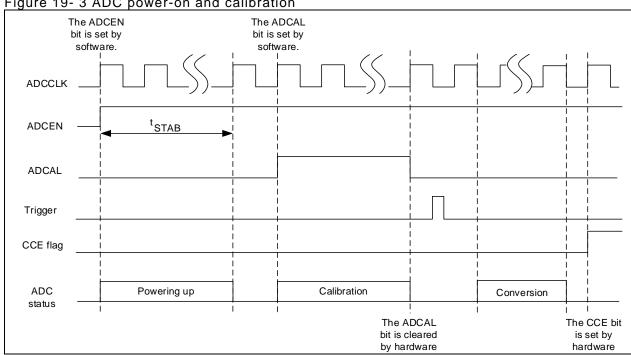


Figure 19- 3 ADC power-on and calibration

19.4.2.2 Trigger

The ADC triggers contain ordinary channel trigger and preempted channel trigger. The ordinary channel conversion is triggered by ordinary channel triggers while the preempted channel conversion is triggered by preempted ones. When the OCTEN or PCTEN bit is set in the ADC CTRL2 register, only the rising edge of the trigger source can start the conversion.

The conversion can be triggered by software write operation to the OCSWTRG and PCSWTRG bits in the ADC CTRL2 register, or by an external event. The external events include timer and pin triggers. The OCTESEL and PCTESEL bits in the ADC_CTRL2 register are used to select specific trigger sources, as shown in Table 19-1 and Table 19-2.

The ordinary channel has another special trigger source, that is, enable the ADCEN bit repeatedly to trigger the conversion. In this case, the ordinary channel conversion can be triggered without the need of the OCTEN enable bit in the ADC CTRL2 register.

Table 19-1 Trigger sources for ADC1 and ADC2

C	CTESEL	Source	PCTESEL		Source	
0000	000 TMR1_CH1 event		0000		TMR1_TRGOUT event	
0001		TMR1_CH2 event	0001		TMR1_CH4 event	
0010		TMR1_CH3 event	0010		TMR2_TRGOUT event	
0011		TMR2_CH2 event	0011		TMR2_CH1 event	
0100		TMR3_TRGOUT event	0100		TMR3_CH4 event	
0101		TMR4_CH4 event	0101		TMR4_TRGOUT event	
0110	ADCx_ETO_MU X=0	EXINT line11 external pin	0110	ADCx_ ETP_MUX=0	EXINT line15 external pin	
	ADCx_ETO_MU X=1	TMR8_TRGOUT event	0110	ADCx_ ETP_MUX=1	TMR8_CH4 event	
0111		OCSWTRG bit	0111		PCSWTRG bit	
1000		Reserved	1000		Reserved	
1001		Reserved	1001		Reserved	
1010		Reserved	1010		Reserved	
1011		Reserved	1011		Reserved	
1100		Reserved	1100		Reserved	
1101		TMR1_TRGOUT event	1101		TMR1_CH1 event	
1110		TMR8_CH1 event	1110		TMR8_CH1 event	
1111		TMR8_CH2 event	1111		TMR8_TRGOUT event	

Table 19- 2 Trigger sources for ADC3

OCTESEL	Source	PCTESEL	Source
0000	TMR3_CH1 event	0000	TMR1_TRGOUT event
0001	TMR2_CH3 event	0001	TMR1_CH4 event
0010	TMR1_CH3 event	0010	TMR4_CH3 event
0011	TMR8_CH1 event	0011	TMR8_CH2 event
0100	TMR8_TRGOUT event	0100	TMR8_CH4 event
0101	TMR5_CH1 event	0101	TMR5_TRGOUT event
0110	TMR5_CH3 event	0110	TMR5_CH4 event
0111	OCSWTRG bit	0111	PCSWTRG bit
1000	Reserved	1000	Reserved
1001	Reserved	1001	Reserved
1010	Reserved	1010	Reserved
1011	Reserved	1011	Reserved
1100	Reserved	1100	Reserved
1101	TMR1_TRGOUT event	1101	TMR1_CH1 event
1110	TMR1_CH1 event	1110	TMR1_CH2 event
1111	TMR8_CH3 event	1111	TMR8_TRGOUT event

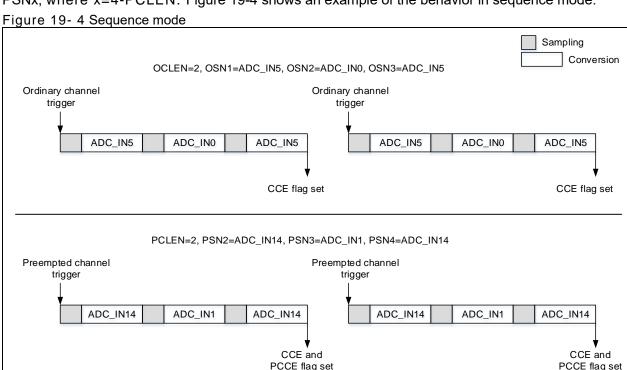
19.4.2.3 Sampling and conversion sequence

The sampling period can be configured by setting the CSPTx bit in the ADC_SPT1 and ADC_SPT2 registers. A single one conversion time is calculated with the following formula:

A single one conversion tiem (ADCCLK period) = sampling time + 12.5

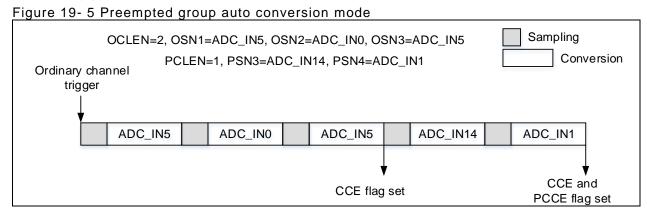
Example:

If the CSPTx selects 1.5 period, one conversion requires 1.5+12.5=14 ADCCLK periods If the CSPTx selects 7.5 period, one conversion requires 7.5+12.5=20 ADCCLK periods.


19.4.3 Conversion sequence management

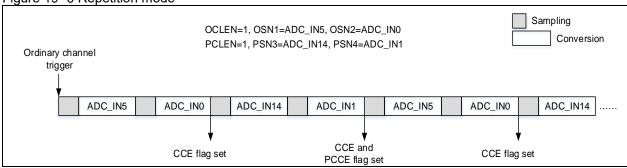
Only one channel is converted at each trigger event by default, that is, OSN1-defined channel or PSN4-defined channel.

The detailed conversion sequence modes are described in the following sections. With this, the channels can be converted in a specific order.


19.4.3.1 Sequence mode

The sequence mode is enabled by setting the SQEN bit in the ADC_CTRL1 register. The ADC_OSQx registers are used to configure the sequence and total number of the ordinary channels while the ADC_PSQ register is used to define the sequence and total number of the preempted channels. If the sequence mode is enabled, a single trigger event enables the conversion of a group of channels in order. The ordinary channels start converting from the QSN1 while the preempted channels starts from the PSNx, where x=4-PCLEN. Figure 19-4 shows an example of the behavior in sequence mode.

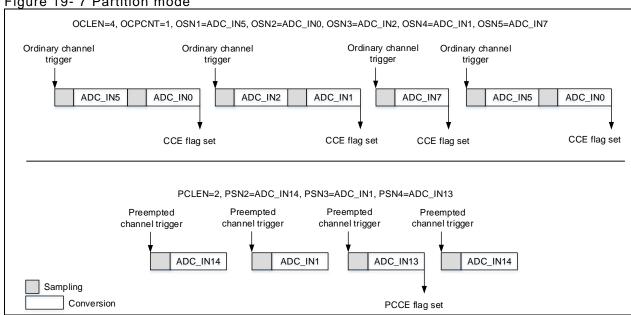
19.4.3.2 Automatic preempted group conversion mode


The automatic preempted group conversion mode is enabled by setting the PCAUTOEN bit in the ADC_CTRL1 register. Once the ordinary channel conversion is over, the preempted group will automatically continue its conversion. This mode can work with the sequence mode. The preempted group conversion starts automatically at the end of the conversion of the ordinary group. Figure 19-5 shows an example of the behavior when the automatic preempted group conversion mode works with the ordinary group.

19.4.3.3 Repetition mode

The repetition mode is enabled by setting the RPEN bit in the ADC CTRL2 register. When a trigger signal is detected, the ordinary channels will be converting repeatedly. This mode can work with the ordinary channel conversion in the sequence mode to enable the repeated conversion of the ordinary group. Such mode can also work with the preempted group auto conversion mode to repeatedly convert the ordinary group and preempted group in sequence. Figure 19-6 shows an example of the behavior when the repetition mode works with the sequence mode and preempted group auto conversion mode.

Figure 19-6 Repetition mode


19.4.3.4 Partition mode

The partition mode of the ordinary group can be enabled by setting the OCPEN bit in the ADC CTRL1 register. In this mode, the ordinary group conversion sequence length (OCLEN bit in the ADC OSQ1 register) is divided into a smaller sub-group, in which the number of the channels is programmed with the OCPCNT bit in the ADC CTRL1 register. A single trigger event will enable the conversion of all the channels in the sub-group. Each trigger event selects different sub-group in order.

Set the PCPEN bit in the ADC CTRL1 register will enable the partition mode of the preempted group. In this mode, the ordinary group conversion sequence length (OCLEN bit in the ADC OSQ1 register) is divided into a sub-group with only one channel. A single one trigger event will convert the channel in the sub-group. Each trigger event select different sub-group in order.

The partition mode cannot be used with the repetition mode at the same time. The partition mode of the ordinary group cannot be used with that of the preempted group at the same time. Figure 19-7 shows an example of the behavior in partition mode for ordinary group and preempted group.

Figure 19-7 Partition mode

19.4.4 Data management

At the end of the conversion of the ordinary group, the converted value is stored in the ADC_ODT register. Once the preempted group conversion ends, the converted data of the preempted group is stored in the ADC_PDTx register.

19.4.4.1 Data alignment

DTALIGN bit in the ADC_CTRL2 register selects the alignment of data (right-aligned or left-aligned). Apart from this, the converted data of the preempted group is decreased by the offset written in the ADC_PCDTOx register. Thus the result may be a negative value, marked by SIGN, as shown in Figure 19-8.

Figure 19-8 Data alignment

Right-ali	gnment					Ordina	ary chan	nel data	12 bits						
0	0	0	0	DT[11]	DT[10]	DT[9]	DT[8]	DT[7]	DT[6]	DT[5]	DT[4]	DT[3]	DT[2]	DT[1]	DT[
Left-alig	gnment			•											
DT[11]	DT[10]	DT[9]	DT[8]	DT[7]	DT[6]	DT[5]	DT[4]	DT[3]	DT[2]	DT[1]	DT[0]	0	0	0	0
						Preer	nnted ch	annel da	ata 12 hit	·s					
Right-ali	gnment					Preer	npted ch	annel da	ata 12 bit	rs.					
Right-ali SIGN	gnment	SIGN	SIGN	DT[11]	DT[10]		mpted ch	nannel da	ata 12 bit	s DT[5]	DT[4]	DT[3]	DT[2]	DT[1]	DT[
	SIGN	SIGN	SIGN	DT[11]	DT[10]						DT[4]	DT[3]	DT[2]	DT[1]	DT[

19.4.4.2 Data read

Read access to the ADC_ODT register using CPU or DMA gets the converted data of the ordinary group. Read access to the ADC_PDTx register using CPU gets the converted data of the preempted group.

When the OCDMAEN is set in the ADC_CTRL2 register, the ADC will issue DMA requests each time when the ADC_OTD register is updated.

ADC1 and ADC3 both have their respective DMA channels. In Master/Slave mode, the ADC2 used as slave is read by DMA through the master ADC1.

19.4.5 Voltage monitor

OCVMEN bit or PCVMEN bit in the ADC_CTRL1 register is used to enable voltage monitor. The VMOR bit will be set if the converted result is outside the high threshold (ADC_VMHB register) or is less than the low threshold (ADC_VMLB register).

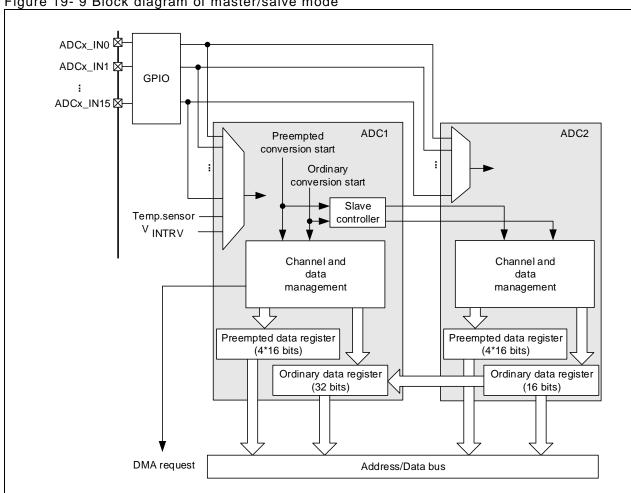
VMSGEN bit in the ADC_CTRL1 register is used to enable voltage monitor on either a single specific channel or all the channels. The VMCSEL bit is used to select the specific channel that requires voltage monitoring.

Voltage monitor is based on the comparison result between the original converted data and the 12-bit voltage monitor boundary register, irrespective of the PCDTOx and DTALIGN bits.

19.4.6 Status flag and interrupts

Each of the ADCs has its dedicated ADCx_STS reisters, that is, OCCS (ordinary channel conversion start flag), PCCS (preempted channel conversion start flag), PCCE (preempted channel conversion end flag), CCE (channel conversion end flag) and VMOR (voltage monitor out of range).

PCCE, CCE and VMOR have their respective interrupt enable bits. Once the interrupt bits are enabled, the corresponding flag is set and an interrupt is sent to CPU. ADC1 shares an interrupt vector with ADC2. ADC3 has a separate interrupt vector.



19.5 Master/Slave mode

If Master/Slave mode is enabled, the master is triggered to work with the slave to do the channel conversion. The ADC ODT register is used as a single interface obtaining the ordinary channel converted data of master/salve ADC.

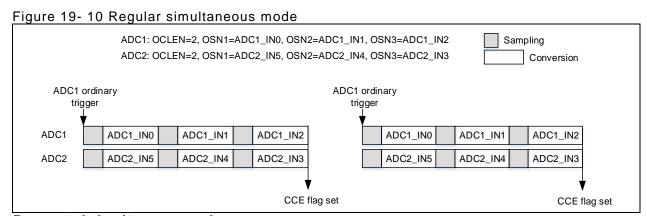
In this mode, ADC1 acts as a master while ADC2 as a slave.

Figure 19- 9 Block diagram of master/salve mode

19.5.1 Data management

In Master/Slave mode, the data of ordinary channels is also stored in the ADC ODT register of ADC1. As long as the OCDMAEN is set in the ADC1 CTRL2 register, the ADC1 DMA channel is used to generate a DMA request each time when the data is ready.

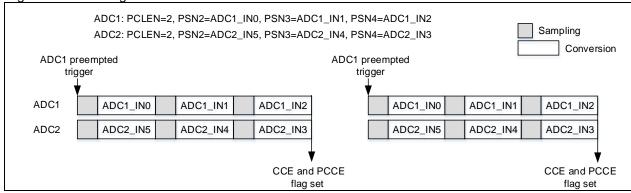
19.5.2 Regular simultaneous mode


Regular simultaneous mode

MSSEL bit in the ADC CTRL1 register is used to select regular simultaneous mode. If this mode is enabled, the regular channels of the master is triggered so that the master works with the slave to convert the regular channels simultaneously. In this mode, it is required to configure the same sampling time and the same sequence length for the master and slave to avoid the loss of data due to the lack of synchronization.

Figure 19-10 shows an example of the regular simultaneous mode

Note: The same channel is not allowed to be sampled by several ADCs simultaneously. Do not put the same channel in the same sequence location of different ADCs.



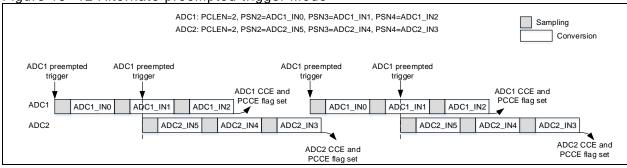
Preempted simultaneous mode

MSSEL bit in the ADC_CTRL1 register is used to select preempted simultaneous mode. If this mode is enabled, the preempted channels of the master is triggered so that the master works with the slave to convert the preempted channels simultaneously. Figure 19-11 shows an example of the preempted simultaneous mode

Note: The same channel is not allowed to be sampled by several ADCs simultaneously. Do not put the same channel in the same sequence location of different ADCs.

Figure 19- 11 Regular simultaneous mode

Combined regular/preempted simultaneous mode


MSSEL bit in the ADC_CTRL1 register is used to select combined regular/preempted simultaneous mode. If this mode is enabled, the regular channels of the master is triggered so that the master works with the slave to convert the regular channels simultaneously, or the preempted channels of the master is triggered to enable the master and slave to convert the preempted channels simultaneously.

19.5.3 Alternate preempted trigger mode

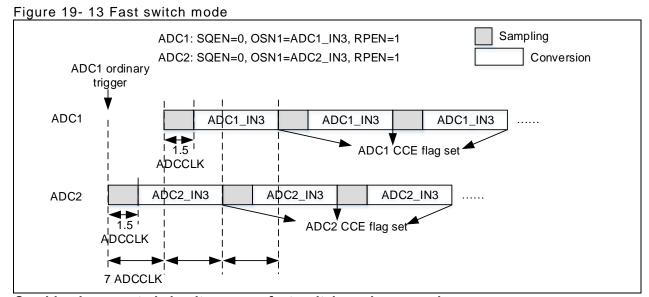
Alternate preempted trigger mode

MSSEL bit in the ADC_CTRL1 register selects the alternate preempted trigger mode. If this mode is enabled, the preempted channels of the master are triggered continuously so that the master/slave ADCs convert the preempted channels alternately. Figure 19-12 shows an example of the alternate preempted trigger mode.

Figure 19- 12 Alternate preempted trigger mode

Combined regular simultaneous + alternate preempted trigger mode

MSSEL bit in the ADC_CTRL1 register is used to select combined regular simultaneous + alternate preempted trigger mode. In this mode, trigger the regular group of the master to start regular simultaneous conversion of master/slave, or trigger the preempted group of the master continuously to allow the master/slave ADCs to convert the preempted group alternately.


If the regular conversion is interrupted by the preempted trigger, the regular conversion of all ADCs is stopped, and one of the ADCs starts the preempted conversion. At this point, the master will ignore the preempted trigger until the regular conversion is resumed.

19.5.4 Regular switch mode

Fast switch mode on regular group

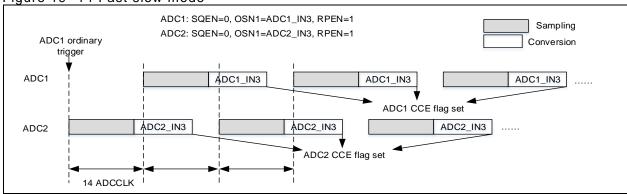
MSSEL bit in the ADC_CTRL1 register is used to select fast switch mode on regular group. After a master trigger occurs, the conversion interval between ADCs is 7 ADCCLK cycles, that is, ADC2 starts immediately, ADC1 starts after 7 ADCCLK cycles, and then ADC2 starts after another 7 ADCCLK cycles, and so non. In this mode, the sampling time allowed is 1.5 ADCCLK cycles, as shown in Figure 19-13.

Note: The preempted trigger is not allowed in this mode.

Combined preempted simultaneous + fast switch mode on regular group

MSSEL bit in the ADC_CTRL1 register is used to select combined preempted simultaneous + fast switch mode. After a regular group of the master is triggered, the conversion interval between ADCs is 7 ADCCLK cycles. Or trigger the preempted group of th master to allow a simultaneous conversion of the preempted group by master/slave.

If the regular group conversion is interrupted by the preempted group, the regular group conversion is stopped and resumes from ADC2 at the end of the preempted conversion.


Slow switch mode on regular group

MSSEL bit in the ADC_CTRL1 register is used to select slow switch mode. After a master trigger occurs, the conversion interval between ADCs is 14 ADCCLK cycles, that is, ADC2 starts immdediately, ADC2 starts after a delay of 14 ADCCLK cycles, and then the ADC2 starts after another delay of 14 ADCCLK cycles, and so on. In this mode, the sampling time allowed is less than 14 ADCCLK cycles, as shown in Figure 19-14.

Note: The preempted trigger is not allowed in this mode.

Figure 19- 14 Fast slow mode

Combined preempted simultaneous + slow switch mode

MSSEL bit in the ADC_CTRL1 register is used to select combined preempted simultaneous + slow switch mode. After a master trigger occurs, the conversion interval between ADCs is 14 ADCCLK cycles. Or r trigger the preempted group of th master to allow a simultaneous conversion of the preempted group by master/slave.

If the regular group conversion is interrupted by the preempted group, the regular group conversion is stopped and resumes from ADC2 at the end of the preempted conversion.

19.6 ADC registers

Table 19-3 lists ADC register map and their reset values.

These peripheral registers must be accessed by word (32 bits).

Table 19-3 ADC register map and reset values

Register	Offset	Reset value
ADC_STS	0x000	0x0000 0000
ADC_CTRL1	0x004	0x0000 0000
ADC_CTRL2	0x008	0x0000 0000
ADC_SPT1	0x00C	0x0000 0000
ADC_SPT2	0x010	0x0000 0000
ADC_PCDTO1	0x014	0x0000 0000
ADC_PCDTO2	0x018	0x0000 0000
ADC_PCDTO3	0x01C	0x0000 0000
ADC_PCDTO4	0x020	0x0000 0000
ADC_VMHB	0x024	0x0000 0FFF
ADC_VMLB	0x028	0x0000 0000
ADC_OSQ1	0x02C	0x0000 0000
ADC_OSQ2	0x030	0x0000 0000
ADC_OSQ3	0x034	0x0000 0000
ADC_PSQ	0x038	0x0000 0000
ADC_PDT1	0x03C	0x0000 0000
ADC_PDT2	0x040	0x0000 0000
ADC_PDT3	0x044	0x0000 0000
ADC_PDT4	0x048	0x0000 0000
ADC_ODT	0x04C	0x0000 0000

19.6.1 ADC status register (ADC_STS)

Bit	Register	Reset value	Type	Description
Bit 31: 5	Reserved	0x0000000	resd	Kept at its default value.
				Ordinary channel conversion start flag
				This bit is set by hardware and cleared by software (writing
Bit 4	occs	0x0	rw0c	0).
				0: No ordinary channel conversion started
				1: Ordinary channel conversion has started
				Preempted channel conversion start flag
				This bit is set by hardware and cleared by software (writing
Bit 3	PCCS	0x0	rw0c	0).
				0: No preempted channel conversion started
				1: Preempted channel conversion has started
				Preempted channel end of conversion flag
				This bit is set by hardware and cleared by software (writing
Bit 2	PCCE	0x0	rw0c	0).
				0: Conversion is not complete
				1: Conversion is complete
				End of conversion flag
				This bit is set by hardware. It is cleared by software (writing 0) or by reading the ADC_ODT register.
Bit 1	CCE	0x0	rw0c	0: Conversion is not complete
				1: Conversion is complete
				Note: This bit is set at the end of the ordinary or preempted group.
				Voltage monitoring out of range flag
				This bit is set by hardware and cleared by software (writing
Bit 0	VMOR	0x0	rw0c	0).
				0: Voltage is within the value programmed
				1: Voltage is outside the value programmed

19.6.2 ADC control register1 (ADC_CTRL1)

Bit	Register	Reset value	Type	Description
Bit 31: 24	Reserved	0x00	resd	Kept at its default value.
Bit 23	OCVMEN	0x0	rw	Voltage monitoring enable on ordinary channels 0: Voltage monitoring disabled on ordinary channels 1: Voltage monitoring enabled on ordinary channels
Bit 22	PCVMEN	0x0	rw	Voltage monitoring enable on preempted channels 0: Voltage monitoring disabled on preempted channels 1: Voltage monitoring enabled on preempted channels
Bit 21: 20	Reserved	0x0	resd	Kept at its default value.

2021.12.01 Page 297 Ver 2.02

Bit 19: 16	MSSEL	0x0	rw	Master/slave mode select 0000: Independnet mode 0001: Combined regular simultaneous + preempted simultaneous mode 0010: Combined regular simultaneous + alternate preempted trigger mode 0011: Combined preempted simultaneous + fast switch mode on regular group 0100: Combined preempted simultaneous + slow switch mode on regular group 0101: Preempted simultaneous mode 0110: Regular simultaneous mode 0111: Fast switch mode on regular group 1000: Slow switch mode on regular group 1001: Alternate preempted trigger mode 1010~1111: Unused, configuration is not allowed. Note: These bits are reserved in ADC2 and ADC3. In master/slave mode, a change of configurmation will
Bit 15: 13	OCPCNT	0x0	rw	Partitioned mode conversion count of ordinary channels 000: 1 channel 001: 2 channels 111: 8 channels Note: In this mode, the preempted group converts only one channel at each trigger.
Bit 12	PCPEN	0x0	rw	Partitioned mode enable on preempted channels 0: Partitioned mode disabled on preempted channels 1: Partitioned mode enabled on preempted channels
Bit 11	OCPEN	0x0	rw	Partitioned mode enable on ordinary channels This is set and cleared by software to enable or disable partitioned mode on ordinary channels. 0: Partitioned mode disabled on ordinary channels 1: Partitioned mode enabled on ordinary channels
Bit 10	PCAUTOEN	0x0	rw	Preempted group automatic conversion enable after ordinary group 0: Preempted group automatic conversion disabled 1: Preempted group automatic conversion enabled
Bit 9	VMSGEN	0x0	rw	Voltage monitoring enable on a single channel 0: Disabled (Voltage monitoring enabled on all channels) 1: Enabled (Voltage monitoring enabled a single channel)
Bit 8	SQEN	0x0	rw	Sequence mode enable 0: Sequence mode disabled (a single channel is converted) 1: Sequence mode enabled (the selected multiple channels are converted) Note: If this mode is enabled and the CCEIEN/PCCEIEN is set, a CCE or PCCE interrupt is generated only at the end of conversion of the last channel.
Bit 7	PCCEIEN	0x0	rw	Conversion end interrupt enable on Preempted channels 0: Conversion end interrupt disabled on Preempted channels 1: Conversion end interrupt enabled on Preempted channels
Bit 6	VMORIEN	0x0	rw	Voltage monitoring out of range interrupt enable 0: Voltage monitoring out of range interrupt disabled 1: Voltage monitoring out of range interrupt enabled

Bit 5	CCEIEN	0x0	rw	Channel conversion end interrupt enable 0: Channel conversion end interrupt disabled 1: Channel conversion end interrupt enabled
Bit 4: 0	VMCSEL	0x00	rw	Voltage monitoring channel select This filed is valid only when the VMSGEN is enabled. 00000: ADC_IN0 channel 00001: ADC_IN1 channel 01111: ADC_IN15 channel 10000: ADC_IN16 channel 10001: ADC_IN17 channel 10010~1111: Unused, configuration is not allowed.
Bit 0	VMOR	0x0	rw0c	Voltage monitoring out of range flag This bit is set by hardware and cleared by software (writing 0). 0: Voltage is within the value programmed 1: Voltage is outside the value programmed

19.6.3 ADC control register2 (ADC_CTRL2)

Bit	Register	Reset value	Туре	Description
Bit 30: 26	Reserved	0x00	resd	Kept at its default value
_				Internal temperature sensor and VINTRV enable
				0: Internal temperature sensor and VINTRV disabled
Bit 23	ITSRVEN	0x0	rw	1: Internal temperature sensor and VINTRV enabled
				Note: These bits are reserved in ADC2 and ADC3, and must be kept at its default value.
				Conversion of ordinary channels triggered by software
				0: Conversion of ordinary channels not triggered
Bit 22	OCSWTRG	0x0	rw	1: Conversion of ordinary channels triggered (This bit is cleared by software or by hardware as soon as the conversion starts)
				Conversion of preempted channels triggered by software
				0: Conversion of preempted channels not triggered
Bit 21	PCSWTRG	0x0	rw	1: Conversion of preempted channels triggered (This bit is cleared by software or by hardware as soon as the conversion starts)
				Trigger mode enable for ordinary channels conversion
Bit 20	OCTEN	CTEN 0x0	rw	0: Trigger mode disabled for ordinary channels conversion
DIL ZU				Trigger mode enabled for ordinary channels conversion

2021.12.01 Page 299 Ver 2.02

Trigger event select for ordina For ADC1 and ADC2, the trigg follows: 0000: Timer 1 CH1 event	·
0000: Timer 1 CH1 event	y
0001: Timer 1 CH2 event	
0010: Timer 1 CH3 event	
0011: Timer 2 CH2 event	
0100: Timer 3 TRGOUT event	t
0101: Timer 4 CH4 event	
0110: EXINT line 11/ TMR8_T	RGOUT event
0111: OCSWTRG	
1000~1100: Unused. Configur	ration is not allowed.
1101: Timer 1 TRGOUT event	1
Bit 25 1110: Timer 8 CH1 event	
Bit 19: 17 OCTESEL 0x0 rw 1111: Timer 8 CH2 event	
For ADC3, the trigger events a	are configured as follows:
0000: Timer 3 CH1 event	
0001: Timer 2 CH3 event	
0010: Timer 1 CH3 event	
0011: Timer 8 CH1 event	
0100: Timer 8 TRGOUT event	t
0101: Timer 5 CH1 event	
0110: Timer 5 CH3 event	
0111: OCSWTRG;	
1000~1100: Unused. Configur	ration is not allowed.;
1101: Timer 1 TRGOUT event	<u> </u>
1110: Timer 1 CH1 event	
1111: Timer 8 CH3 event	
Bit 16 Reserved 0x0 resd Kept at its default value	
Trigger mode enable for preer	mpted channels conversion
Bit 15 PCTEN 0x0 rw 0: Disabled	
1: Enabled	

Bit 24 Bit 14: 12	PCTESEL	0x0	rw	Trigger event select for preempted channels conversion For ADC1 and ADC2, the trigger events are configured as follows: 0000: Timer 1 TRGOUT event 0001: Timer 1 CH4 event 0010: Timer 2 TRGOUT event 0100: Timer 3 CH4 event 0101: Timer 4 TRGOUT event 0101: Timer 4 TRGOUT event 0110: EXINT line 15/TMR8_CH4 event 0111: PCSWTRG 1000~1100: Unused. Configuration is not allowed. 1101: Timer 1 CH1 event 1110: Timer 8 TRGOUT event For ADC3, the trigger events are configured as follows: 0000: Timer 1 TRGOUT event 0001: Timer 4 CH3 event 0011: Timer 8 CH2 event 0110: Timer 8 CH4 event 0110: Timer 5 TRGOUT event 0110: Timer 5 CH4 event 0111: PCSWTRG 1000~1100: Unused. Configuration is not allowed. 1101: Timer 1 CH1 event
				1110: Timer 1 CH2 event 1111: Timer 8 TRGOUT event
Bit 11	DTALIGN	0x0	rw	Data alignment 0: Right alignment 1: Left alignment
Bit 10: 9	Reserved	0x0	resd	Kept at its default value.
Bit 8	OCDMAEN	0x0	rw	DMA transfer enable of ordinary channels 0: DMA transfer disabled 1: DMA transfer enabled Note: ADC2 has no DMA function, and thus it cannot generate a DMA request itself
Bit 7: 4	Reserved	0x0	resd	Kept at its default value.
Bit 3	ADCALINIT	0x0	rw	Initialize A/D calibration This bit is set by software and cleared by hardware. It is cleared after the calibration registers are initialized. 0: No initialization occurred or initialization completed 1: Enable initialization or initializationis is ongoing
Bit 2	ADCAL	0x0	rw	A/D Calibration 0: No calibration occurred or calibration completed 1: Enable calibration or calibration is in process

				Repition mode enable
				0: Repition mode disabled
-				When SQEN=0, a single conversion is done each time when a trigger event arrives; when SQEN=1, a group of conversion is done each timer when a trigger event arrives.
Bit 1	RPEN	0x0	rw	1: Repition mode enabled
				When SQEN =0, continuous conversion mode on a single channel is enabled at each trigger event; when SQEN =1, continuous conversion mode on a group of channels is enabled at each trigger event.
•				A/D converter enable
				0: A/D converter disabled (ADC goes to power-down mode)
		0x0	rw	1: A/D converter enabled
				Note:
Bit 0	ADCEN			When this bit is in OFF state, write an ON command can wake up The ADC from power-down mode.
				When this bit in ON state, write another ON command can start a regular group conversion.
				The application should pay attention to the fact that there is a delay of t_{STAB} between power on and start of conversion.
				Voltage monitoring out of range flag
Bit 0	VMOR	VMOR 0x0	rw0c	This bit is set by hardware and cleared by software (writing 0).
20	TWOIL			0: Voltage is within the value programmed
				1: Voltage is outside the value programmed

19.6.4 ADC sampling time register 1 (ADC_SPT1)

Bit	Register	Reset value	Type	Description
Bit 31; 24	Reserved	0x00	resd	Kept at its default value.
				Sample time slection of channel ADC_IN17
				000: 1.5 c
				001: 7.5 cycles
				010: 13.5 cycles
Bit 23: 21	CSPT17	0x0	rw	011: 28.5 cycles
				100: 41.5 cycles
				101: 55.5 cycles
				110: 71.5 cycles
				111: 239.5 cycles
				Sample time selection of channel ADC_IN16
				000: 1.5 cycles
				001: 7.5 cycles
				010: 13.5 cycles
Bit 20: 18	CSPT16	0x0	rw	011; 28.5 cycles
				100: 41.5 cycles
				101: 55.5 cycles
				110: 71.5 cycles
				111: 239.5 cycles

				Sample time selection of channel ADC_IN15
				000: 1.5 cycles
				001: 7.5 cycles
				010: 13.5 cycles
Bit 17: 15	CSPT15	0x0	rw	011: 28.5 cycles
DIL 17. 13	001 110	UAU	IVV	100: 41.5 cycles
				101: 55.5 cycles
				110: 71.5 cycles
				111: 239.5 cycles
				Sample time selection of channel ADC_IN14
				000: 1.5 cycles
				001: 7.5 cycles
				010: 13.5 cycles
Bit 14: 12	CSPT14	0x0	rw	011: 28.5 cycles
				100: 41.5 cycles
				101: 55.5 cycles
				110: 71.5 cycles
				111: 239.5 cycles
				Sample time selection of channel ADC_IN13
				000: 1.5 cycles
				001: 7.5 cycles
				010: 13.5 cycles
Bit 11: 9	CSPT13	0x0	rw	011: 28.5 cycles
2 0	00 0	57.0		100: 41.5 cycles
				101: 55.5 cycles
				110: 71.5 cycles
				111: 239.5 cycles
				Sample time selection of channel ADC_IN12
				000: 1.5 cycles
				001: 7.5 cycles
				010: 13.5 cycles
D:+ 0. C	CCDT40	0.40		011: 28.5 cycles
Bit 8: 6	CSPT12	0x0	rw	
				100: 41.5 cycles
				101: 55.5 cycles
				110: 71.5 cycles
				111: 239.5 cycles
				Sample time selection of channel ADC_IN11
				000: 1.5 cycles
				001: 7.5 cycles
				010: 13.5 cycles
Bit 5: 3	CSPT11	0x0	rw	011: 28.5 cycles
				100: 41.5 cycles
				101: 55.5 cycles
				110: 71.5 cycles
				111: 239.5 cycles
				Sample time selection of channel ADC_IN10
				000: 1.5 cycles
				001: 7.5 cycles
				010: 13.5 cycles
Bit 2: 0	CSPT10	0x0	rw	011: 28.5 cycles
· = · •			rw	100: 41.5 cycles
				101: 55.5 cycles
				110: 71.5 cycles
				111: 239.5 cycles

19.6.5 ADC sampling time register 2 (ADC_SPT2)

Bit	Register	Reset value	Type	Description
Bit 31: 30	Reserved	0x0	resd	Kept at its default value
				Sample time selection of channel ADC_IN9
				000: 1.5 cycles
				001: 7.5 cycles
				010: 13.5 cycles
Bit 29: 27	CSPT9	0x0	rw	011: 28.5 cycles
				100: 41.5 cycles
				101: 55.5 cycles
				110: 71.5 cycles
				111: 239.5 cycles
				Sample time selection of channel ADC_IN8
				000: 1.5 cycles
				001: 7.5 cycles
				010: 13.5 cycles
Bit 26: 24	CSPT8	0x0	rw	011: 28.5 cycles
				100: 41.5 cycles
				101: 55.5 cycles
				110: 71.5 cycles
				111: 239.5 cycles
				Sample time selection of channel ADC_IN7
				000: 1.5 cycles
				001: 7.5 cycles
				010: 13.5 cycles
Bit 23: 21	CSPT7	0x0	rw	011: 28.5 cycles
				100: 41.5 cycles
				101: 55.5 cycles
				110: 71.5 cycles
				111: 239.5 cycles
				Sample time selection of channel ADC_IN6
				000: 1.5 cycles
				001: 7.5 cycles
				010: 13.5 cycles
Bit 20: 18	CSPT6	0x0	rw	011: 28.5 cycles
				100: 41.5 cycles
				101: 55.5 cycles
				110: 71.5 cycles
				111: 239.5 cycles
				Sample time selection of channel ADC_IN5
				000: 1.5 cycles
				001: 7.5 cycles
				010: 13.5 cycles
Bit 17: 15	CSPT5	0x0	rw	011: 28.5 cycles
				100: 41.5 cycles
				101: 55.5 cycles
				110: 71.5 cycles
				111: 239.5 cycles

-				Sample time selection of channel ADC_IN4
Bit 14: 12				000: 1.5 cycles
				001: 7.5 cycles
				010: 13.5 cycles
	CSPT4	0x0	rw	011: 28.5 cycles
				100: 41.5 cycles
				101: 55.5 cycles
				110: 71.5 cycles
				111: 239.5 cycles
				Sample time selection of channel ADC_IN3
				000: 1.5 cycles
				001: 7.5 cycles
				010: 13.5 cycles
Bit 11: 9	CSPT3	0x0	rw	011: 28.5 cycles
				100: 41.5 cycles
				101: 55.5 cycles
				110: 71.5 cycles
				111: 239.5 cycles
				Sample time selection of channel ADC_IN2
				000: 1.5 cycles
	CSPT2			001: 7.5 cycles
				010: 13.5 cycles
Bit 8: 6		0x0	rw	011: 28.5 cycles
2.1.0.0		CAG		100: 41.5 cycles
				101: 55.5 cycles
				110: 71.5 cycles
				111: 239.5 cycles
				Sample time selection of channel ADC_IN1
				000: 1.5 cycles
				001: 7.5 cycles
				010: 13.5 cycles
Bit 5: 3	CSPT1	0x0	rw	011: 28.5 cycles
2.1.0.0	3 2			100: 41.5 cycles
				101: 55.5 cycles
				110: 71.5 cycles
				111: 239.5 cycles
				Sample time selection of channel ADC_IN0
				000: 1.5 cycles
				001: 7.5 cycles
				010: 13.5 cycles
Bit 2: 0	CSPT0	0x0	rw	011: 28.5 cycles
D. L. 0	30. 10	3,0	. **	100: 41.5 cycles
				101: 55.5 cycles
				110: 71.5 cycles
				111: 239.5 cycles

2021.12.01 Page 305 Ver 2.02

19.6.6 ADC preempted channel data offset register x (ADC_PCDTOx) (x=1..4)

Bit	Register	Reset value	Type	Description
Bit 31: 12	Reserved	0x00000	resd	Kept at its default value
				Data offset for Preempted channel x
Bit 11: 0	PCDTOx	0x000	rw	Converted data stored in the ADC_PDTx = Raw converted data – ADC_PCDTOx

19.6.7 ADC voltage monitor high threshold register (ADC_VWHB)

Bit	Register	Reset value	Type	Description
Bit 31: 12	Reserved	0x00000	resd	Kept at its default value
Bit 11: 0	VMHB	0xFFF	rw	Voltage monitoring high boundary

19.6.8 ADC voltage monitor low threshold register (ADC_VWLB)

Bit	Register	Reset value	Type	Description
Bit 31: 12	Reserved	0x00000	resd	Kept at its default value
Bit 11: 0	VMLB	0xFFF	rw	Voltage monitoring low boundary

19.6.9 ADC ordinary sequence register 1 (ADC_ OSQ1)

Bit	Register	Reset value	Туре	Description
Bit 31: 24	Reserved	0x00	resd	Kept at its default value
				Ordinary conversion sequence length
				0000: 1 conversion
Bit 23: 20	OCLEN	0x0	rw	0001: 2 conversions
				1111: 16 conversions
Bit 19: 15	OSN16	0x00	rw	Number of 16th conversion in ordinary sequence
Bit 14: 10	OSN15	0x00	rw	Number of 15th conversion in ordinary sequence
Bit 9: 5	OSN14	0x00	rw	Number of 14th conversion in ordinary sequence
				Number of 13th conversion in ordinary sequence
Bit 4: 0	OSN13	0x00	rw	Note: The number can be from 0 to 17. For example, if the number is set to 3, it means that the 13 th conversion is ADC_IN3 channel.

19.6.10 ADC ordinary sequence register 2 (ADC_ OSQ2)

Bit	Register	Reset value	Type	Description
Bit 31: 30	Reserved	0x0	resd	Kept at its default value
Bit 29: 25	OSN12	0x00	rw	Number of 12th conversion in ordinary sequence
Bit 24: 20	OSN11	0x00	rw	Number of 11th conversion in ordinary sequence
Bit 19: 15	OSN10	0x00	rw	Number of 10th conversion in ordinary sequence
Bit 14: 10	OSN9	0x00	rw	Number of 9th conversion in ordinary sequence
Bit 9: 5	OSN8	0x00	rw	Number of 8th conversion in ordinary sequence

Bit 4: 0	OSN7	0x00	rw	Number of 7th conversion in ordinary sequence Note: The number can be from 0 to 17. For example, if the number is set to 8, it means that the 7 th conversion is ADC_IN8 channel.
----------	------	------	----	---

19.6.11 ADC ordinary sequence register 3 (ADC_ OSQ3)

Bit	Register	Reset value	Туре	Description
Bit 31: 30	Reserved	0x0	resd	Kept at its default value
Bit 29: 25	OSN6	0x00	rw	Number of 6th conversion in ordinary sequence
Bit 24: 20	OSN5	0x00	rw	Number of 5th conversion in ordinary sequence
Bit 19: 15	OSN4	0x00	rw	Number of 4th conversion in ordinary sequence
Bit 14: 10	OSN3	0x00	rw	Number of 3rd conversion in ordinary sequence
Bit 9: 5	OSN2	0x00	rw	Number of 2nd conversion in ordinary sequence
				Number of 1st conversion in ordinary sequence
Bit 4: 0	OSN1	0x00	rw	Note: The number can be from 0 to 17. For example, if the number is set to 8, it means that the 1st conversion is ADC_IN17 channel.

19.6.12 ADC preempted sequence register (ADC_ PSQ)

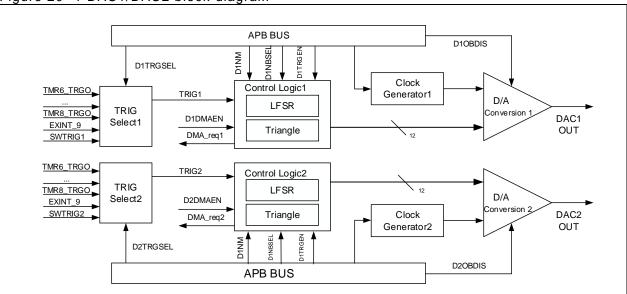
Bit	Register	Reset value	Туре	Description
Bit 31: 30	Reserved	0x0	resd	Kept at its default value
				Preempted conversion sequence length
				00: 1 conversion
Bit 21: 20	PCLEN	0x0	rw	01: 2 conversions
				10: 3 conversions
				11: 4 conversions
Bit 19: 15	PSN4	0x00	rw	Number of 4th conversion in preempted sequence
Bit 14: 10	PSN3	0x00	rw	Number of 3rd conversion in preempted sequence
Bit 9: 5	PSN2	0x00	rw	Number of 2nd conversion in preempted sequence
_				Number of 1st conversion in preempted sequence
				Note: The number can be from 0 to 17. For example, if the number is set to 3, it refers to the ADC_IN3 channel.
Bit 4: 0	PSN1	0x00	rw	If PCLEN is less than 4, the conversion sequence starts from 4-PCLEN. For example, when ADC_PSQ ([21: 0]) =10 00110 00101 00100 00011, it indicates that the scan conversion follows the sequence : 4, 5, 6, not 3, 4,5.

19.6.13 ADC preempted data register x (ADC_ PDTx) (x=1..4)

Bit	Register	Reset value	Туре	Description
Bit 31: 16	Reserved	0x0000	resd	Kept at its default value
Bit 15: 0	PDTx	0x0000	rw	Conversion data from preempted channel

19.6.14 ADC ordinary data register (ADC_ ODT)

Bit	Register	Reset value	Туре	Description
Bit 31: 16	ADC2ODT	0x0000	ro	ADC2 conversion data of ordinary channel Note: These bits are reserved in ADC2 and ADC3. In ADC1, these bits are valid only in master/slave mode, and they contain the conversion result from the ADC2 ordinary cahnnels.
Bit 15: 0	ODT	0x0000	ro	Conversion data of ordinary channel



20 Digital-to-analog converter (DAC)

20.1 DAC introduction

The DAC uses a 12-bit digital input to generate an analog output between 0 and reference voltage. The digital part of the DAC can be configured in 8-bit or 12-bit mode and can be used in conjunction with the DMA. It supports left or right alignment in a single /dual DAC modes. It has two output channels, DAC1 and DCA2, with its own converter each. Each DAC1/DAC2 can be converted independently or simulatenously in dual DAC mode. The input reference voltage VREF+ makes conversion more accuracy.

Figure 20- 1 DAC1/DAC2 block diagram

20.2DAC main features

- A single/dual DAC 8-bit or 12-bit digital input
- Left or right data alignment
- Noise-wave/Triangular-wave generation
- Dual DAC or single DAC1/DAC2 independent conversions
- DMA mode for DAC1/DAC2
- Software or external triggers for conversion
- Input reference voltage V_{REF+}

20.3 Design tips

The following information can be used as DAC design reference:

- Analog module configuration
 - The analog part of the DAC1/DAC2 can be enabled by setting the ENx bit in the DAC_CTRL register, but its digital part is not subject to this bit. The DAC integrates two output gains that can be used to reduce the output impedance, and to drive external loads directly without the need of an external operational amplifer. The DAC1/DAC2 output gain can be enabled and disabled through the DxOBDIS bit in the DAC_CTRL register.
- DMA capability
 - The DAC1/DAC2 both have a DMA capability that can be enabled by setting the DxDMAEN bit in the DAC_CTRL register. A DMA request is generated when a trigger signal is active while the DxTRGEN bit is set. The DAC DMA request is not added up, meaning the new DAM request will be ignored and no error is reported.

In dual DAC mode, the application can handle two channels (DAC1/DAC2) by using only one DMA request and a DMA channel.

Input/output configuration

The digital inputs are linearly converted to analog voltage outputs by the DAC, and it is between 0 and V_{REF+} . The analog DAC module is supplied by VDDA. The positive analog reference voltage input falls between 2.0 V and VDDA. To avoid parasitic interruption and excessive consumption, the PA4 or PA5 should be configured to analog input.

DAC output = $V_{REF+} x (DxODT[11: 0]/4095)$

20.4 Function overview

20.4.1 Trigger events

If the DxTRGEN bit in the DAC_CTRL register is set, the DAC conversion can then be triggered by an external event (timer counter, external interrupt line) or by software. The DxTRGSEL[2: 0] is used to select trigger sources.

Table 20- 1 Trigger source selection

Source	DxTRGSEL [2:0]	Description
TMR6_TRGOUT	000	
TMR8_TRGOUT	001	
TMR7_TRGOUT	010	On ahin airmala
TMR5_TRGOUT	011	On-chip signals
TMR2_TRGOUT	100	
TMR4_TRGOUT	101	_
EXINT_9	110	External signals
DxSWTRG	111	Software trigger

When the DxTRGEN bit is set, each time a DAC detects an active trigger event, the data stored into the HDRx register is transferred into the DAC_DxODT register. If the software trigger is selected, the DxSWTRG flag is cleared by hardware after being set. The DAC output becomes active after a period of time once the data is loaded into the DAC DxODT register.

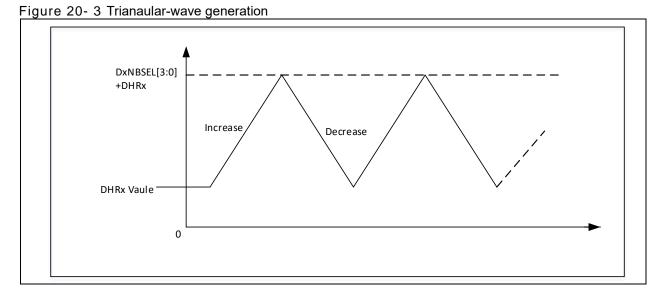
When the DxTRGEN bit is cleared, each data written to the data register is immediately transferred into the DAC DxODT register without the need of a trigger event.

20.4.2 Noise/Triangular-wave generation

The DAC can output a variable-amplitude pseudonise and a triangular wave, which is done by the LENinear Feedback Shift Register and triangle wave generator respectively. The DAC noise generation is selected by setting DxNM[1:0]=01 in the LFSR, while the DAC triangular-wave generation is selected by setting the DxNM[1:0]=1x.

LFSR logic

The preloaded value in the LFSR is 0xAAA. This register is updated after each trigger event based on a specific calculation algorithm.



The DxNBSEL [3: 0] bit in the DAC_CTRL register is set to mark partially or totally the LFSR data. The resulting value is then added up to the DHRx value without overflow and this value is loaded into the DAC_DxODT register. It is possible to disable LFSR function and reset LFSR wave generation algorithm by setting DxNM[1: 0]=00.

Triangular wave logic

The DAC triangular-wave generation is selected by setting DxNM[1: 0]=1x. The amplitude is configured through the DxNBSEL [3: 0] bit in the DAC_CTRL register. An internal triangular-wave counter is incremented at each trigger event. Once the maximum amplitude programmed in the DxNBSEL [3: 0] is reached, the value of this counter is decremented down to 0, then incremented again, and so on.

Meanwhile, the value of this counter is then added up to the DHRx register without overflow and the resulting value is loaded into the DAC_DxODT register. It is possible to disable/reset the triangular-wave generation by setting DxNM[1: 0]=00.

2021.12.01 Page 310 Ver 2.02

20.4.3 DAC data alignment

The DAC supports a single DAC and dual DA mode. The data format is dependent on the selected configuration mode.

Single DAC data format:

8-bit right alignment: load data into the DAC DxDTH8R [7:0]

12-bit left alignment: load data into the DAC_DxDTH12L [15: 4]

12-bit right alignment: load data in the DAC DxDTH12R [11: 0]

Dual DAC data format:

8-bit right alignment: load data into the DAC_DDTH8R [7: 0] and DAC_DDTH8R [15: 8]

12-bit left alignment: load data into the DAC DDTH12L [15: 4] and DAC DDTH12L [31: 20]

12-bit right alignment: load data into the DAC DDTH12R [11: 0] and DAC DDTH12R [27:16]

The loaded 8-bit data corresponds to the DHRx[11:4] and the loaded 12-bit data corresponds to the DHRx[11: 0]

20.5 DAC registers

These peripheral registers must be accessed by word (32 bits).

Table 20- 2 DAC register map and reset values

Register	Offset	Reset value
DAC_CTRL	000h	0x0000 0000
DAC_SWTRG	004h	0x0000 0000
DAC_D1DTH12R	008h	0x0000 0000
DAC_D1DTH12L	00Ch	0x0000 0000
DAC_D1DTH8R	010h	0x0000 0000
DAC_D2DTH12R	014h	0x0000 0000
DAC_D2DTH12L	018h	0x0000 0000
DAC_D2DTH8R	01Ch	0x0000 0000
DAC_DDTH12R	020h	0x0000 0000
DAC_DDTH12L	024h	0x0000 0000
DAC_DDTH8R	028h	0x0000 0000
DAC_D1ODT	02Ch	0x0000 0000
DAC_D2ODT	030h	0x0000 0000

20.5.1 DAC control register (DAC_CTRL)

Bit	Register	Reset value	Type	Description
Bit 31: 29	Reserved	0x0	resd	Kept at its default value
				DAC2 DMA transfer enable
D U 00				This bit is set and cleared by software.
Bit 28	D2DMAEN	0x0	rw	0: DAC2 DMA mode disabled
				1: DAC2 DMA mode enabled
				DAC2 noise bit select
				These bits are used to select the mark bit in noise generation mode or amplitude in triangular-wave generation mode.
Bit 27: 24	D2NBSEL	0x0	rw	0000: Unmask LSFR bit0 /Triangle amplitude is equal to 1
				0001: Unmask LSFR bit[1: 0] /Triangle amplitude is equal to 3
				0010: Unmask LSFR bit[2: 0] /Triangle amplitude is equal to 7

				0011: Unmask LSFR bit[3: 0] /Triangle amplitude is equal to 15
				0100: Unmask LSFR bit[4: 0] /Triangle amplitude is equal to 31
				0101: Unmask LSFR bit[5: 0] /Triangle amplitude is equal to \pm 63
				0110: Unmask LSFR bit[6: 0] /Triangle amplitude is equal to 127
				0111: Unmask LSFR bit[7: 0] /Triangle amplitude is equal to 255
				1000: Unmask LSFR bit[8: 0] /Triangle amplitude is equal to 511
				1001: Unmask LSFR bit[9: 0] /Triangle amplitude is equal to 1023
				1010: Unmask LSFR bit[10:0] /Triangle amplitude is equal to 2047
				≥1011: Unmask LSFR bit[11: 0] /Triangle amplitude is equal to 4095
				DAC2 noise mode
Dit 22: 22	D2NM	0v0	may	00: Wave generation disabled
Bit 23: 22	DZINIVI	0x0	rw	01: Noise wave generation enabled
				1x: Triangular wave generation enabled
				DAC2 trigger select
				000: TMR6 TRGOUT event
				001: TMR8 TRGOUT event
	D2TRGSEL		rw	010: TMR7 TRGOUT event
				011: TMR5 TRGOUT event
Bit 21: 19		0x0		100: TMR2 TRGOUT event
				101: TMR4 TRGOUT event
				110: External interrupt line 9
				111: Software trigger
				Note: These bits can be valid only when D2TRGEN = 1.
				DAC2 trigger enable
				0: DAC2 trigger disabled
				1: DAC2 trigger enabled
				Note:
Bit 18	D2TRGEN	0x0	rw	When the DAC2 trigger is disabled, the data written into the DAC_D2DTHx register is transferred into the DAC_D2ODT register after one APB1 clock cycle.
				When the DAC2 trigger is enabled, the data written into the DAC_D2DTHx register is transferred into the DAC_D2ODT register after three APB1 clock cycles
				If the software trigger is selected, it takes one APB1 clock cycle to have the data written into the DAC_D2DTHx register transferred into the DAC_ D2ODT register.
				DAC2 output buffer disable
Bit 17	D2OBDIS	0x0	rw	0: DAC2 output buffer enabled
				1: DAC2 output buffer disabled
				DAC2 enable
Bit 16	D2EN	0x0	rw	0: DAC2 disabled
				1: DAC2 enabled
Bit 15: 13	Reserved	0x0	resd	Kept at its default value
				DAC1 DMA transfer enable
Bit 12	D1DMAEN	0x0	rw	0: DAC1 DMA transfer disabled
				1: DAC1 DMA transfer enabled

				DAC1 noise bit select
				These bits are used to select the mark bit in noise generation mode or amplitude in triangular-wave generation mode.
				0000: Unmask LSFR bit0/Triangle amplitude is equal to 1 0001: Unmask LSFR bit[1:0]/Triangle amplitude is equal to
				3 0010: Unmask LSFR bit[2: 0]/Triangle amplitude is equal to 7
				0011: Unmask LSFR bit[3: 0]/Triangle amplitude is equal to 15
				0100: Unmask LSFR bit[4: 0]/Triangle amplitude is equal to 31
Bit 11: 8	D1NBSEL	0x0	rw	0101: Unmask LSFR bit[5: 0]/Triangle amplitude is equal to 63
				0110: Unmask LSFR bit[6: 0]/Triangle amplitude is equal to 127
				0111: Unmask LSFR bit[7: 0]/Triangle amplitude is equal to 255
				1000: Unmask LSFR bit[8: 0]/Triangle amplitude is equal to 511
				1001: Unmask LSFR bit[9: 0]/Triangle amplitude is equal to 1023
				1010: Unmask LSFR bit[10: 0]/Triangle amplitude is equal to 2047
				≥1011: Unmask LSFR bit[11:0]/Triangle amplitude is equal to 4095
				DAC1 noise mode
Bit 7: 6	D1NM	0x0	rw	00: Wave generation disabled
2		0,10		01: Noise wave generation enabled
				1x: Triangular wave generation enabled
				DAC1 trigger select
				000: TMR6 TRGOUT event
				001: TMR8 TRGOUT event
				010: TMR7 TRGOUT event
Bit 5: 3	D1TRGSEL	0x0	rw	011: TMR5 TRGOUT event
DIL 3. 3	DTIRGSEL	UXU	I VV	100: TMR2 TRGOUT event
				101: TMR4 TRGOUT event
				110: External interrupt line 9
				111: Software trigger
				Note: These bits can be valid only when D1TRGEN = 1.
				DAC1 trigger enable
				0: DAC1 trigger disabled
				1: DAC1 trigger enabled
				Note:
				When the DAC1 trigger is disabled, the data written into
Bit 2	D1TRGEN	0x0	rw	the DAC_D1DTHx register is transferred into the DAC_D1ODT register after one APB1 clock cycle.
				When the DAC1 trigger is enabled, the data written into the DAC_D1DTHx register is transferred into the DAC_D1ODT register after three APB1 clock cycles
				If the software trigger is selected, it takes one APB1 clock cycle to have the data written into the DAC_D1DTHx register transferred into the DAC_D1ODT register.
				DAC1 output buffer disable
Bit 1	D10BDIS	0x0	rw	0: DAC1 output buffer enabled

				1: DAC1 output buffer disabled	
				DAC1 enable	
Bit 0	D1EN 0x0	0x0	rw	0: DAC1 disabled	
				1: DAC1 enabled	

20.5.2 DAC software trigger register (DAC_SWTRG)

Bit	Register	Reset value	Type	Description
Bit 31: 2	Reserved	0x0000 00000	resd	Kept at its default value
				DAC2 software trigger
				0: DAC2 software trigger disabled
Bit 1	D2SWTRG	0x0	rw	1: DAC2 software trigger enabled
DIL I	DZSWIRG			Note: This bit is cleared by hardware (one APB1 clock cycle later) once the DAC_D2DTH data is loaded into the DAC_D2ODT register.
Bit 0		0x0	rw	DAC1 software trigger
				0: DAC1 software trigger disabled
	D1SWTRG			1: DAC1 software trigger enabled
	DISWING			Note: This bit is cleared by hardware (one APB1 clock cycle later) once the DAC_D1DTH data is loaded into the DAC_D1ODT register.

20.5.3 DAC1 12-bit right-aligned data holding register (DAC_D1DTH12R)

Bit	Register	Reset value	Туре	Description
Bit 31: 12	Reserved	0x00000	resd	Kept at its default value
Bit 11: 0	D1DT12R	0x000	rw	DAC1 12-bit right-aligned data

20.5.4 DAC1 12-bit left-aligned data holding register (DAC_D1DTH12L)

Bit	Register	Reset value	Type	Description
Bit 31: 16	Reserved	0x0000	resd	Kept at its default value
Bit 15: 4	D1DT12L	0x000	rw	DAC1 12-bit left-aligned data
Bit 3: 0	Reserved	0x0	resd	Kept at its default value

20.5.5 DAC1 8-bit right-aligned data holding register (DAC_D1DTH8R)

Bit	Register	Reset value	Type	Description
Bit 31: 8	Reserved	0x000000	resd	Kept at its default value
Bit 7: 0	D1DT8R	0x00	rw	DAC1 8-bit right-aligned data

20.5.6 DAC2 12-bit right-aligned data holding register (DAC_ D2DTH12R)

Bit	Register	Reset value	Type	Description
Bit 31: 12	Reserved	0x00000	resd	Kept at its default value
Bit 11: 0	D2DT12R	0x000	rw	DAC2 12-bit right-aligned data

2021.12.01 Page 314 Ver 2.02

20.5.7 DAC2 12-bit left-aligned data holding register (DAC_ D2DTH12L)

Bit	Register	Reset value	Туре	Description
Bit 31: 16	Reserved	0x0000	resd	Kept at its default value
Bit 15: 4	D2DT12L	0x000	rw	DAC2 12-bit left-aligned data
Bit 3: 0	Reserved	0x0	resd	Kept at its default value

20.5.8 DAC2 8-bit right-aligned data holding register (DAC_D2DTH8R)

Bit	Register	Reset value	Type	Description
Bit 31: 8	Reserved	0x000000	resd	Kept at its default value
Bit 7: 0	D2DT8R	0x00	rw	DAC2 8-bit right-aligned data

20.5.9 Dual DAC 12-bit right-aligned data holding register (DAC_DDTH12R)

Bit	Register	Reset value	Type	Description
Bit 31: 28	Reserved	0x0	resd	Kept at its default value
Bit 27: 16	DD2DT12R	0x000	rw	DAC2 12-bit right-aligned data
Bit 15: 12	Reserved	0x0	resd	Kept at its default value
Bit 11: 0	DD1DT12R	0x000	rw	DAC1 12-bit right-aligned data

20.5.10 Dual DAC 12-bit left-aligned data holding register (DAC_DDTH12L)

Bit	Register	Reset value	Type	Description
Bit 31: 20	DD2DT12L	0x000	rw	DAC2 12-bit left-aligned data
Bit 19: 16	Reserved	0x0	resd	Kept at its default value
Bit 15: 4	DD1DT12L	0x000	rw	DAC1 12-bit left-aligned data
Bit 3: 0	Reserved	0x0	resd	Kept at its default value

20.5.11 Dual DAC 8-bit right-aligned data holding register (DAC_DDTH8R)

Bit	Register	Reset value	Type	Description
Bit 31: 16	Reserved	0x0000	resd	Kept at its default value
Bit 15: 8	DD2DT8R	0x00	rw	DAC2 8-bit right-aligned data
Bit 7: 0	DD1DT8R	0x00	rw	DAC1 8-bit right-aligned data

20.5.12 DAC1 data output register (DAC_ D1ODT)

Bit	Register	Reset value	Type	Description
Bit 31: 12	Reserved	0x00000	resd	Kept at its default value
Bit 11: 0	D10DT	0x000	rw	DAC1 output data

20.5.13 DAC2 data output register (DAC_ D2ODT)

Bit	Register	Reset value	Type	Description
Bit 31: 12	Reserved	0x00000	resd	Kept at its default value
Bit 11: 0	D2ODT	0x000	rw	DAC2 output data

21 CAN

21.1 CAN introduction

CAN (Controller Area Network) is a distributed serial communication protocol for real-time and reliable data communication among various nodes. It supports the CAN protocol version 2.0A and 2.0B.

21.2 CAN main features

- Baud rates up to 1M bit/s
- Supports the time triggered communication
- Interrupt enable and mask
- Configurable automatic retransmission mode

Transmission

- Three transmit mailboxes
- Configurable transmit priority
- Supports the time stamp on transmission

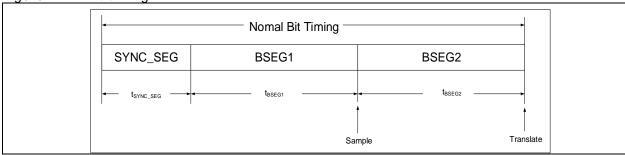
Reception

- Two FIFOs with three-level depth
- 14 filter banks
- Supports the identifier list mode
- Supports the identifier mask mode
- FIFO overrun management

Time triggered communication mode

- 16-bit timers
- Time stamp on transmission

21.3 Baud rate


The nominal bit time of the CAN bus consists of three parts as follows:

Synchronization segment (SYNC_SEG): This segment has one time unit, and its time duration is defined by the BRDIV[11: 0] bit in the CAN BTMG register.

Bit segment 1 (BIT SEGMENT 1): It is referred to as BSEG1 including the PROP_SEG and PHASE_SEG1 of the CAN standard. Its duration is between 1 and 16 time units, defined by the BTS1[3: 0] bit.

Big segment 2 (BIT SEGMENT 2): It is referred to as BSEG2 including the PHASE_SEG2 of the CAN standard. Its duration is between 1 and 8 time units, defined by the BTS2[2: 0] bit.

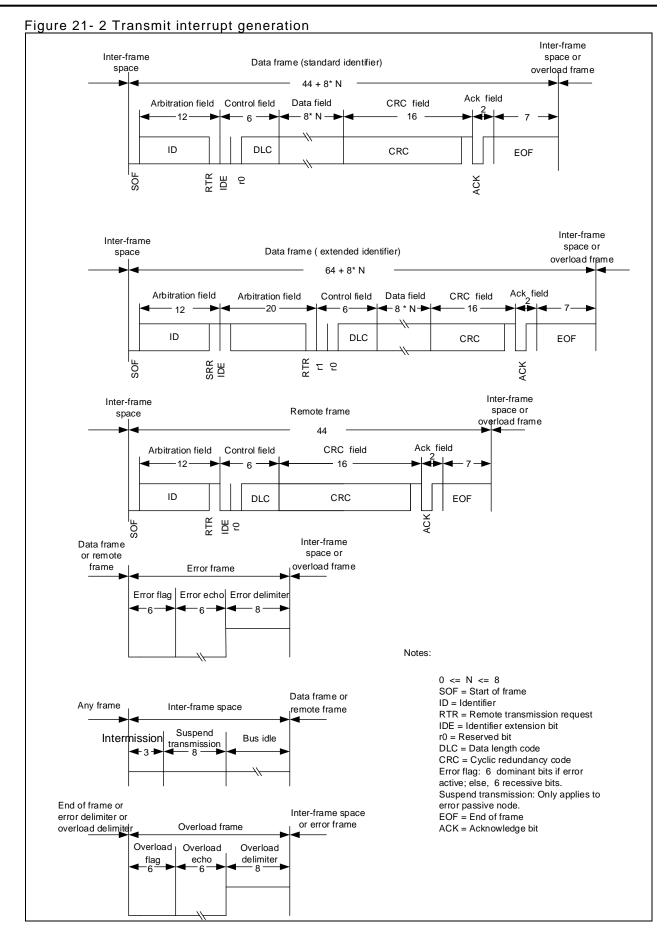
Figure 21- 1Bit timing

Baud rate formula:

$$BaudRate = \frac{1}{\text{Nomal Bit Timing}}$$

$$Nomal \ Bit \ Timing = t_{SYNC_SEG} + \ t_{BSEG1} + \ t_{BSEG2}$$

where


$$t_{SYNC_SEG} = 1 \text{ x } t_q$$

 $t_{BSEG1} = (1 + \text{BTS1}[3: 0]) \text{ x } t_q$
 $t_{BSEG2} = (1 + \text{BTS2}[2: 0]) \text{ x } t_q$
 $t_q = (1 + \text{BRDIV}[11: 0]) \text{ x } t_{pclk}$

Hard synchronization and resynchronization

The start location of each bit in CAN nodes is always in synchronization segment by default, and the sampling is performed at the edge location of bit segment 1 and big segment 2 simulatenously.

During the actual transmission, each bit of the CAN nodes has certain phase error due to the oscillator drift, transmission delay among the network nodes and noise interference. To avoid the impact on the communication, the start-bit edge and its subsequent falling edge can be synchronized or resynchronized. The time length of the synchronization compensation can not be greater than the resynchronization width (1 to 4 time units, defined by the RSAW[1: 0] bit).

21.4Interrupt management

The CAN controller contains four interrupt vectors that can be used to enable or disable interrups by setting the CAN_INTEN register.

Figure 21- 3 Transmit interrupt generation

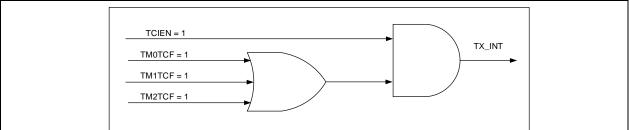


Figure 21- 4 Receive interrupt 0 generation

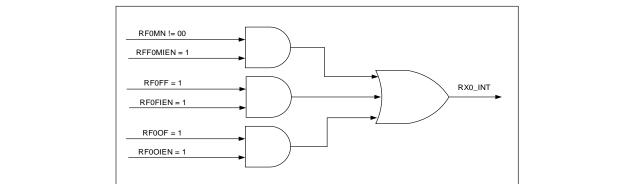


Figure 21-5 Receive interrupt 1 generation

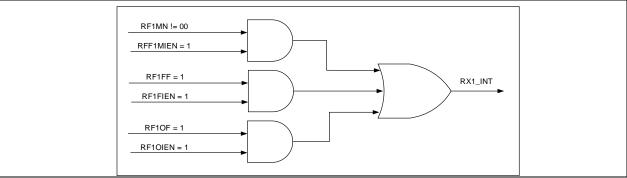
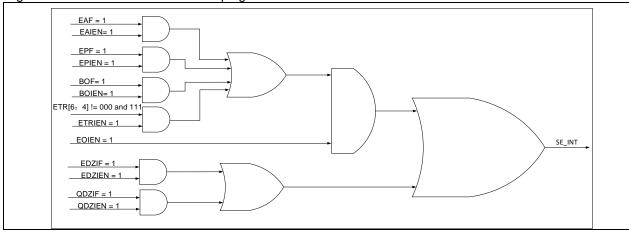



Figure 21- 6 Status error interrupt generation

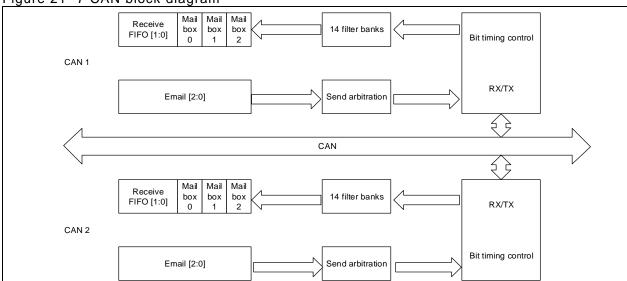
21.5Interrupt management

The following information can be used as reference for CAN application development:

- Debug control
 - When the system enters the debug mode, the CAN controller stops or continues to work normally, depending on the CANx_PAUSE bit in the DEBUG_CTRL register or the PTD bit in the CAN_MCTRL register.
- Time triggered communication
 - The timer triggered communication is used to improve the real-time performance so as to avoid bus competition. It is activated by setting TTCEN=1 in the CAN_MCTRL register. The internal 16-bit timer is incremented each CAN bit time, and is sampled on the Start Of Frame bit to generate the time stamp value, which is stored in the CAN_RFCx and CAN_TMCx register.
- Register access protection
 The CAN BTMG register can be modified only when the CAN is in frozen mode.

Although the transmission of incorrect data will not cause problems at the network level, it can have severe impact on the application. Thus a transmit mailbox can be modified only when it is in empty state.

The filter configuration in the CAN_FMCFG, CAN_FBWCFG and CAN_FRF registers can be modified only when FCS=1. The CAN_FiFBx register can be modified only when FCS=1 or FAENx=0.


21.6 Function overview

21.6.1 General description

As the number of nodes in the CAN network and the number of messages grows, an enhanced filtering mechanism is required to handle all types of meassages in order to reduce the processing time of message reception. A FIFO scheme is used to ensure that the CPU can concentrate on application tasks for a long period of time without the loss of messages. In the meantime, the priority order of the messages to be transmitted is configured by hardware. Standard identifiers (11-bit) and extended identifiers (29-bit) are fully supported by hardware.

Based on the above mentioned conditions, the CAN controller provides 14 scalable/configurable identifier filter banks, 2 receive FIFOs with storing 3 complete messages each and being totally managed by hardware, and 3 transmit mailboxes with their transmit priority order defined by the transmit scheduler.

Figure 21-7 CAN block diagram

21.6.2 Operating modes

The CAN controller has three operating modes:

Sleep mode

After a system reset, the CAN controller is in Sleep mode. In this mode, the CAN clock is stopped to reduce power consumption and an internal pull-up resistance is disabled. However, the software can still access to the mailbox registers.

The software request the CAN controller to enter Sleep mode by setting the DZEN bit in the CAN_MCTRL register. The hardware confirms the request by setting the DZC bit in the CAN_MSTS register.

Exit Sleep mode in two ways: The CAN controller can be woke up by hardware clearing the DZEN bit when the AEDEN bit in the CAN_MCTRL register and the CAN bus activity is detected. It can also be woke up by software clearing the DZEN bit.

Switch to Frozen mode: The CAN controller switches from Sleep mode to Frozen mode when the FZEN bit is set in the CAN_MCTRL register and the DZEN bit is cleared. Such switch operation is confirmed by hardware setting the FZC bit in the CAN MSTS register.

Switch to Communication mode: The CAN controller enters Communication mode when the FZEN and DZEN bits are both cleared and the CAN controller has synchronized with the bus. In other words, it must wait for 11 consecutive recessive bits to be detected on the CANRX pin.

Frozen mode

The software initialization can be done only in Frozen mode, including the CAN_BTMG and CAN_MCTRL registers. But the initialization of the 14 CAN filter banks (mode, scale, FIFO association, activation and filter values) can be done in non-Frozen mode. When the CAN controller is in Frozen mode, message reception and transmission are both disabled.

Switch to Communication mode: The CAN controller leaves Frozen mode when the FZEN bit is cleared in the CAN_MCTRL register. This switch operation is confirmed by hardware clearing the FZC bit in the CAN MSTS register. The CAN controller must be synchronized with the bus.

Switch to Sleep mode: The CAN controller enters Sleep mode if DZEN=1 and FZEN=0 in the CAN_MCTRL register. This switch operation is confirmed by hardware setting the DZC bit in the CAN MSTS register.

Communication mode

After the CAN_BTMG and CAN_MCTRL registers are configured in Frozen mode, the CAN controller enters Communication mode and is ready for message reception and transmission.

Switch to Sleep mode: The CAN controller switches to Sleep mode when the DZEN bit is set in the CAN MCTRL register and the current CAN bus transmission is complete.

Switch to Frozen mode: The CAN controller enters Frozen mode when the FZEN bit is set in the CAN MCTRL register and the current CAN bus transmission is complete.

21.6.3 Test modes

The CAN controller defines three test modes, including Listen-only mode, Loop back mode and combined Listen-only and Loop back mode. Test mode can be selected by setting the LOEN and LBEN bits in the CAN BTMG register.

- Listen-only mode is selected when the LOEN bit is set in the CAN_BTMG register. In this mode, the CAN is able to receive data, but only recessive bits are output on the CANTX pin. In the meantime, the dominant bits output on the CANTX can be monitored by the receive side but without affecting the CAN bus.
- Loop back mode is selected by setting the LBEN bit in the CAN_BTMG register. In this mode, The
 CAN only receives the level signal on its CANTX pin. Meanwhile, the CAN can also send data to
 the external bus. The Loop back mode is mainly used for self-test functions.
- It is possible to combine the Listen-only and Loop back mode by setting the LOEN and LBEN bits in the CAN_BTMG register. In this case, the CAN is disconnected from the bus network, the CANTX pin remains in recessive state, and the transmit side is connected to the receive side.

21.6.4 Message filtering

The received message has to go through filtering by its identifier. If passed,the message will be stored in the correspoinding FIFOs. If not, the message will be discarded. The whole operation is done by hardware without using CPU resources.

Filter bit width

The CAN controller provides 14 configurable and scalable filter banks (0~13). Each filter bank has two 32-bit registers, CAN_FiFB1 and CAN_FiFB. The filter bit width can be configured as two 16 bits or one 32 bits, depending on the corresponding bits in the CAN_FBWCFG register.

32-bit fliter register CAN FiFBx includes the SID[10: 0], EID[17: 0], IDT and RTR bits.

CAN_FiFB1[31: 21]	CAN_FiFB1[20: 3]	CAN_FiFB	1[2: 0]	
CAN_FiFB2[31: 21]	CAN_FiFB2[20: 3]	CAN_FiFB	2[2: 0]	
SID[10: 0]/EID[28: 18]	EID[17: 0]	IDT	RTR	0

Two 16-bit filter register CAN FiFBx includes SID[10: 0], IDT, RTR and EID[17: 15] bits

	<u> </u>	<u> </u>						
CAN_FiFB1[31: 21]	CAN_FiFB1		CAN_FiFB1	CAN FiFB1[15: 5]	CAN_FiFB1		CAN_FiFB1	
CAN_FIFBI[31. 21]	[20: 19]		[18: 16]	CAN_FIFBT[13. 5]	[4: 3]		[2: 0]	
OAN E:ED0[04 04]	CAN_FiFB2		CAN_FiFB2	CAN E:ED0[45, 5]	AN_FiFB2		CAN_FiFB2	
CAN_FiFB2[31: 21]	[20: 19]		[18: 16]	CAN_FiFB2[15: 5]	[4: 3]		[2: 0]	
SID[10: 0]	IDT	RTR	EID[17: 15]	SID[10: 0]	IDT	RTR	EID[17: 15]	

Filtering mode

The filter can be configured in identifier mask mode or in identifier list mode by setting the FMSELx bit in the CAN_FMCFG register. The mask mode is used to specify which bits must match the preprogrammed identifiers, and which bits do not need. In identifier list mode, the identifier must match the pre-programmed identifier. The two modes can be used in conjunction with filter width to deliver four filtering modes below:

Figure 21-8 32-bit identifier mask mode

1.194.0 2.1 0 02	bit identifier mask mede			
ID	CAN_FiFB1[31:21]	CAN_FiFB1[20:3]	CAN_FiFB1 [2:0]	
Mask	CAN_FiFB2[31:21]	CAN_FiFB2[20:3]	CAN_FiFB2 [2:0]	
Mapping	SID[10:0]	EID[17:0]	IDT RTR 0	

Figure 21- 9 32-bit identifier list mode

ID	CAN_FiFB1[31:21] CAN_FiFB1[20:3]		CAN_FiFB1 [2:0]			
ID	CAN_FiFB2[31:21]	CAN_FiFB2[20:3]	CA	[2:0] CAN_FiFB2 [2:0]		
Mapping	SID[10:0]	EID[17:0]	IDT	RTR	0	

Figure 21- 10 16-bit identifier mask mode

ID	CAN_FiFB1[15:5]	CAN_FiFB1[4:0]		
Mask	CAN_FiFB1[31:21]	CAN_FiFB1[20:16]		
ID	CAN_FiFB2[15:5]	CAN_FiFB2[4:0]		
Mask	CAN_FiFB2[31:21]	CAN_FiFB2[20:16]		
Mapping	SID[10:0]	RTR IDT EID[17:15]		

Figure 21- 11 16-bit identifier lis	st mode
-------------------------------------	---------

igure 21- 11 10-bit identiner i	ist illoue		
ID	CAN_FiFB1[15:8]		
ID	CAN_FiFB1[31:24]		
		-	1
ID	CAN_FiFB2[15:8]	CAN_FiFB2[7:0]	
ID	CAN_FiFB2[31:24]	CAN_FiFB2[23:16]	
Mapping	SID[10:0]	RTR IDT EID[17:15]	

Filter match number

14 filter banks have different filtering effects dependent on the bit width mode. For example, 32-bit identifier mask mode contains the filters numbered n while 16-bit identifier list mode contains the filters numbered n, n+1, n+2 and n+3. When a frame of message passes through the filter number N, the number N is stored in the RFFMN[7: 0] bit in the CAN_RFCx register. The distribution of the filter number does not take into account the activation state of the filter banks.

The following are examples of filter numbering

Filter bank	FIFO0	Active	Filter number	Filter bank	FIFO1	Active	Filter number
0	CAN_F0FB1[31: 0]-ID	Yes	0	3	CAN_F3FB1[15: 0]-ID	-Yes	0
	CAN_F0FB2[31: 0]-ID		1		CAN_F3FB1[31: 16]-ID		1
1	CAN_F1FB1[15: 0]-ID	Yes	2		CAN_F3FB2[15: 0]-ID		2
	CAN_F1FB1[31: 16]-ID		3		CAN_F3FB2[31: 16]-ID		3
	CAN_F1FB2[15: 0]-ID		4	4	CAN_F4FB1[31: 0]-ID	Yes	4
	CAN_F1FB2[31: 16]-ID		5		CAN_F4FB2[31: 0] Mask		
2	CAN_F2FB1[31: 0]-ID	Yes	6		CAN_F5FB1[15: 0]-ID	No	5
	CAN_F2FB2[31: 0]-Mask			5	CAN_F5FB1[31: 16]· Mask		
6	CAN_F6FB1[15: 0]-ID	No	7	5	CAN_F5FB2[15: 0]-ID		6
	CAN_F6FB1[31: 16]-Mask				CAN_F5FB2[31: 16]· Mask		
	CAN_F6FB2[15: 0]-ID		8		CAN_F7FB1[15: 0]-ID	No	7
	CAN_F6FB2[31: 16]-Mask			7	CAN_F7FB1[31: 16]-ID		8
9	CAN_F9FB1[31: 0]-ID	No	9		CAN_F7FB2[15: 0]-ID		9
	CAN_F9FB2[31: 0]-ID		10		CAN_F7FB2[31: 16]-ID		10
10	CAN_F10FB1[15: 0]-ID	Yes	11		CAN_F8FB1[31: 0]-ID	Yes	11
	CAN_F10FB1[31: 16]- Mask			8	CAN_F8FB2[31: 0]· Mask		
	CAN_F10FB2[15: 0]-ID		12	4.4	CAN_F11FB1[31: 0]-ID	Yes	12
	CAN_F10FB2[31: 16]- Mask			11	CAN_F11FB2[31: 0]-ID		13
12	CAN_F12FB1[15: 0]-ID	No	13	- 13	CAN_F13FB1[15: 0]-ID	Yes	14
	CAN_F12FB1[31: 16]-ID		14		CAN_F13FB1[31: 16]- ID		15
	CAN_F12FB2[15: 0]-ID		15		CAN_F13FB2[15: 0]-ID		16
	CAN_F12FB2[31: 16]-ID		16		CAN_F13FB2[31: 16]- ID		17

Priority rules

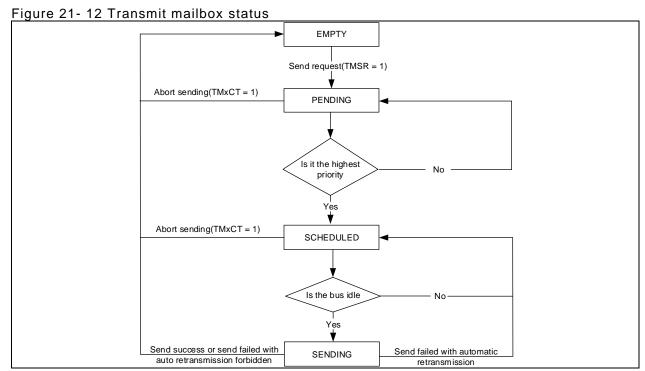
When the CAN controller receives a frame of message, the message may pass through severl filters. In this case, the filter match number stored in the receive mailbox is determined according to the following priority rules:

- A 32-bit filter has priority over a 16-bit filter
- For filters with identical bit width, the identifier list mode has priority over the identifier mask mode
- For filter with identical bit width and identifier mode, the lower number has priority over the higher number.

Filter configuration

- The CAN filters ar configured by setting the FCS in the CAN FCTRL register.
- Identifier mask mode or identifier list mode can be selected by setting the FMSELx bit in the CAN FMCFG register.
- The filter bit width can be configured as two 16 bits or one 32 bits by setting the FBWSELx bit in the CAN FBWCFG register.
- The filter x is associated with FIFO0 or FIFO1 by setting the FRFSELx bit in the CAN_FRF register.
- The filter banks x are activated by setting FAENx=1 in the CAN FACFG register.
- Configure 0~13 filter banks by writing to the CAN_FiFBx register (i=0...13; x=1,2).
- Complete the CAN filter configuration by setting FCS=0 in the CAN_FCTRL register.

21.6.5 Message transmission


Register configuration

To transmit a message, it is necessary to select one transmit mailbox and configure it through the CAN_TMIx, CAN_TMCx, CAN_TMDTLx and CAN_TMDTHx registers. Once the mailbox configuration is complete, setting the TMSR bit in the CAN_TMIx register can initiate CAN transmission.

Message transmission

The mailbox enters pending state immediately after the mailbox is configured and the CAN controller receives the transmit request. At this point, the CAN controlle will confirm whether the mailbox is given the highest priority or not. If yes, it will enter SCHEDULED STATE, otherwise, it will wait to get the highest priority. The mailbox in SCHEDULED state will monitor the CAN bus state so that the messages in SCHEDULED mailbox can be transmitted as soon as the CAN bus becomes idle. The mailbox will enter EMPTY state at the end of the message transmission.

Transmit priority configuration

When two or more transmit boxes are in PENDING state, their transmit priority must be given.

By identifier: When MMSSR=0 in the CAN_MCTRL register, the transmit order is defined by the identifier of the message in the mailbox. The message with lower identifier value has the highest priority. If the identifier values are the same, the message with lower mailbox number will be transmitted first.

By transmit request order: When MMSSR=1 in the CAN_MCTRL register, the transmit priority is given by the transmit request order of mailboxes.

Transmit status and error status

The TMxTCF, TMxTSF, TMxALF, TMxTEF and TMxEF bits in the CAN_TSTS register are used to indicate transmit status and error status.

TMxTCF bit: Transmission complete flag, indicating that the data transmission is complete when TMxTCF=1.

TMxTSF bit: Transmission success flag, indicating that the data has been transmitted successfully when TMxTSF =1.

TMxALF bit: Transmission arbitration lost flag, indicating that the data transmission arbitration is lost when TMxALF=1.

TMxTEF bit: Transmission error flag, indicating that the data transmission failed due to bus error, and an error frame is sent when TMxTEF=1.

TMxEF bit: Mailbox empty flag, indicating that the data transmission is complete and the mailbox becomes empty when TMxEF=1.

Transmit abort

The TMxCT bit is set in the CAN_TSTS register to abort the transmission of the current mailbox, detailed as follows:

When the current transmission fails or arbitration is lost, if the automatic retransmission mode is disabled, the tranmist mailbox become EMPTY; if the automatic retransmission mode is enbled, the tranmist mailbox becomes SCHEDULED, the mailbox transmission then is aborted and becomes EMPTY.

When the current transmission is complete successfully, the mailbox becomes EMPTY.

21.6.6 Message reception

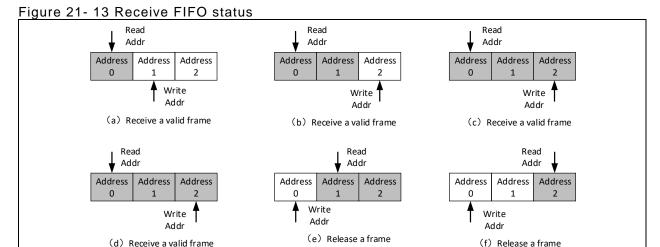
Register configuration

The CAN_RFIx, CAN_RFCx, CAN_RFDTLx and CAN_RFDTHx registers can be used by user applications to obtain valid messages.

Message reception

The CAN controller boasts two FIFO with three levels to receive messages. FIFO rule is adopted. When the message is received correctly and has passed the identifier filtering, it is regarded as a valid message and is stored in the corresponding FIFO. The number of the received messages RFxMN[1: 0] will be incremented by one whenever the receive FIFO receives a valid message. If a valid message is received when RFxMN[1: 0]=3, the controller will select either to overwrite the previous messages or discard the new incoming message through the MDRSEL bit in the CAN MCTRL register.

In the meantime, when the user reads a frame of message and the RFxR is set in the CAN_RFx register, one FIFO mailbox is released, and RFxMN[1: 0] bit is descremented by one in the CAN_RFx register.


Receive FIFO status

RFxMN[1: 0], RFxFF and RFxOF bits in the RFx register are used to indicate receive FIFO status.

RFxMN[1: 0]: indicates the number of valid messages stored in the FIFOx.

RFxFF: indicates that three valid messages are stroed in the FIFOx (i.e. the three mailboxes are full), as shown in (c) of Figure 21-13.

RFxOF: indicates that a new valid message has been received while the FIFOx is full, as shown in (d) of Figure 21-13.

21.6.7 Error management

The status of CAN nodes is indicated by the receive error counter (TEC) and transmit error counter (REC) bits in the CAN_ESTS register. In the meantime, the ETR[6: 4] bit in the CAN_ESTS register is used to record the last error source, and the corresponding interrupts will be generated when the CAN INTEN register is enabled.

- Error active flag: When both TEC and REC are lower than 128, the system is in the error active state. An error active flag is set when an error is detected.
- Error passive flag: When either TEC or REC is greater than 127, the system is in the error passive state. An error passive flag is set when an error is detected.

Bus-off state: The bus-off state is entered when TEC is greater than 255. In this state, it is impossible to transmit and receive messages. The CAN recovers from bus-off state in two ways: when AEBOEN=0, in communication mode, once 128 times of 11 consecutive recessive bits have been detected on the CAN RX, the software request enters freeze mode, and the bus-off state is left. When AEBOEN=1, in communication mode, once 128 times of consecutive recessive bits have been detected on the CAN RX, the CAN recovers automatically from the bus-off state.

21.7CAN registers

These peripheral registers must be accessed by word (32 bits).

Table 21- 1 CAN register map and reset values

Register	Offset	Reset value	
MCTRL	000h	0x0001 0002	
MSTS	004h	0x0000 0C02	
TSTS	008h	0x1C00 0000	
RF0	00Ch	0x0000 0000	
FR1	010h	0x0000 0000	
INTEN	014h	0x0000 0000	
ESTS	018h	0x0000 0000	
BTMG	01Ch	0x0123 0000	
Reserved	020h~17Fh	XX	
TMI0	180h	0xXXXX XXXX	
TMC0	184h	0xXXXX XXXX	
TMDTL0	188h	0xXXXX XXXX	
TMDTH0	18Ch	0xXXXX XXXX	
TMI1	190h	0xXXXX XXXX	
TMC1	194h	0xXXXX XXXX	
TMDTL1	198h	0xXXXX XXXX	
TMDTH1	19Ch	0xXXXX XXXX	
TMI2	1A0h	0xXXXX XXXX	
TMC2	1A4h	0xXXXX XXXX	
TMDTL2	1A8h	0xXXXX XXXX	
TMDTH2	1ACh	0xXXXX XXXX	
RFI0	1B0h	0xXXXX XXXX	
RFC0	1B4h	0xXXXX XXXX	
RFDTL0	1B8h	0xXXXX XXXX	
RFDTH0	1BCh	0xXXXX XXXX	
RFI1	1C0h	0xXXXX XXXX	
RFC1	1C4h	0xXXXX XXXX	
RFDTL1	1C8h	0xXXXX XXXX	
RFDTH1	1CCh	0xXXXX XXXX	
Reserved	1D0h~1FFh	XX	
FCTRL	200h	0x2A1C 0E01	
FMCFG	204h	0x0000 0000	
Reserved	208h	xx	
FSCFG	20Ch	0x0000 0000	
Reserved	210h	xx	
FRF	214h	0x0000 0000	
Reserved	218h	XX	

FACFG	21Ch	0x0000 0000
Reserved	220h~23Fh	XX
FB0F1	240h	0xXXXX XXXX
FB0F2	244h	0xXXXX XXXX
FB1F1	248h	0xXXXX XXXX
FB1F2	24Ch	0xXXXX XXXX
FB13F1	2A8h	0xXXXX XXXX
FB13F2	2ACh	0xXXXX XXXX

21.7.1 CAN control and status registers

21.7.1.1 CAN master control register (CAN_MCTRL)

Bit	Register	Reset value	Туре	Description
Bit 31: 17	Reserved	0x0000	resd	Kept at its default value.
<u> </u>	110001100	олосос	1004	Prohibit trans when debug
				0: Transmission works during debug
Bit 16	PTD	0x1	rw	1: Transmission is prohibited during debug. Receive FIFO can be still accessible normally.
				Note: Transmission can be disabled only when PTD and CANx_PAUSE bits in the DEBUG_CTRL register are set simultaneously.
				Software partial reset
				0: Normal
				1: Software partial reset
Bit 15	SPRST	0x0	rw1s	Note:
				SPRST only reset receive FIFO and MCTRL register.
				The CAN enters Sleep mode after reset. Then this bit is automatically cleared by hardware.
Bit 14: 8	Reserved	0x00	resd	Kept at its default value.
				Time triggered communication mode enable
Bit 7	TTCEN	0x0	rw	0: Time triggered communication mode disabled
				1: Time triggered communication mode enabled
				Automatic exit bus-off enable
				0: Automatic exit bus-off disabled
				1: Automatic exit bus-off enabled
				Note:
Bit 6	AEBOEN	0x0	rw	When Automatic exit bus-off mode is enabled, the hardware will automatically leave bus-off mode as soon as an exit timing is detected on the CAN bus.
				When Automatic exit bus-off mode is disabled, the software must enter/leave the freeze mode once more, and then the bus-off state is left only when an exit timing is detected on the CAN bus.
				Automatic exit doze mode enable
				0: Automatic exit sleep mode disabled
				1: Automatic exit sleep mode enabled
				Note:
Bit 5	AEDEN	0x0	rw	When Automatic exit sleep mode is disabled, the sleep mode is left by software clearing the sleep request command.
				When Automatic exit sleep mode is enabled, the sleep mode is left without the need of software intervention as

				soon as a message is monitored on the CAN bus.
				Prohibit retransmission enable when sending fails enable
D:4 4	DDCEEN	0.40		0: Retransmission is enabled.
Bit 4	PRSFEN	0x0	rw	1: Retransmission is disabled.
				Message discard rule select when overflow
Bit 3	MDRSEL	0x0	rw	0: The previous message is discarded.
				1: The new incoming message is discarded.
				Multiple message transmit sequence rule
Bit 2	MMSSR	0x0	rw	0: The message with the smallest identifier is first transmitted.
				1: The message with the first request order is first transmitted.
-				Doze mode enable
				0: Sleep mode is disabled.
				1: Sleep mode is enabled.
				Note:
Bit 1	DZEN	0x1	rw	The hardware will automatically leave sleep mode when the AEDEN ib set and a message is monitored on the CAN bus.
				After CAN reset or partial software reset, this bit is forced to be set by hardware, that is, the CAN will keep in sleep mode, by default.
				Freeze mode enable
				0: Freeze mode disabled
				1: Freeze mode enabled
				Note:
Bit 0	FZEN	0x0	rw	The CAN leaves Freeze mode once 11 consecutive recessive bits have been detected on the RX pin. For this reason, the software acknowledges the entry of Freeze mode after the FZC bit is cleared by hardware.
				The Freeze mode is entered only when the current CAN activity (transmission or reception) is completed. Thus the sotware acknowledges the exit of Freeze mode after the FZC bit is cleared by hardware.

21.7.1.2 CAN master status register (CAN_MSTS)

Bit	Register	Reset value	Type	Description
Bit 31: 12	Reserved	0x00000	resd	Kept at its default value.
				Real time level on RX pin
Bit 11	REALRX	0x1	ro	0: Low
				1: High
				Last sample level on RX pin)
D:: 40	LOMBEN	0.4		0: Low
Bit 10	LSAMPRX	0x1	ro	1: High。
				Note: This value keeps updating with the REALRX.
-				Current receive status
				0: No reception occurs
Bit 9	CURS	0x0	ro	1: Reception is in progress
				Note: This bit is set by hardware when the CAN reception starts, and it is cleared by hardware at the end of reception.
-				Current transmit status
				0: No transmit occurs
Bit 8	CHEE	0x0		1: ransmit is in progress
	CUSS		ro	Note: This bit is set by hardware when the CAN transmission starts, and it is cleared by hardware at the end of transmission.

Bit 7: 5	Reserved	0x0	resd	Kept at its default value.
				Enter doze mode interrupt flag
				0: Sleep mode is not entered or no condition for flag set.
				1: Sleep mode is entered.
Bit 4	EDZIF	0x0	rw1c	Note:
	202	o.ko		This bit is set by hardware only when EDZIEN=1 and the CAN enters Sleep mode. Whe set, this bit will generate a status change interrupt. This bit is cleared by software (writing 1 to itself) or by hardware when DZC is cleared.
				Exit doze mode interrupt flag
				0: Sleep mode is not left or no condition for exit.
				1: Sleep mode has been left or exit condition has generated.
Bit 3	QDZIF	0x0	rw1c	Note:
				This bit is cleared by software (writing 1 to itself)
				Sleep mode is left when a SOF is detected on the bus.
				When QDZIEN=1, this bit will generate a status change interrupt.
				Error occur interrupt flag
				0: No error interrupt or no condition for error interrupt flag
				1: Error interrupt is generated.
				Note:
Bit 2	EOIF	0x0	rw1c	This bit is cleared by software (writing 1 to itself).
				This bit is set by hardware only when the corresponding bit is set in the CAN_ESTS register and the corresponding interrupt enable bit in the CAN_INTEN register is enabled. When set, this bit will generate a status change interrupt.
				Doze mode acknowledge
				0: The CAN is not in Sleep mode.
				1: CAN is in Sleep mode.
				Note:
				This bit is used to decide whether the CAN is in Sleep mode or not. This bit acknowledges the Sleep mode request generated by software.
Bit 1	DZC	0x1	ro	The Sleep mode can be entered only when the current CAN activity (transmission or reception) is completed. For this reason, the software acknowledges the entry of Sleep mode after this bit is set by hardware.
				The Sleep mode is left only once 11 consecutive recessive bits have been detect on the CAN RX pin. For this reason, the software acknowledges the exit of Sleep mode after this bit is cleared by hardware.
				Freeze mode confirm
				0: The CAN is not in Freeze mode.
				1: The CAN is in Freeze mode.
				Note:
				This bit is used to decide whether the CAN is in Freeze mode or not. This bit acknowledges the Freeze mode request generated by software.
Bit 0	FZC	0x0	ro	The Freeze mode can be entered only when the current CAN activity (transmission or reception) is completed. For this reason, the software acknowledges the entry of Freeze mode after this bit is set by hardware.
				The Freeze mode is left only once 11 consecutive recessive bits have been detect on the CAN RX pin. For this reason, the software acknowledges the exit of Freeze mode after this bit is cleared by hardware.

21.7.1.3 CAN transmit status register (CAN_TSTS)

Bit	Register	Reset value	Type	Description
	-			Transmit mailbox 2 lowest priority flag
				0: Mailbox 2 is not given the lowest priority.
Bit 31	TM2LPF	0x0	ro	1: Lowest priority (This indicates that more than one
				mailboxes are pending for transmission, the mailbox 2 has
				the lowest priority.)
				Transmit mailbox 1 lowest priority flag
D 0.0				0: Mailbox 1 is not given the lowest priority.
Bit 30	TM1LPF	0x0	ro	1: Lowest priority (This indicates that more than one mailboxes are pending for transmission, the mailbox 1 has the lowest priority.)
				Transmit mailbox 0 lowest priority flag
				0: Mailbox 0 is not given the lowest priority.
Bit 29	TM0LPF	0x0	ro	1: Lowest priority (This indicates that more than one mailboxes are pending for transmission, the mailbox 0 has the lowest priority.)
				Transmit mailbox 2 empty flag
Bit 28	TM2EF	0x1	ro	This bit is set by hardware when no transmission is pending in the mailbox 2.
				Transmit mailbox 1 empty flag
Bit 27	TM1EF	0x1	ro	This bit is set by hardware when no transmission is pending in the mailbox 1.
				Transmit mailbox 0 empty flag
Bit 26	TM0EF	0x1	ro	This bit is set by hardware when no transmission is pending in the mailbox 0.
				Transmit Mailbox number record
				Note:
				If the transmit mailbox is free, these two bits refer to the number of the next transmit mailbox free.
Bit 25: 24	TMNR	0x0	ro	For example, in case of free CAN, the value of these two bit becomes 01 after a message transmit request is written.
				If the transmit box is full, these two bits refer to the number of the transmit mailbox with the lowest priority.
				For example, when there are three messages are pending for transmission, the identifiers of mailbox 0, mailbox 1 and mailbox 2 are 0x400, 0x433 and 0x411 respectively, and the value of these two bits becomes 01.
				Transmit mailbox 2 cancel transmit
				0: No effect
D:: 00	T. 100T			1: Transmission is cancelled.
Bit 23	TM2CT	0x0	ro	Note: Software sets this bit to abort the transmission of mailbox 2. This bit is cleared by hardware when the transmit message in the mailbox 2 is cleared. Setting this bit has no effect if the mailbox 2 is free.
Bit 22: 20	Reserved	0x0	resd	Kept at its default value.
				Transmit mailbox 2 transmission error flag
				0: No error
				1: Mailbox 2 transmission error
Bit 19	TM2TEE	0v0	rw1c	Note:
DIL 19	TM2TEF	0x0	IWIC	This bit is set when the mailbox 2 transmission error occurred.
				It is cleared by software writing 1 or by hardware at the start of the next transmission
Bit 18	TM2ALF	0x0	rw1c	Transmit mailbox 2 arbitration lost flag 0: No arbitration lost

				1: Transmit mailbox 2 arbitration lost
				Note:
				This bit is set when the mailbox 2 transmission failed due to an arbitration lost.
				It is cleared by software writing 1 or by hardware at the start of the next transmission
				Transmit mailbox 2 transmission success flag
				0: Transmission failed
Bit 17	TM2TSF	0x0	rw1c	1: Transmission was successful.
Dit 17	TIVIZIOI	OXO	10010	Note:
				This bit indicates whether the mailbox 2 transmission is successful or not. It is cleared by software writing 1.
				Transmit mailbox 2 transmission completed flag
				0: Transmission is in progress
				1: Transmission is completed
				Note:
Bit 16	TM2TCF	0x0	rw1c	This bit is set by hardware when the transmission/abort request on mailbox 2 has been completed.
				It is cleared by software writing 1 or by hardware when a new transmission request is received.
				Clearing this bit will clear the TSMF2, ALMF2 and TEMF2 bits of mailbox 2.
				Transmit mailbox 1 cancel transmit
				0: No effect
				1: Mailbox 1 cancel transmit
Bit 15	TM1CT	0x0	rw1s	Note: This bit is set by software to abort the transmission request on mailbox 1. Clearing the message transmission on mailbox 1 will clear this bit. Setting by this software has no effect when the mailbox 1 is free.
Bit 14: 12	Reserved	0x0	resd	Kept at its default value.
				Transmit mailbox 1 transmission error flag
				0: No error
				1: Mailbox 1 transmission error
Bit 11	TM1TEF	0x0	rw1c	Note:
	······· =·	ene		This bit is set when the mailbox 1 transmission error occurred.
				It is cleared by software writing 1 or by hardware at the start of the next transmission
				Transmit mailbox 1 arbitration lost flag
				0: No arbitration lost
				1: Transmit mailbox 1 arbitration lost
Bit 10	TM1ALF	0x0	rw1c	Note:
				This bit is set when the mailbox 1 transmission failed due to an arbitration lost.
				It is cleared by software writing 1 or by hardware at the
				start of the next transmission
				Transmit mailbox 1 transmission success flag 0: Transmission failed
Bit 9	TM1TSF	0x0	rw1c	1: Transmission was successful.
טונ א	TWITTOF	UXU	TWTC	Note:
				This bit indicates whether the mailbox 1 transmission is
				successful or not. It is cleared by software writing 1.
				Transmit mailbox 1 transmission completed flag
Bit 8	TM1TCF	0x0	rw1c	0: Transmission is in progress
				1: Transmission is completed

				Note: This bit is set by hardware when the transmission/abort
				request on mailbox 1 has been completed.
				It is cleared by software writing 1 or by hardware when a new transmission request is received.
				Clearing this bit will clear the TSMF1, ALMF1 and TEMF1 bits of mailbox 1.
				Transmit mailbox 0 cancel transmit
				0: No effect
				1: Mailbox 0 cancel transmit
Bit 7	TM0CT	0x0	rw1s	Note: This bit is set by software to abort the transmission request on mailbox 0. Clearing the message transmission on mailbox 0 will clear this bit. Setting by this software has no effect when the mailbox 0 is free.
Bit 6: 4	Reserved	0x0	resd	Kept at its default value.
				Transmit mailbox 0 transmission error flag
				0: No error
				1: Mailbox 0 transmission error
Bit 3	TM0TEF	0x0	rw1c	Note:
2.1.0		one.	5	This bit is set when the mailbox 0 transmission error occurred.
				It is cleared by software writing 0 or by hardware at the start of the next transmission
				Transmit mailbox 0 arbitration lost flag
				0: No arbitration lost
				1: Transmit mailbox 0 arbitration lost
Bit 2	TM0ALF	0x0	rw1c	Note:
Dit 2	TWOALI	0.00	TWTC	This bit is set when the mailbox 0 transmission failed due to an arbitration lost.
				It is cleared by software writing 1 or by hardware at the start of the next transmission
-				Transmit mailbox 0 transmission success flag
				0: Transmission failed
D:1 4	TMOTOF	0.40	m1 =	1: Transmission was successful.
Bit 1	TM0TSF	0x0	rw1c	Note:
				This bit indicates whether the mailbox 0 transmission is successful or not. It is cleared by software writing 1.
				Transmit mailbox 0 transmission completed flag
				0: Transmission is in progress
				1: Transmission is completed
				Note:
Bit 0	TM0TCF	0x0	rw1c	This bit is set by hardware when the transmission/abort request on mailbox 0 has been completed.
				It is cleared by software writing 1 or by hardware when a new transmission request is received.
				Clearing this bit will clear the TSMF0, ALMF0 and TEMF0 bits of mailbox 0.

21.7.1.4 CAN receive FIFO 0 register (CAN_RF0)

Bit	Register	Reset value	Type	Description
Bit 31: 6	Reserved	0x0000000	resd	Kept at its default value.
				Receive FIFO 0 release
				0: No effect
Bit 5	RF0R	0x0	rw1s	1: Release FIFO
				Note:
				This bit is set by software to release FIFO 0. It is cleared

				by hardware when the FIFO 0 is released.
				Seting this bit by software has no effect when the FIFO 0 is empty.
				If there are more than two messages pending in the FIFO 0, the software has to release the FIFO 0 to access the second message.
				Receive FIFO 0 overflow flag
				0: No overflow
				1: Receive FIFO 0 overflow
Bit 4	RF0OF	0x0	rw1c	Note:
				This bit is set by hardware when a new message has been received and passed the filter while the FIFO 0 is full.
				It is cleared by software by writing 1.
				Receive FIFO 0 full flag
				0: Receive FIFO 0 is not full
				1: Receive FIFO 0 is full
Bit 3	RF0FF	0x0	rw1c	Note:
				This bit is set by hardware when three messages are pending in the FIFO 0.
				It is cleared by software by writing 1.
Bit 2	Reserved	0x0	resd	Kept at its default value.
				Receive FIFO 0 message num
				Note:
				These two bits indicate how many messages are pending in the FIFO 0.
Bit 1: 0	RF0MN	0x0	ro	RF0ML bit is incremented by one each time a new message has been received and passed the fitler while the FIFO 0 is not full.
				RF0ML bit is decremented by one each time the software releases the receive FIFO 0 by writing 1 to the RF0R bit.

21.7.1.5 CAN receive FIFO 1 register (CAN_RF1)

Bit	Register	Reset value	Type	Description
Bit 31: 6	Reserved	0x0000000	resd	Kept at its default value.
				Receive FIFO 1 release
				0: No effect
				1: Release FIFO
				Note:
Bit 5	RF1R	0x0	rw1s	This bit is set by software to release FIFO 1. It is cleared by hardware when the FIFO 1 is released.
				Seting this bit by software has no effect when the FIFO 1 is empty.
				If there are more than two messages pending in the FIFO 0, the software has to release the FIFO 1 to access the second message.
				Receive FIFO 1 overflow flag
				0: No overflow
				1: Receive FIFO 1 overflow
Bit 4	RF10F	0x0	rw1c	Note:
				This bit is set by hardware when a new message has been received and passed the filter while the FIFO 1 is full.
				It is cleared by software by writing 1.
				Receive FIFO 1 full flag
				0: Receive FIFO 1 is not full
Bit 3	RF1FF	0x0	rw1c	1: Receive FIFO 1 is full
				Note:

				This bit is set by hardware when three messages are pending in the FIFO 1.
				It is cleared by software by writing 1.
Bit 2	Reserved	0x0	resd	Kept at its default value.
				Receive FIFO 1 message num
				Note:
				These two bits indicate how many messages are pending in the FIFO 1.
Bit 1: 0	RF1MN	0x0	ro	RF1ML bit is incremented by one each time a new message has been received and passed the fitler while the FIFO 1 is not full.
				RF1ML bit is decremented by one each time the software releases the receive FIFO 1 by writing 1 to the RF1R bit.

21.7.1.6 CAN interrupt enable register (CAN_INTEN)

Bit	Register	Reset value	Type	Description
Bit 31: 18	Reserved	0x0000	resd	Kept at its default value.
				Enter doze mode interrupt enable
				0: Enter sleep mode interrupt disabled
Bit 17	EDZIEN	0x0	r.a.	1: Enter sleep mode interrupt enabled
DIL 17	EDZIEN	0.00	rw	Note: EDZIF flag bit corresponds to this interrupt. An interrupt is generated when both this bit and EDZIF bit are set.
				Quit doze mode interrupt enable
				0: Quit sleep mode interrupt disabled
D:+ 40	ODZIENI	0.40		1: Quit sleep mode interrupt enabled
Bit 16	QDZIEN	0x0	rw	Note: The flag bit of this interrupt is the QDZIF bit. An interrupt is generated when both this bit and QDZIF bit are set.
				Error occur interrupt enable
				0: Error interrupt disabled
D:4.4.F	FOIEN	0.40		1: Error interrupt enabled
Bit 15	EOIEN	0x0	rw	Note:The flag bit of this interrupt is the EOIF bit. An interrupt is generated when both this bit and EOIF bit are set.
Bit 14: 12	Reserved	0x0	resd	Kept at its default value.
<u> </u>				Error type record interrupt enable
				0: Error type record interrupt disabled
Bit 11	ETRIEN	0x0	rw	1: Error type record interrupt enabled
				Note: EOIF is set only when this interrupt is enabled and the ETR[2: 0] is set by hardware.
•				Bus-off interrupt enable
				0: Bus-off interrupt disabled
Bit 10	BOIEN	0x0	rw	1: Bus-off interrupt enabled
				Note: EOIF is set only when this interrupt is enabled and the BOF is set by hardware.
				Error passive interrupt enable
				0: Error passive interrupt disabled
Bit 9	EPIEN	0x0	rw	1: Error passive interrupt enabled
				Note: EOIF is set only when this interrupt is enabled and the EPF is set by hardware.
				Error active interrupt enable
				0: Error warning interrupt disabled
Bit 8	EAIEN	0x0	rw	1: Error warning interrupt enabled
				Note: EOIF is set only when this interrupt is enabled and the EAF is set by hardware.

2021.12.01 Page 335 Ver 2.02

Bit 7	Reserved	0x0	resd	Kept at its default value.
DIL 7	Neserveu	0.00	1630	Receive FIFO 1 overflow interrupt enable
				0: Receive FIFO 1 overflow interrupt disabled
Bit 6	RF10IEN	0x0	rw	1: Receive FIFO 1 overflow interrupt enabled
Dit 0	THE POLICE	O.C		Note: The flag bit of this interrupt is the RF10F bit. An interrupt is generated when this bit and RF10F bit are set.
				Receive FIFO 1 full interrupt enable
				0: Receive FIFO 1 full interrupt disabled
Bit 5	RF1FIEN	0x0	rw	1: Receive FIFO 1 full interrupt enabled
				Note: The flag bit of this interrupt is the RF1FF bit. An interrupt is generated when this bit and RF1FF bit are set.
				FIFO 1 receive message interrupt enable
				0: FIFO 1 receive message interrupt disabled
Bit 4	RF1MIEN	0x0	rw	1: FIFO 1 receive message interrupt enabled
				Note: The flag bit of this interrupt is RF1MN bit, so an interrupt is generated when this bit and RF1MN bit are set.
				Receive FIFO 0 overflow interrupt enable
				0: Receive FIFO 0 overflow interrupt disabled
Bit 3	RF00IEN	0x0	rw	1: Receive FIFO 0 overflow interrupt enabled
				Note: The flag bit of this interrupt is RF0OF bit, so an interrupt is generated when this bit and RF0OF bit are set.
				Receive FIFO 0 full interrupt enable
				0: Receive FIFO 0 full interrupt disabled
Bit 2	RF0FIEN	0x0	rw	1: Receive FIFO 0 full interrupt enabled
				Note: The flag bit of this interrupt is the RF0FF bit. An interrupt is generated when this bit and RF0FF bit are set
				FIFO 0 receive message interrupt enable
				0: FIFO 0 receive message interrupt disabled
Bit 1	RF0MIEN	0x0	rw	1: FIFO 0 receive message interrupt enabled
				Note: The flag bit of this interrupt is the RF0MN bit. An interrupt is generated when this bit and RF0MN bit are set
				Transmit mailbox empty interrupt enable
				0: Transmit mailbox empty interrupt disabled
Bit 0	TCIEN	0x0	rw	1: Transmit mailbox empty interrupt enabled
				Note: The flag bit of this interrupt is the TMxTCF bit. An interrupt is generated when this bit and TMxTCF bit are set

21.7.1.7 CAN error status register (CAN_ESTS)

Bit	Register	Reset value	Type	Description
				Receive error counter
Bit 31: 24	REC	0x00	ro	This counter is implemented in accordance with the receive part of the falut confinement mechanism of the CAN protocol.
				Transmit error counter
Bit 23: 16	TEC	0x00	ro	This counter is implemented in accordance with the transmit part of the falut confinement mechanism of the CAN protocol.
Bit 15: 7	Reserved	0x00	resd	Kept at its default value.
				Error type record
				000: No error
				001: Bit stuffing error
Bit 6: 4	ETR	0x0	rw	010: Format error
				011: Acknowledgement error
				100: Recessive bit error
				101: Dominant bit error

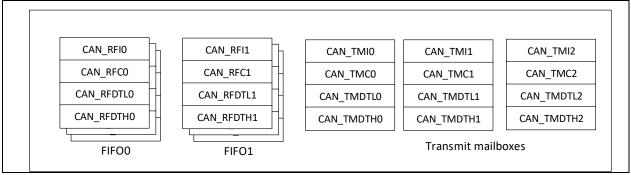
				110: CRC error
				111: Set by software
				Note:
				This field is used to indicate the current error type. It is set by hardware according to the error condition detected on the CAN bus. It is cleared by hardware when a message has been transmitted or received successfully.
				If the error code 7 is not used by hardware, this field can be set by software to monitor the code update.
Bit 3	Reserved	0x0	resd	Kept at its default value.
				Bus-off flag
				0: Bus-off state is not entered.
Bit 2	BOF	0x0	ro	1: Bus-off state is entered.
				Note: When the TEC is greater than 255, the bus-off state is entered, and this bit is set by hardware.
		0x0	ro	Error passive flag
				0: Error passive state is not entered
Bit 1	EPF			1: Error passive state is entered
DIL I	EFF	UXU		Note: This bit is set by hardware when the current error times has reached the Error passive state limit (Receive Error Counter or Transmit Error Counter >127)
				Error active flag
				0: Error active state is not entered
Bit ∩	EAF	0x0	ro	1: Error active state is entered
Bit 0	EAF	0.00	10	Note: This bit is set by hardware when the current error times has reached the Error active state limit (Receive Error Counter or Transmit Error Counter ≥96)

21.7.1.8 CAN bit timing register (CAN_BTMG)

Bit	Register	Reset value	Type	Description
				Listen-Only mode
Bit 31	LOEN	0x0	rw	0: Listen-Only mode disabled
				1: Listen-Only mode enabled
				Loop back mode
Bit 30	LBEN	0x0	rw	0: Loop back mode disabled
				1: Loop back mode enabled
Bit 29: 26	Reserved	0x0	resd	Kept at its default value.
				Resynchronization width
Bit 25: 24	RSAW	0x1	mar	tRSAW = tCAN x (RSAW[1: 0] + 1)
DIL 23. 24	RSAW	UXI	rw	Note: This field defines the maximum of time unit that the
				CAN handware is allowed to lengthen or shorten in a bit.
Bit 23	Reserved	0x0	resd	Kept at its default value.
	BTS2	0x2	rw	Bit time segment 2
Bit 22: 20				tBTS2 = tCAN x (BTS2[2: 0] + 1)
DIL 22. 20				Note: This field defines the number of time unit in Bit time
				segment 2.
				Bit time segment 1
D# 40, 40	DTC4	00		tBTS1 = tCAN x (BTS1[3: 0] + 1)
Bit 19: 16	BTS1	0x3	rw	Note: This field defines the number of time unit in Bit time
				segment 1.
Bit 15: 12	Reserved	0x0	resd	Kept at its default value.
				Baud rate division
Bit 11: 0	BRDIV	0x000	rw	tq = (BRDIV[11: 0]+1) x tPCLK
				Note: This field defines the length of a time unit (tq).

21.7.2 CAN mailbox registers

This section describes the registers of the transmit and receive mailboxes. Refer to 21.6.5 for more information on register map.


Transmit and receive mailboxes are the same except:

- RFFMN field in the CAN_RFCx register
- A receive mailbox is read only
- A transmit mailbox can be written only when empty. TM2S=1 in the CAN_TSTS register indicates that the mailbox is empty.

There are three transmit mailboxes and two receive mailboxes. Each receive mailbox has 3-level depth of FIFO, and can only access to the first received message in the FIFO.

Each mailbox contains four registers.

Figure 21- 14 Transmit and receive mailboxes

21.7.2.1 Transmit mailbox identifier register (CAN_TMIx) (x=0..2)

Note: 1. This register is write protected when its mailboxes are pending for transmission.

2. This register implements the Transmit Request control (bit 0) — reset value 0.

Bit	Register	Reset value	Type	Description
D# 04: 04	TAGOD/TAGO			Transmit mailbox standard identifier or extended identifier high bytes
Bit 31: 21	TMSID/ TMEID	0xXXX	rw	Note: This field defines the 11-bit high bytes of the standard identifier or extended identifier.
				Transmit mailbox extended identifier
Bit 20: 3	TMEID	0xXXXXX	rw	Note: This field defines the 18-bit low bytes of the extended identifier.
				Transmit mailbox identifier type select
Bit 2	TMIDSEL	0xX	rw	0: Standard identifier
				1: Extended identifier
		0xX	rw	Transmit mailbox frame type select
Bit 1	TMFRSEL			0: Data frame
				1: Remote frame
-				Transmit mailbox send request
				0: No effect
Bit 0	TMSR	0v0		1: Transmit request
DIL U		0x0	rw	Note: This bit is cleared by hardware when the transmission has been completed (The mailbox becomes empty)

21.7.2.2 Transmit mailbox data length and time stamp register (CAN_TMCx) (x=0..2)

All the bits in the register are write protected when the mailbox is not in empty state.

Bit	Register	Reset value	Type	Description
Bit 31: 16	TMTS	0xXXXX	rw	Transmit mailbox time stamp
				Note: This field contains the value of the CAN timer

				sampled at the SOF transmission.
Bit 15: 9	Reserved	0xXX	resd	Kept at its default value
				Transmit mailbox time stamp transmit enable
				0: Time stamp is not sent
				1: Time stamp is sent
				Note:
Bit 8	TMTSTEN	0xX	rw	This bit is valid only when the time-triggered communication mode is enabled.
				In the time stamp MTS[15: 0], the MTS[7: 0] is stored in the TMDT7, and MTS[15: 8] in the TMDT6. The data length must be programmed as 8 to send time stamp.
Bit 7: 4	Reserved	0xX	resd	Kept at its default value
				Transmit mailbox data byte length
Bit 3: 0	TMDTBL	0xX	rw	Note: This field defines the data length of a transmit message. A transmit message can contain from 0 to 8 data bytes.

21.7.2.3 Transmit mailbox data low register (CAN_TMDTLx) (x=0..2)

All the bits in the register are write protected when the mailbox is not in empty state.

Bit	Register	Reset value	Туре	Description
Bit 31: 24	TMDT3	0xXX	rw	Transmit mailbox data byte 3
Bit 23: 16	TMDT2	0xXX	rw	Transmit mailbox data byte 2
Bit 15: 8	TMDT1	0xXX	rw	Transmit mailbox data byte 1
Bit 7: 0	TMDT0	0xXX	rw	Transmit mailbox data byte 0

21.7.2.4 Transmit mailbox data high register (CAN_TMDTHx) (x=0..2)

All the bits in the register are write protected when the mailbox is not in empty state.

Bit	Register	Reset value	Type	Description
Bit 31: 24	TMDT7	0xXX	rw	Transmit mailbox data byte 7
				Transmit mailbox data byte 6
Bit 23: 16	TMDT6	0xXX	rw	Note: This field will be replaced with MTS[15: 8] when the time-triggered communication mode is enabled and the corresponding time stamp transmit is enabled.
Bit 15: 8	TMDT5	0xXX	rw	Transmit mailbox data byte 5
Bit 7: 0	TMDT4	0xXX	rw	Transmit mailbox data byte 4

21.7.2.5 Receive FIFO mailbox identifier register (CAN_RFIx) (x=0..1)

Note: All the receive mailbox registers are read only.

Register	Reset value	Type	Description
			Receive FIFO standard identifier or receive FIFO extended identifier
RFSID/RFEID	0xXXX	ro	Note: This field defines the 11-bit high bytes of the standard identifier or extended identifier.
			Receive FIFO extended identifier
RFEID	0xXXXXX	ro	Note: This field defines the 18-bit low bytes of the extended identifier.
			Receive FIFO identifier type indication
RFIDI	0xX	ro	0: Standard identifier
			1: Extended identifier
	RFSID/RFEID RFEID	RFSID/RFEID 0xXXX RFEID 0xXXXXX	RFSID/RFEID 0xXXX ro RFEID 0xXXXXX ro

				Receive FIFO frame type indication	
Bit 1	RFFRI	0xX	Ro	0: Data frame	
				1: Remote frame	
Bit 0	Reserved	0x0	resd	Kept at its default value	

21.7.2.6 Receive FIFO mailbox data length and time stamp register (CAN_RFCx) (x=0..1)

Note: All the receive mailbox registers are read only.

Bit	Register	Reset value	Type	Description
				Receive FIFO time stamp
Bit 31: 16	RFTS	0xXXXX	ro	Note: This field contains the value of the CAN timer sampled at the start of a receive frame.
				Receive FIFO filter match number
Bit 15: 8	RFFMN	0xXX	ro	Note: This field contains the filter number that a message has passed through.
Bit 7: 4	Reserved	0xX	resd	Kept at its default value
				Receive FIFO data length
Bit 3: 0	RFDTL	0xX	ro	Note: This field defines the data length of a receive message. A transmit message can contain from 0 to 8 data bytes. For a remote frame, its data length RFDTI is fixed 0.

21.7.2.7 Receive FIFO mailbox data low register (CAN_RFDTLx) (x=0..1)

Note: All the receive mailbox registers are read only.

Bit	Register	Reset value	Type	Description
Bit 31: 24	RFDT3	0xXX	ro	Receive FIFO data byte 3
Bit 23: 16	RFDT2	0xXX	ro	Receive FIFO data byte 2
Bit 15: 8	RFDT1	0xXX	ro	Receive FIFO data byte 1
Bit 7: 0	RFDT0	0xXX	ro	Receive FIFO data byte 0

21.7.2.8 Receive FIFO mailbox data high register (CAN_RFDTHx) (x=0..1)

Note: All the receive mailbox registers are read only.

Bit	Register	Reset value	Type	Description
Bit 31: 24	RFDT7	0xXX	ro	Receive FIFO data byte 7
Bit 23: 16	RFDT6	0xXX	ro	Receive FIFO data byte 6
Bit 15: 8	RFDT5	0xXX	ro	Receive FIFO data byte 5
Bit 7: 0	RFDT4	0xXX	ro	Receive FIFO data byte 4

21.7.3 CAN filter registers

21.7.3.1 CAN filter control register (CAN_FCTRL)

Note: All the non-reserved bits of this register are controlled by software completely.

Bit	Register	Reset value	Type	Description
Bit 31: 1	Reserved	0x160E0700	resd	Kept at its default value
				Filter configuration switch
				0: Disabled (Filter bank is active)
Bit 0	FCS	0x1	rw	1: Enabled (Filter bank is in configuration mode)
				Note: The initialization of the filter bank can be configured only when it is in configuration mode.

21.7.3.2 CAN filter mode configuration register (CAN_FMCFG)

Note: This register can be written only when FCS=1 in the CAN_FCTRL register (The filter is in configuration mode)

Bit	Register	Reset value	Type	Description
Bit 31: 14	Reserved	0x00000	resd	Kept at its default value
				Filter mode select
				Each bit corresponds to a filter bank.
Bit 13: 0	FMSELx	0x0000	rw	0: Identifier mask mode
				1: Identifier list mode

21.7.3.3 CAN filter bit width configuration register (CAN_FBWCFG)

Note: This register can be written only when FCS=1 in the CAN_FCTRL register (The filter is in configuration mode)

Bit	Register	Reset value	Type	Description
Bit 31: 14	Reserved	0x00000	resd	Kept at its default value
				Filter bit width select
				Each bit corresponds to a filter bank.
Bit 13: 0	FBWSELx	0x0000	rw	0: Dual 16-bit
				1: Single 32-bit

21.7.3.4 CAN filter FIFO association register (CAN_ FRF)

Note: This register can be written only when FCS=1 in the CAN_FCTRL register (The filter is in configuration mode)

Bit	Register	Reset value	Type	Description
Bit 31: 14	Reserved	0x00000	resd	Kept at its default value
				Filter relation FIFO select
D:: 40 0	EDECEL	0.0000		Each bit corresponds to a filter bank.
Bit 13: 0	FRFSELx	0x0000	rw	0: Associated with FIFO0
				1: Associated with FIFO1

21.7.3.5 CAN filter activation control register (CAN_ FACFG)

Bit	Register	Reset value	Type	Description
Bit 31: 14	Reserved	0x00000	resd	Kept at its default value
				Filter active enable
				Each bit corresponds to a filter bank.
Bit 13: 0	FAENx	0x0000	rw	0: Disabled
				1: Enabled

21.7.3.6 CAN filter bank i filter bit register (CAN_ FiFBx) (i=0..13; x=1..2)

Note: There are 14 filter banks (i=0..13). Each filter bank consists of two 32-bit registers, CAN_FiFB[2: 1]. This register can be modified only when the FAENx bit of the CAN_FACFG register is cleared or the FCS bit of the CAN_FCTRL register is set.

Bit	Register	Reset value	Type	Description
				Filters filter data bit
				Identifier list mode:
Bit 31: 0	FFDB	0x0000 0000	rw	The configuration value of the register matches with the level of the corresponding bit of the data received on the bus (If it is a standard frame, the value of the corresponding bit of the extended frame is neglected.) Identifier mark mode:
				Only the bit with its register configuration value 1 can match with the level of the corresponding bit of the data received on the bus. It don't care when the register value is 0.

22 External memory controller

22.1 XMC introduction

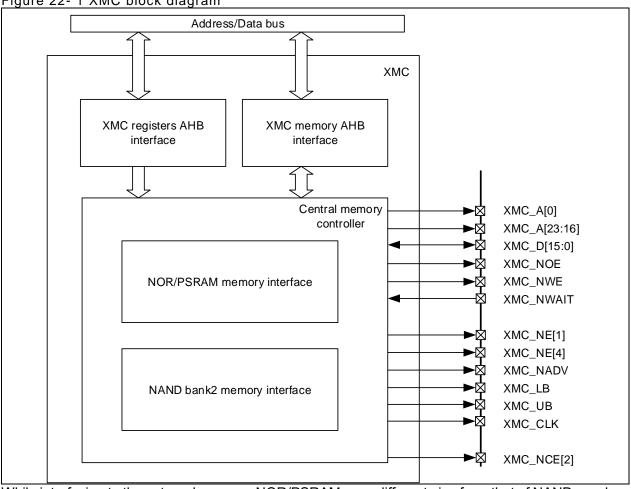
XMC peripheral block can translate the AHB signals into the external memory signals and vice versa. It boasts two chip-select signals for interfacing up to external memories at a time. The supported external memories include a NAND Flash and a static memory device featuring multiplexed signals or additional address latch function. Such static memory device includes a static random memory (SRAM), NOR Flash and PSRAM.

22.2XMC main features

NOR/PSRAM has the following features:

- Two chip-select signals with their own control registers
- Support access to static memory devices with multiplexed signals or additional address latch function, including:
 - Statis random access memory (SRAM)
 - NOR Flash
 - PSRAM
- 8-bit or 16-bit wide memory
- Various timing mode selection
 - Two modes with the same timings for read and write
 - Four modes with different timings for read and write
 - Multiplexed address/data mode
 - Synchronous mode
- Programmable timing control registers
- Translate the AHB data size into the appropriate external memory data size

NAND has the following features:


- A chip-select signal
- 8-bit or 16-bit wide NAND Flash
- Two storage sapce with programmable timing control registers
- Translate the AHB data size into the appropriate external memory data size
- Support ECC calculation

22.3 XMC architecture

22.3.1 Block diagram

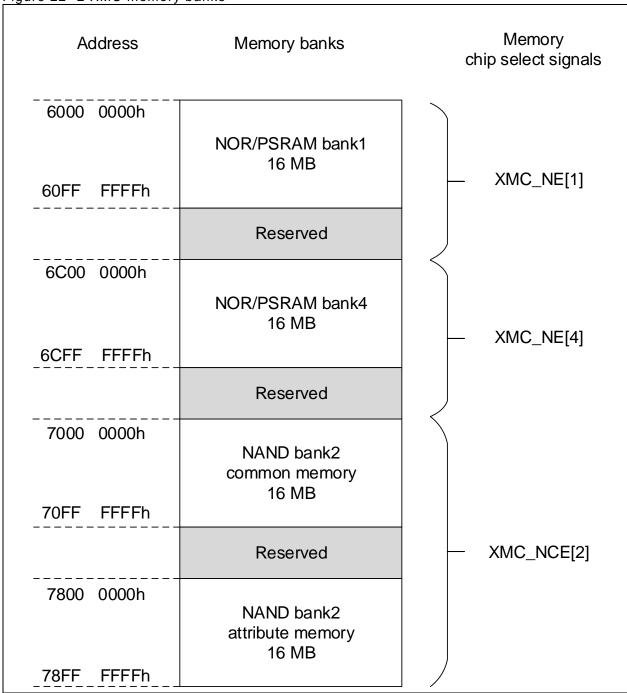
Figure 22- 1 XMC block diagram

While interfacing to the external memory, NOR/PSRAM uses different pins from that of NAND, as shown in Table 22- 1 and Table 22- 2.

Table 22- 1 NOR/PSRAM pins

Pin name	I/O	Description
XMC_CLK	Output	Clock
XMC_NE[x], x=1,4	Output	Chip select
XMC_NADV	Output	Address latch or address valid (NL) signal
XMC_A[x]	Output	Address but
XMC_NOE	Output	Output enable signal
XMC_NWE	Output	Write enable signal
XMC_LB、XMC_UB	Output	Byte select signal
XMC_D[15: 0]	Read input/write output	Data bus/multiplexed address data
XMC_NWAIT	Input	Wait signal

Table 22- 2 NAND pins


Pin name	I/O	Description
XMC_NCE[2]	Output	Chip select
XMC_A[17]	Output	Address latch (ALE) signal
XMC_A[16]	Output	Command latch (CLE) signal
XMC_NOE	Output	Output enable (NRE) signal
XMC_NWE	Output	Write enable signal
XMC_D[15: 0]	Read input/write output	Data bus
XMC_NWAIT	Input	Ready/Busy

22.3.2 Address mapping

XMC address is divided into multiple memory banks, as shown below.

Figure 22- 2 XMC memory banks

Some HADDR bits are used to select which bank to access, as shown in Table 22-3.

Table 22- 3 Memory bank selection

HADDR[31: 28]		HADDR[27: 26]
0440: NOD/DODAM	00: bank1	
0110: NOR/PSRAM	11: bank4	
HADDR[31: 28]	HADDR[27]	HADDR[17: 16]
	0: Regular space	00: Data area
		01: Command area
0111: NAND bank?		1x: Address area
0111: NAND bank2		00: Data area
	1: Special space	01: Command area
		1x: Address area

22.4NOR/PSRAM

NOR/PSRAM offers multiple access modes with different timings to drive multiple memories including NOR Flash, SRAM, PSRAM and Cellular RAM.

There are two banks, bank 1 and bank, with independent control registers. Such two banks can be accessed by means of different timings and different chip-select signals.

22.4.1 Operation mode

Pin function:

Pin signals vary from external memory to external memory. Table 22-4 lists typical pin signals.

Table 22- 4 Pin signals for NOR and PSRAM

XMC pin name	NOR Flash	PSRAM
XMC_CLK	Clock (synchronous mode)	Clock (synchronous mode)
XMC_NE[x]	Chip-select	Chip-select
XMC_NADV	Address latch or address valid	Address latch or address valid
XMC_A[23:16], XMC_A[0]	Address bus	Address bus
XMC_NOE	Output enable	Output enable
XMC_NWE	Write enable	Write enable
XMC_LB, XMC_UB	Without using XMC_LB, XMC_UB	XMC_LB: lower byte XMC_UB: upper byte
	Data bus	Data bus
XMC_D[15: 0]	multiplexed address data bus (multiplex and synchronous mode)	multiplexed address data bus (multiplex and synchronous mode)
XMC_NWAIT	NOR Flash wait request	PSRAM wait request

Note: If the memory data size is 8-bit, the typical data bus is XMC_D[7: 0].

Access address

The upper bytes of the HADDR bit is used to select a memory bank while the lower bytes to data memory address. HADDR is a byte address whereas the XMC supports the memory addressed in words or half words. Address translation between them is shown in Table 22-5. As long as read/write access to a specific address occurs, the XMC will enable chip-select signals and write/read operation to the external memories according to the HADDR bit.

Table 22-5 Address translation between HADDR and external memory

External memory data width	Address connection	Accessible maximm memory space (bits)
8-bit	HADDR[23: 16] is linked to XMC_A[23:16]. HADDR[0] is connected to XMC_A[0]. In multiplexed and synchronous mode, HADDR[15: 0] is connected to XMC_D[15: 0] during address latch period.	16 Mbyte x8 =128 Mbit
HADDR[23: 17] is connected to XMC_A[22: 16]. HADDR[1] is connected to XMC_A[0]. 16-bit In multiplexed and synchronous mode, HADDR[16: 1] is connected to XMC_D[15: 0] during address latch period		(16 Mbyte x 16)/2=128 Mbit

Data access

In case that the AHB data width is not equal to that of the memories, the XMC will make appropriate arrangement according to the typical signals of the external memories. Table 22-6 lists the operation modes supported by XMC.

Table 22- 6 Data access width vs. external memory data width

Memory	Mode	AHB data width	Memory width	Description
ODAM	Asynchronous read/write	8/16/32	8	One-time access, or split into two or four accesses
SRAM	Asynchronous read/write	8/16/32	16	XMC_LB and XMC_UB, One-time, or split into two access
NOR Flash	Asynchronous read	8	16	
	Asynchronous read/write	16	16	
	Asynchronous	32	16	Split into two XMC accesses

	read/write			
	Synchronous read	16	16	
	Synchronous read	32	16	Split into two XMC accesses
	Asynchronous read	8	16	
	Asynchronous write	8	16	Use XMC_LB and XMC_UB
	Asynchronous read/write	16	16	
PSRAM	Asynchronous read/write	32	16	Split into two XMC accesses
	Synchronous write	8	16	Use XMC_LB and XMC_UB
	Synchronous read/write	16	16	
	Synchronous read/write	32	16	Split into two XMC accesses

22.4.2 Access mode

The XMC offers various access modes. Each access mode is operated based on the timing parameters, as shown in Table 22- 7. Users can perfrom programming operations according to the specifications of the external memory and application needs.

Access modes available in the XMC:

- Read/write operation with the same timings: Mode 1 and Mode 2
- Read/write operation with different timings: Mode A, B, C and D
- Multiplexed address data lines
- Clock-based synchronous mode

Table 22- 7 NOR/PSRAM parameter registers

Parameter register	Function	Access mode	Unit
ADDRST	Address set-up time	1, 2, A, B, C, D and multiplexed	HCLK cycle
ADDRHT	Addess-hold time	D and multiplexed	HCLK cycle
DTST	Data set-up time	1, 2, A, B, C, D and multiplexed	HCLK cycle
DTLAT	Data latency time	Synchronous	XMC_CLK cycle
CLKPSC	Clock prescaler	Synchronous	HCLK cycle

In addition to timing parameter registers for timing control, if the wait enable bit (NWASEN or NWSEN) is enabled, the XMC will start to check whether the XMC_NWAIT signal is in wait request state during data set time. If so, the XMC will wait until the XMC_NWAIT returns to the ready state before data transfer.

22.4.2.1 Read/write operation with the same timings

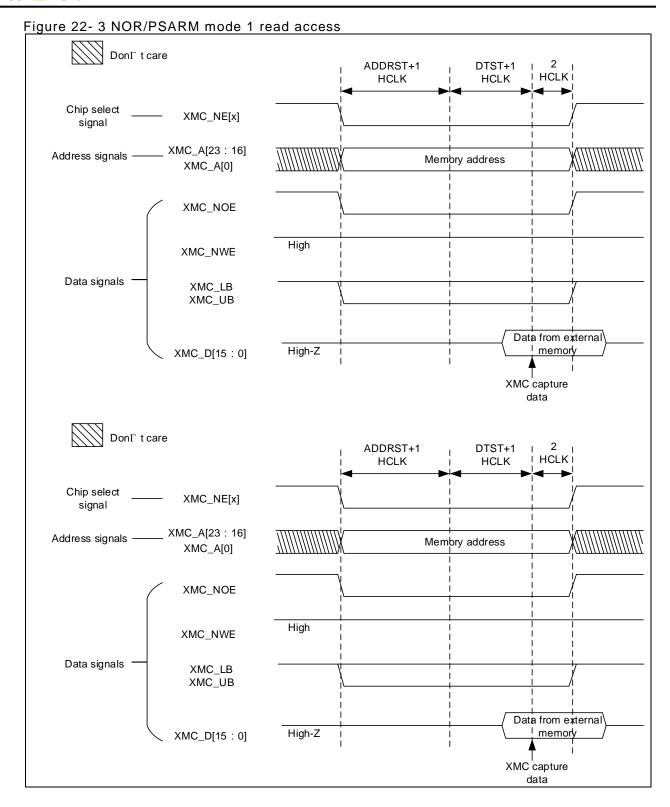
The timing of read and write operation in mode 1 and mode 2 is based on the XMC_BK1TMG register configuration.

Mode 1

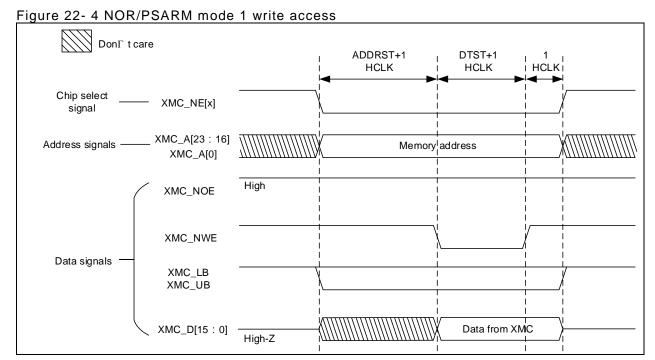
As configured in Table 22- 8 and Table 22- 9, the XMC uses mode 1 to access the external memory. The timing of read operation is shown in Figure 22- 3. The timing of write operation is shown in Figure 22- 4.

Table 22- 8 Mode 1— SRAM/NOR Flash chip select control register (XMC_BK1CTRL) configuration

Bit	Description	Configuration
Bit 31: 20	Reserved	0x0
Bit 19	MWMC: Memory write mode control	0x0
Bit 18: 16	CRPGS: CRAM page size	0x0
Bit 15	NWASEN: NWAIT in asynchronous transfer enable	Configure according to memory specifications
Bit 14	RWTD: Read-write timing different	0x0
Bit 13	NWSEN: NWAIT in synchronous transfer enable	0x0
Bit 12	WEN: Write enable	Configure according to needs
Bit 11	NWTCFG: NWAIT timing configuration	0x0



Bit 10	WRAPEN: Wrapped enable	0x0
Bit 9	NWPOL: NWAIT polarity	Configure according to memory specifications
Bit 8	SYNCBEN: Synchronous burst enable	0x0
Bit 7	Reserved	0x1
Bit 6	NOREN: NOR flash access enable	0x0
Bit 5: 4	EXTMDBW: External memory data bus width	Configure according to memory specifications
Bit 3: 2	DEV: Memory device type	Configure according to memory specifications. It is valid except 0x2 (NOR Flash)
Bit 1	ADMUXEN: Address/data multiplexing enable	0x0
Bit 0	EN: Memory bank enable	0x1

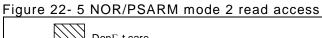

Table 22- 9 Mode 1— SRAM/NOR Flash chip select timing register (XMC_ BK1TMG) configuration

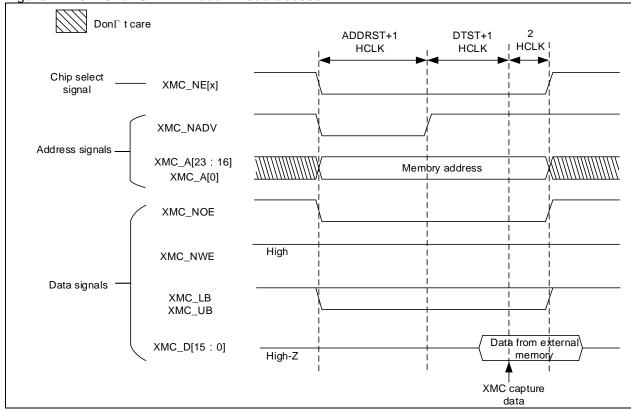
Bit	Description	Configuration
Bit 31: 30	Reserved	0x0
Bit 29: 28	ASYNCM: Asynchronous mode	0x0
Bit 27: 24	DTLAT: Data latency	0x0
Bit 23: 20	CLKPSC: Clock prescale	0x0
Bit 19: 16	BUSLAT: Bus latency	Indicates the time the XMC_NE[x] from the rising edge to the falling edge. Configure according to needs and memory specifications
Bit 15: 8	DTST: Data setup time	Refer to Figure 22- 3 and Figure 22- 4. Configure according to needs and memory specifications.
Bit 7: 4	ADDRHT: Address-hold time	0x0
Bit 3: 0	ADDRST: Address setup time	Refer to Figure 22- 3 and Figure 22- 4. Configure according to needs and memory specifications.

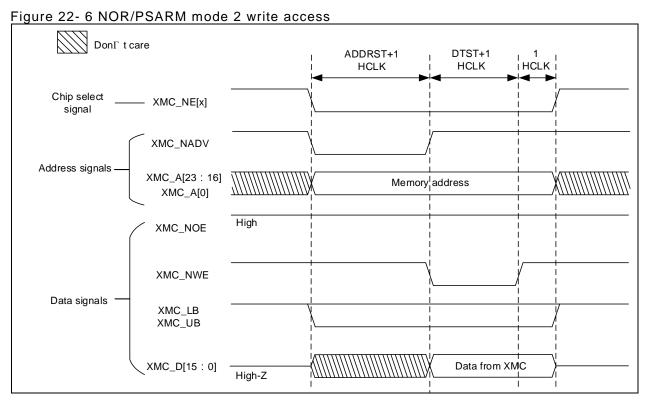
2021.12.01 Page 347 Ver 2.02

Mode 2

As configured in Table 22- 10 and Table 22- 11, the XMC uses mode 2 to access the external memory. The timing of read operation is shown in Figure 22- 5. The timing of write operation is shown in Figure 22- 6.


Table 22- 10 Mode 2 — SRAM/NOR Flash chip select control register (XMC_BK1CTRL)


Bit	Description	Configuration
Bit 31: 20	Reserved	0x0
Bit 19	MWMC: Memory write mode control	0x0
Bit 18: 16	CRPGS: CRAM page size	0x0
Bit 15	NWASEN: NWAIT in asynchronous transfer enable	Configure according to memory specifications.
Bit 14	RWTD: Read-write timing different	0x0
Bit 13	NWSEN: NWAIT in synchronous transfer enable	0x0
Bit 12	WEN: Write enable	Configure according to needs.
Bit 11	NWTCFG: NWAIT timing configuration	0x0
Bit 10	WRAPEN: Wrapped enable	0x0
Bit 9	NWPOL: NWAIT polarity	Configure according to memory specifications.
Bit 8	SYNCBEN: Synchronous burst enable	0x0
Bit 7	Reserved	0x1
Bit 6	NOREN: NOR Flash access enable	0x1
Bit 5: 4	EXTMDBW: External memory data bus width	Configure according to memory specifications.
Bit 3: 2	DEV: Memory device type	0x2 (NOR Flash)
Bit 1	ADMUXEN: Address/data multiplexing enable	0x0
Bit 0	EN: Memory bank enable	0x1


Table 22- 11 Mode 2 — SRAM/NOR Flash chip select timing register (XMC_BK1TMG) configuration

Bit	Description	Configuration
Bit 31: 30	Reserved	0x0
Bit 29: 28	ASYNCM: Asynchronous mode	0x0
Bit 27: 24	DTLAT: Data latency	0x0
Bit 23: 20	CLKPSC: Clock prescale	0x0
Bit 19: 16	BUSLAT: Bus latency	Indicates the time the XMC_NE[x] from the rising edge to the falling edge. Configure according to needs and memory specifications
Bit 15: 8	DTST: Data setup time	Refer to Figure 22- 5 and Figure 22- 6Configure according to needs and memory specifications.
Bit 7: 4	ADDRHT: Address-hold time	0x0
Bit 3: 0	ADDRST: Address setup time	Refer to Figure 22- 5 and Figure 22- 6. Configure according to needs and memory specifications.

2021.12.01 Page 350 Ver 2.02

22.4.2.2 Read/write operation with different timings

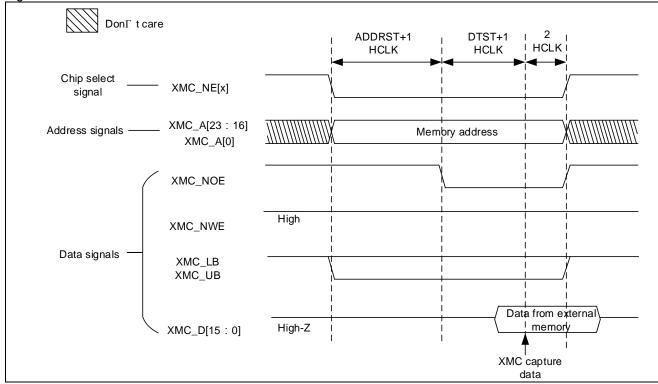
The timing of read operation in mode A/B/C/D is based on the SRAM/NOR Flash chip select timing register (XMC_BK1TMG). The timing of write operation is based on SRAM/NOR Flash write timing register (XMC_BK1TMGWR). In addition to this, it is possible to mix A, B, C and D modes for read and write operations.

Mode A

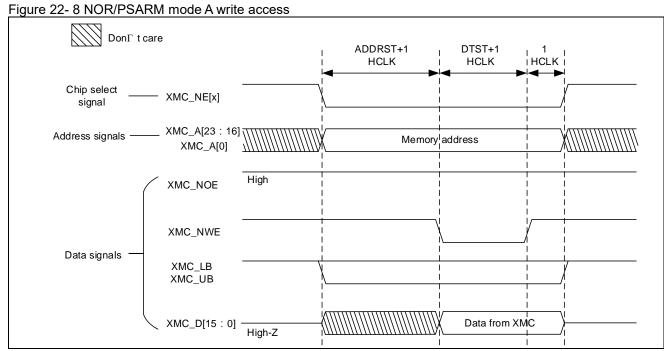
As configured in Table 22- 12 and Table 22- 13, the XMC uses mode A to access the external memory. The timing of read operation is shown in Figure 22- 7. The timing of write operation is shown in Figure 22- 8.

Table 22- 12 Mode A— SRAM/NOR Flash chip select control register (XMC BK1CTRL) configuration

Bit	Description	Configuration
Bit 31: 20	Reserved	0x0
Bit 19	MWMC: Memory write mode control	0x0
Bit 18: 16	CRPGS: CRAM page size	0x0
Bit 15	NWASEN: NWAIT in asynchronous transfer enable	Configure according to memory specifications.
Bit 14	RWTD: Read-write timing different	0x1
Bit 13	NWSEN: NWAIT in synchronous transfer enable	0x0
Bit 12	WEN: Write enable	Configure according to needs.
Bit 11	NWTCFG: NWAIT timing configuration	0x0
Bit 10	WRAPEN: Wrapped enable	0x0
Bit 9	NWPOL: NWAIT polarity	Configure according to memory specifications.
Bit 8	SYNCBEN: Synchronous burst enable	0x0
Bit 7	Reserved	0x1
Bit 6	NOREN: NOR Flash access enable	0x0
Bit 5: 4	EXTMDBW: External memory data bus width	Configure according to memory specifications.
Bit 3: 2	DEV: Memory device type	Configure according to memory specifications. It is valid except 0x2 (NOR Flash)
Bit 1	ADMUXEN: Address/data multiplexing enable	0x0
Bit 0	EN: Memory bank enable	0x1


Table 22- 13 Mode A— SRAM/NOR Flash chip select timing register (XMC_BK1TMG) configuration

Bit	Description	Configuration
Bit 31: 30	Reserved	0x0
Bit 29: 28	ASYNCM: Asynchronous mode	0x0 (Mode A)
Bit 27: 24	DTLAT: Data latency	0x0
Bit 23: 20	CLKPSC: Clock prescale	0x0
Bit 19: 16	BUSLAT: Bus latency	Indicates the time the XMC_NE[x] from the rising edge to the falling edge. Configure according to needs and memory specifications
Bit 15: 8	DTST: Data setup time	Refer to Figure 22- 7.Configure according to needs and memory specifications.
Bit 7: 4	ADDRHT: Address-hold time	0x0
Bit 3: 0	ADDRST: Address setup time	Refer to Figure 22- 7.Configure according to needs and memory specifications.


Table 22- 14 Mode A— SRAM/NOR Flash write timing register (XMC_BK1TMGWR) configuration

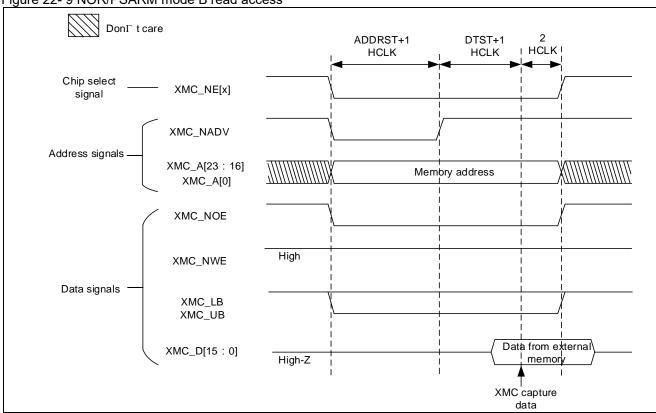
Bit	Description	Configuration
Bit 31: 30	Reserved	0x0
Bit 29: 28	ASYNCM: Asynchronous mode	0x0 (Mode A)
Bit 27: 20	Reserved	0x0
Bit 19: 16	BUSLAT: Bus latency	Indicates the time the XMC_NE[x] from the rising edge to the falling edge. Configure according to needs and memory specifications
Bit 15: 8	DTST: Data setup time	Refer to Figure 22- 8. Configure according to needs and memory specifications.
Bit 7: 4	ADDRHT: Address-hold time	0x0
Bit 3: 0	ADDRST: Address setup time	Refer to Figure 22- 8. Configure according to needs and memory specifications.

Mode B

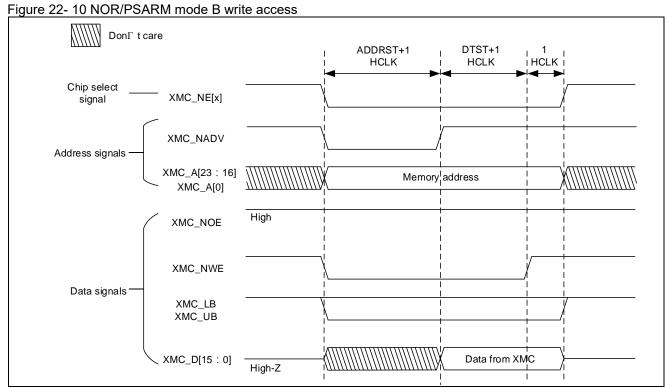
As configured in Table 22- 15, Table 22- 16, and Table 22- 17, the XMC uses mode B to access the external memory. The timing of read operation is shown in Figure 22- 9 NOR/PSARM mode B read accessThe timing of write operation is shown in Figure 22- 10.

Table 22- 15 Mode B— SRAM/NOR Flash chip select register (XMC_BK1CTRL) configuration

Bit	Description	Configuration
Bit 31: 20	Reserved	0x0
Bit 19	MWMC: Memory write mode control	0x0
Bit 18: 16	CRPGS: CRAM page size	0x0
Bit 15	NWASEN: NWAIT in asynchronous transfer enable	Configure according to memory specifications.
Bit 14	RWTD: Read-write timing different	0x1
Bit 13	NWSEN: NWAIT in synchronous transfer enable	0x0
Bit 12	WEN: Write enable	Configure according to needs.
Bit 11	NWTCFG: NWAIT timing configuration	0x0
Bit 10	WRAPEN: Wrapped enable	0x0
Bit 9	NWPOL: NWAIT polarity	Configure according to memory specifications.
Bit 8	SYNCBEN: Synchronous burst enable	0x0
Bit 7	Reserved	0x1
Bit 6	NOREN: NOR Flash access enable	0x1
Bit 5: 4	EXTMDBW: External memory data bus width	Configure according to memory specifications.
Bit 3: 2	DEV: Memory device type	0x2 (NOR Flash)
Bit 1	ADMUXEN: Address/data multiplexing enable	0x0
Bit 0	EN: Memory bank enable	0x1


Table 22- 16 Mode B— SRAM/NOR Flash chip select timing register (XMC_BK1TMG) configuration

Bit	Description	Configuration
Bit 31: 30	Reserved	0x0
Bit 29: 28	ASYNCM: Asynchronous mode	0x1 (Mode B)
Bit 27: 24	DTLAT: Data latency	0x0
Bit 23: 20	CLKPSC: Clock prescale	0x0
Bit 19: 16	BUSLAT: Bus latency	Indicates the time the XMC_NE[x] from the rising edge to the falling edge. Configure according to needs and memory specifications
Bit 15: 8	DTST: Data setup time	Refer to Figure 22- 9. Configure according to needs and memory specifications.
Bit 7: 4	ADDRHT: Address-hold time	0x0
Bit 3: 0	ADDRST: Address setup time	Refer to Figure 22- 9. Configure according to needs and memory specifications.


Table 22- 17 Mode B— SRAM/NOR Flash write timing register (XMC_BK1TMGWR) configuration

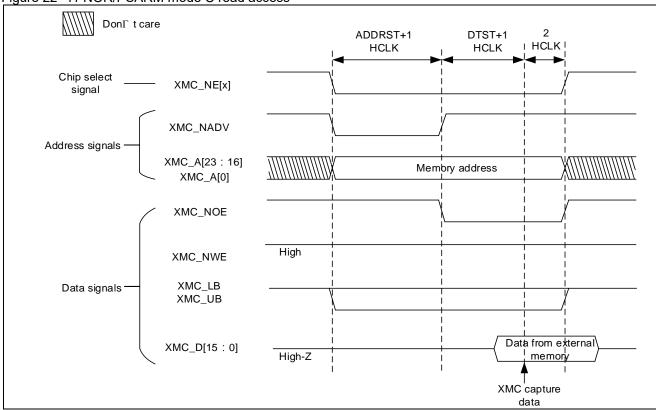
Bit	Description	Configuration
Bit 31: 30	Reserved	0x0
Bit 29: 28	ASYNCM: Asynchronous mode	0x1 (Mode B)
Bit 27: 20	Reserved	0x0
Bit 19: 16	BUSLAT: Bus latency	Indicates the time the XMC_NE[x] from the rising edge to the falling edge. Configure according to needs and memory specifications
Bit 15: 8	DTST: Data setup time	Refer to Figure 22- 10. Configure according to needs and memory specifications.
Bit 7: 4	ADDRHT: Address-hold time	0x0
Bit 3: 0	ADDRST: Address setup time	Refer to Figure 22- 10. Configure according to needs and memory specifications.

Mode C

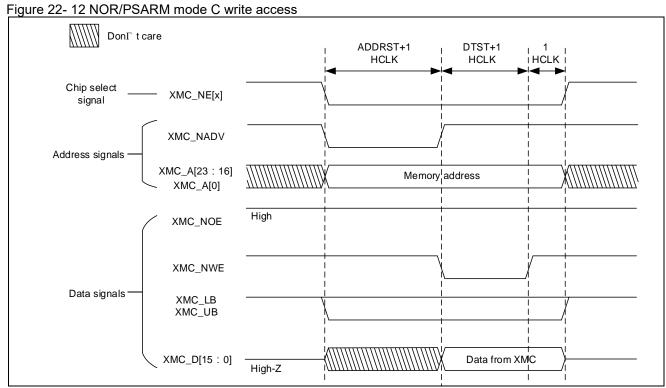
As configured in Table 22- 18, Table 22- 19 and Table 22- 20, the XMC uses mode C to access the external memory. The timing of read operation is shown in Figure 22- 11. The timing of write operation is shown in Figure 22- 12.

Table 22- 18 Mode C— SRAM/NOR Flash chip select register (XMC_BK1CTRL) configuration

Bit	Description	Configuration
Bit 31: 20	Reserved	0x0
Bit 19	MWMC: Memory write mode control	0x0
Bit 18: 16	CRPGS: CRAM page size	0x0
Bit 15	NWASEN: NWAIT in asynchronous transfer enable	Configure according to memory specifications.
Bit 14	RWTD: Read-write timing different	0x1
Bit 13	NWSEN: NWAIT in synchronous transfer enable	0x0
Bit 12	WEN: Write enable	Configure according to needs.
Bit 11	NWTCFG: NWAIT timing configuration	0x0
Bit 10	WRAPEN: Wrapped enable	0x0
Bit 9	NWPOL: NWAIT polarity	Configure according to memory specifications.
Bit 8	SYNCBEN: Synchronous burst enable	0x0
Bit 7	Reserved	0x1
Bit 6	NOREN: NOR Flash access enable	0x1
Bit 5: 4	EXTMDBW: External memory data bus width	Configure according to memory specifications.
Bit 3: 2	DEV: Memory device type	0x2 (NOR Flash)
Bit 1	ADMUXEN: Address/data multiplexing enable	0x0
Bit 0	EN: Memory bank enable	0x1


Table 22- 19 Mode C—SRAM/NOR Flash chip select timing register (XMC_BK1TMG) configuration

Bit	Description	Configuration
Bit 31: 30	Reserved	0x0
Bit 29: 28	ASYNCM: Asynchronous mode	0x2 (Mode C)
Bit 27: 24	DTLAT: Data latency	0x0
Bit 23: 20	CLKPSC: Clock prescale	0x0
Bit 19: 16	BUSLAT: Bus latency	Indicates the time the XMC_NE[x] from the rising edge to the falling edge. Configure according to needs and memory specifications
Bit 15: 8	DTST: Data setup time	Refer to Figure 22- 11. Configure according to needs and memory specifications.
Bit 7: 4	ADDRHT: Address-hold time	0x0
Bit 3: 0	ADDRST: Address setup time	Refer to Figure 22- 11. Configure according to needs and memory specifications.


Table 22- 20 Mode C— SRAM/NOR Flash write timing register (XMC_BK1TMGWR) configuration

Bit	Description	Configuration
Bit 31: 30	Reserved	0x0
Bit 29: 28	ASYNCM: Asynchronous mode	0x1 (Mode C)
Bit 27: 20	Reserved	0x0
Bit 19: 16	BUSLAT: Bus latency	Indicates the time the XMC_NE[x] from the rising edge to the falling edge. Configure according to needs and memory specifications
Bit 15: 8	DTST: Data setup time	Refer to Figure 22- 12. Configure according to needs and memory specifications.
Bit 7: 4	ADDRHT: Address-hold time	0x0
Bit 3: 0	ADDRST: Address setup time	Refer to Figure 22- 12. Configure according to needs and memory specifications.

Mode D

As configured in Table 22- 21, Table 22- 22, and Table 22- 23, the XMC uses mode D to access the external memory. The timing of read operation is shown in Figure 22- 13. The timing of write operation is shown in Figure 22- 14.

Table 22- 21 Mode D— SRAM/NOR Flash chip select register (XMC_BK1CTRL) configuration

Bit	Description	Configuration
Bit 31: 20	Reserved	0x0
Bit 19	MWMC: Memory write mode control	0x0
Bit 18: 16	CRPGS: CRAM page size	0x0
Bit 15	NWASEN: NWAIT in asynchronous transfer enable	Configure according to memory specifications.
Bit 14	RWTD: Read-write timing different	0x1
Bit 13	NWSEN: NWAIT in synchronous transfer enable	0x0
Bit 12	WEN: Write enable	Configure according to needs.
Bit 11	NWTCFG: NWAIT timing configuration	0x0
Bit 10	WRAPEN: Wrapped enable	0x0
Bit 9	NWPOL: NWAIT polarity	Configure according to memory specifications.
Bit 8	SYNCBEN: Synchronous burst enable	0x0
Bit 7	Reserved	0x1
Bit 6	NOREN: NOR Flash access enable	Configure according to memory specifications.
Bit 5: 4	EXTMDBW: External memory data bus width	Configure according to memory specifications.
Bit 3: 2	DEV: Memory device type	Configure according to memory specifications.
Bit 1	ADMUXEN: Address/data multiplexing enable	0x0
Bit 0	EN: Memory bank enable	0x1

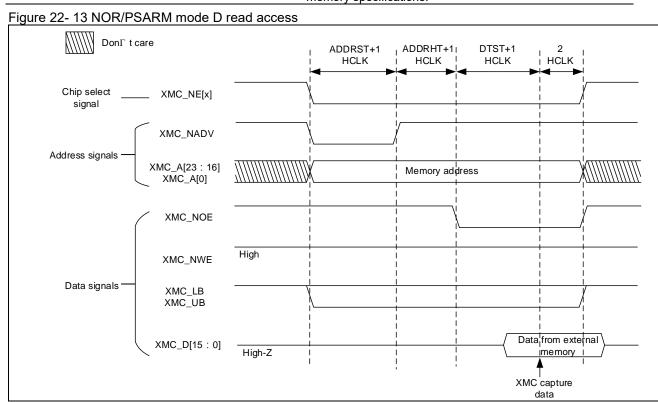
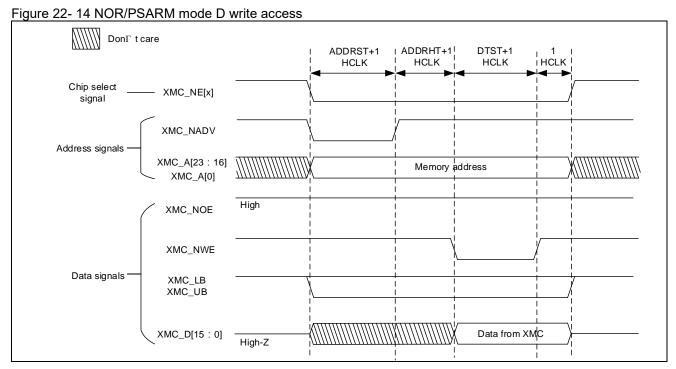


Table 22- 22 Mode D—SRAM/NOR Flash chip select timing register (XMC_BK1TMG) configuration

Bit	Description	Configuration
Bit 31: 30	Reserved	0x0
Bit 29: 28	ASYNCM: Asynchronous mode	0x3 (Mode D)
Bit 27: 24	DTLAT: Data latency	0x0
Bit 23: 20	CLKPSC: Clock prescale	0x0
Bit 19: 16	BUSLAT: Bus latency	Indicates the time the XMC_NE[x] from the rising edge to the falling edge. Configure according to needs and memory specifications
Bit 15: 8	DTST: Data setup time	Refer to Figure 22- 13. Configure according to needs and memory specifications.
Bit 7: 4	ADDRHT: Address-hold time	Refer to Figure 22- 13. Configure according to needs and memory specifications.
Bit 3: 0	ADDRST: Address setup time	Refer to Figure 22- 13. Configure according to needs and memory specifications.


Table 22- 23 Mode D— SRAM/NOR Flash write timing register (XMC_BK1TMGWR) configuration

Bit	Description	Configuration
Bit 31: 30	Reserved	0x0
Bit 29: 28	ASYNCM: Asynchronous mode	0x3 (Mode D)
Bit 27: 20	Reserved	0x0
Bit 19: 16	BUSLAT: Bus latency	Indicates the time the XMC_NE[x] from the rising edge to the falling edge. Configure according to needs and memory specifications
Bit 15: 8	DTST: Data setup time	Refer to Figure 22- 14. Configure according to needs and memory specifications.
Bit 7: 4	ADDRHT: Address-hold time	Refer to Figure 22- 14. Configure according to needs and memory specifications.
Bit 3: 0	ADDRST: Address setup time	Refer to Figure 22- 14. Configure according to needs and memory specifications.

2021.12.01 Page 358 Ver 2.02

22.4.2.3 Multiplexed mode

As configured in Table 22- 24 and Table 22- 25, the XMC uses mode A to access the external memory. The timing of read operation is shown in Figure 22- 15. The timing of write operation is shown in Figure 22- 16.

Table 22- 24 Multiplexed mode — SRAM/NOR Flash chip select control register (XMC_BK1CTRL) configuration

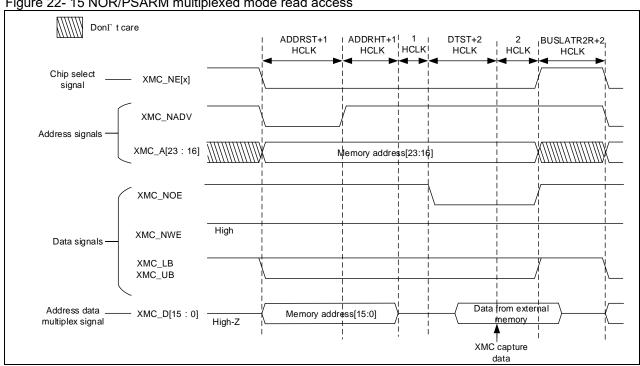

Bit	Description	Configuration
Bit 31: 20	Reserved	0x0
Bit 19	MWMC: Memory write mode control	0x0
Bit 18: 16	CRPGS: CRAM page size	0x0
Bit 15	NWASEN: NWAIT in asynchronous transfer enable	Configure according to memory specifications.
Bit 14	RWTD: Read-write timing different	0x0
Bit 13	NWSEN: NWAIT in synchronous transfer enable	0x0
Bit 12	WEN: Write enable	Configure according to needs.
Bit 11	NWTCFG: NWAIT timing configuration	0x0
Bit 10	WRAPEN: Wrapped enable	0x0
Bit 9	NWPOL: NWAIT polarity	Configure according to memory specifications.
Bit 8	SYNCBEN: Synchronous burst enable	0x0
Bit 7	Reserved	0x1
Bit 6	NOREN: NOR Flash access enable	Configure according to memory specifications.
Bit 5: 4	EXTMDBW: External memory data bus width	Configure according to memory specifications.
Bit 3: 2	DEV: Memory device type	Configure according to memory specifications. It is valid except 0x0 (SRAM)
Bit 1	ADMUXEN: Address/data multiplexing enable	0x1
Bit 0	EN: Memory bank enable	0x1

Table 22- 25 Multiplexed mode—SRAM/NOR Flash chip select timing register (XMC_BK1TMG) configuration

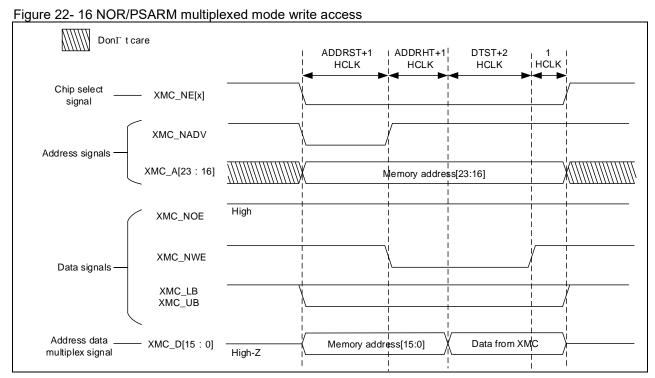

Bit	Description	Configuration
Bit 31: 30	Reserved	0x0
Bit 29: 28	ASYNCM: Asynchronous mode	0x0
Bit 27: 24	DTLAT: Data latency	0x0
Bit 23: 20	CLKPSC: Clock prescale	0x0
Bit 19: 16	BUSLAT: Bus latency	Indicates the time the XMC_NE[x] from the rising edge to the falling edge. Configure according to needs and memory specifications
Bit 15: 8	DTST: Data setup time	Refer to Figure 22- 15 and Figure 22- 16. Configure according to needs and memory specifications.
Bit 7: 4	ADDRHT: Address-hold time	Refer to Figure 22- 15 and Figure 22- 16. Configure according to needs and memory specifications.
Bit 3: 0	ADDRST: Address setup time	Refer to Figure 22- 15 and Figure 22- 16. Configure according to needs and memory specifications.

Figure 22- 15 NOR/PSARM multiplexed mode read access

2021.12.01 Page 360 Ver 2.02

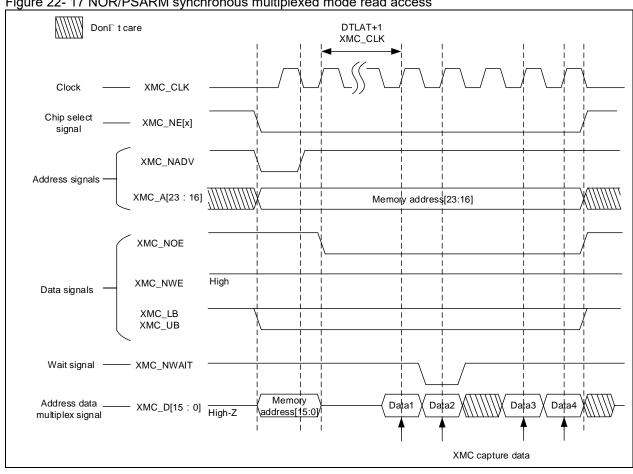
22.4.2.4 Synchronous mode

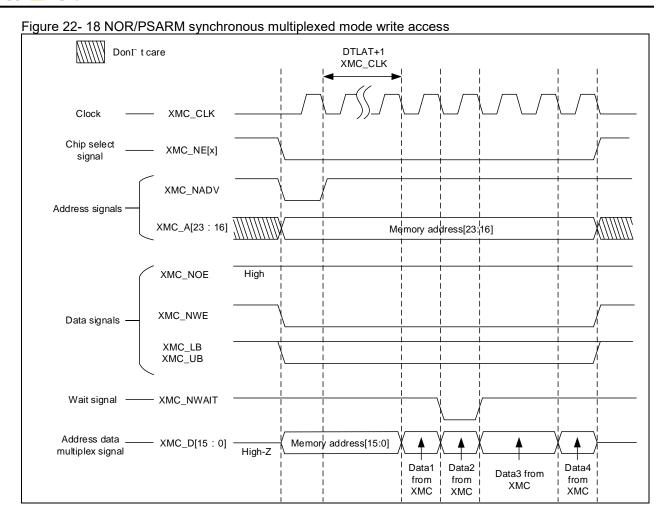
As configured in Table 22- 26 and Table 22- 27, the XMC uses synchronous mode to access the external memories.

If the memory insertes XMC_NWAIT signal between the address latch and data transfer, the XMC will not only wait (DTLAT+1) CLK clok cycles but also have to take into account the XMC_NWAIT signal. During data transmission, the XMC will, depending on the NWTCFG configuration, select to wait either one cycle after the XMC_NWAIT signal is active or when the XMC_NWAIT signal is active.

Figure 22- 17 shows the timing for read access, while Figure 22- 18 shows the timing for write access. Figure 22- 17 and Figure 22- 18 are exmples of XMC waiting in the next cycle of XMC_NWAIT signal (NWTCFG=0)

Table 22- 26 Synchronous mode — SRAM/NOR Flash chip select control register (XMC_ BK1CTRL)


Bit	Description	Configuration	
Bit 31: 20	Reserved	0x0	
Bit 19	MWMC: Memory write mode control	0x1	
Bit 18: 16	CRPGS: CRAM page size	Configure according to memory specifications.	
Bit 15	NWASEN: NWAIT in asynchronous transfer enable	0x0	
Bit 14	RWTD: Read-write timing different	0x0	
Bit 13	NWSEN: NWAIT in synchronous transfer enable	Configure according to memory specifications.	
Bit 12	WEN: Write enable	Configure according to needs.	
Bit 11	NWTCFG: NWAIT timing configuration	Configure according to memory specifications.	
Bit 10	WRAPEN: Wrapped enable	Configure according to needs.	
Bit 9	NWPOL: NWAIT polarity	С	
Bit 8	SYNCBEN: Synchronous burst enable	0x1	
Bit 7	Reserved	0x1	
Bit 6	NOREN: NOR Flash access enable	Write synchronization: 0x0 Read synchronization: Configure according to memory specifications.	
Bit 5: 4	EXTMDBW: External memory data bus width	Configure according to memory specifications.	
Bit 3: 2	DEV: Memory device type	Write synchronization: 0x1 Read synchronization: Configure according to memory specifications. It is valid except 0x0 (SRAM)	
Bit 1	ADMUXEN: Address/data multiplexing enable	Configure according to needs.	
Bit 0	EN: Memory bank enable	0x1	


Table 22- 27 Synchronous mode—SRAM/NOR Flash chip select timing register (XMC_BK1TMG)

Bit	Description	Configuration
Bit 31: 30	Reserved	0x0
Bit 29: 28	ASYNCM: Asynchronous mode	0x0
Bit 27: 24	DTLAT: Data latency	Refer to Figure 22-17 and Figure 22-18.
Bit 23: 20	CLKPSC: Clock prescale	XMC_CLK cycle is HCLK cycle*CLKPSC. Refer to Figure 22-17 and Figure 22-18.
Bit 19: 16	BUSLAT: Bus latency	Indicates the time the XMC_NE[x] from the rising edge to the falling edge. Configure according to needs and memory specifications
Bit 15: 8	DTST: Data setup time	0x0
Bit 7: 4	ADDRHT: Address-hold time	0x0
Bit 3: 0	ADDRST: Address setup time	0x0

Figure 22- 17 NOR/PSARM synchronous multiplexed mode read access

2021.12.01 Page 362 Ver 2.02

22.5 NAND

NAND interface can be used to drvie NAND Flash. It is divided into two storage banks: regular bank and special bank, each with its separate timing registers. Both banks can be accessible with different timings.

22.5.1 Operation mode

Pin function:

Pin signals vary from external memory to external memory. Table 22-28 lists typical pin signals.

Table 22- 28 Typical pin signals for NAND Flash

XMC pin name	8-bit NAND Flash	16-bit NAND Flash
XMC_NCE[2]	Chip-select	Chip-select
XMC_A[17]	Address latch enable (ALE)	Address latch enable (ALE)
XMC_A[16]	Command latch ebabke (CLE)	Command latch ebabke (CLE)
XMC_NOE	Output enable (NRE)	Output enable (NRE)
XMC_NWE	Write enable	Write enable
VMC D[15: 0]	Data bus	Do not use XMC_D[15: 8]
XMC_D[15: 0]	Data bus	Use XMC_D[7: 0] as data bus.
XMC NWAIT	Ready/Busy (R/B)	Ready/Busy (R/B)

Access address

The upper bytes of the HADDR bit is used to select a memory bank while the lower bytes to data memory address. HADDR is a byte address whereas the XMC supports the memory addressed in words or half words. Address translation between them is shown in Table 22-5. As long as read/write access to a specific address occurs, the XMC will enable chip-select signals and write/read operation to the external memories according to the HADDR bit.

The HADDR is only used to select memory banks. Refer to Table 22-3 for more information.

The user writes the command value in the command section, the destination address in the address

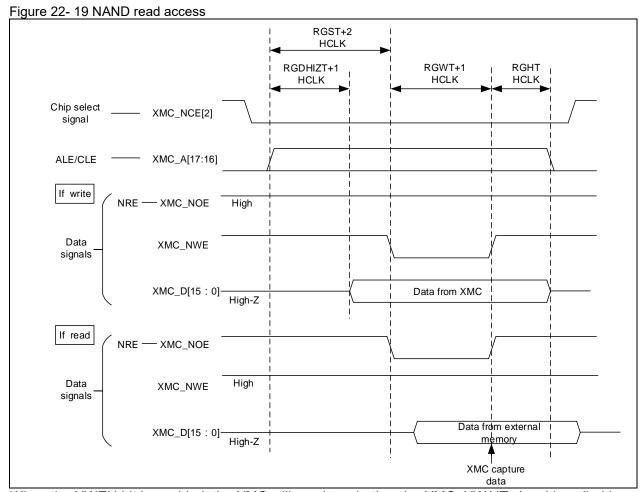
section, and reads or writes the data from or to the data section. As the access addresses are transmitted through data bus, the HADDR is actually not associated with NAND Flash size, so theoretically the XMC has no limitation on the NAND Flash capacity accessible.

Data access

In case that the AHB data width is not equal to that of the memories, the XMC will make appropriate arrangement according to the typical signals of the external memories. Table 22- 29 lists the operation modes supported by XMC.

Table 22- 29 Data access width vs. external memory data width

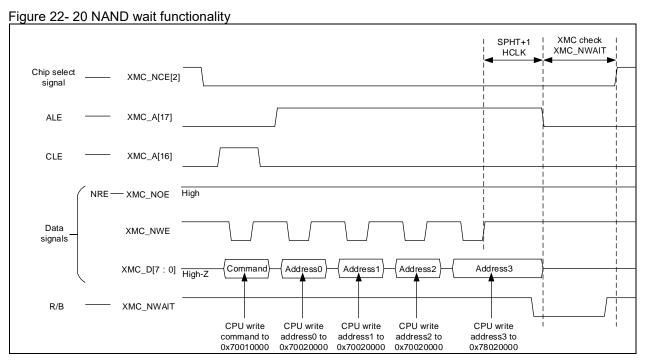
Memory	Mode	AHB data width	Memory width	Description
	R/W	8	8	
8-bit NAND	R/W	16	8	Split into two XMC accesses
0-DIL INAIND	R/W	32	8	Split into four XMC accesses
	R	8	16	
16-bit NAND	R/W	16	16	
	R/W	32	16	Split into two XMC accesses


22.5.2 Access timings

The XMC access the NAND Flash according to the timing parameters, as shown in Table 22- 30 and Table 22- 19. Users can perform programming operations according to the specifications of the external memory and application needs.

Table 22- 30 NAND parameter registers

Parameter register	Function	Access mode	Unit
RGDHIZT/SPDHIZT	Number of cycles during which the data bus is kept in high-Z state	W	HCLK cycle
RGST/SPST	Memory set up time	R/W	HCLK cycle
RGWT/SPWT	Memory set up time	R/W	HCLK cycle
RGHT/SPHT	Memory set up time	R/W	HCLK cycle



When the NWEN bit is enabled, the XMC will monitor whether the XMC_NWAIT signal is pulled low or not at the end of memory hold-up period, if so, it wil keep the XMC_NCE[2] low until the XMC_NWAIT goes high.

Some NAND Flash devices require that, after receiveing the last address byte, that the XMC_NCE[2] remains low until it enters ready state. This can be done by means of a special timing register and NWEN bits:

The user has to configure the time duration during which the NAND Flash shifts from the rising edge of the XMC_NWE to the falling edge of the XMC_NWAIT into a SPHT register, and write the last address byte into a special memory address section so that the XMC can perform write operations based on the timings of the special memory timing register, as shown in Address 3 in Figure 22-20.

22.5.3 ECC computation

The NAND interface contains ECC computation module so that the data will be used for ECC computation when the NAND interface access the NAND Flash. The computed value is stored into the XMC_BK2ECC register.

To perfrom an ECC computation:

- 1. Configure the ECCPGS bit to select the number of bytes to be computed by ECC module: 256, 512, 1024, 2048, 4096 or 8192 bytes.
- 2. Enable the ECCEN bit.
- 3. Read/write from and to the data section.
- 4. After receiving/sending the same number of bytes as the value programed in the ECCPGS, the XMC will store the ECC computed value into the XMC_BK2ECC registers.
- 5. Software reads/write the last byte and waits until the FIFO flag is set.
- 6. Software reads the XMC BK2ECC register and performs the corresponding error correction routine.
- 7. Clear the ECCEN bit by software. Repeat from 2 to 6.

Table 22- 31 lists the ECC result bits corresponding to the number of bytes

ECCPGS	000	001	010	011	100	101
Number of bytes	256	512	1024	2048	4096	8192
ECC result bits	ECC[21: 0]	ECC[23: 0]	ECC[25: 0]	ECC[27: 0]	ECC[29: 0]	ECC[31:0]

22.6XMC registers

These peripheral registers must be accessed by word (32 bits).

Table 22- 32 XMC register address mapping

and the state of t						
Register	Offset	Reset value				
XMC_BK1CTRL1	0x000	0x0000 30DB				
XMC_BK1TMG1	0x004	0x0FFF FFFF				
XMC_BK1CTRL4	0x018	0x0000 30D2				
XMC_BK1TMG4	0x01C	0x0FFF FFFF				
XMC_BK2CTRL	0x060	0x0000 0018				
XMC_BK2IS	0x064	0x0000 0040				

XMC_BK2TMGRG	0x068	0xFCFC FCFC
XMC_BK2TMGSP	0x06C	0xFCFC FCFC
XMC_BK2ECC	0x074	0x0000 0000
XMC_BK1TMGWR1	0x104	0x0FFF FFFF
XMC_BK1TMGWR4	0x11C	0x0FFF FFFF
XMC_EXT1	0x220	0x0000 0808
XMC_EXT4	0x22C	0x0000 0808

22.6.1 NOR Flash and PSRAM control registers

22.6.1.1 SRAM/NOR Flash chip select control register 1 (XMC_BK1CTRL1)

Bit	Register	Reset value	Type	Description
Bit 31: 20	Reserved	0x000	resd	Kept at its default value.
				Memory write mode control
Bit 19	MWMC	0x0	rw	0: Write operations are performed in asynchronous mode
				1: Write operations are performed in synchronous mode
				CRAM page size
				Cellular RAM 1.5 does not allow synchronous access to
				cross the address boundaries between pages. When
				these bits are configured in synchronous mode, the XMC
				will automatically split the access when the page size is reached.
Bit 18: 16	CRPGS	0x0	rw	000: No split access when crossing address boundary (default value)
				001: 128 bytes
				010: 256 bytes
				011: 512 bytes
				100: 1024 bytes
				Others: Reserved.
				NWAIT in asynchronous transfer enable
Bit 15	NWASEN	0x0	rw	0: NWAIT signal is disabled
				1: NWAIT signal is enable
				Read-write timing different
Bit 14	RWTD	0x0	rw	Different timings are used for read and write operations, that is, the XMC_BK1TMGWR register is enabled.
				0: Same timings for read and write operations
				1: Different timings for read and write operations
				NWAIT enable during synchronous transfer
Bit 13	NWSEN	0x1	rw	0: NWAIT signal is disabled
				1: NWAIT signal is enabled
				Write enable
Bit 12	WEN	0x1	rw	0: Disabled
				1: Enabled
				NWAIT timing configuration
				It is valid only in synchronous mode.
				0: NWAIT signal is active one data cycle before the wait
Bit 11	NWTCFG	0x0	rw	state
				1: NWAIT signal is active one data cycle during the wait
				state
				Wrapped enable
Bit 10	WRAPEN	0x0	rw	• •

				access into two accesses.
				0: Direct wrapped access is not allowed
				1: Direct wrapped access is allowed
				NWAIT polarity
				This bit defines the polarity of the NWAIT signal in
Bit 9	NWPOL	0x0	rw	synchronous mode.
				0: NWAIT active low
				1: NWAIT active high
				Synchronous burst enable
Bit 8	SYNCBEN	0x0	na/	This bit allowes synchronous access to Flash memories.
DILO	STINUDEIN	UXU	rw	0: Synchronous burst disabled
				1: Synchronous burst enabled
Bit 7	Reserved	0x1	resd	Kept at its default value.
				Nor flash access enable
Bit 6	NOREN	0x1	rw	0: Nor flash access is disabled
				1: Nor flash access is enabled
				External memory data bus width
				This field defines the external memory data bus width.
D# F. 4	EVENDENA/	0x1	rw	00: 8 bits
Bit 5: 4	EXTMDBW			01: 16 bits
				10: Reserved
				11: Reserved
				Memory device type
				00: SRAM/ROM
Bit 3: 2	DEV	0x2	rw	01: PSRAM (Cellular RAM or CRAM)
				10: NOR Flash
				11: Reserved
-				Address/data multiplexing enable
Bit 1	ADMUXEN	0x1	rw	0: Address/data not multiplexed
				1: Address/data multiplexed
				Memory bank enable
Bit 0	EN	0x1	rw	0: Memory bank disabled
				1: Memory bank enabled

22.6.1.2 SRAM/NOR Flash chip select control register 4 (XMC_BK1CTRL4)

Bit	Register	Reset value	Type	Description
Bit 31: 20	Reserved	0x000	resd	Kept at its default value.
				Memory write mode control
Bit 19	MWMC	0x0	rw	0: Write operations are performed in asynchronous mode
				1: Write operations are performed in synchronous mode
				CRAM page size
				Cellular RAM 1.5 does not allow synchronous access to
		0x0	rw	cross the address boundaries between pages. When
				these bits are configured in synchronous mode, the XMC
	CRPGS			will automatically split the access when the page size is
D:: 40 40				reached.
Bit 18: 16				000: No split access when crossing address boundary (default value)
				001: 128 bytes
				010: 256 bytes
				011: 512 bytes
				100: 1024 bytes

				Others: Reserved.
				NWAIT enable during asynchronous transfer
Bit 15	NWASEN	0x0	rw	0: NWAIT signal is disabled
				1: NWAIT signal is enable
				Read-write timing different
				Different timings are used for read and write operations,
Bit 14	RWTD	0x0	rw	that is, the XMC_BK1TMGWR register is enabled.
				0: Same timings for read and write operations
				1: Different timings for read and write operations
				NWAIT enable during synchronous transfer
Bit 13	NWSEN	0x1	rw	0: NWAIT signal is disabled
				1: NWAIT signal is enabled
				Write enable
Bit 12	WEN	0x1	rw	0: Disabled
				1: Enabled
				NWAIT timing configuration
				It is valid only in synchronous mode.
5 11.44				0: NWAIT signal is active one data cycle before the wait
Bit 11	NWTCFG	0x0	rw	state
				1: NWAIT signal is active one data cycle during the wait
				state
				Wrapped enable
				This bit defines whether the XMC will split a wrapped AHB
Bit 10	WRAPEN	0x0	rw	access into two accesses.
				0: Direct wrapped access is not allowed
				1: Direct wrapped access is allowed
-				NWAIT polarity
				This bit defines the polarity of the NWAIT signal in
Bit 9	NWPOL	0x0	rw	synchronous mode.
				0: NWAIT active low
				1: NWAIT active high
				Synchronous burst enable
D:+ 0	CVNCDEN	0.40	mar	This bit allowes synchronous access to Flash memories.
Bit 8	SYNCBEN	0x0	rw	0: Synchronous burst disabled
				1: Synchronous burst enabled
Bit 7	Reserved	0x1	resd	Kept at its default value.
				Nor flash access enable
Bit 6	NOREN	0x1	rw	0: Nor flash access is disabled
				1: Nor flash access is enabled
				External memory data bus width
				This field defines the external memory data bus width.
D:: 5 4	EVEL ADDIAL	0.4		00: 8 bits
Bit 5: 4	EXTMDBW	0x1	rw	01: 16 bits
				10: Reserved
				11: Reserved
				Memory device type
				00: SRAM/ROM
Bit 3: 2	DEV	0x0	rw	01: PSRAM (Cellular RAM or CRAM)
	 -			10: NOR Flash
				11: Reserved
				Address/data multiplexing enable
Bit 1	ADMUXEN	0x1	rw	0: Address/data not multiplexed
J. (, Dinoner	OA1	. **	1: Address/data multiplexed
				I

Memory bank enable

Bit 0 EN 0x0 rw 0: Memory bank disabled

1: Memory bank enabled

22.6.1.3 SRAM/NOR Flash chip select timing register 1, 4 (XMC_BK1CTRL1, 4)

Bit	Register	Reset value	Type	Description
Bit 31: 30	Reserved	0x0	resd	Kept at its default value.
				Asynchronous mode
				This field is valid only when the RWTD bit is enabled.
Dit 20, 20	ACVNICNA	0.40	m.,	00: Mode A
Bit 29: 28	ASYNCM	0x0	rw	01: Mode B
				10: Mode C
				11: Mode D
				Data latency
				This field is valid only in synchronous mode.
Bit 27: 24	DTLAT	0xF	rw	0000: 0 XMC_CLK cycle is inserted
				0001: 1 additional XMC_CLK cycle is inserted
				1111: 15 additional XMC_CLK cycles are inserted
				Clock prescaler
				This field is valid only in synchronous mode. It defines the
				frequency of the XMC_CLK clock.
				0000: Reserved
Bit 23: 20	CLKPSC	0xF	rw	0001: XMC_CLK cycle= 2 x HCLK clock cycles
				0010: XMC_CLK cycle =3 x HCLK clock cycles
				1111: XMC_CLK cycle = 6 x HCLK cycles
				Bus latency
				To avoid data bus conflict, a latency is inserted on the data
				bus after one read operation in multiplexed or synchronous
D# 40: 40	DUOLAT	05		mode.
Bit 19: 16	BUSLAT	0xF	rw	0000: 1 HCLK cycle is inserted
				0001: 2 HCLK cycles are inserted
				1111: 16 HCLK cycles are inserted
				Data setup time
				0000: 0 HCLK cycle is inserted
Bit 15: 8	DTST	0xFF	rw	0001: 1 additional HCLK cycle is inserted
				1111: 15 additional HCLK cycles are inserted
				Address-hold time
				0000: 0 HCLK cycle is inserted
Bit 7: 4	ADDRHT	0xF	rw	0001: 1 additional HCLK cycle is inserted
				1111: 15 additional HCLK cycles are inserted
				Address setup time
				0000: 0 HCLK cycle is inserted
Bit 3: 0	ADDRST	0xF	rw	0001: 1 additional HCLK cycle is inserted
				1111: 15 additional HCLK cycles are inserted

2021.12.01 Page 370 Ver 2.02

22.6.1.4 SRAM/NOR Flash write timing register 1, 4 (XMC_BK1 TMGWR1, 4)

Bit	Register	Reset value	Type	Description
Bit 31: 30	Reserved	0x0	resd	Kept at its default value.
				Asynchronous mode
				This field is valid only when the RWTD bit is enabled.
D:+ 00, 00	ACVNICM	0.40		00: Mode A
Bit 29: 28	ASYNCM	0x0	rw	01: Mode B
				10: Mode C
				11: Mode D
Bit 27: 20	Reserved	0xFF	resd	Kept at its default value.
				Bus latency
				To avoid data bus conflict, a latency is inserted on the data bus after one read operation in multiplexed or synchronous mode.
Bit 19: 16	BUSLAT	0xF	rw	0000: 1 HCLK cycle is inserted
				0001: 2 HCLK cycles are inserted
				1111: 16 HCLK cycles are inserted
				Data setup time
				0000: 0 HCLK cycle is inserted
Bit 15: 8	DTST	0xFF	rw	0001: 1 additional HCLK cycle is inserted
				1111: 15 additional HCLK cycles are inserted
				Address-hold time
				0000: 0 HCLK cycle is inserted
Bit 7: 4	ADDRHT	0xF	rw	0001: 1 additional HCLK cycle is inserted
-				1111: 15 additional HCLK cycles are inserted
				Address setup time
				0000: 0 HCLK cycle is inserted
Bit 3: 0	ADDRST	0xF	rw	0001: 1 additional HCLK cycle is inserted
				1111: 15 additional HCLK cycles are inserted

22.6.1.5 SRAM/NOR Flash extra timing register 1, 4 (XMC_EXT1, 4)

Bit	Register	Reset value	Type	Description
Bit 31: 16	Reserved	0x0000	resd	Kept at its default value.
				Bus turnaround phase for consecutive read duration
				This field is used to define the bus turnaround phase duration for consecutive read operations.
				00000000: 1 HCLK cycle is inserted for consecutive read operations
Bit 15: 8	BUSLATR2R	0x08	rw	00000001: 2 HCLK cycles are inserted for consecutive read operations
				00001000: 9 HCLK cycles are inserted for consecutive read operations (default value)
				11111111: 256 HCLK cycles are inserted for consecutive read operations
				Bus turnaround phase for consecutive write duration
Bit 7: 0	BUSLATW2W	0x08	rw	This field is used to define the bus turnaround phase duration for consecutive write operations.

2021.12.01 Page 371 Ver 2.02

00000000: 1 HCLK cycle is inserted for consecutive write

operations

00000001: 2 HCLK cycles are inserted for consecutive write operations

.

00001000: 9 HCLK cycles are inserted for consecutive write operations (default value)

.....

11111111: 256 HCLK cycles are inserted for consecutive write operations

22.6.2 NAND Flash control registers

22.6.2.1 NAND Flash control register 2 (XMC_BK2CTRL)

Register	Reset value	Type	Description
Reserved	0x000	resd	Kept at its default value.
			ECC page size
			000: 256 bytes
			001:512 bytes
ECCPGS	0x0	rw	010: 1024 bytes
			011: 2048 bytes
			100: 4096 bytes
			101: 8192 bytes
			ALE to RE delay
			This field specifies the delay from the falling edge of the ALE to that of the RE.
TAR	0x0	rw	0000: 1 HCLK cycle
			1111: 16 HCLK cycles
			CLE to RE delay
			This field specifies the delay from the falling edge of the
			CLE to that of the RE.
TCR	0x0	rw	0000: 1 HCLK cycle
			1111: 16 HCLK cycles
Reserved	0x0	resd	Kept at its default value.
			ECC enable
ECCEN	0x0	rw	0: ECC disabled
			1: ECC enabled
			External memory data bus width
			This field specifies the external NAND Flash width.
			00: 8 bits
EXTMDBW	0x1	rw	01: 16 bits
			10: Reserved
			11: Reserved
			Memory device type
DEV	0x1	rw	0: Reserved
			1: NAND Flash
			Memory bank enable
EN	0x0	rw	0: Memory bank disabled
			1: Memory bank enabled
			Wait feature enable
NIVA/ITNI	0x0	rw	his bit is used to enable NAND Flash wait function.
NWEN:	0.00		
	ECCPGS TAR TCR Reserved ECCEN EXTMDBW DEV EN	Reserved 0x000 ECCPGS 0x0 TAR 0x0 TCR 0x0 Reserved 0x0 ECCEN 0x0 EXTMDBW 0x1 DEV 0x1 EN 0x0	Reserved 0x000 resd ECCPGS 0x0 rw TAR 0x0 rw TCR 0x0 resd ECCEN 0x0 resd ECCEN 0x0 rw EXTMDBW 0x1 rw DEV 0x1 rw EN 0x0 rw

				1: Enabled
Bit 0	Reserved	0x0	resd	Kept at its default value.

22.6.2.2 Interrupt enable and FIFO status register 2 (XMC_BK2IS)

Bit	Register	Reset value	Type	Description
Bit 31: 7	Reserved	0x000000	resd	Kept at its default value.
				FIFO empty
				This bit is set by hardware when the FIFO is empty.
Bit 6	FIFOE	0x1	na/	0: FIFO is not empty
DILO	FIFUE	UXI	rw	1: FIFO is empty
				XMC FIFO size is 16 words. It is used to store the data from AHB.
				Falling edge interrupt enable
Bit 5	FEIEN	0x0	rw	0: Falling edge interrupt disabled
				1: Falling edge interrupt enabled
				High-level interrupt enable
Bit 4	HLIEN	0x0	rw	0: High-level interrupt disabled
				1: High-level interrupt enabled
				Rising edge interrupt enable
Bit 3	REIEN	0x0	rw	0: Rising edge interrupt disabled
				1: Rising edge interrupt enabled
				Falling edge status
D:1 0	FF0	0.0		This bit is set by hardware and cleared by software.
Bit 2	FES	0x0	rw	0: No falling edge interrupt generated
				1: Falling edge interrupt generated
				High-level status
D'' 4				This bit is set by hardware and cleared by software.
Bit 1	HLS	0x0	rw	0: No high level interrupt generated
				1: High level interrupt generated
				Rising edge status
5 6				This bit is set by hardware and cleared by software.
Bit 0	RES	0x0	rw	0: No rising edge interrupt generated
				1: Rising edge interrupt generated

22.6.2.3 Regular memory timing register 2 (XMC_ BK2TMGRG)

				·
Bit	Register	Reset value	Type	Description
				Regular memory databus High resistance time
Bit 31: 24				This field defines the databus high resistance duration
				when write access to NAND Flash is started in a regular space.
	RGDHIZT	0xFC	rw	00000000: 0 HCLK cycle is inserted
				00000001: 1 additional HCLK cycle is inserted
				11111111: 255 additional HCLK cycles are inserted
				Regular memory hold time
	RGHT			This field defines the databus hold time when access to NAND Flash in a regular memory.
Bit 23: 16		0xFC	rw	00000000: Reserved
2.1.200			· · · ·	00000001: 1 HCLK cycle is inserted
				11111111: 255 HCLK cycles are inserted
				Regular memory wait time
Bit 15: 8	RGWT 0xFC	0xFC	rw	Specifies the regular memory wait time when the XMC_NWE and XMC_NOE is low.

2021.12.01 Page 373 Ver 2.02

				00000000: 0 HCLK cycle is inserted
				00000001: 1 additonal HCLK cycle is inserted
				11111111: 255 additiona HCLK cycles are inserted
				Regular memory setup time
				This field defines the address seti[time when access to NAND Flash in a regular memory.
Bit 7: 0	RGST	0xFC	rw	00000000: 0 HCLK cycle is inserted
	_			00000001: 1 additonal HCLK cycle is inserted
				11111111: 255 additiona HCLK cycles are inserted

22.6.2.4 Special memory timing register 2 (XMC_ BK2TMGSP)

Bit	Register	Reset value	Type	Description
	-			Special memory databus High resistance time
				This field defines the databus high resistance duration when write access to NAND Flash is started in a special space.
Bit 31: 24	SPDHIZT	0xFC	rw	00000000: 0 HCLK cycle is inserted
				00000001: 1 additional HCLK cycle is inserted
				11111111: 255 additional HCLK cycles are inserted
				Special memory hold time
				This field defines the databus hold time when access to NAND Flash in a special memory.
Bit 23: 16	SPHT	0xFC	rw	00000000: Reserved
				00000001: 1 HCLK cycle is inserted
				11111111: 255 HCLK cycles are inserted
				Special memory wait time
	SPWT			Specifies the special memory wait time when the XMC_NWE and XMC_NOE is low.
Bit 15: 8		0xFC	rw	00000000: 0 HCLK cycle is inserted
				00000001: 1 additonal HCLK cycle is inserted
				11111111: 255 additiona HCLK cycles are inserted
				Special memory setup time
				This field defines the address seti[time when access to NAND Flash in a special memory.
Bit 7: 0	SPST	0xFC	rw	00000000: 0 HCLK cycle is inserted
	- ·	J J	- • •	00000001: 1 additonal HCLK cycle is inserted
				11111111: 255 additiona HCLK cycles are inserted

22.6.2.5 ECC value register 2 (XMC_ BK2ECC)

Bit	Register	Reset value	Type	Description	
D:1 04 0	500	00000 0000	ro	EECC value	
Bit 31: 0	ECC	0x0000 0000		This field contains the computed ECC value.	

2021.12.01 Page 374 Ver 2.02

23 SDIO interface

23.1 SDIO introduction

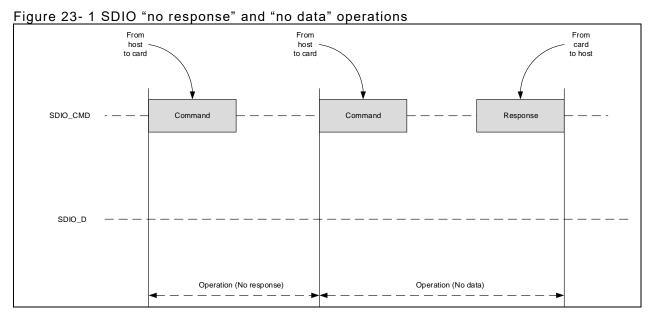
The SD/SDIO MMC card host interface (SDIO) provides an interface between the AHB peripheral bus and MultiMediaCards (MMC), SD memory cards and SDIO cards.

SD memory card and SDI/O card system specifications are available through the SD card association website www.sdcard.org.

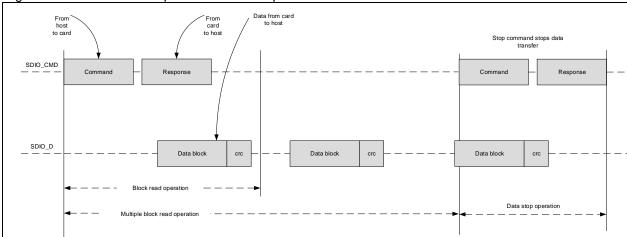
The MultiMediaCard system specifications published by the MMCA technical committee are available through the MultiMediaCard association website www.mmca.org.

23.2SDIO main features

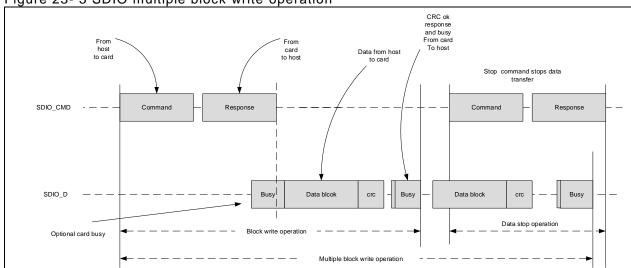
- Full compatibility with SD memory card specifications version 2.0
- Full compatibility with SDI/O card specification version 2.0 and support 1-bit and 4-bit databus modes.
- Full compatibility with MultiMedia card specification version 4.2 and support 1-bit, 4-bit and 8-bit databus modes.
- Full compatibility with previous versions of MultiMedia card specifications
- DMA transfer
- Data transfer up to 50 MHz in 8-bit bus mode
- Interrupt requests


Note: The SDIO is not compatible with SPI communication mode. It supports only one SD/SDIO/MMC 4.2 card at any one time.

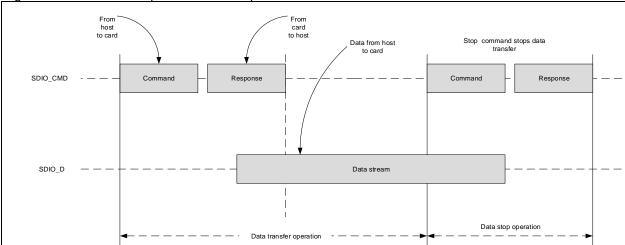
Communication on the bus is based on command and data transfers.


- Command: A command is a token that starts an operation. Commands are sent from the host either to a single card (addressed command) or to all conncected cards (broadcast command).
 Commands are transferred serially on the CMD line.
- Response: A response is a token that is sent from a card to the host as an answer to a
 previously received command. Responses are transferred serially on the CMD line.
- Data: Data can be transferred from the card to the host or vice versa. Data is transferred via the SDIO D data line.

The basic operation on the MMC card/SD/SDI I/O bus is the command/response structure. These types of bus operation transfer their information through the command or bus mechanism. In addition, some operations have a data token.


Data transfers to/from SD/SDIO memory cards are done in data blocks. Data blocks are always followed by CRC bit, defining single and multiple block operations. Data transfers to/from MMC are done in data blocks or streams, as shown in Figure below.

Note: The SDIO will not send any data as long as the Busy signal is set (SDIO_D0 pulled low).


Data stop operation

From host to card

SDIO_CMD

SDIO_CM

Figure 23- 5 SDIO sequential write operation

23.3 SDIO main features

23.3.1 Card functional description

All the communications between the host and the cards are controlled by the card. The host sends two different types of commands: broadcast command and addressed (point-to-point) command.

- Broadcast command: applicable to all cards, some need responses
- Addressed command: sent to the addressed card, and responses received from the card
 Memory card defines two types of operational modes:
- Card identification mode
- Data transfer mode

23.3.1.1 Card identification mode

In card indentification mode, the host resets all cards, validates the operation voltage range, identifies cards and sets a relative card address (RCA) for each card on the CMD. All communications in the card identification mode use the command line (CMD).

Card identification process

The card identification process varies from card to card, and the host sends different commands. There are SD, SDI/O and MMC cards. It is possible to send a CMD5 command to identify the type of a card. If the host receives a response, it is a SDI/O card. If no response is received, the host will continue to send ACMD41 command, if a response is received, it is a SD card, otherwise a MMC card.

The card identification process is described as follows:

- 1. The bus is activated to confirm whether the card is connected or not. The clock frequency is at 0-400kHz during the card identification process.
- 2. The SDIO host sends a SD card, SDI/O card or MMC card.
- 3. Card Initialization
 - SD card: The SDIO host sends CMD2 (ALL_SEND_CID) to obtain its unique CID number.
 After receiving a response (CID number) from the card, the host will send CMD3 (SEND_RELATIVE_ADDR), instructing the card to issue the relative card address (RCA), which is shorter than the CID and is used to address the card in the data transfer mode.
 - SDI/O card: The SDIO host sends CMD3 (SEND_RELATIVE_ADDR) to instruct the card to release the relative card address (RCA), which is shorter than the CID and is used to address the card in the data transfer mode.
 - MMC card: The SDIO host sends CMD1 (SEND_OP_COND), followed by CMD2 and CMD3.
- 4. If the host wants to assign another RCA number, it can instruct the card to issue a new number by sending another CMD3 command. The last RCA is the actual RCA number of the card. The host repeats the card indetification process (CMD2 and CMD3 cycle of each card)

23.3.1.2 Data transfer mode

The host will enter data transfer mode after identifying all cards on the bus. In data transfer mode, the host can operate cards within the range of 0 - 50MHz. It can send CMD9 (SEND_CSD) to get data specific to a card (CSD register) such as block length and car memory size. All communications between the host and the selected card are point-to-point transferred, and the CMD bus will confirm all addressed commands as a response. Data transfer read/write can be done in data block mode or stream mode, configured by the TFRMODE bit in the SDIO_DTCTRL register. In the data stream mode, data is transferred in bytes and without CRC appended to the end of each data block.

Wide bus selection/deselection

Wide bus (4-bit bus width) operation mode is selected or deselected by using ACMD6 (SET_BUS_WIDTH). The default bus width after power-up or CMD0 (GO_IDLE_STATE) is 1 bit. The ACMD6 is only valid in a transfer state, indicating that the bus width can be changed only after a card is selected by CMD7.

Stream read/write (MultiMedia card only)

Read:

- 1. The host sends CMD11 (READ_DAT_UNTIL_STOP) for stream read.
- 2. Until the host sends CMD12 (STOP_TRANSMISSION). The stop command has an execution delay due to the serial command transmission and the data transfers stops after the end bit of the the stop command.

Write:

- 1. The host sends CMD20 (WRITE_DAT_UNTIL_STOP) for stream write.
- 2. Until the host sends CMD12 (STOP_TRANSMISSION). As the amount of data to be transferred is not determined in advance, the CRC cannot be used. When the memory range is reached, the command will be discarded by the card and remain in a transfer state, and a respons is issued by setting the ADDRESS OUT OF RANGE bit.

Data block read

In block read mode, the basic unit of data transfer is a block whose maximum size (fixed length 512 bytes) is defined in the CSD (READ_BL_LEN). If the READ_BL_PARTIAL is set, smaller blocks whose start and end addresses are entirely contained within 512 bytes may also be transmitted. A CRC is appended to the end of each block to ensuring data transfer integrity. Several commands related to data block read are as follows:

- CMD17 (READ_SINGLE_BLOCK): initiates a data block read and returns to the transfer state after the completion of the transfer.
- CMD18 (READ MULTIPLE BLOCK): starts a transfer of several consecutive data blocks.

Data blocks will keep transferring until the host sends CMD12(STOP_TRANSMISSION). The stop command has an execution delay due to the serial command transmission and the data transfers stops after the end bit of the the stop command.

Data block write

During block write (CMD24-27), one or more blocks of data are transferred from the host to the card with a CRC appended to the end of each block. If the CRC failed, the card indicates a failure on the SDIO_D signal line and the transferred data are discarded and not written, and all transmitted data blocks are ignored.

If the host uses partial blocks with accumulated length is not block aligned, and block misalignment is not allowed (CSD parameter WRITE_BLK_MISALIGN is not set), the card will detect the block misalignment error before the beginning of the first misaligned block. The card sets the ADDRESS_ERROR bit in the SDIO_STS register and waits the stop command in a receive state while ignoring all further data transfer. If the host attempts to perform write operation on a write-protected area, the write operation will be aborted. In this case, however, the card should set the WP VIOLATION bit.

Programming of the CID and CSD registers does not require a block length setting in advance. The transferred data is also CRC protected. If a part of the CSD or CID register is stored in the ROM, then the unchangeable part must match the corresponding part of the receive buffer. If this match failed, then the card will report an error and does not change any register contents. Some cards may require long and unpredictable times to write a block of data. After receiving a block of data and completing the CRC check, the card begins writing and holds the SDIO_D signal line low if its write buffer is full and unable to accect new data from a new WRITE_BLOCK command. The host can check the status of the card with SEND STATUS command (CMD13) at any time, and the card will respond with its status.

The READY_FOR_DATA status bit indicates whether the car can accept new data or whether the write process in still in progress. The host can deselect the card by issuing CMD7 (select another card), which will place the card in the disconnect state and release the SDIO_D line without interrupting the write operation. when reselecting the card, it will reactivate busy indication by pulling SDIO_D line to low if the programming is still in progress and the write buffer is unavailable.

23.3.1.3 Erase

The erasable unit of the MultiMedia card and SD card is the erase group. The erase group is calculated in wirte blocks, which are the basic writble units of the card. The size of the erase group is a parameter specific to the card and defined in the CSD.

The host can erase a contiguous range of erase groups. There are three steps to start the erase process, but the commands sent by the MultiMedia card and SD card are different.

- 1. The host defines the start address of the range using the following command:
 - SD card: issue CMD32 (ERASE WR BLK START)
 - MMC car: issue CMD35 (ERASE GROUP START)
- 2. The host defines the end address of the rang using the following command:
 - SD card: issue CMD33 (ERASE WR BLK END)
 - MMD car: issue CMD36 (ERASE GROUP END)
- 3. The host starts the erase process by sending CMD38 (ERASE)

23.3.1.4 Protection management

Three write protection methods are supported in the SDIO card host module to ensure that the protected data is not erased or changed.

Mechanical write protect switch

There is a mechanical sliding switch on the side of the card to allow the user to set/clear the write protection on the card. When the sliding switch is positioned with the window open, the card is write-protected, and when the window is closed, the card is not write-protected.

Internal card write protection

Card data can be protected against write and erase. The entire card can be permanently write-protected by the manufacturer or the content provider by setting the permanent or temporary write-protect bits in the CSD. For cards that support write protection of groups of sectors by setting the WP_GRP_ENABLE

bit in the CSD, part of the data can be protected, and the write protection can be changed by the application. The SET_WRITE_PROT commands set the write protection of the addressed group. The CLR_WRITE_PROT commands clear the write protection of the addressed group. The SEND_WRITE_PROT command is similar to a single block read command. The card sends a data block containing 32 write protection bits (representing 32 write protect groups starting at the specified address) followed by 16 CRC bits. The address filed in the write protect commands is a group address in byte units.

Password protect

The password protection function enables the SDIO card host to lock and unlock a card with a password. The password is stored in the 128-bit PWD register and its size is set in the 8-bit PWD_LEN register. These registers are nonvolatile so that the content is not erased after power-off.

Locked cards can support certain commands, indicating that the host is allowed to reset, initialize and query for status, but not allowed to access data on the card. When the password is set (PWD_LEN is nonzero value), the card is locked automatically after power-up.

Like the CSD and CID register write commands, the lock/unlock commands are valid only in a transfer state. The command does not include an address parameter and thus the card must be selected before using it.

The card lock/unlock commands have the structure and bus transaction types of a regular single-block write command. The transferred data block include all the information required for the command (the password setting mode, PWD content and card lock/unlock indication). The command data block size is defined by the SDIO card host module before it sents the card lock/unlock command. The lock/unlock command structure is shown below:

Table 23- 1 Lock/unlock command structure

Byte	Bit7 Bit6 Bit5 Bit4	Bit3	Bit2	Bit1	Bit0
0	Reserved(set to 0)	ERASE	LOCK_UNLOCK	CLR_PWD	SET_PWD
1	PWDS_LEN				
2					_
	password data				
PWDS_LEN+1					

- ERASE: Setting it will force an erase operation. All other bits must be zero, and only the command byte is sent.
- LOCK_UNLOCK: Setting it will lock the card. Clearing it will unlock the card. LOCK_UNLOCK can be set simultaneously with SET PWD, but not with the CLR PWD.
- CLR PWD: Setting it will clear the password data.
- SET PWD: Setting this bit will save the password data to memory.
- PWD_LEN: This bit defines the length of the password in bytes. When the password is changed, the length is the combination of the old and new passwords.
- PWD: password (new or currently used, depending on the command)

The data block size should be defined by the host before it sends the card lock/unlock command. The block length should be equal to or greater than the data structure required for the lock/unlock command. The following sections list the command sequence to set/clear a password, lock/unlock a card, and force an erase operation.

Setting the password

- 1. Select a card using CMD7 (SELECT/DESELECT_CARD), if none is selected previously
- Define the block length with CMD16(SET_BLOCKLEN) to send in the 8-bit card lock/unlock mode, 8-bit PWD_LEN, and the number of bytes of the new password. When a password is replaced, the block size must take into account the length of both the old and the new passwords sent with the command.
- 3. Send CMD42(LOCK/UNLOCK) with the appropriate data block size on the data line including the 16-bit CRC. The data block indicates the operation mode (SET_PWD=1), the length (PWD_LEN) and the password (PWD). When a password replacement is done, the length value includes the length of the both passwords, the old and the new one, and the PWD field includes the old password (currently used) followed by the new password.

4. When the old password is matched, the new password and its size are saved into the PWD and PWD_LEN fields, respectively. When the old password sent is not correct (in size and/or content), the LOCK_UNLOCK_FAILED error bit is set in the SDIO_STS register, and the old password is not changed. When the old password sent is correct (in size and content), the given new password and its size will be saved in the PWD and the PWD_LEN registers, respectively.

The password length field (PWD_LEN) indicates whether a password is currently set or not. When the field is a zero value, it means that a password is not set currently. When the field is nonzero, it means that a password is set and the card locks itself after power-up. It is possible to lock the card immediately in the current power session by setting the LOCK_UNLOCK bit or sending an additional card lock command.

Clearing the password

- Select a card using CMD7 (SELECT/DESELECT CARD), if none is selected previously.
- 2. Define the block length with CMD16(SET_BLOCKLEN) to send in the 8-bit card lock/unlock mode, 8-bit PWD_LEN, and the number of bytes of the new password.
- 3. Send CMD42(LOCK/UNLOCK) with the appropriate data block size on the data line including the 16-bit CRC. The data block indicates the operation mode (SET_PWD=1), the length (PWD_LEN) and the password (PWD). When a password is matched, the PWD field is cleared and PWD_LEN is set to 0. If the password sent does not correspond to the expected password (in size and/or content), the LOCK_UNLOCK_FAILED error bit is set in the SDIO_STS register, and the password is not changed.

Locking a card

- 1. Select a card using CMD7 (SELECT/DESELECT_CARD), if none is selected previously.
- 2. Define the block length with CMD16(SET_BLOCKLEN) to send in the 8-bit card lock/unlock mode, 8-bit PWD_LEN, and the number of bytes of the new password.
- 3. Send CMD42(LOCK/UNLOCK) with the appropriate data block size on the data line including the 16-bit CRC. The data block indicates the operation mode (SET_PWD=1), the length (PWD_LEN) and the password (PWD).
- 4. When a password is matched, the card is locked and CARD_IS_LOCKED is set in the SDIO_STS register. If the password sent does not correspond to the expected password (in size and/or content), the LOCK_UNLOCK_FAILED error bit is set in the SDIO_STS register, and the lock fails.

If the password is previously set (PWD_LEN is not 0), the card is locked automatically after power-on reset. An attempt to lock a locked card or to lock a card that does not have a password fails and the LOCK UNLOCK FAILED error bit is set in the SDIO STS register.

Unlocking a card

- 1. Select a card using CMD7 (SELECT/DESELECT CARD), if none is selected previously
- 2. Define the block length with CMD16(SET_BLOCKLEN) to send in the 8-bit card lock/unlock mode, 8-bit PWD LEN, and the number of bytes of the new password.
- 3. Send CMD42(LOCK/UNLOCK) with the appropriate data block size on the data line including the 16-bit CRC. The data block indicates the operation mode (SET_PWD=1), the length (PWD LEN) and the password (PWD).
- 4. When a password is matched, the card is unlocked and CARD_IS_LOCKED is cleared in the SDIO_STS register. If the password sent does not correspond to the expected password (in size and/or content), the LOCK_UNLOCK_FAILED error bit is set in the SDIO_STS register, and the lock remains locked.

The unlocking function is valid only for the current power session. The card is locked automatically on the next power-up as long as the PWD field is not cleared.

An attempt to unlock an unlocked card fails and the LOCK_UNLOCK_FAILED error bit is set in the SDIO_STS register.

Forcing erase

If the user forgot the password (PWD content), it is possible to access the card after clearing all the data on the card. This forced erase operation will erase all card data and all password data.

- 1. Select a card using CMD7 (SELECT/DESELECT_CARD), if none is selected previously
- 2. Define the block length with CMD16(SET_BLOCKLEN) to send in the 8-bit card lock/unlock mode, 8-bit PWD_LEN, and the number of bytes of the new password.
- 3. Send CMD42(LOCK/UNLOCK) with the appropriate data block size on the data line including the 16-bit CRC. The data block indicates the operation mode (ERASE =1). All other bits must be zero.
- 4. When the ERASE bit is the only bit in the data field, all card content will be erased, including the PWD and the PWD_LEN field, and the card is no longer locked. When any other bits are not zero, the LOCK_UNLOCK_FAILED error bit is set in the SDIO_STS register, and the card data are retained, and the card remains locked.

An attempt to force erase an unlocked card fails and the LOCK_UNLOCK_FAILED error bit is set in the SDIO_STS register.

23.3.2 Commands and responses

23.3.2.1 **Commands**

Command types

Four commands are available to control the SD memory card:

- 1. Broadcast command: sent to all cards, no responses returned
- 2. Broadcast command with response: sent to all cards, responses received from all cards simultaneously
- 3. Addressed command: sent to the selected card, and no data transfer on the SDIO_D line
- 4. Addressed data transfer command: sent to the selected card, and data transfer is present on the SDIO D line

Command description

The SDIO host module system is designed to provide a standard interface for a variety of application types. In the meantime, specific customer/application features must also be taken into account. Because of this, two types of general commands are defined in the standard: general commands (GEN_CMD) and application-specific commands (ACMD).

To use the application-specific commands, the SDIO host must send CMD55(APP_CMD) first, and waits the response from the card, which indicates that the APP_CMD bit is set and an ACMD is expected, before sending ACMD.

Table 23- 2 Commands

CMD index	Туре	Parameter	Response format	Abbreviation	Description
CMD0	bc	[31: 0]=stuff bits	-	GO_IDLE_ STATE	Reset all cards to idle state
CMD1	bc	[31: 0]=OCR	R3	SEND_OP_ COND	In idle state, request a card to send OCR register content through the CMD bus
CMD2	bcr	[31: 0]=stuff bits	R2	ALL_Send_CID	Request all cards to send CID data through the CMD bus
CMD3	bcr	[31: 0]=stuff bits	R6	SEND_RELATIV E_AD DR	Request a card to issue a new relative card address
CMD4	bc	[31: 16]=DSR [15: 0]= stuff bits	-	SET_DSR	Set the DSR register of all cards
CMD5	bcr	[31: 24]Reserved [23: 0] I/O OCR	R4	IO_SEND_OP_O	C Used only for the SDI/O card to query the voltage range of the required I/O card

CMD6	ac	[31: 26] set to 0 [25: 24] access [23: 16] index [15: 8] value [7: 3] set to 0 [2: 0] command set	R1b	SWITCH	Used only for the MMC card to switch the operation modes or modify the EXT_CSD register				
CMD7	ac	[31: 16]=RCA [15: 0]= stuff bits	R1b	SELECT/DESEL ECT_ CARD	This command is used to switch a card between the standby state and the send state, or between the programmed and the disconnected state. The relative card address is used to select a card. Address 0 is used to deselect the card.				
CMD8 (SD)	bcr	[31: 12] Reserved [11: 8]operatin voltage (VHS) [7: 0]check mode	g _{R7}	SEND_IF_ COND	Send the host power supply voltage to the SD card and check whether the card supports the voltage or not.				
CMD8 (MMC)	adtc	[31: 0]= stuff bits	R1	SEND_EXT_ CSD	Used only for the MMC card to send its own EXT_CSD register as a data block				
CMD9	ac	[31: 16]=RCA [15: 0]= stuff bits	R2	SEND_CSD	The selected card sends CSD (card-specific data) through the CMD bus				
CMD10	ac	[31: 16]=RCA [15: 0]= stuff bits	R2	SEND_CID	The selected card sends CID (card flag) through the CMD bus				
CMD12	ac	[31: 0]= stuff bits	R1b	STOP_TRANSMI SSION	Force the card to stop transmission				
CMD13	ac	[31: 16]=RCA [15: 0]= stuff bits	R1	SEND_ STATUS	Selected card sendstatus register				
CMD15	ac	[31: 16]=RCA [15: 0]= stuff bits	-	GO_INACTIVE_ STATE	Selected card switch to inactive state				
Table 23-	3 Data	block read comma	ands						
Table 23-	3 Data Type	block read comma Parameter	ands Response format	Abbreviation	Description				
			Response format	Abbreviation SET_ BLOCKLEN	Description This command is used to set the length of data blocks (in bytes) for all block commands. The default value is 512 bytes.				
CMD index	Туре	Parameter [31: 0]=data block	Response format	SET_	This command is used to set the length of data blocks (in bytes) for all block commands. The default value is 512				
CMD index	Type ac	Parameter [31: 0]=data blocklength	Response format	SET_ BLOCKLEN READ_ SINGLE_	This command is used to set the length of data blocks (in bytes) for all block commands. The default value is 512 bytes. Read a data block of the size set by				
CMD16 CMD17 CMD18	ac adtc	Parameter [31: 0]=data blocklength [31: 0]=data address	Response format skR1 sR1	SET_ BLOCKLEN READ_ SINGLE_ BLOCK READ_ MULTIPLE_ BLOCK	This command is used to set the length of data blocks (in bytes) for all block commands. The default value is 512 bytes. Read a data block of the size set by CMD16 Continously read data from the card to the host until the				
CMD16 CMD17 CMD18	ac adtc adtc	Parameter [31: 0]=data blocklength [31: 0]=data address [31: 0]=data address	Response format skR1 sR1	SET_ BLOCKLEN READ_ SINGLE_ BLOCK READ_ MULTIPLE_ BLOCK	This command is used to set the length of data blocks (in bytes) for all block commands. The default value is 512 bytes. Read a data block of the size set by CMD16 Continously read data from the card to the host until the				
CMD16 CMD17 CMD18 Table 23-	ac adtc adtc	Parameter [31: 0]=data blocklength [31: 0]=data address [31: 0]=data address stream read/write	Response format skR1 sR1 scommands Response format	SET_ BLOCKLEN READ_ SINGLE_ BLOCK READ_ MULTIPLE_ BLOCK	This command is used to set the length of data blocks (in bytes) for all block commands. The default value is 512 bytes. Read a data block of the size set by CMD16 Continously read data from the card to the host until the STOP_TRANSMISSION is received				

		_			
Table 2	23-5	Data	block	write	commands

CMD index	Туре	Parameter	Response format	Abbreviation	Description
CMD16	ac	[31: 0]=data blo length	^{ock} R1	SET_ BLOCKLEN	This command is used to set the length of data blocks (in bytes) for all block commands. The default value is 512 bytes
CMD23	ac	[31: 16]=set to 0 [15: 0]=data blo size	ockR1	SET_BLOCK_ COUNT	Define the number of blocks to be transferred in the data block read/write that follows
CMD24	adtc	[31: 0]=data addre	ss R1	WRITE_ BLOCK	Write a data block of the size set by the CMD16
CMD25	adtc	[31: 0]=data addre	ss R1	WRITE_ MULTIPLE BLOCK	Continuously write data blocks until the STOP_TRANSMISSION is received
CMD26	adtc	[31: 0]= stuff bits	R1	PROGRAM_ CID	Program the card identification register
CMD27	adtc	[31: 0]= stuff bits	R1	PROGRAM_ CSD	Program the programmable bits of the CSD
Table 23-	6 Block	c-based write pro	tect comma	nds	
CMD index	Туре	Parameter	Response	Abbreviation	Description
CMD28	ac	[31: 0]= data addre		SET_WRITE_ PROT	If the card has write protection features, this command sets the write protection bit of the specified group. The properties of write protection are placed in the card-specific area (WP_GRP_SIZE).
CMD29	ac	[31: 0]= data addre	essR1b	CLR_WRITE_PI	If the card has write protection features, this command clears the write protection bit of the specified group.
CMD30	adtc	[31: 0]=write prote data address	ct R1	SEND_WRITE_I	If the card has write protection features, this command asks the card to send the status of the write protection bits.
Table 23-	7 Eras	e commands			
CMD index	Туре	Parameter	Response format	Abbreviation	Description
CMD32 CMD34		ed. These command is of the MultiMedia ca		e used in order to	maintain backward compatibility with older
CMD35	ac	[31: 0]=data addre	ess R1	ERASE_GROUI _START	Sets the address of the first erase group within a range to be selecte for erase
CMD36	ac	[31: 0]=data addre	ess R1	ERASE_GROUI _END	Sets the address of the last erase group within a continuous range to be selected for erase
CMD37		ed. These command i s of the MultiMedia ca		e used in order to	maintain backward compatibility with older
CMD38	ac	[31: 0]=stuff bits	R1b	ERASE	Erase all previously selected data blocks

CMD index	Type	Parameter	Response	Abbreviation	Description		
	- 7		format				
[31: 16]=RCA [15]=register write flag [14: 8]=register address [7: 0]=register data				FAST_IO	Used to write and read 8-bit (register) data fields. The command specifies a card and a register and provides the data for writing if the write flag is set. The R4 response contains data read from the specified register. This command accesses application-specific registers that are not defined in the MultiMedia card standard.		
CMD40	bcr	[31: 0]=stuff bits	R5	GO_IRQ_STATI	E Place the system in the interrupt mode		
Table 23-	9 Card	lock commands					
CMD index	Туре	Parameter	Response format	Abbreviation	Description		
CMD42	adtc	[31: 0]=stuff bits	R1	LOCK_ UNLOCK	Sets/clears the password or locks/unlocks the card. The size of the data block is set by CMD16.		
Table 23-	· 10 App	olication-specific o	ommands				
CMD index	Туре	Parameter	Response format	Abbreviation	Description		
CMD55	ac	[31: 16]=RCA [15: 0]=stuff bits	R1	APP_CMD	Indicates to the card that the next command is an application-specific command rather than a standard command.		
CMD56	adtc	[31: 1]=stuff bits [0]=RD/WR	R1	GEN_CMD	Used either to transfer a data block to the card or to read a data block from the card for general-purpose/application-specific commands. The size of the data block is defined by the SET_BLOCK_LEN command.		
CMD57 CMD59	Reserve	ed.					
CMD60 CMD63	Reserve	ed for manufacturer					

23.3.2.2 Response formats

All responses are sent via the CMD bus. The response transmission always starts with the left bit of the bit string corresponding to the response code word. The length depends on the response type.

A response always starts with a start bit (always 0), folled by the transmission bit indicating the direction of transmission (card =0). A value denoted by - in the tables below stands for a variable entry. All responses, except the R3 response type, are protected by a CRC. Every command code word is terminated with the end bit (always 1).

23.3.2.2.1 R1 (normal response command)

Code length = 48 bits. The 45:40 bits indicate the index of the command to be responded to. This value is interpreted as a binary-coded number (between 0 and 63). The status of the card is coded in 32 bits. Note that if it involves a data transfer to a card, a busy signal may appear on the data line after each data block is transmitted. The host should check the busy signal after data block transfer.

Table	23-	11	R1	response
I abic	~~		1 \ 1	103001130

Bit	47	46	[45: 40]	[39: 8]	[7: 1]	0
Field width	1	1	6	32	7	1
Value	0	0	-	-	-	1
Description	Start bit	Transmission bit	Command index	Card status	CRC7	End bit

23.3.2.2.2 R1b

It is the same as R1 with an optional busy signal transmitted on the data line. The card may become busy after receiving these commands based on its state prior to the command reception. The host should check the busy signal.

23.3.2.2.3 R2 (CID & CSD registers)

Code length = 136 bits. The contents of the CID register are sent as a response to the CMD2 and CMD10 commands. The contents of the CSD register are sent as a response t the CMD9. Only the bits [127 ... 1] of the CID and CSD are transmitted, and the reserved bit [0] of these registers is replaced with the end bit of the response.

Table 23- 12 R2 response

Bit	135	134	[133 : 128]	[127 : 1]	0
Field width	1	1	6	127	1
Value	1	0	111111	-	1
Description	Start bit	Transmission	bit Reserved	CID or CSD register	End bit

23.3.2.2.4 R3

Code length = 48 bits. The contents of the OCR register are sent as a response to ACMD41.

Table 23- 13 R3 response

Bit	47	46	[45 : 40]	[39: 8]	[7: 1]	0
Field width	1	1	6	32	7	1
Value	1	0	111111	-	111111	1
Description	Start bit	Transmission bit	Reserved	OCR register	Reserved	End bit

23.3.2.2.5 R4 (Fast I/O)

Code length = 48 bits. The parameter field contains the RCA of the specified card, the register address to be read out or written to, and its contents.

Table 23-14 R4 response

Bit	47	46	[45: 40]	[39: 8]			[7: 1]	0
Field width	1	1	6	16	8	8	7	1
Value	1	0	100111	-	-	-	-	1
Description	Start bit	Transmis ion bit	s CMD39	RCA	Register address	Read register contents	CRC7	End bit

23.3.2.2.6 R4b

For SD I/O only, an SDIO card will respond with a unique SDIO response R4 after receiving the CMD5.

Table 23- 15 R4b response

Bit	47	46	[45: 40]	[39: 8]	[7: 1] 0
		. •	[[00.0]	

Field width	1	1	6	1	3	1	3	24	7	1
Value	1	0	-	-	-	-	-	-	-	1
Description	Start bit	Tx bit	Res.	Card ready	Numberof I/O functions	Current memory	Stuff bit	I/O OCR	Res.	End bit

23.3.2.2.7 R5 (interrupt request)

For MultiMedia card only. Code length = 48 bits. If the response is generated by the host, the RCA field in the parameter will be 0x0.

Table 23- 16 R5 response

Bit	47	46	[45: 40]	[45: 40] [39:		[7: 1]	0
Field width	1	1	6	16	16	7	1
Value	1	0	101000	-	-	-	1
Description	Start bit	Start bit	Tx bit	RCA[31:16] of a successful card or of the host	Not defined. Maybe used for interrupt data	CRC7	End bit

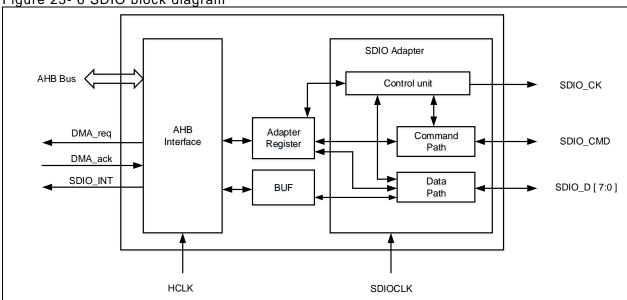
23.3.2.2.8 R6 (interrupt request)

For SD I/O card only. this is a normal response to CMD3 by a memery device.

Table 23- 17 R6 response

Bit	47	46	[45: 40]	[3	9: 8]	[7: 1]	0
Field width	1	1	6	16	16	7	1
Value	1	0	000011	-	-	-	1
Description	Start bit	Tx bit	CMD3	RCA[31:16] of a successful card or of the host	Card status	CRC7	End bit

The card status bit [23: 8] will be changed when the CMD3 is sent to an I/O-only card. In this case, the 16 bits of response are the SD I/O-only values.


- Bit 15=COM_CRC_ERROR
- Bit 14=ILLEGAL COMMAND
- Bit 13=ERROR
- Bit [12: 0]=Reserved

23.3.3 SDIO functional description

SDIO consists of four parts:

- SDIO adapter block: contains a control unit, command path and data path that provides all functions specific to the MMC/SD/SD I/O card such as the clock generation, command and data transfer
 - Control unit: manages and generates clock signals
 - Command path: manages command transfer
 - Data path: manages data transfer
- AHB interface: generates interrupt and DMA request signals
- Adapter register: system register
- BUF: used for data transfer

Figure 23- 6 SDIO block diagram

23.3.3.1 SDIO adapter

SDIO_CK is a clock to the MultiMedia/SD/SDIO car provided by the host. One bit of command or data is transferred on both command and data lines with each clock cycle. The clock frequency can very between different cards and different protocols.

- MultiMedia card
 - V3.31 protocol 0 20MHz
 - V4.0/4.2 protocol 0 50MHz
- SD card
 - − 0 − 50MHz
- SD I/O card
 - 0 50MHz

SDIO_CMD is a bidirectional command channel and used for the initialization of a card and command transfer. When the host sends a command to a card, the card will issue a response to the host. The SDIO CMD has two operational modes:

- Open-drain mode for initialization (only for MMCV3.31 or previous)
- Push-pull mode for command transfer (SD/SD I/O card and MMC V4.2 also use push-pull drivers for initialization)

SDIO_D [7:0] is a bidirectional data channel. After initialization, the host can change the width of the data bus. After reset, the SDIO_D0 is used for data transfer by default. MMCV3.31 or previous supports only one bit of data line, so only SDIO_D0 can be used.

The table below is used for the MultiMedia card/SD/SD I/O card bus:

Table 23- 18 SDIO pin definitions

Pin	Direction	Description
SDIO_CK	Output	MultiMedia card/SD/SDIO card clock. This pin is the clock from the host to a card.
SDIO_CMD	Bidirectional	MultiMedia card/SD/SDIO card command. This pin is the bidirectional command/response signal.
SDIO_D[7: 0]	Bidirectional	MultiMedia card/SD/SDIO card data. This pin is the bidirectional databus.

Control unit

The control unit consists of a power management sub-unit and a clock management sub-unit. The power management subunit is controlled by the SDIO_PWRCTRL register. The PS bit is used to define power-up/power-off state. During the power-off and power-up phases, the power management subunit will disable the card bus output signals. The clock management subunit is controlled by the SDIO_CLKCTRL

register where the CLKDIV bit is used to define the divider factor between the SDIOCLK and the SDIO output clock. If BYPSEN = 0, the SDIO_CK output signal is driven by the SDIOCLK divided according to the CLKDIV bit; if BYPSEN = 1, the SDIO_CK output signal is directly driven by the SDIOCLK. The HFCEN is set to enable hardwar flow control feature in order to avoid the occurrence of an error at transmission underflow or reception overflow. The PWRSVEN bit can be set by software to enable power save mode, and the SDIO_CK can be output only when the bus is active.

Command path

The command path unit sends commands to and receives responses from the cards. When the CCSMEN bit is set in the SDIO_CMDCTRL register, a command transfer starts. First sends a command to a card by the SDIO_CMD, the command length is 48 bits. The data on the SDIO_CMD is synchronized with the rising edge of the SDIO_CK. A block of data is transferred with each SDIO_CK, including start bit, transfer bit, command index defined by the SDIO_CMDCTRL_CMDIDX bit, parameters defined by the SDIO_ARG, 7-bit CRC and end bit. Then receives responses from the card. There are two response types: 48-bit short response and 136-bit long response. Both use CRC erro check. The received responses are saved in the area from SDIO_RSP1 to SDIO_RSP4. The command path can generate command flag, which can be defined by the SDIO_STS register.

Table 23- 19 Command formats

Bit	47	46	[45: 40]	[39: 8]	[7:1]	0
Width	1	1	6	32	7	1
Value	0	1	-	-	-	1
Description	Start bit	Tx bit	Command index	Parameter	CRC7	End bit

Response: A response is sent from a specified card to the host (or synchronously from all cards for MMCV3.31 or previous), as an answer to a previously received command. Responses are transferred serially on the CMD line.

Table 23- 20 Short response format

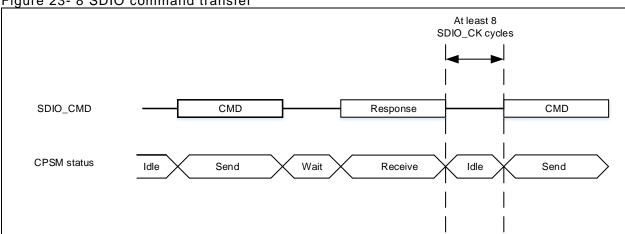
Bit	47	46	[45: 40]	[39: 8]	[7:1]	0
Width	1	1	6	32	7	1
Value	0	0	-	-	-	1
Description	Start bit	Tx bit	Command index	Parameter	CRC7 (or 1111111)	End bit
Table 23- 21	Long respons	e format				
Bit	135	134	[133:	128] [1	127: 1]	0
Width	1	1	6	12	27	1
Value	0	0	11111	1 -		1
				CI	D or CSD	
Description	Start bit	Tx	Rese	rved (ir	cluding	End bit

Table 23- 22 Command path status flags

Flag	Description
CMDRSPCMPL	A response is already received (CRC OK)
CMDFAIL	A command response is already received (CRC fails)
CMDCMPL	A command is sent (does not require a response)
CMDTIMEOUT	Command response timeout (64 SDIO_CK cycles)
DOCMD	Command transfer is in progress

Command channel state machine (CCSM)

When the CCSMEN bit is set in the SDIO_CMDCTR register, command transfer starts. When the command has been sent, the command channel state machine (CCSM) will set the status flags and enters the idle state if a response is not required. When a response is received, the received CRC code and the internally generated CRC code are compared, and the appropriate status flags are set.


- The CCSM remains in the idle state for at least 8 SDIO_CK cycles to meet the Ncc (the minimum delay beteen two host commands) and NRC (the minimum delay between the host command and the card response).
- When the wait state is entered, the command timer is enabled. if the NCR timeout (resonse time to a command), that is, 64 SDIO_CK periods, is reached before the CCSM moves to the receive state, the timeout flag is set (CMDTIMEOUT) and the idle state is entered.

If the interrupt bit is set in the command register, the timer is disabled and the CCSM waits for an interrupt request from one card. If the pending bit is set in the command register, the CCSM will enter pend state and wait for a CmdPend signal from the data path subunit. When detecting the CmdPend, the CCSM goes to the send state, which triggers the data counter to send the stop command.

Figure 23-7 Command channel state machine (CCSM) after reset CCSM enabled and Idle vait for command Response received State machine disabled or CCSM CRC error Pend CCSM disabled command Receive timeout command start CPSM disable or no response Data Response Send Wait Wait for

2021.12.01 Page 390 Ver 2.02

Figure 23- 8 SDIO command transfer

Data path

The data path subunit transfers data between the host and the cards. The databus width can be configured using the BUSWS bit in the SDIO_CLKCTRL register. By default, only the SDIO_DO signal line is used for transfer. Only one bit of data is transferred with each clock cycle. If the 4-bit wide bus mode is selected, four bits are transferred per clock cycle over the SDIO_D [3:0] signal line. If the 8-bit wide bus mode is selected, eight bits are transferred per clock cycle over the SDIO_D [7: 0] signal line. The TFRDIR bit is set in the SDIO_DTCTR register to define the transfer direction. If TFRDIR=0, it indicates that the data is transferred from the controller to the card; if TFRDIR=1, it indicates that the data is transferred from the card to the controller. The TFRMODE bit can be used to select block data transfer or stream transfer for the MultiMedia card. If the TFREN bit is set, data transfer starts. Depending on the TFRDIR bit, the DCSM enters Wait_S or Wait_R state.

Data channel state machine (DCSM)

The DCSM has seven states, in send and receive mode, as shown in the Figure below:

Figure 23- 9 Data channel state machine (DCSM) Busv Read Wait DCSM enabled, and Read Wait starts, and SD I/O mode enabled 'Read Wait" stops Not busy After reset Disabled, or CRC fails, or Data received, "Read Wait" End of packet DCSM disabled starts, and SD I/O mode timeout Disabled, or BUF underrun, or end of Disabled or CRC fails Idle Send Receive data, or CRC error Start bit Enabled and not send Data ready Enabled and send End of packet or data, or Disabled, or Rx BUF Disabled or end of data BUF overrun Empty, or timeout, or start bit error Wait S Wait_R

Send mode

- Idle: The data channel is inactive, either in the Wait S or the Wait R state.
- Wait_S: Waits until the BUF flag becomes empty or the data transmission is completed. The
 DCSM must remain in the Wait_S state for at leat two clock periods to meet the N_{WR} timing
 requirements where the N_{WR} is the interval between the reception of the card response and the start
 of the data transfer from the host.
- Send: The DCSM sends data to a card, and the data transfer mode can be either block or stream, depending on the SDIO_DTCTRL_TFRMODE bit. If an overflow error occurred, the DCSM then moves to the idle state

- Busy: The DCSM waits for the CRC flag. If the DCSM receives a correct CRC status and is not busy, it will enter the Wait_S state. If it does not receive a correct CRC status or a timeout occurs while the DCSM is in the busy state, a CRC fail flag or timeout flag is generated.
- Wait_R: The start bit of the Wait_R. If a timeout occurs before it detects a start bit, the DCSM moves to the idle state and generates a timeout flag.
- Receive: Data is received from a card and writtento the BUF. The data transfer mode can be either block or stream, depending on the SDIO_DTCTRL _TFRMODE bit. If an overflow error occurs, it then returns to Wait R state.

Table 23-23 Data token formats

Description	Start bit	Data	CRC16	End bit
Block data	0	-	Υ	1
Stream data	0	-	N	1

23.3.3.2 Data BUF

The data BUF contains a transmit and receive unit. It is a 32-bit wide and 32-word deep data buffer. Becase the data BUF operates in the AHB clock domain (HCLK), all signals connected to the SDIO clock domain (SDIOCLK) are resynchronized.

• Transmit BUF: Data can be written to the transmit BUF via the AHB interface when the SDIO transmission feature is enabled.

The transmit BUF has 32 sequential addresses. It contains a data output register that holds the data word pointed by the read pointer. When the data path has loaded its shift register, it moves its read pointer to the next data and outputs data.

If the transmit BUF is disabled, all status flags are inactive. The data path sets the DOTX when it transmits data.

• Receive BUF: When the data path receives a data word, it will write the data to the BUF. The write pointer is incremented automatically after the end of the wrie operation. On the other side, a read pointer always points to the current data in the BUF. If the receive BUF is disabled, all status flags are cleared, and the read and write pointers are reset as well. The data path sets the DORX when it receives data.

23.3.3.3 SDIO AHB interface

The AHB interface generates the interrupt and DMA requests, and access the SDIO interface registers and the data BUF.

SDIO interrupts

The interrupt logic generats an interrupt request when one of the selected status flags is hight. The SDIO INTEN register is used to select the conditions that will generat an interrupt.

SDIO/DMA interface: data transfer pocess between the SDIO and memory

In the following examples, data is transferred from the host to the card. the SDIO BUF is filled with data stored in a memory through the DMA controller.

- 1. Card identification process
- 2. Increase the SDIO_CK frequency
- 3. Select a card by sending CMD7
- 4. Enable the DMA2 controller and clear all interrupt flag bits, configure the DMA2 channel4 source address register as the memory buffer's base address, and the DMA2 channel4 destination address register as the SDIO_BUF register address. Then configure the DMA2 channel4 control register (memory increment, non-peripheral increment, and peripheral and source data width is word width). Finally enable DMA2 channel4.
- 5. Send CMD24 (WRITE_BLOCK) as follows:

Program the SDIO data length register (SDIO_DTLEN), the BLKSIZE bit in the SDIO data control register (SDIO_DTCTRL), and the SDIO parameter register (SDIO_ARG) with the address of the card where data is to be transferred, and program the SDIO command register (SDIO_CMD), enable the CCSMEN bit, wait for SDIO_STS [6]=CMDRSPCMPL interrupt,

and then program the SDIO data control register (SDIO_DTCTRL): TFREN=1 (enable the SDIO card host to send data), TFRDIR=0 (from the controller to the card), TFRMODE=0 (block data transfer), DMAEN=1 (enable DMA), BLKSIZE=9 (512 bytes), and wait from SDIO STS [10]=DTBLKCMPL.

6. Check that no channesl are still enabled by confirming the DMA channel enable SDIO status register (SDIO STS)

23.3.3.4 Hardware flow control

The HFCEN bit is set in the SDIO_CLKCTRL register to enable hardware flow control, which is sued to avoid BUF underflow and overflow errors. Read/write access to the BUF is still active even if flow control is enabled.

23.3.4 SDIO I/O card-specific operations

The SDIO can support the following operations (except read suspend, for it does not require specific hardware operation) when the SDIO_DTCTRL [11] is set.

SDIO read wait operation by SDIO_D2 siganl lines

The optional read wait operation is used only for SD card 1-bit or 4-bit mode. The read wait operation can instruct the host to stop data transfer temporarily while the host is reading from multiple registers (IO_RW_EXTENDED, CMD53), and also allows the host to send commands to other functions in the SD I/O device in order to start a read wait process after the reception of the first data block. The detailed process as follows:

- Enable data path (SDIO DTCTRL [0] = 1)
- Enalbe SDIO-specific operation (SDIO DTCTRL [11] = 1)
- Start read wait (SDIO DTCTRL [10]=0 and SDIO DTCTRL [8]=1)
- Data direction is from a card to the SDIO host (SDIO DTCTRL [1]=1)
- The data unit in the SDIO adapter will enter read wait state, and drive the SDIO_D2 to 0 after 2 SDIO_CK cycles
- The data unit starts waiting to receive data from a card. the DCSM will not enter read wait even if read wait start is set. The read wait process will start after the CRC is received. The RDWTSTOP has to be cleared to start a new read wait operation.

Durint the read wait period, the SDIO host can detect the SDIO interrupts over the SDIO D1.

SDIO read wait operation by stopping clock

If the SDIO card does not support the mentioned above read wait operation, the SDIO can enter a read wait by stopping SDIO CK, described as follows:

- Enable data path (SDIO DTCTRL [0] = 1)
- Enalbe SDIO-specific operation (SDIO_DTCTRL [11] = 1)
- Start read wait (SDIO DTCTRL [10]=0 and SDIO DTCTRL [8]=1)

The DCSM stos the clock two SDIO_CK cycles after the end bit of the current received data block and starts the clock again after the read wait end bit is set.

Note that as the SDIO_CK is stopped, the SDIO host cannot send any command to the card. the SDIO host can detect the SDIO interrupt over the SDIO D1.

SDIO suspend/resume operation (write and read operation suspend)

To free the bus to provide higher-priority transfers for other functions or memories, the host can suspend data transfer to certain functions or memories. As soon as the higher-priority transfer is completed, the previous transfer operation will restart at the suspended location.

While sending data to a card, the SDIO can suspend the write operation. the SDIO_CMD [11] bit is set and indicates to the CCSM that the current command is a suspend command. The CCSM analyzes the response and when a ACK signal is received from the card (suspend accepted), it acknowledges the DCSM that enters the idle state after receiving the CRC of the current data block.

SDIO interrupts

There is a pin with interrupt feature on the SD interface in oder to enable the SD I/O card to interrupt the MultiMedia card/SD module. In 4-bit SD mode, this pin is SDIO_D1. The SD I/O interrupts are detected when the level is active. In other words, the interrupt signal line must be active (low) before it is recognized and responded by the MultiMedia card/SD module, and will remain inactive (high) at the end of the interrupt routine.

When the SDIO DTCTRL [11] bit is set, the SDIO interrupts are detected on the SDIO D1 signal line.

23.4SDIO registers

The device communicates with the system through 32-bit control registers accessible via AHB. The peripheral registers must be accessed by words (32-bit).

Table 23- 24 A summary of the SDIO registers.

Register	Offset	Reset value
SDIO_PWRCTRL	0x00	0x0000 0000
SDIO_CLKCTRL	0x04	0x0000 0000
SDIO_ARG	0x08	0x0000 0000
SDIO_CMD	0x0C	0x0000 0000
SDIO_RSPCMD	0x10	0x0000 0000
SDIO_RSP1	0x14	0x0000 0000
SDIO_RSP2	0x18	0x0000 0000
SDIO_RSP3	0x1C	0x0000 0000
SDIO_RSP4	0x20	0x0000 0000
SDIO_DTTMR	0x24	0x0000 0000
SDIO_DTLEN	0x28	0x0000 0000
SDIO_DTCTRL	0x2C	0x0000 0000
SDIO_DTCNTR	0x30	0x0000 0000
SDIO_STS	0x34	0x0000 0000
SDIO_INTCLR	0x38	0x0000 0000
SDIO_INTEN	0x3C	0x0000 0000
SDIO_BUFCNTR	0x48	0x0000 0000
SDIO_BUF	0x80	0x0000 0000

23.4.1 SDIO power control register (SDIO_ PWRCTRL)

Bit	Register	Reset value	Type	Description
Bit 31: 2	Reserved	0x0000 0000	resd	Kept at its default value.
				Power switch
				These bits are set or cleared by software. They are used to define the current status of the card clock.
Bit 1: 0	PS	0x0	rw	00: Power-off, the card clock is stopped.
				01: Reserved
				10: Reserved
				11: Power-on, the card clock is started.

Note: Write access to this register is not allowed within seven HCLK clock periods after data is written.

23.4.2 SDIO clock control register (SDIO_ CLKCTRL)

The SDIO_CLKCTRL register controls the SDIO_CK output clock.

Bit	Register	Reset value	Type	Description
Bit 31: 17	Reserved	0x0000	resd	Kept at its default value.
				Clock division
Bit 16: 15	CLKDIV	0x0	rw	This field is set or cleared by software. It defines the clock division relations between the SDIOCLK and the SDIO_CK: SDIO_CK frequency=SDIOCLK / [CLKDIV[9: 0] + 2].
				Hardware flow control enable
				This bit is set or cleared by software.
				0: Hardware flow control disabled
Bit 14	HFCEN	0x0	rw	1: Hardware flow control enabled
				Note: When hardware flow control is enabled, refer to the SDIO_STS register for the meaning of the TXBUF_E and RXBUF_F interrupt signals.
_				SDIO_CK edge selection
				This bit is set or cleared by software.
Bit 13	CLKEGS	0x0	rw	0: SDIO_CK generated on the rising edge of the master clock SDIOCLK
				1: SDIO_CK generated on the falling edge of the master clock SDIOCLK
				Bus width selection
				This bit is set or cleared by software.
Bit 12: 11	BUSWS	0x0	rw	00: Default bus mode, SDIO_D0 used
				01: 4-bit bus mode,SDIO_D[3: 0] used
				10: 8-bit bus mode, SDIO_D[7: 0] used
				Clock divider bypass enable bit
Bit 10	BYPSEN	0x0	rw	This bit is set or cleared by software. When disabled, the SDIO_CK output signal is driven by the SDIOCLK that is divided according to the CLKDIV value. When enabled, the SDIO_CK output signal is directly driven by the SDIOCLK.
				0: Clock divider bypass disabled
				1: Clock divider bypass enabled
				Power saving mode enable
Bit 9	PWRSVEN	0x0	rw	This bit is set or cleared by software. When disabled, the SDIO_CK is always output; when enabled, the SDIO_CK is only output when the bus is active.
				0: Power saving mode disabled
				1: Power saving mode enabled
				Clock output enable
D:+ 0	CLKOEN	0.40	m.,	This bit is set or cleared by software.
Bit 8	CLKOEN	0x0	rw	0: Clock output disabled
				1: Clock output enabled
				Clock division
Bit 7: 0	CLKDIV	0x00	rw	This field is set or cleared by software. It defines the clock division relations between the SDIOCLK and the SDIO_CK: SDIO_CK frequency=SDIOCLK / [CLKDIV[9: 0] + 2].

Note: 1. While the SD/SDIO card or MultiMedia car is in identification mode, the SDIO_CK frequency must be less than 400kHz.

- 2. When all card are assigned with relative card addresses, the clock frequency can be changed to the maxmimum card frequency.
- 3. This register cannot be written within seven HCLK clock periods after data is written. The SDIO_CK can be stopped during the read wait period for SD I/O cards. In this case, the SDIO_

CLKCTRL register does not control the SDIO CK.

23.4.3 SDIO argument register (SDIO_ARG)

The SDIO_ARG register contains 32-bit command argument, which is sent to a card as pat of a command.

Bit	Register	Reset value	Type	Description
				Command argument
Bit 31: 0	ARGU	0x0000 0000	rw	Command argument is sent to a card as part of a command. If a ommand contains an argument, it must be loaded into this register before writing a command to the command register.

23.4.4 SDIO command register (SDIO_CMD)

The SDIO_CMD register contains the command index and command type bits. The command index is sent to a card as part of a command. The command type bits control the command channel state machine (CCSM).

Bit	Register	Reset value	Type	Description
Bit 31: 12	Reserved	0x00000	resd	Kept at its default value.
				SD I/O suspend command
				This bit is set or cleared by software. If this bit is set, the
Bit 11	IOSUSP	0x0	rw	command to be sent is a suspend command (used for SDIO only).
	.000.	57.0		0: SD I/O suspend command disabled
				•
				1: SD I/O suspend command enabled
				Command channel state machine (CCSM) enable bit
Bit 10	CCSMEN	0x0	rw	This bit is set or cleared by software.
				0: Command channel state machine disabled
				1: Command channel state machine enabled
				CCSM Waits for ends of data transfer (CmdPend internal
				signal)
5 6				This bit is set or cleared by software. If this bit is set, the CCSM waits for the end of data transfer before it starts
Bit 9	PNDWT	0x0	rw	sending a command.
				0: Disabled
				1: Enabled
				CCSM waits for interrupt request
				This bit is set or cleared by software. If this bit is set, thE
				CCSM disables command timeout and waits for an
Bit 8	INTWT	0x0	rw	interrupt request.
				0: Disabled
				1: Enabled
				Wait for response bits
				This bit is set or cleared by software. This bit indicates
				whether the CCSM is to wait for a response, and if yes, it
Bit 7: 6	RSPWT	0x0	rw	will indicates the response type.
Dit 7.0	NOI WI	0.00	I VV	00: No response
				01: Short response
				10: No response
				11: Long response
				Command index
Bit 5: 0	CMDIDX	0x00	rw	The command indes is sent to a card as part of a
				command.

Note: 1. This register cannot be written withing sevel HCLK clock periods after data is written.

2. MultiMedia card can sent two types of responses: 48-bit short response or 136-bit short response. The SD card and SD I/O card can send only short responses, and the argument

can vary according to the type of response. The software will distinguish the tpe fo response according to the command sent.

23.4.5 SDIO command response register (SDIO_RSPCMD)

The SDIO_RSPCMD register contains the command index of the last command response received. If the command response transmission does not contain the command index (long or OCR response), the SDIO_RSPCMD field is unknon, alghout it should have contained 111111b (the value of the reserved field from a response)

Bit	Register	Reset value	Type	Description
Bit 31: 6	Reserved	0x0000000	resd	Kept at its default value.
				Response command index
Bit 5: 0	RSPCMD	0x00	ro	This field contains the command indes of the command response received.

23.4.6 SDIO response 1..4 register (SDIO_RSPx)

The SDIO RSPx (x=1..4) register contains the status of a card, which is parf of the response received.

Bit	Register	Reset value	Type	Description		
Bit 31: 0	CARDSTSx	0x0000 0000	ro	See Table 23-25		
The card status size is 32 or 127 bits, dependion on the response type						

Table 23- 25 Response type and SDIO_RSPx register

Register	Short response	Long response
SDIO_RSP1	Card status [31: 0]	Card status [127: 96]
SDIO_RSP2	Unused	Card status [95: 64]
SDIO_RSP3	Unused	Card status [63: 32]
SDIO_RSP4	Unused	Card status [31: 1]

The most significant bit of the card status is always received first. The least significant bit of the SDIO RSP4 register is always 0.

23.4.7 SDIO data timer register (SDIO DTTMR)

The SDIO_DTTMR register contains the data timeout period in the unit of card bus clock periods. A counter loads the value from the SDIO_DTTMR register and starts decrementing when the DCSM enters the Wait_R or busy state. If the counter reaches 0 while the DCSM is in either of these states, a timeout status flag will be set.

Bit	Register	Reset value	Type	Description
Bit 31: 0	TIMEOUT	0x0000 0000	rw	Data timeout period Data timeout period in card bus clock cycles.

Note: A data transfer must be written to the SDIO_DTCNTR and the SDIO_DTLEN register before being written to the SDIO data control register (SDIO DTCTRL).

23.4.8 SDIO data length register (SDIO_DTLEN)

The SDIO_DTLEN register contains the number of data bytes to be transferred. the value is loaded into the data counter when data transfer starts.

Bit	Register	Reset value	Type	Description
Bit 31: 25	Reserved	0x00	resd	Kept at its default value.
Bit 24: 0	DTI TN	m	Data length value	
	DTLEN	0x0000000	rw	Number of data bytes to be transferred.

Note: For a block data transfer, the value in the SDIO_DTLEN msut be a multiple of the block data size.

A data transfer must be written to the SDIO_DTCNTR and the SDIO_DTLEN register before being written to the SDIO data control register (SDIO_DTCTRL).

23.4.9 SDIO data control register (SDIO_DTCTRL)

The SDIO_DTCTRL register controls the data channel statue machine (DCSM).

Bit	Register	Reset value	Type	Description
Bit 31: 12	Reserved	0x00000	resd	Kept at its default value. SD I/O enable functions
				This bit is set or cleared by software. If the bit is set, the
Bit 11	IOEN	0x0	rw	DCSM performs an SD IO card-specific operation.
	-			0: Disabled
				1: Enabled
				Read wait mode
Bit 10	RDWTMODE	0x0	rw	This bit is set or cleared by software. If disabled, the SDIO_D2 contols the read wait; if enabled, the SDIO_CK controls the read wait.
				0: Disabled
				1: Enabled
				Read wait stop
Bit 9	RDWTSTOP	0x0	rw	This bit is set or cleared by software. While the the RDWTSTART is set, If this bit is set, it indicates that read wait is stopped; if this bit cleared, it indicates that the read wait is in progress. 0: Read wait is in progress if the RDWTSTART is set.
				1: Read wait is stopped if the RDWTSTART is set.
				Read wait start
Bit 8	RDWTSTART	0x0	rw	This bit is set or cleared by software. When this bit is set, read wait starts; when this bit is cleared, no ations occurs.
				0: Read wait disabled
				1: Read wait enabled
				Data block size
				his bit is set or cleared by software. This field defines the length of data block when the block datat transfer is selected.
				0000: block length = 2^0 = 1 byte
				0001: block length = 2^1 = 2 bytes
		0x0		0010: block length = 2^2 = 4 bytes
				0011: block length = 2 ³ = 8 bytes
				0100: block length = 2^4 = 16 bytes
				0101: block length = 2^5 = 32 bytes
Bit 7: 4	BLKSIZE		rw	0110: block length = 2^6 = 64 bytes
				0111: block length = 2^7 = 128 bytes
				1000: block length = 2^8 = 256 bytes
				1001: block length = 2^9 = 512 bytes
				1010: block length = 2^{10} = 1024 bytes
				1011: block length = 2 ¹¹ = 2048 bytes
				1100: block length = 2^{12} = 4096 bytes
				1101: block length = 2 ¹³ = 8192 bytes
				1110: block length = 2 ¹⁴ = 16384 bytes
				1111: Reserved
				DMA enable bit
D:4 C		00		This bit is set or cleared by software.
Bit 3	DMAEN	0x0	rw	0: Disabled
				1: Enabled
				Data transfer mode selection
Bit 2	TFRMODE	0x0	rw	This bit is set or cleared by software. If this bit is set, it indicates stread data transfer; if this bit cleared, it indicates

				block data transfer.
				0: Disabled
				1: Enabled
-				Data transfer direction selection
Bit 1	TFRDIR	0x0	rw	This bit is set or cleared by software. If this bit is set, data transfer is from a card to a controller; if this bit is cleared, data transfer is from a controlle to a card.
				0: Disabled
				1: Enabled
				Data transfer enabled bit
Bit 0	TFREN	0x0	rw	This bit is set or cleared by software. If this bit is set, data transfer starts. The DCSM enters the Wait_S or Wait_R state, depending on the direction bit TFRDIR. The DCSM goes to the read wait state if the RDWTSTART bit is set from the beginning of the transfer. It is not necessary to clear the enable bit after the end of data transfer but the SDIO_DTCTRL must be updated to enable a new data transfer.
				0: Disabled
				1: Enabled

Note: This register cannot be written within seven HCLK clock periods after data is written.

23.4.10 SDIO data counter register (SDIO_DTCNTR)

The SDIO_DTCNTR register loads the value from the SDIO_DTLEN register when the DCSM moves from the idle state to the Wait_R or Wait_S state. During the data transfer, the counter value decrements to 0, and then the DCSM enters the idle state and sets the data status end flag bit DTCMPL.

Bit	Register	Reset value	Type	Description
Bit 31: 25	Reserved	0x00	resd	Kept at its default value.
				Data count value
Bit 24: 0	CNT	0x0000000	ro	When this register is read, the number of data bytes to be transferred is returned. Write access has no effect.

Note: This register can be read only when the data transfer is complete.

23.4.11 SDIO status register (SDIO_STS)

The SDIO STS is a read-only register, containing two types of flags:

- Static flags (bits [23: 22, 10: 0]): These bits can be cleared by writing to the SDIO_INTCLR register.
- Dynamic flags (bit [21: 11]): These bit status changes with the state of the corresponding logic (for example, BUT full or empty flag is set or cleared as data written to the BUF)

Bit	Register	Reset value	Type	Description
Bit 31: 23	Reserved	0x000	resd	Kept at its default value.
Bit 22	IOIF	0x0	ro	SD I/O interrupt received
Bit 21	RXBUF	0x0	ro	Data available in receive BUF
Bit 20	TXBUF	0x0	ro	Data available in transmit BUF
Bit 19	RXBUFE	0x0	ro	Receive BUF empty
				Transmit BUF empty
Bit 18	TXBUFE	0x0	ro	If hardware flow control is enabled, the TXBUF_E signal becomes valid when the BUF contains two words.
				Receive BUF full
Bit 17	RXBUFF	0x0	ro	If hardware flow control is enabled, the RXBUF_F becomes valid two words before the BUF is full.
Bit 16	TXBUFF	0x0	ro	Transmit BUF full
				Receive BUF half full
Bit 15	RXBUFH	0x0	ro	There are at least 8 words in the BUF. This flag bit can be used as DMA request.

				Transmit BUF half empty:
Bit 14	TXBUFH	0x0	ro	At least 8 words can be written to the BUF. This flag bit can be used as DMA request.
Bit 13	DORX	0x0	ro	Data receive in progress
Bit 12	DOTX	0x0	ro	Data transmit in progress
Bit 11	DOCMD	0x0	ro	Command transfer in progress
Bit 10	DTBLKCMPL	0x0	ro	Data block sent/received CRC check passed)
Bit 9	SBITERR	0x0	ro	Start bit not detected on all data signals in wide bus mode
Bit 8	DTCMPL	0x0	ro	Data end (data counter, SDIO CNT, is zero)
Bit 7	CMDCMPL	0x0	ro	Command sent (no response required)
Bit 6	CMDRSPCMPL	0x0	ro	Command response (CRC check passed)
Bit 5	RXERRO	0x0	ro	Received BUF overrun error
Bit 4	TXERRU	0x0	ro	Transmit BUF underrun error
Bit 3	DTTIMEOUT	0x0	ro	Data timeout
				Command response timeout
Bit 2	CMDTIMEOUT	0x0	ro	The command timeout is a fixed value of 64 SDIO_CK clock periods.
Bit 1	DTFAIL	0x0	ro	Data block sent/received (CRC check failed)
Bit 0	CMDFAIL	0x0	ro	Command response received (CRC check failed)

23.4.12SDIO clear interrupt register (SDIO_INTCLR)

The SDIO_INTCLR is a read-only register. Writing 1 to the corresponding register bit will clear the correspond bit in the SDIO_STS register.

Bit	Register	Reset value	Type	Description
Bit 31: 23	Reserved	0x000	resd	Kept at its default value.
D:1 00	IOIF	0.40		SD I/O interface flag clear bit
Bit 22	IOIF	0x0	rw	This bit is set by software to clear the IOIF flag.
Bit 21: 11	Reserved	0x000	resd	Kept at its default value.
D:: 40	DTDL KOMBI	0.40		DTBLKCMPL flag clear bit
Bit 10	Bit 10 DTBLKCMPL	0x0	rw	This bit is set by software to clear the DTBLKCMPL flag.
Bit 9 SBITERR	ODITEDD	00		SBITERR flag clear bit
	SBITERK	0x0	rw	This bit is set to clear the SBITERR flag.
D:: 0	DTOMBI			DTCMPL flag clear bit
Bit 8 DTCMPL	DICMPL	0x0	rw	This bit is set by software to clear the DTCMPL flag.
Bit 7	CMDCMPL	0x0	rw	CMDCMPL flag clear bit
				This bit is set by software to clear the CMDCMPL flag.
D:: 0				MDRSPCMPL flag clear bit
Bit 6	CMDRSPCMPL	0x0	rw	This bit is set by software to clear the CMDRSPCMPL flag.
	51/5556	0x0	rw	RXERRO flag clear bit
Bit 5	RXERRO			This bit is set by software to clear the RXERRO flag.
D'' 4	TYEDDII	0.0		TXERRU flag clear bit
Bit 4	TXERRU	0x0	rw	This bit is set by software to clear the TXERRU flag.
				DTTIMEOUT flag clear bit
Bit 3	DTTIMEOUT	0x0	rw	This bit is set by software to clear the DTTIMEOUT flag.
				CMDTIMEOUT flag clear bit
Bit 2	CMDTIMEOUT	0x0	rw	This bit is set by software to clear the CMDTIMEOUT flag.
				DTFAIL flag clear bit
Bit 1	DTFAIL	0x0	rw	This bit is set by software to clear the DTFAIL flag.
	21.75			CMDFAIL flag clear bit
Bit 0	CMDFAIL	0x0	rw	This bit is set by software to clear the CMDFAIL flag.

23.4.13 SDIO interrupt mask register (SDIO_INTEN)

The SDIO_INTEN register determines which status bit generates an interrupt by setting the corresponding bit.

Bit	Register	Reset value	Type	Description
Bit 31: 23	Reserved	0x000	resd	Kept at its default value.
				SD I/O mode received interrupt enable
	IOIFIEN			This bit is set or cleared by software to enable/disable the
Bit 22		0x0	rw	SD I/O mode received interrupt function.
				0: Disabled
				1: Enabled
				Data available in RxBUF interrupt enable
				This bit is set or cleared by software to enable/disable the
Bit 21	RXBUFIEN	0x0	rw	Data Available in RxBUF Interrupt.
				0: Disabled
				1: Enabled
				Data available in TxBUF interrupt enable
				This bit is set or cleared by software to enable/disable the
Bit 20	TXBUFIEN	0x0	rw	Data Available in TxBUF Interrupt.
				0: Disabled
				1: Enabled
				RxBUF empty interrupt enable
				This bit is set or cleared by software to enable/disable the
Bit 19	RXBUFEIEN	0x0	rw	RxBUF empty interrupt.
				0: Disabled
				1: Enabled
				TxBUF empty interrupt enable
	TXBUFEIEN	0x0	rw	This bit is set or cleared by software to enable/disable the
Bit 18				TxBUF empty interrupt.
				0: Disabled
				1: Enabled
				RxBUF full interrupt enable
		0x0		This bit is set or cleared by software to enable/disable the
Bit 17	RXBUFFIEN		rw	RxBUF full interrupt.
			• • •	0: Disabled
				1: Enabled
				TxBUF full interrupt enable
				This bit is set or cleared by software to enable/disable the
Bit 16	TXBUFFIEN	0x0	rw	TxBUF full interrupt.
				0: Disabled
				1: Enabled
				RxBUF half full interrupt enable
				This bit is set or cleared by software to enable/disable the
Bit 15	RXBUFHIEN	0x0	rw	RxBUF half full interrupt.
				0: Disabled
				1: Enabled
				TxBUF half empty interrupt enable
				This bit is set or cleared by software to enable/disable the
Bit 14	TXBUFHIEN	0x0	rw	TxBUF half empty interrupt.
				0: Disabled
				1: Enabled
				Data receive acting interrupt enable
				This bit is set or cleared by software to enable/disable the
Bit 13	DORXIEN	0x0	rw	Data receive acting interrupt.
				0: Disabled

				1: Enabled
				Data transmit acting interrupt enable
				This bit is set or cleared by software to enable/disable the
Bit 12	DOTXIEN	0x0	rw	Data transmit acting interrupt.
				0: Disabled
				1: Enabled
				Command acting interrupt enable
				This bit is set or cleared by software to enable/disable the
D:+ 11	DOCMDIEN	0.40	mar	Command acting interrupt.
Bit 11	DOCMDIEN	0x0	rw	0: Disabled
				1: Enabled
				Data block end interrupt enable
				This bit is set or cleared by software to enable/disable the
Bit 10	DTBLKCMPLIEN	0x0	rw	Data block end interrupt.
				0: Disabled
				1: Enabled
				Start bit error interrupt enable
				This bit is set or cleared by software to enable/disable the
Bit 9	SBITERRIEN	0x0	rw	Start bit error interrupt.
				0: Disabled
				1: Enabled
				Data end interrupt enable
				This bit is set or cleared by software to enable/disable the
Bit 8	DTCMPLIEN	0x0	rw	Data end interrupt.
DitO	DIOWII EIEI	OXO	1 44	0: Disabled
				1: Enabled
				Command sent interrupt enable
Bit 7	OMBOMBUEN			•
				This bit is set or cleared by software to enable/disable the Command sent interrupt.
Bit /	CMDCMPLIEN	0x0	rw	0: Disabled
				1: Enabled
				Command response received interrupt enable
				This bit is set or cleared by software to enable/disable the
Bit 6	CMDRSPCMPLIEN	0x0	rw	Command response received interrupt.
				0: Disabled
				1: Enabled
				RxBUF overrun error interrupt enable
				This bit is set or cleared by software to enable/disable the
Bit 5	RXERROIEN	0x0	rw	RxBUF overrun error interrupt.
				0: Disabled
				1: Enabled
				TxBUF underrun error interrupt enable
				This bit is set or cleared by software to enable/disable the
Bit 4	TXERRUIEN	0x0	rw	TxBUF underrun error interrupt.
	.,,	0710		0: Disabled
				1: Enabled
				Data timeout interrupt enable
				This bit is set or cleared by software to enable/disable the
Dit 0		0.40		Data timeout interrupt.
Bit 3	DTTIMEOUTIEN	0x0	rw	0: Disabled
				1: Enabled
				Command timeout interrupt enable
Bit 2	CMDTIMEOUTIEN	0x0	rw	This bit is set or cleared by software to enable/disable the
J. L	OWD TIME OF THE N	O/O	1 77	Command timeout interrupt.
				0: Disabled

2021.12.01 Page 402 Ver 2.02

				1: Enabled
Bit 1				Data CRC fail interrupt enable
	DTFAILIEN	0x0	rw	This bit is set or cleared by software to enable/disable the Data CRC fail interrupt.
				This bit is set or cleared by software to enable/disable the Data CRC fail interrupt. 0: Disabled 1: Enabled Command CRC fail interrupt enable This bit is set or cleared by software to enable/disable the
				1: Enabled
				Command CRC fail interrupt enable
Bit 0	CMDFAILIEN	0x0	rw	This bit is set or cleared by software to enable/disable the Command CRC fail interrupt.
				0: Disabled
				1: Enabled

23.4.14SDIOBUF counter register (SDIO_BUFCNTR)

The SDIO_BUFCNTR register contains the number of words to be written to or read from the BUF. The BUF counter loads the value from the SDIO_DTLEN register when the data transfter bit TFREN is set in the SDIO_DTCTRL register. If the data length is not word-aligned, the remaining 1 to 3 bytes are regarded as a word.

Bit	Register	Reset value	Type	Description
Bit 31: 24	Reserved	0x00	resd	Kept at its default value.
Bit 23: 0	CNT	0x000000	ro	Number of words to be written to or read from the BUF.

23.4.15 SDIO data BUF register (SDIO_BUF)

The receive and data BUF is group of a 32-bit wide registers that can be written or read. The BUF contains 32 registers on 32 sequential addresses. The CPU can use BUF for read/write multiple operations.

Bit	Register	Reset value	Type	Description
Bit 31: 0			rw	Receive and transmit BUF data
	DT	0x0000 0000		The BUF data occupies 32x 32-bit words, the address:
	5.			SDIO base + 0x80 to SDIO base + 0xFC

2021.12.01 Page 403 Ver 2.02

24 Universal serial bus full-seed device interface (USBFS)

24.1 USBFS introduction

The USBFS implements the USB2.0 full-speed protocols. At the bus speed of 1212Mb/s, it supports control transfer, bulk transfer, synchronous transfer and interrupt transfer, as well as USB suspend/resume.

The USBFS has eight programmable bidirectional endpoints that can be configured as different types of transfers according to specific requirements. It contains a SRAM with dual endpoints for data transfer between the endpoint and user application. In the meantime, it has achieved a dual-buffer mechanism for bulk/synchronous endpoints in order to enhance the transfer efficiency. There is an internal DP pull-up resistance in the USBFS PHY to satisfy the needs of the devices.

24.2USBFS clock and pin configuration

24.2.1 USB clock configuration

The USB full-speed device module interface has two clocks: USB control clock and APB1 bus clock. The USB full-speed device bus speed standard is 12Mb/s \pm 0.25%, so it is necessary to supply 48MHz \pm 0.25% for the USBFS to implement USB bus sampling.

USBFS 48M clock has two sources:

- HICK 48M
 - When the HICK 48M clock is used as a USB control clock, it is recommended to enable ACC feature.
- Divided by PLL

The PLL output frequency must ensure that the USBDIV (see the CRM_CFG register) can be divided to 48MHz.

Note: The APB1 clock frequency must be greater than 12MHz when the USBFS is enabled.

24.2.2 USB pin configuration

When the USB module is enabled in the CRM, PA11 and PA12 can be multiplexed as DP/DM; PA8 can be multiplexed as SOF output and configured as a push-pull multiplexed output feature.

Pin	GPIO	Condition
USB_DM	PA11	USB module enabled in the CRM
USB_DP	PA12	USB module enabled in the CRM
USB_SOF	PA8	Optional. If the USB module is enabled in the CRM, the SOF output feature is enabled, and the PA8 can be configured as a push-pull multiplexed output.

24.3USBFS functional description

24.3.1 USB initialization

After the USB module is enabled (enalbe USBFS clock in the CRM), it is necessary to initialize the USBFS prior to the host enumeration as follows:

- 1. Clear software set by setting CSRST = 0
- 2. Clear all status flags by setting INTSTS=0
- 3. Enable USB Core by setting DEVADDR.CEN=1
- 4. Configure interrupt enable bits
- 5. Enable USB PHY by setting CTRL.DISUSB=0

24.3.2 Endpoint configuration

The USBFS supports up to 8 bidirectional and 16 unidirectional endpoints (8 IN and 8 OUT). Each point has its corresponding USBFS endpoint n register (USBFS_EPTn) that is used to store the endpoint status. The endpoint configuration includes:

- Endpoint number (by configuring the EPTADDR, the endpoint number of each endpoint register is programmable)
- Transfer type (control transfer, bulk transfer, isochronous transfer and interrupt transfer)
- Buffer for IN/OUT endpoint (buffer allocation is described in the next section)
- IN/OUT Toggle status (correspond to DATA0/DATA1)
- IN/OUT status (VALID, NAK, STALL, DISABLE)

Note: Endpoint 0 acts as a control point by default. It is usually configuread after receiving a reset signal sent by the host.

24.3.3 USB buffer

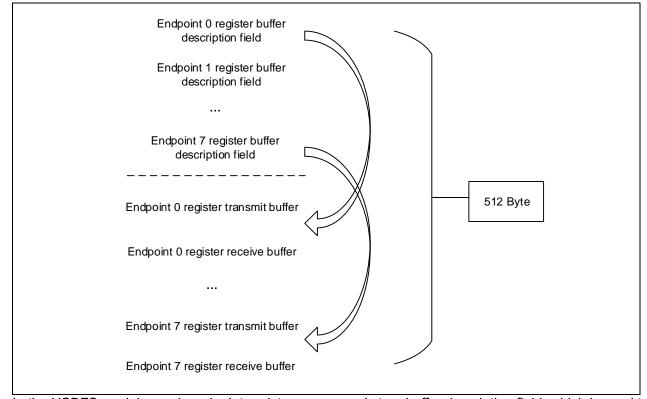

USB has a dual-port SRAM buffer for data transfter between endpoint and user application. Both the user application and the USBFS module can access to the buffer at the same time. The buffer size can be automatically adjusted according to the CAN status. Table 241 lists its mapping address and size.

Table 24- 1 Buffer size configuration table

	. =	izo comigara	11011 101010			
	USBBUFS	0	1			
Working conditions	CAN1 status	Enable/Disable	Disable	Disable	Enable	Enable
	CAN2 status	Enable/Disable	Disable	Enable	Disable	Enable
Buffer size		512 Byte	1280 Byte	1024 Byte	1024 Byte	768 Byte
Address range			0x4000 7800~ 0x4000 81FF	0x4000 7800~ 0x4000 7FFF	0x4000 7800~ 0x4000 7FFF	0x4000 7800~ 0x4000 7DFF

The buffer is composed of the endpoint register buffer description field and the endpoint buffer. The endpoint register description table describes the offset address of endpoint receive/transmit. The figure below gives an example of a buffer structure (512 bytes)

Start address: 0x40006000

In the USBFS module, each endpoint register corresponds to a buffer description field, which is used to

describe the buffer and data length of the endpoint receive/transmit. The structure of a regular endpoint register buffer description field is shown as follows (dual buffer description table is detailed in the next section):

Endpoint n:

0	2	4	6	8	10	12	14
TnADDR	Reserved	TnLEN	Reserved	RnADDR	Reserved	RnLEN	Reserved
Transmit bu	ffer description			Buffer recei	ve description		

The start address of a buffer description field=buffer address + BTADDR*2. The user application puts the endpoint register buffer description in different locations according to specific needs. The BTADDR is by default 0.

The USBFS module contains 8 endpoint registers. Each endpoint register description table acutally occupies 8 bytes. When programming, the user should reserve enough space for buffer description field according to the endpoint register used. While allocating transmit/receive buffer to the endpoint, the offset address is not allowed to occupy the buffer description and transmit/receive buffer of other endpoints.

Note: The APB1 bus width is 32 bits, while the buffer is 16-bit wide memory, meaning that the APB1 bus can write only two-byte data to a packet buffer each time. For this reason, 8 consecutive write accesses are required when a 16-byte data is to be written.

24.3.4 Double-buffered endpoints

Double-buffered mode is designed in the USBFS module in order to increase the transaction rate of bulk transfer and isochronous transfer.

One IN endpoint (or OUT endpoint) corresponds to two buffers. Figure 24-1 shows the differences of buffer description table between regular endpoint and double-buffered endpoint.

USB_T1ADDR USB T1LEN Endpoint 1 USB_R1ADDR USB_R1LEN (a) USB_T1ADDR_0 USB_R1ADDR_0 USB_T1LEN_0 USB_R1LEN_0 Double Double-buffered buffered OUT endpoint 1 N en doint 1 USB_R1ADDR_1 USB_T1ADDR_1 USB T1LEN 1 USB_R1LEN_1 (c) (b)

Figure 24- 1 Buffer description table of regular endpoint vs. double-buffered endpoint

Two endpoint transfer modes support double-buffered function:

Bulk transfer endpoints

Enable double-buffered feature by setting TRANS TPYE=00 and EXF=1

Isochronous transfer endpoints

When TRANS TPYE=10, double-buffered feature is enabled.

Two buffers are used to increase the transfer rate. The USBFS and the user application access to a different buffer at the same time so as to process data simultaneously. The USBFS and the user application must determine which one of the existing buffers is accessible, which can be done by the SBUF flag in the USBFS.

Double-buffered OUT endpoints: SBUF corresponds to bit 6 in the USB EPTn SBUF=1, USBFS uses RnADDR 0 and RnLEN 0, while the user application uses RnADDR 1 and

RnLEN 1

SBUF=0, USBFS uses RnADDR_1 and RnLEN_1, while the user application uses RnADDR_0 and RnLEN_0

• Double-buffered IN endpoints: SBUF corresponds to bit 14 in the USB EPTn

SBUF=1, USBFS uses $TnADDR_0$ and $TnLEN_0$, while the user application uses $TnADDR_1$ and $TnLEN_1$

SBUF=0, USBFS uses TnADDR_1 and TnLEN_1, while the user application uses TnADDR_0 and TnLEN 0 $\,$

Note: Endpoint 0 cannot be used as a double-buffered endpoint.

24.3.5 SOF output

A SOF flag is generated when the USBFS receives a SOF sent by the host. Meanwhile, the current frame number can be read from the USBFS_SOFRNUM register. By setting the SOFOUTEN bit in the USBFS_CFG register, a SOF pulse sigal with a width of 24 APB1 clock cycles will be output onto the pin.

24.3.6 Suspend/Resume

The USB2.0 full-speed standard defines a low-power consumption state, called Suspend. In suspend mode, a suspend state is entered when the idle state is detected on the bus for more than 3ms. The USBFS can enter suspend state in two ways:

- 1. Detect the lack of three consecutive SOF packets
- 2. Control register SSP is set by the application

When the device detects the lack of three consecutive SOF packets, the SSP and LPM registers must be set by the application in order to disable SOF detection and the statistic power consumtion of the USB physical transceiver.

Resume refers to a process when the USB device returns from a suspend state to a normal state. When the USB device is in suspend mode, any non-idle state (such as packet start signal SOF) of its upstream port can resume it. In addition, the USB device can also apply to activate resume operation by setting the GRESUME register, which is called a remote wakeup.

24.4USBFS interrupts

Low-priority interrupts: interrupt vector number 20 and 74. When a high-priority interrupt is disabled, all the USBFS interrupts can be handled by low-priority interrupts.

High-priority interrupts: interrupt vector number 19 and 73. Only isochronous transfer and double-buffered bulk endpoints can trigger high-priority interrupts.

USB wakeup interrupts: interrupt vector number 42. While the USB enters a suspend state, the chip can be waken up by this interrupt after moving to Deep Sleep mode.

By default, the USBFS shares the interrupt vector number (19 and 20) with the CAN1, causing that the USBFS and CAN1 cannot be used at the same time. For this reason, new interrupt vector numbers (73 and 74) are created. The user application can map the USBFS interrupt vector numbers to 73 and 74 by setting the USBINTMAP bit in the CRM_INTMAP register.

24.5USBFS registers

These peripheral registers must be accessed by words (32 bits).

Table 24- 2 USBFS register map and reset values

Register	Offset	Reset value
USBFS_EPT0	0x00	0x0000
USBFS_EPT1	0x04	0x0000
USBFS_EPT2	0x008	0x0000
USBFS_EPT3	0x0C	0x0000

USBFS_EPT4	0x10	0x0000
USBFS_EPT5	0x14	0x0000
USBFS_EPT6	0x18	0x0000
USBFS_EPT7	0x1C	0x0000
USBFS_CTRL	0x40	0x0003
USBFS_INTSTS	0x44	0x0000
USBFS_SOFRNUM	0x48	0x0XXX
USBFS_DEVADDR	0x4C	0x0000
USBFS_BUFTBL	0x50	0x0000
USBFS_CFG	0x60	0x0000
USBFS_TnADDR	[USB_BUFTBL] x 2 + n x 16	0xXXXX
USBFS_TnLEN	[USB_BUFTBL] x 2 + n x 16 + 4	0xXXXX
USBFS_RnADDR	[USB_BUFTBL] x 2 + n x 16 + 8	0xXXXX
USBFS_RnLEN	[USB_BTABLE] x 2 + n x 16 + 12	0xXXXX

24.5.1 USBFS endpoint n register (USBFS_EPTn), n=[0..7]

Bit	Register	Reset value	Type	Description
				Rx transaction completed
Bit 15 Bit 14 Bit 13: 12				This bit is set when an OUT/SETUP transaction is
Bit 15	RXTC	0x0	rw0c	completed, indicating that Rx transaction is complete.
				0: Software clears this bit
				1: OUT/SETUP transaction is completed.
				Rx Data Toggle (DAT0/DATA1) Synchronization
				This is not ISO transfer. This bit indicates that the current
Bit 14	RXDTS	0x0	tog	transaction is DATA0/DATA1.
				0: DATA0
				1: DATA1
				Rx Status
		0x0		This field indicates the endpoint status in response to the
Bit 13: 12	RXSTS			OUT transaction of the host. There are four states:
				DISABLE, NAK, STALL and ACK.
			tog	00: DISABLED, endpoint ignores all reception requests.
			Ü	01: STALL, endpoint responds to all reception requests with STALL packets
				10: NAK, endpoint responds to all reception requests with
				NAK packets
				11: VALID, endpoint can be used for reception
	3: 12 RXSTS			Setup transaction completed
	RXDTS 12 RXSTS SETUPTC			When the RXTC is set, this bit is used to determine
Bit 11	SETUPTC	0x0	rog	whether OUT/SETUP transaction is completed.
				0: OUT transaction is completed
				1: SETUP transaction is completed
				Transfer type
				This field defines four types of USB transfers: Control,
				Bulk, Interrupt and ISO.
Bit 10: 9	TRANS_TYPE	0x0	rw	00: BULK endpoint, can work with EXF bit register
				01: CTRL endpoint, can work iwth EXF bit register
				10: ISO endpoint
				11: INT endpoint
Bit 8	EXF	0x0	rw	Endpoint Extend function

				USB endpoint extend function is used for Bulk and Control transfers. For Bulk transfer, this bit is set to indicate that double-buffered is enabled. For Control transfer, if this bit is set, it detects whether the data length in the SETUP transaction is 0 or not, a STALL is returned if the value is not 0.
				Tx transaction completed
Bit 7	TXTC	0x0	rw0c	This bit is set when IN transaction is completed, indicating that Tx transaction is completed.
				0: Software clears Tx transaction complete flag
				1: IN transaction reception is completed
				Tx Data Toggle (DAT0/DATA1) Synchronization
Bit 6	TXDTS	0x0	tog	This is non-ISO endpoint, indicating that the current IN transaction is DATA0/DATA1.
			3	0: DATA0
				1: DATA1
				Tx Status
				This field indicates the endpoint status in response to the IN transaction of the host. There are four states: DISABLE, NAK, STALL, ACK.
Bit 5: 4	TXSTS	0x0	tog	00: DISABLED, endpoint ignores all transmission requests.
				01: STALL, endpoint responds to all transmission requests with STALL packets
				10: NAK, endpoint responds to all transmission requests with NAK packets
				11: VALID, endpoint can be used for transmission
Bit 3: 0	EPTADDR	0x0	rw	Endpoint address
		· · · · · · · · · · · · · · · · · · ·		

24.5.2 USBFS control register (USBFS_CTRL)

Bit	Register	Reset value	Type	Description	
				Transmission complete interrupt enable	
Bit 15	TCIEN	0x0	rw	0: Disabled	
				1: Enabled	
				USB Core fifo overrun interrupt enable	
Bit 14	UCFORIEN	0x0	rw	0: Disabled	
				1: Enabled	
				Bus error interrupt enable	
Bit 13	BEIEN	0x0	rw	0: Disabled	
				1: Enabled	
				Wakeup/Remote wakeup interrupt enable	
Bit 12	WKIEN	0x0	rw	0: Disabled	
				1: Enabled。	
-				Bus suspend interrupt enable	
Bit 11	SPIEN	0x0	rw	0: Disabled	
				1: Enabled	
				Bus reset interrupt enable	
Bit 10	RSTIEN	0x0	rw	0: Disabled	
				1: Enabled	
				Start of frame interrupt enable	
Bit 9	SOFIEN	0x0	rw	0: Disabled	
				1: Enabled	
				Lost start of frame interrupt enable	
Bit 8	LSOFIEN	0x0	rw	0: Disabled	
				1: Enabled	

2021.12.01 Page 409 Ver 2.02

Bit 7: 5	Reserved	0x0	resd	Kept at its default value.
				Generate Resume request
Bit 4	GRESUME	0x0	rw	In suspend mode, the software can set this bit to send a resume signal to the host in order to wake up it. It must be cleared between 10ms and 15ms.
				Software suspend config
Bit 3	SSP	0x0	rw	This bit is set by software when a suspend flag is detected. When exiting suspend state, this bit must be cleared by software.
				0: Software leaves suspend mode
				1: Software enters suspend mode
				Low power mode
Bit 2	LPM	0x0	rw	While entering suspend mode, this bit can be set to reduce power consumption. It is cleared automatically when the USB Core is waken up.
				0: No low-power mode
				1: Low-power mode
				Disble USB PHY
Bit 1	DISUSB	0x1	rw	0: USB PHY enabled
				1: USB PHY disabled
_				Core soft Reset
Dit O	CODOT	0v1	n.	0: Software clears reset
Bit 0	CSRST	0x1	rw	1: Software resets usb core, and a reset interrupt is generate.

24.5.3 USBFS interrupt status register (USBFS_INTSTS)

Bit	Register	Reset value	Type	Description
				Transaction completed
D:: 45	TO	0.40		0: Reset value
Bit 15	TC	0x0	ro	1: This bit is set to indicate that the USB has successfully completed one IN/OUT transaction
				USB Core fifo overrun
Bit 14	UCFOR	0x0	rw0c	0: Reset value
				1: USB Core fifo overrun
				Bus error
Bit 13	BE	0x0	rw0c	0: Reset value
DIL IS	DE	UXU	TWUC	1: Bus error detected, such as, CRC check error, bit- stuffing error, Answer timeout error and frame format error.
	WK		rw0c	Wakeup
Bit 12		0x0		0: Reset value
DIL 12	WK	UXU		1: A wakeup signal is received when the USB is in suspend state.
				Bus Suspend
Bit 11	SP	0x0	rw0c	0: Reset value
DIC 11	SF	UXU	TWUC	1: No data transfer has been received for 3ms, and the bus enters suspend state.
				Bus reset
Bit 10	RST	0x0	rw0c	0: Reset value
				1: A USB reset signal was detected on the bus.
				Start of frame
Bit 9	SOF	0x0	rw0c	0: Reset value
BIL 9	30F	UXU	rwuc	1: This bit is set to indicate that a SOF transaction arrives
-				through the bus.
Bit 8	LSOF	0x0	rw0c	Lost start of frame
	2001	0.00	rwuc	0: Reset value

2021.12.01 Page 410 Ver 2.02

				1: No SOF has been received for more than 1ms.
Bit 7: 5	Reserved	0x0	resd	Kept at its default value.
Bit 4				IN/Out transaction
	INOUT	0x0	ro	When TC complete interruput is generated, this bit is used to indicate whether IN/OUT transcation has been completed.
				0: IN transaction
				1: OUT transaction
				Endpoint number
Bit 3: 0	EPT_NUM	0x0	ro	When TC complete interruput is generated, this bit is used to indicate which endpoint transfer has been completed successfully.

24.5.4 USBFS SOF frame number register (USBFS_SOFRNUM)

Bit	Register	Reset value	Type	Description
D:1.45	DDOTO	0.0		D+ status
Bit 15	DPSTS	0x0	ro	Indicates D+ status
	DMOTO	0.0		D- status
Bit 14	DMSTS	0x0	ro	Indicates D- status
Bit 13	CLCK	0x0	ro	Connect Locked
				This bit is set when two consecutive SOF packets have been received.
_	LSOFNUM	0x0	ro	Lost SOF number
Bit 12: 11				After LSOF, this bit indicates the number of SOF packet lost. It is cleared by hardware at the reception of an SOF transaction.
D:: 40 0	005111114	0.3000		Start of Frame number
Bit 10: 0	SOFNUM	0xXXX	ro	Indicates the current SOF frame number.

24.5.5 USBFS device address register (USBFS_DEVADDR)

Bit	Register	R	leset value Type	Description
		Reserved	0x0	Kept at its default value
	i i	CEN	0x0	USB Core Enable 0: USB Core disabled 1: USB Core enabled
		ADDR	0x0	Host assign Device address These bits contain the device address assigne by the host during the enumeration process.

24.5.6 USBFS buffer table address register (USBFS_BUFTBL)

Bit	Register	Reset value	Type	Description
				Endpoint buffer table start address
Bit 15: 3	BTADDR	0x0000	rw	This field indicates the start address of the buffer description table. It is 0 by defauly.
Bit 2: 0	Reserved	0x0	resd	Forced to 0 by hardware.

24.5.7 USBFS CFG control register (USBFS_CFG)

Bit	Register	Reset value	Type	Description
Bit 15: 2	Reserved	0x0000	resd	Kept at its default value.

				DP pull-up off	
Bit 1	PUO	0x0	rw	0: DP pull-up resistance enabled	
				1: DP pull-up resistance disabled	
				SOF output enable	
Bit 0	SOFOUTEN	0x0	rw	0: No SOF pulse output	
				1: SOF pulse output to the pin	

24.5.8 USBFS transmission buffer first address register (USBFS_TnADDR)

Bit	Register	Reset value	Type	Description
				Transmission buffer first address
Bit 15: 1	TnADDR	0xXXXX	rw	This field indicates the start address of the buffer where data is to be transmitted at the reception of the next IN transaction request
Bit 0	Reserved	0x0	resd	This bit must be 0 since the address of the packet buffer must be word-aligned.

24.5.9 USBFS transmission data length register (USBFS_TnLEN)

Bit	Register	Reset value	Type	Description
Bit 15: 10	Reserved	0xXX	resd	Kept at its default value.
				Transmission length
Bit 9: 0	TnLEN	0xXXX	rw	This field contains the number of data bytes to be transferred at the reception of the next IN transaction request.

24.5.10 USBFS reception buffer first address register (USBFS_RnADDR)

Bit	Register	Reset value	Type	Description
				Reception buffer first address
Bit 15: 1	RnADDR	0xXXXX	rw	This field indicates the start address of the buffer where data is to be received at the reception of the next OUT/SETUP transaction request
Bit 0	Reserved	0x0	resd	This bit must be 0 since the address of the packet buffer must be word-aligned.

24.5.11 USBFS reception data length register (USBFS_RnLEN)

Bit	Register	Reset value	Type	Description
				Block size
				This bit indicates the size of the reception buffer ot he current endpoint.
Bit 15	BSIZE	0xX	rw	If BSIZE=0, the block size is 2 byte large, and the the size
				of the packet buffer ranges from 2 to 62 bytes.
				If BSIZE=1, the block size is 32 byte large, and the size
				of the packet buffer ranges from 32 to 1024 bytes.
				Number of blocks
Bit 14: 10	NBLK	0xXX	rw	This field defines the number of blocks allocated to the current endpoint reception buffer.
Bit 9: 0		0xXXX	rw	Reception Length
	RnLEN			This field defines the data length received by the endpoint.

25 HICK auto clock calibration (ACC)

25.1 ACC introduction

HICK auto clock calibration (HICK ACC), which uses the SOF signal (1 ms of period) generated as a reference signal, implements the sampling and calibration for the HICK clocks.

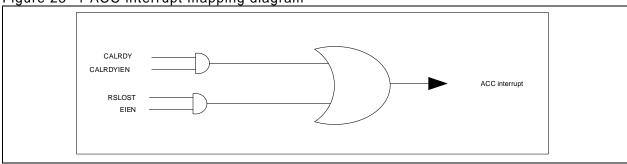
The main pupose of this module is to provide a clock of 48MHz±0.25% for the USB device.

It is able to make the calibrated frequency as close to the target frequency as possible by means of "cross and return" algorithm.

25.2 Main features

- Programmable center frequency
- Programmable boundary frequency that triggers calibration function
- Center frequency precision ±0.25%
- Status detection flags
 - Calibration ready flag
- Error detection flags
 - Reference signal lost error flag
- Two interrupt source flag
 - Calibration ready flag
 - Reference signal lost error flag
- Two calibration modes: coarse calibration and fine calibration

25.3 Interrupt requests


Table 25- 1 ACC interrupt requests

Interrupt event	Event flag	Enable bit
Calibration ready	CALRDY	CALRDYIEN
Reference signal lost	RSLOST	EIEN

ACC interrupt events are linked to the same interrupt vector (see Figure 25-1). Interrupt events include:

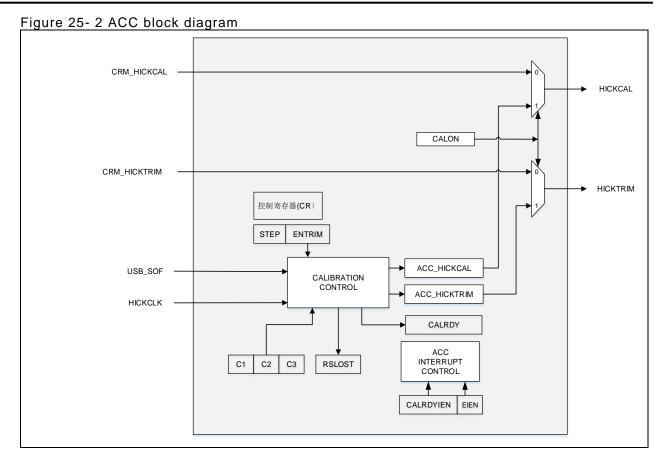
• During calibration process: When the calibration gets ready or reference signal lost occurs, the corresponding interrupt will be generated if the corresponding enable bit is enabled.

Figure 25- 1 ACC interrupt mapping diagram

25.4 Functional description

Auto clock calibration (HICK ACC), which uses the SOF signal (1 ms of period) generated as a reference signal, implements the sampling and calibration for the HICK clocks. In particular, the HICK clock frequency can be calibrated to a precision of $\pm 0.25\%$ so as to meet the needs of the high-precision clock applications such as USB.

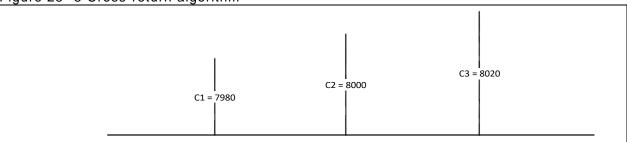
The signals of the module are connected to the CRM and HICK inside the microcontroller instead of being connected to the pins externally.


- CRM_HICKCAL: the HICKCAL bit in the CRM module. This signal is used to calibrate the HICK in bypass mode. The value is defined by the HICKCAL[7: 0] in the CRM_CTRL register.
- CRM_HICKTRIM: the HICKTRIM bit in the CRM module. This signal is used to calibrate the HICK in bypass mode. The value is defined by the HICKTRIM[5: 0] in the CRM_CTRL register.

The default value of the HICk is 32, which can be calibrated to $8MHz\pm0.25\%$. The HICK frequency can be adjusted by 20kHz (design value) each time when the CRM_HICKTRIM value changes. In other words, the HICK output frequency will increase by 20kHz eac time the CRM_HICKTRIM value is decremented by one; the HICK output frequency will reduce by 20kHz each time the CRM_HICKTRIM value is decremented by one.

- USB_SOF: USB Start-of-Frame signal given by the USB device. Its high-level width is 12 system clock cycles, a pulse signal of 1 ms.
- HICKCLK: HICK clock. The original HICK output frequency is 48MHz, but the sampling clock used by the HICK calibration module is frequency divider (1/6) clock, about 8MHz.
- HICKCAL: HICK module calibration signal. For the HICK clock after frequency divion (1/6), the HICK clock frequency will change by 40KHz (design value) each time the HICKCAL changes, which is positively correlated. In other words, the HICK clock frequency will incease by 40KHz (design value) eac time the HICKCAL is incremented by one; the HICK clock frequency will reduce by 40KHz each time the HICKCAL is decremented by one.
- HICKTRIM: HICK module calibration signal. For the HICK clock after frequency divion (1/6), the HICK clock frequency will change by 20KHz (design value) each time the HICKCAL changes, which is positively correlated.

Refer to Section 25.6 for more information about the bit definition in the registers.



25.5 Principle

USB_SOF period signal: 1ms of period must be accurate, which is a prerequisite of the normal operaion of an auto calibration module.

cross-return algorithm: This is used to calculate a calibration value closest to the theoretic value. In theory, the actual frequency after calibration can be adjusted to be within an accuracy range of about 0.5 steps from the target frequency (8MHz)

Figure 25-3 Cross-return algorithm

From the above figure, auto calibration function will adjust the HICKCAL or HICKTRIM according to the specified step as soon as the condition for trigerring auo calibration is reached.

Cross

If the auto calibration condition is met, the actual sampling data in the first 1ms period will be either less than C2, or greater than C2.

When this value is less than C2, the auto calibration module will start increasing either the HICKCAL or HICKTRIM according to the step definition until the actual sampling value is greater than C2. In this way, the actual value will cross over C2 from small to large.

When this value is greater than C2, the auto calibration module will start decrease either the HICKCAL or HICKTRIM according to the step definition until the actual sampling value become less than C1. In this way, the actual value will cross over C2 from large to small.

Return:

After cross operation is completed, the actual value closest to C2 can be obtained by comparing the difference (calculated as absolute value) between the actual sampling value and C2 before and after crossing C2 so as to get the best calibration value HICKCAL or HICKTRIM.

If the difference after crossing is less than the one before crossing C2, the calibration value after crossing prevails, and stops the calibration process until the next condition for auto calibration appears.

If the difference after crossing is greater than the one before crossing C2, the calibration value before crossing prevails, and it will return by one step to the one before crossing, and stops the calibration process until the next condition for auto calibration appears.

According to the cross-return strategy, in theory, it is possible to get the frequency accuracy that is 0.5 steps away from the center frequency.

Four conditions for enabling auto calibration function are as follows:

- 1. The rising edge of the CANLON (from 0 to 1)
- 2. When CALON=1, reference signal is lost and restored
- 3. When the sample counter is less than C1
- 4. When the sample counter is greater than C3

Even though the sampling counter is between C1 and C3, at the rising edge the CANLON, the auto calibration module can also be activated so that the HICK frequency can be adjusted to be within a range of 0.5 steps of the center frequency as soon as the CANLON is enabled.

Under one of the above-mentioned circumstances, the HICK frequency cal be calibrated to be within 0.5 steps of the center frequency. To achieve the best calibration accuracy, it is recommended to remain step as 1 (defual value). If the steop is set to 0, either HICKCAL or HICKTRIM will not be able to be calibrated.

25.6 Register description

Refer to the list of abbreviations used in register descriptions.

These peripheral registers must be accessed by words (32 bits).

Table 25- 2 ACC register map and reset values

Register	Offset	Reset value
ACC_STS	0x00	0x0000 000
ACC_CTRL1	0x0C	0x0000 0100
ACC_CTRL2	0x0C	0x0000 2080
ACC_C1	0x0C	0x0000 1F2C
ACC_C2	0x10	0x0000 1F40
ACC_C3	0x14	0x00000 1F54

25.6.1 Status register (ACC_STS)

Bit	Register	Reset value	Type	Description
Bit 31: 2	Reserved	0x0000000	resd	Kept at its default value.
				Reference Signal Lost
				0: Reference Signal is not lost
				1: Reference Signal is lost
Bit 1	RSLOST	0x0	ro	Note: During the calibration, when the sample counter of the calibration module is twice that of C2, if a SOF reference signal is not detected, it means that the reference signal is lost. The internal statue machine will move to the idle state unless another SOF signal is detected, otherwise, the interal clock sample counter remains 0. The RSLOST bit is immediately cleared after the CALON bit is cleared or when the RSLOST is written with 0. Reference signal detection occurs only when

				CALON=1.
				Internal high-speed clock calibration ready
				0: Interal 8MHz oscillator calibration is not ready
				1: Interal 8MHz oscillator calibration is ready
Bit 0	CALRDY	0x0	ro	Note: This bit is set by hardware to indicate that internal 8MHz oscillator has been calibrated to the frequency closest to 8MHz. The CALRDY is immediately cleared after the CALON bit is cleared or when the CALRDY is written with 0.

25.6.2 Control register 1 (ACC_CTRL1)

Bit	Register	Reset value	Type	Description
Bit 31: 12	Reserved	0x00000	resd	Forced by hardware to 0
				Calibrated step
				This field defines the value after each calibration.
Bit 11: 8	STEP	0x1	rw	Note: It is recommended to set the step bit in order to get a more accurate calibration result. While ENTRIM=0, only the HICKCAL is calibrated. If the step is incremented or decremented by one, the HICKCAL will be incremented or decremented by one accordingly, and the HICK frequency will increase or decrease by 40KHz (design value). This is a positive relationship.
				While ENTRIM=1, only the HICKTRIM is calibrated. If the step is incremented or decremented by one, the HICKTRIM will be incremented or decremented by one accordingly, and the HICK frequency will increase or decrease by 20KHz (design value). This is a positive relationship.
Bit 7: 6	Reserved	0x0	rw	Forced by hardware to 0
				CALRDY interrupt enable
				This bit is set or cleared by software.
Bit 5	CALRDYIEN	0x0	rw	0: Interrupt generation disabled
				1: ACC interrupt is generated when CALRDY=1 in the ACC_STS register
				RSLOST error interrupt enable
				This bit is set or cleared by software.
Bit 4	EIEN	0x0	rw	0: Interrupt generation disabled
				1: ACC interrupt is generated when RSLOST=1 in the ACC_STS register
Bit 3: 2	Reserved	0x0	rw	Forced by hardware to 0
				Enable trim
				This bit is set or cleared by software.
D:: 4	ENTENA			0: HICKCAL is calibrated.
Bit 1	ENTRIM	0x0	rw	1: HICKTRIM is calibrated.
				Note: It is recommended to set ENTRIM=1 in order to get higher calibration accuracy.
				Calibration on
				This bit is set or cleared by software.
				0: Calibration disabled
Bit 0	CALON	0x0	rw	 Calibration enabled, and starts searching for a pulse on the USB_SOF.
				Note: This module cannot be used without the USB_SOF reference signal. If there are no requirements on the accuracy of the HICK clock, it is unnecessary to enable this module.

25.6.3 Control register 2 (ACC_CTRL2)

Bit	Register	Reset value	Type	Description
Bit 31: 14	Reserved	0x00000	resd	Forced to 0 by hardware
				Internal high-speed auto clock trimming
				This field is read only, but not written.
Bit 13: 8	HICKTRIM	0x00	ro	Internal high-speed clock is adjusted by ACC module, which is added to the ACC_HICKCAL[7: 0] bit. These bits allow the users to input a trimming value to adjust the frequency of the HICKRC oscillator according to the variations in voltage and temperature.
				The default value is 32, which can trim the HICK to 8MHz±0.25. The trimming value is 20kHz (design value) between two consecutive ACC_HICKTRIM steps.
				Internal high-speed auto clock calibration
				This field is read only, but not written.
Bit 7: 0	HICKCAL	0x00	ro	Internal high-speed clock is adjusted by ACC module. These bits allow the users to input a trimming value to adjust the frequency of the HICKPC oscillator according to the variations in voltage and temperature.
				The default value is 128, which can trim the HICK to 8MHz±0.25. The trimming value is 40kHz (design value) between two consecutive ACC_HICKCAL steps.

25.6.4 Compare value 1 (ACC_C1)

Bit	Register	Reset value	Type	Description
Bit 31: 16	Reserved	0x0000	resd	Forced to 0 by hardware
				Compare 1
Bit 15: 0	C1	0x1F2C	rw	This value is the lower boundary for triggering calibration, and its default value is 7980. When the number of clocks sampled by ACC in 1ms period is less than or equal to C1, auto calibration is triggered automatically.
				When the actual sampling value (number of clocks in 1ms) is greater than C1 but less than C3, auto calibration is not enabled.

25.6.5 Compare value 2 (ACC_C2)

Bit	Register	Reset value	Type	Description
Bit 31: 16	Reserved	0x0000	resd	Forced to 0 by hardware
				Compare 2
				This value defines the number of clocks sampled for 8MHz (ideal frequency) clock in 1ms period , and its default value is 8000 (theoretical value)
Bit 15: 0	C2	0x1F40	rw	As a center point of cross-return strategy, this value is used to calculate the calibration value closest to the theoretical value. In theory, the actual frequency after calibration can be trimmed to be within an accuracy of 0.5 steps from the targe frequency (8MHz)

2021.12.01 Page 418 Ver 2.02

25.6.6 Compare value 3 (ACC_C3)

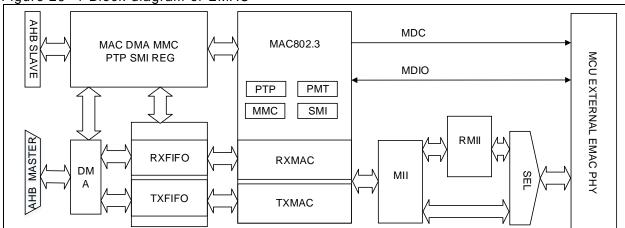
Bit	Register	Reset value	Type	Description
Bit 31: 16	Reserved	0x0000	resd	Forced to 0 by hardware
				Compare 3
Bit 15: 0	C3	0x1F54	rw	This value is the upper boundary for triggering calibration. When the number of clock sampled by ACC in 1ms period is greater than or equal to C3, auto calibration is triggered automatically.
				When the actual sampling value (number of clocks in 1ms period) is greater than C1 but less than C3, auto calibration is not enabled.

2021.12.01 Page 419 Ver 2.02

26 Ethernet media access control (EMAC)

This module applies only to AT32F407 series, not including AT32F403A series.

26.1 EMAC introduction


Copyright Synopsys, Inc. All rights reserved.

The Ethernet peripheral enables the AT32F407 to transmit and receive data (10/100Mbps) through Ethernet in compliance with IEEE 802.3-2002 standard.

The AT32F407 Ethernet peripheral supports two standard interfaces to the external PHY: media independent interface (MII) defined in the IEEE 802.3 standard and the reduced media independent interface (RMII).

26.1.1 EMAC structure

Figure 26- 1 Block diagram of EMAC

26.1.2 EMAC main features

The Ethernet peripheral contains an EMAC core and a DMA controller. The transmission and reception of the frame is scheduled by DMA.

DMA features

- Programmable AHB burst transfer types
- Supports ring or chained descriptor
- Each descriptor can transfer up to 8 KB of data
- Poll or fixed-priority arbitration between transmission and reception
- Programmable interrupts for different operational conditions
- Status information report for each transfer

EMAC Core features

- Supports 10/100Mbps data transfer rates
- IEEE 802.3-compliant MII interface to communicate with an external high-speed Ethernet PHY
- Supports flow control for full-duplex operation, and CSMA/CD protocol for half-duplex operations
- Automatic CRC and pad generation controllable on transmission frames
- Automatically remove pad bits/CRC on reception frames
- Programmable frame lengh up to 16 KB
- Programmable frame gap (40-96 bits)
- Supports a varity of address filtering modes and promiscuous modes
- Supports IEEE 802.1Q VLAN tag detection for reception frames
- Supports mandatory network statistics with RMON/MIB counters (RFC2819/RFC2665)
- Detection of LAN remote wakeup frames and AMD Magic PacketTM frames

- Supports checking IPv4 header checksum and IPv4, TCP, UDP or ICMP (packaged in IPv4 or IPv6 data formats) checksum
- Supports Ethernet frame time stamp as defined in IEEE 1588-2008. 64-bit time stamps are recorded in the transmit or receive status
- Two 2KB FIFOs: one for transmit, and one for receive with a configurable threshold
- Filter received error frames and not forward them to the application in store-forward mode
- Supports store-forward mechanism for data transfer to the MAC controller
- Discard frames on late collision, excessive conllisions, excessive deferral and underflow conditions
- Clear FIFO by software
- Calculates and inserts IPv4 header checksum and TCP, UDP or ICMP checksum in frames transmitted in store-forward mode
- Supports loopback mode on the MII interface for debugging
- Programmable time stamps of receive and transmit frames as defined in IEEE 1588-2008 standard
- Supports two correction methods: coarse and fine correction
- Second pulse ouput (programmable)
- Trigger interrupts when the the system is greater the specified time

26.2EMAC functional description

The Ethernet peripheral consists of a MAC 802.3 (media access controller), MII interface and a dediated DMA controller.

It implements the following functions:

- Data transmit and receive
 - Framing (frame boundary and frame synchronization)
 - Handling of source and destination addresses
 - Error detection
- Media access management in half-duplex mode
 - Medium allocation (avoid collision)
 - Collision resolve (handle collision)

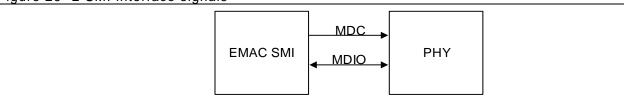
Usually there are two operating modes for the MAC sublayer:

- Half-duplex mode: The stations compete for the use of the physical medium using the CSMA/CD algorithm. Two stations can only communicate in a single transfer direction at the same time.
- Full-duplex mode: CSMA/CD algorithm is unnecessary, but the following conditions must be met:
 - Physical medium supports simultaneous transmission and reception
 - Only two stations connected to the LAN
 - Both two stations configured as full-duplex mode

26.2.1 EMAC communication interfaces

The EMAC allows to configure the station management interface (SMI) of PHY, media-independent interface (MII) for Ethernet frame communication, and reduced media-independent interface RMII.

Station management interface (SMI)


The PHY management interface (SMI) accesses PHY registers through a clock and data line. It supports up to 32 PHYs.

MDC: PHY configures clock signals, at the maximum frequency of 2.5 MHx. The minimum high and low times for MDC must be 160ns, and the minimum period is 400ns. In idle state, the MDC clock signal remains low.

MDIO: Bidirectional port, data input/output lines.

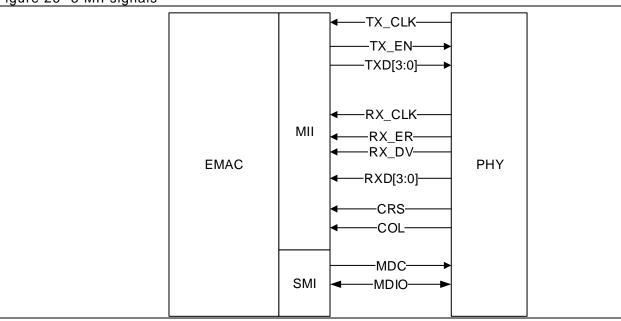
Figure 26- 2 SMI interface signals

Before write operation, PHY address, MII register and EMAC_MACMIIDT register must be configured first, followed by the MII MW and MB bits, and then the SMI interface will transfer the PHY address, PHY register address and data to the PHY. During the transaction, the contents of the EMAC MACMIIADDR and the EMAC MACMIIDT registers are not allowed to change.

Before read operation, the PHY address and MII register must be configured first, and then the MB bit is set and MW bit is set to 0 in the EMAC_MACMIIADDR register.

The SMI interface sends the PHY address and PHY register address, and then starts reading the PHY register contents. During the transaction, the MB bit is always set. It is cleared by the SMI interface at the end of read operation. Attention should be paid to the fact that the contents of the EMAC_MACMIIADDR and EMAC_MACMIIDT registers are not allowed to change (The application should not change these register contents. After the transcation, the EMAC_MACMIIDT register is automatically updated with the data read from the SMI)

The SMI clock source is a divided AHB clock. The divide factor depends on the ABH clock frequency. Note that the divide factor must be configured correctly since the MDC frequency must not be greater than 2.5MHz.


Table 26- 1 shows the clock range.

Selection bit	AHB clock	MDC clock
0000	60~100MHz	AHB clock/42
0001	100~150MHz	AHB clock/62
0010	20~35MHz	AHB clock/16
0011	35~60MHz	AHB clock/26
0100	150~240MHz	AHB clock/102
0101,0110,0111	Reserved	_

Media-independent interface: MII

The media-independent interface (MII) acts an interconnection between the MAC sublayer and the PHY for data transfer at 10Mbit/s and 100Mbit/s.

Figure 26-3 MII signals

MII_TX_CLK: Transmit data clock signal. This clock is 2.5MHz at 10Mbps speed; 25MHz at 100Mbps speed.

MII_RX_CLK: Receive data clock signal. This clock is 2.5MHz at 10Mbps speed; 25MHz at 100Mbps speed.

MII_TX_EN: Transmit enable signal. It must be set synchronously with the start bit of the preamble, and must remain asserted until all bits to be transmitted are transmitted.

MII_TXD[3: 0]: Transmit data. 4-bit data are transmitted each time synchronously. Data is valid when the MII_TX_EN signal is active. The MII_TXD[0] is the least significant bit while the MII_TXD[3] is the most significant bit.

MII_CRS: carrier sense signal defined in the CSMA/CD. It is controlled by the PHY and can be valid only in half-duplex mode. This signal is active when either the transmit or receive medium is not idle. The PHY must ensure that the MII_CS signal remains active throughout the duration of a collision condition. This signal is not required to be synchronized with the TX and RX clocks.

MII_COL: Collision detection signal defined in CSMA/CD. It is controlled by the PHY and can be valid only in half-duplex mode. This signal is enabled upon detection of a collision on the medium and will remain enabled during the duration of the collision. This signal is not required to be synchronized with the TX and RX clocks.

MII_RXD[3: 0]: It is controlled by the PHY. Four-bit data to be received are transmitted synchronously. Data is valid when the MII_RX_DV signal is active. The MII_RXD[0] is the least significant bit, while the MII_RXD[3] is the most significant bit. While the MII_RX_DV is inactive but the MII_RX_ER is active, the PHY will transmit a specific MII_RXD[3: 0] value to indicate specific information.

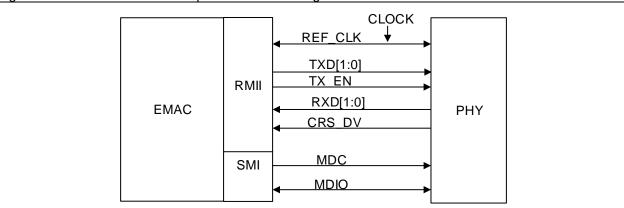
MII_RX_DV: Receive data valid signal. It is controlled by the PHY. This signal is valid when the PHY has kept data on the MII for reception. It must be enabled synchronously with the first bit (MII_RX_CLK) and must remain enabled until data transfer is fully completed. It must be cleared prior to the first clock following the tansmission of the final four-bit data. In order to receive a frame correctly, the MII_RX_DV signal must remain valid throughout the frame transmission. The active level must be no later than the SFO bit.

MII_RX_ER: Receive error signal. It must be active for one or more clock periods (MII_RX_CLK) to indicate to the MAC that an error was detected in a frame. Detailed error information depends on the state of the MII_RX_DV and MII_RXD[3: 0] data.

Table 26- 2 Transmit interface signal encode

MII_TX_EN	MII_TXD[3: 0]	Description
0	0000 to 1111	Normal frame interval
1	0000 to 1111	Normal data transfer

Table 26- 3 Receive interface signal encode


MII_RX_DV	MII_RX_ER	MII_RXD[3: 0]	Description
0	0	0000 to 1111	Normal frame interval
0	1	0000	Normal frame interval
0	1	0001 to 1101	Reserved
0	1	1110	False carrier indication
0	1	1111	Reserved
1	0	0000 to 1111	Normal data reception
1	1	0000 to 1111	Data reception error

Reduced media-independent interface: RMII

The reduced media-independent interface reduces the pin count between the AT32F407xx Ethernet peripheral and the external Ethernet. According to the IEEE802.3u standard, the MII interface requires 16 pins for data and control signals, while the RMII reduces the pin count to 7 pins (a 62.5% decrease in pin count)

The RMII interface is used to connect the EMAC and the PHY. This helps translate the MAC MII signal to the RMII.

Figure 26- 4 Reduced media-independent interface signals

MII/RMII selection and clock sources

Either the MII or RMII mode can be selected using the 23rd bit MII_RMII_SEL in the IOMUX_REMAP register. The MII/RMII mode must be selected when the Ethernet controller is in reset state or before the clock is enabled.

MII clock sources

The EMAC TX_CLK and RX_CLK clock signals are provided by the PHY. External PHY module is driven by an external 25MHz clock, which can be provided by either an oscillator or the MCU CLKOUT pin. While the CLKOUT pin is used, the PLL must be configured correctly or directly output the HEXT. Refer to CRM section for more information.

Figure 26- 5 MII clock sources (provided by CLKOUT pin)

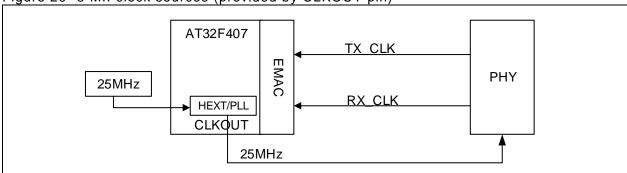
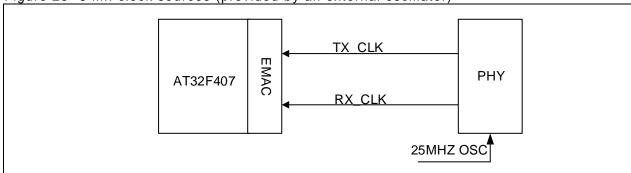



Figure 26-6 MII clock sources (provided by an external oscillator)

RMII clock sources

As shown in Figure 26-7, both the EMAC and PHY require 50MHz clock sources, which can be done with an external crystal oscillator or CLKOUT pin. When the CLKOUT pin is used, the PLL has to be configured to generate this clock. Refer to CRM section for more information.

Figure 26- 7 RMII clock sources (provide by CLKOUT pin)

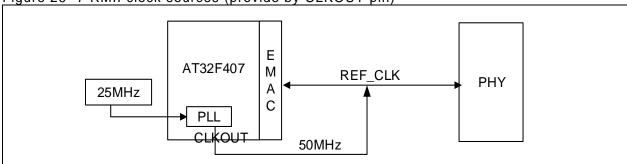
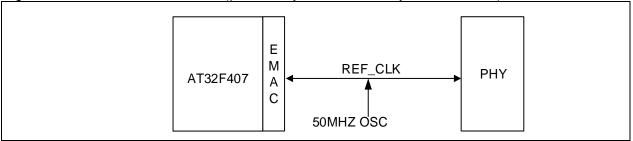



Figure 26-8 RMII clock sources (provide by an external crystal oscillator)

EMAC pin allocation and multiplexing

Table 26- 4 Ethernet peripheral pin configuration (black: default red: remapping signals)

EMAC signal	MII	RMII	Pin	Pin description
EMAC_MDC	MDC	MDC	PC1	Multiplexed push-pull output
EMAC_MII_TXD2	TXD2	-	PC2	Multiplexed push-pull output
EMAC_MII_TX_CLK	TX_CLK	-	PC3	Floating input (reset state)
EMAC_MII_CRS	CRS	-	PA0	Floating input (reset state)
EMAC_MII_RX_CLK EMAC_RMII_REF_CLK	RX_CLK	REF_CLK	PA1	Floating input (reset state)
EMAC_MDIO	MDIO	MDIO	PA2	Multiplexed push-pull output
EMAC_MII_COL	COL	-	PA3	Floating input (reset state)
EMAC_MII_RX_DV EMAC_RMII_CRS_DV	RX_DV	CRS_DV	PA7	Floating input (reset state)
EMAC_MII_RXD0 EMAC_RMII_RXD0	RXD0	RXD0	PC4	Floating input (reset state)
EMAC_MII_RXD1 EMAC_RMII_RXD1	RXD1	RXD1	PC5	Floating input (reset state)
EMAC_MII_RXD2	RXD2	-	PB0	Floating input (reset state)
EMAC_MII_RXD3	RXD3	-	PB1	Floating input (reset state)
EMAC_MII_RX_ER	RX_ER	-	PB10	Floating input (reset state)
EMAC_MII_TX_EN EMAC_RMII_TX_EN	TX_EN	TX_EN	PB11	Multiplexed push-pull output
EMAC_MII_TXD0 EMAC_RMII_TXD0	TXD0	TXD0	PB12	Multiplexed push-pull output
EMAC_MII_TXD1 EMAC_RMII_TXD1	TXD1	TXD1	PB13	Multiplexed push-pull output
EMAC_PPS_OUT	PPS_OUT	PPS_OUT	PB5	Multiplexed push-pull output
EMAC_MII_TXD3	TXD3	-	PB8	Multiplexed push-pull output
EMAC_RMII_CRS_DV	RX_DV	CRS_DV	PD8	Floating input (reset state)
EMAC_MII_RXD0 EMAC_RMII_RXD0	RXD0	RXD0	PD9	Floating input (reset state)
EMAC_MII_RXD1 EMAC_RMII_RXD1	RXD1	RXD1	PD10	Floating input (reset state)
EMAC_MII_RXD2	RXD2	-	PD11	Floating input (reset state)
EMAC_MII_RXD3	RXD3	-	PD12	Floating input (reset state)

26.2.2 EMAC frame communication

Frame format

Figure 26-9 shows the MAC frame format and tagged MAC frame format (Refer to IEEE 802.C-2002 for more information on MAC frame formats)

Figure 26- 9 MAC frame format

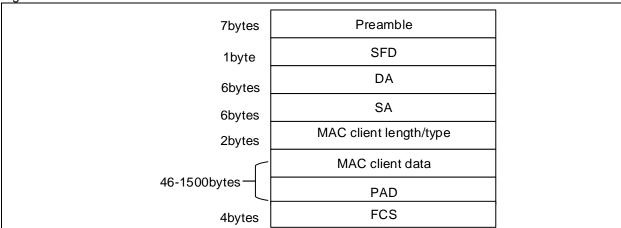
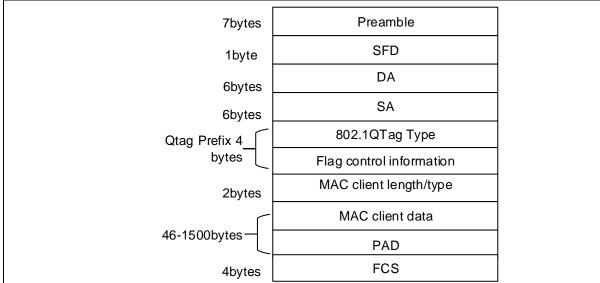



Figure 26- 10 Tagged MAC frame format

EMAC frame filtering

EMAC supports source and destination address filtering.

Address filtering

Based on frame filtering register chosen by the application, address filtering checks the source and destination addresses over all received frames using the MAC address and multicast HASH table. The address filtering status is reported accordingly.

Unicast destination address filter

There are two filtering modes: perfect address filtering and HASH table filtering.

- 1. Perfect address filtering: It is enabled by setting HUC=0 in the frame filtering register. Four MAC addrsses are used for perfect filtering. The MACADDR0 is always enabled. The MACADDR1, MACADDR2 and MACADDR3 bits are enabled using their respective AE bit. The MBC bit in the address register is set to mask the address comparison of the corresponding bytes. If the MBC bit is all 0, the EMAC will compare all 48 bits of the received unicast address with the programmed MAC address, if matched, the unicast address is said to have passed through the filtering.
- 2. HASH table filtering: The HUC must be set in the frame filtering register. The EMAC performs imperfect filtering for unicast addresses through 64-bit HASH table. For HASH filtering, the MAC calculates the CRC value of the received destination address (see the note below) and uses the 6

upper CRC bits to index the HASH table. A value of 000000 corresponds to bit 0 in the HASH table register, and a value of 111111 corresponds to bit 63 in the HASH table register. If the corresponding bit in the HASH table relative to the CRC value is set to 1, it indicates that the frame has passed through the HASH filter, otherwise, it has failed the HASH filter.

Multicast destination address filter

- 1. The MAC can be programmed to receive all multicast frames by setting PMC=1 in the frame filter register
- 2. If the PMC is set to 0 and the HMC is set to 0, perfect address filtering can be done using the MACADDR0/1/2 addresses.
- 3. If the PMC is set to 0, and the HMC is set to 1, the 64-bit HASH table is used to perform imperfect filtering.

Broadcast address filter

If the DBF is set in the frame filter register, the EMAC will reject all broadcast frames. If DBF=0, the EMAC will accept all broadcast frames.

Unicast source address filter

If the bit 30 is set in the MAC address register 1/2/3, the filter will compare source address instead of destination address of the received frames.

If the SAF bit is set in the frame filter address, the frames that failed the SA filter will be dropped by the EMAC. In this case, the frames that pass through both SA and DA filtering can be forwarded to the application, otherwise, they will be dropped.

Inverse filtering operation

The DAIF and SAIF bits in the frame filter register are used to invert the filtering output result for both destination and source address filtering. The DAIF bit is applicable for both unicast and multicast destination frames, while the SAIF bit for the unicast source address.

Table 26-5 Destination address filtering

Frame type	РМС	HPF	нис	DAIF	нмс	РМС	DBF	DA filter operation
	1	Χ	Χ	Χ	Χ	Χ	Χ	Pass
Broadcast	0	Χ	Χ	Χ	Χ	Χ	0	Pass
	0	Χ	Χ	Χ	Χ	Χ	1	Fail
	1	Χ	Χ	Χ	Χ	Χ	Χ	Pass all frames
	0	Χ	0	0	Χ	Χ	Χ	Pass on perfect/group filter match
	0	Χ	0	1	Χ	Χ	Χ	Fail on perfect/group filter match
	0	0	1	0	Χ	Χ	Χ	Pass on HASH filter match
Unicast	0	0	1	1	Χ	Χ	Χ	Fail on HASH filter match
	0	1	1	0	Х	Х	Х	Pass on HASH or perfect/group filter match
	0	1	1	1	Х	Х	Х	Fail on HASH or perfect/group filter match
	1	Χ	Χ	Χ	Χ	Χ	Χ	Pass all frames
	Х	Χ	Χ	Χ	Χ	1	Χ	Pass all frames
	0	X	х	0	0	0	Χ	Pass on perfect/group filter match and drop PAUSE frames if PCF= 0x
Multicast	0	0	х	0	1	0	Χ	Pass on HASH filter match and drop PAUSE frames if PCF= 0x
	0	1	X	0	1	0	Х	Pass on HASH or perfect/group filter match and drop PAUSE frames if PCF= 0x
	0	Х	х	1	0	0	Х	Fail on perfect/group filter match and drop PAUSE frames if PCF= 0x

0	0	X	1	1	0	Х	Fail on HASH filter match and drop PAUSE frames if PCF= 0x
0	1	Х	1	1	0	Х	Fail on HASH or perfect/group filter match and drop PAUSE frames if PCF= 0x

Table 26- 6 Source address filtering

Frame type	PR	SAIF	SAF	SA filter operation
	1	Х	Х	Pass all frames
	0	0	0	Pass status on perfect/group filter match but do not drop frames that failed
Unicast	0	1	0	Fail status on perfect/group filter match but do not drop frames that failed
	0	0	1	Pass on perfect/group filter match and drop frames that failed
	0	1	1	Fail on perfect/group filter match and drop frames that failed

EMAC frame transmission

The EMAC frame transmission is controlled by the DMA controller and MAC. Once a transmission command is sent by the application, Ethernet frames read from the user data buffer (such as SRAM) are stored into TXFIFO by the DMA. The frames are then popped out and transferred to the MAC core. The MAC core sends the frames to external Ethernet PHY via MII/RMII interface so as to communicate with external stations. When the end-of-frame is transferred, the status of the transmission is generated from the MAC core and transferred back to the DMA controller.

When the SOF is detected, the MAC accepts data and begins transmitting to the MII/RMII. The time required to transmit the data frame to the MII/RMII after the application initiates is variable, due to various delay factors like frame interval, time to transmit preamble/SFD and any back-off delays caused by CSMA/CD algorithm in half-duplex mode. After the EOF is transferred to the MAC core, the core completes normal transmission and then gives the status of the transmission back to the DMA.

There are tow modes of operation for popping data from TXFIFO to the MAC core:

- In threshold mode: If the number of bytes in the FIFO crosses the configured threshold (or when the EOF is written before the threshold is crossed), the data is ready to be popped out and forwarded to the MAC core. The threshold level is configured using the TTC bits in the EMAC DMAOPM register.
- In store-and-forward mode: Only after a complete frame is written to the FIFO, the data is transferred to the MAC core. If the TXFIFO size is smaller than the Ethernet frame to be transmitted, then the data is also transferred to the MAC core when the TXFIFO becomes almost full.

The FTF bit (the bit 20 in the EMAC_DMAOPM register) can be set to flush the TXFIFO. If the FTF bit is mistakenly set in the middle of transferring a frame to the MAC core, the FIFO is flushed and the frame transmission is aborted. An underflow event is marked in the EMAC transmitter and the corresponding status is given to the DMA core.

Automatic CRC and pad generation

If the length of a transmitting fame is less than 46 bytes, the minimum data size for an Ethernet frame defined in IEEE802.3 standard, The EMAC can be programmed to append padding (zeros are appended) automatically so that zeros are appended to the transmitting frame to make the data length exactly 46 bytes.

During a frame transmission, the EMAC can be programmed either to append CRC to the frame check sequence or not to append CRC. When the EMAC is programmed to append pads for frames (DA+SA+LT+Data) less than 60 bytes, the CRC value will be appended at the end of the padded frames.

Collision detection in CSMA/CD

The collision detection is applicable only to half-duplex mode, not to full-duplex mode. (Refer to Ethernet protocol for more information)

In MII mode, if a collision occurs at any time from the beginning of a frame to the end of the CRC, the collision signal is sent to the EMAC core. The EMAC core will send a 32-bit jam signal of 0x5555 5555 to informe all other stations on the LAN that a collision has occurred. If the collision happened during the preamble transmission phrase, the EMAC completes the transmission of the preamble and SFD and then sends the jam signal.

Jabber timer

The EMAC jabber timer is enabled (set EMAC_MACCTRL[20]=0) to prevent certain station on the LAN from occupying the LAN for a long time. Once enabled, the EMAC will stop transmitting if the application tries to send a frame more than 2048 bytes.

Interframe gap management

The EMAC enables transmission after satisfying the interframe gap and backoff delays. The MAC maintains an idle period of the programmed interframe gap (IFG bits in the EMAC_MACCTRL register) between any two transmitted frames. The EMAC starts its IFG counter as soon as the carrier signal of the MII becomes inactive. If a frame arrives sooner that the configured IFG time, it will be delayed for transmission until the interframe time is reached. The MAC starts its IFG counter as soon as the carrier signal of the MII becomes inactive. In full-duplex mode, the MAC enables transmission at the end of the configured IFG value. In half-duplex mode, if the IFG is configured as 96 bit times, the MAC will follow the rule defined in Section 4.2.3.2.1 of the IEEE 802.3 specification. The MAC will reset its IFG counter if a carrier is detected during the first two-thirds of the IFG interval (64-bit times). If the carrier is detected during the final one-third of the IFG interval, the MAC will continue the IFG count and enables transmission after the IFG interval is reached. In half-duplex mode the MAC follows the truncated binary exponential backoff algorithm.

Transmit flow control

In full-duplex mode the EMAC implements Transmit flow control using pause frames. The EMA can request the suspension of the frame transmission by sending Pause frames in two ways.

When the FCB bit in the EMAC_MACFCTRL register is set, the EMAC generates and transmits a single Pause frame. The value of the pause time in the the generated frame holds the programmed pause time value in the EMAC_MACFCTRL register. To extend the pause time or cancel the remaining pause time, the EMAC must send another pause frame (PT=0 will cancel the remaining pause time).

If flow control is enabled (EFT=1 in the EMAC_MACFCTRL register), when the RXFIFO is full, the EMAC generates and transmits a Pause time. If the RXFIFO remains full while the programmed pause time threshold is satisfied, the MAC will transmit another Pause frame. The process is repeated as long as the receive FIFO remains full. If the RXFIFO is not full prior to the pause time, the MAC transmit a Pause time with zero pause time to indicate to the remote station that the receive buffer is ready to receive new data frames.

Retransmission during collision

When a frame is being transferred to the MAC, a collision event may occur on the MAC line in half-duplex mode. The MAC would then try retransmission even before the end of the frame is received. At this point, if retransmission is enabled, the frame is popped out again from the FIFO. After 96 bytes have been popped towards the MAC core, the FIFO controller will release that space to allow the DMA to push in more data. This means that the retransmission is not possible if this threshold (96 bytes) is crossed or when the MAC core indicates a late collision event.

Transmit FIFO flush operation

The FTF bit (bit 20) in the EMAC_DMAOPM register is set to flush TXFIFO. The TXFIFO flush operation is immediate and the corresponding points are reset to their initial states even if the TXFIFO is in the process of transferring a frame to the MAC core. This operation will abort the current frame transmission and result in an underflow event in the EMAC. The status of such a frame is generated (TDES0 bits 1 and 13). The flush operation is completed when the application (DMA) has received all of the status words of the frames that were flushed. Then the FTF bit is cleared in the EMAC_DMAOPM register. In this case, TXFIFO is allowed to receive new frames from the application (DMA). All data that do not start with an SOF marker will be discarded after the flush operation.

Transmit status word and time stamp

At the EMAC controller has completed the transmission of the Ethernet frame, the transmit status is given to the application. If IEEE 1588 time stamp is enabled, a 64-bit time stamp, along with the transmit status, will be written to the transmit descriptor.

Transmit checksum offload

The most widespread use of Ethernet is to encapsulate TCP or UDP over IP datagrams, so the Ethernet controller has a transmit checksum feature that supports checksum calculation and insertion in the transmit path, and error detection in the receive path.

Note: This function is enabled only when the TXFIFO is configured as store-and-forward mode (that is, when the TSF is set in the EMAC_DMAOPM register). If the TXFIFO depth is less than the input Ethernet frame size, the checksum function is invalid and only the IPv4 header checksum is calculated and modified by the EMAC, even in store-and-forward mode.

See IETF specifications RFC791, RFC 793, RFC 768, RFC 792, RFC 2460 and RFC 4443 for IPv4, TCP, UDP, ICMP, IPv6 and ICMPv6 specifications.

IP header checksum

The checksum module will detect an IPv4 datagrams when the Ethernet frame's type field has the value of 0x0800 and the IP datagram's version field has the value of 0x4. The input frame's checksum field is ignored and replaced by the calculated value. IPv6 headers do not have a checksum field, thus the checksum module does not modify IPv6 header fields. The result of this IP header checksum calculation is indicated by the IP header error status bit (TDES0 bit 16). This status bit is set whenever the values of the Ethernet type field and the IP header's version filed are not consistent, or whe the Ethernet frame does not have enough data. In other words, this bit is set when the following errors occurred.

For IPv4 datagrams

- The received Ethernet type is 0x0800, but the IP header's version field is not equal to 0x4
- The IPv4 header length field has a value less than 0x5 (20 bytes)
- The total frame length is less than the value given in the IPv4 header length field

For IPv6 datagrams

- The received Ethernet type is 0x86DD, but the IP header's version field is not equal to 0x6
- The frame ends before the IPv6 header (40 bytes) or extension header (including header length field) has been completely received. Even if the checksum module detects such an IP header error, it inserts an IPv4 header checksum if the Ethernet type field indicates an IPv4 payload.

TCP/UDP/ICMP checksum

The TCP/UDP/ICMP checksum determines whether the encapsulated data is TCP, UDP or ICMP by analyzing the IPv4 or IPv6 header (including extension headers)

Note: 1. For non-TCP, UDP or - ICMP/ICMPv6 data, this checksum function is invalid and the frame data is not modified.

2. Fragmented IP frames (IPv4 or IPv6), IP frames with security features (such as an authentication header or encapsulated security data) and IPv6 frames with routing headers are not processed by the checksum.

The checksum is calculated for the TCP, UDP or ICMP data and inserted into its corresponding field in the hearder. It can work in the following two modes:

- 1. The TCP, UDP or ICMPv6 pseudo-header is not included in the checksum calculation and is assumed to be present in the input frame's checksum field. The checksum field is included in the checksum calculation, and then replaced by the final calculated checksum.
- 2. The checksum field is ignored, and the TCP, UDP or ICMPv6 psuedo-header data are included into the checksum calculation, and the checksum field is overwritten with the final calculated value.

The result of this operation is indicated by the checksum error status bit in the transmit status vector (TDES0 bit 12). The data checksum error status bit is set when either of the following is detected:

- 1. The frame has been forwarded to the MAC transmitter in store-and-forward mode without the end of the frame being written to the TXFIFO.
- 2. The packet ends before the number of bytes indicated by the data length field in the IP header is received.

When the packet is longer than the indicated data length, the bytes are ignored as stuff bytes, and no error is reported. When the first type of error is detected, the TCP, UDP or ICMP header is not modified. For the second type of error, the calculated checksum is still inserted into the corresponding header field.

EMAC frame reception

The MAC received frames are stored into the RXFIFO and sent out by the DMA using the AHB interface. There are two modes: Cut-through mode and store-and-forward mode.

In the default Cut-through mode, when the frame data length greater than the programmed threshold (configured with the RTC bit in the EMAC_DMAOPM register) or a ful packet of data are received in the RXFIFO, the data are popped out and the DMA is notified of its availability. The DMA will keep popping out the data from the RXFIFO until the data transfer is completed. Upon completion of the EOF frame transfer, the status word is popped out and sent to the DMA controller.

In store-and-forward mode (configured by the RSF bit in the EMAC_DMAOPM register), a frame is read by the DMA only after being written completely into the RXFIFO.

If the EMAC core is configured to drop all error frames, behavior varies in different reception modes:

- 1. In store-and-forward mode, only the valid frames are read and forwarded to the application by the DMA.
- 2. In Cut-through mode, some error frames are not dropped because the error status is received at the end of the frame.

A reception operation is initiazed when the EMAC detects an SFD on the MII. The MAC core strips the preamble and SFD before processing the frame. The header fields are checked for the filtering and the FCS field used to verify the CRC of the frame. The frame is dropped in the core if it failed the address filter

If IEEE1588 time stamping is enabled, a snapshort of the system time is taken when any frame's SFD is detected on the MII. This time stamp is passed onto the application when the EMAC has completed the current frame.

If the received frame length/type field is less than 0x600 and if the EMAC is configured for the auto CRC/pad stripping option, the EMAC sends the data of the frame to RXFIFO up to the count specified in the length/type field, then starts dropping bytes (including the FCS filed). If the length/type field is greater than 0x600, the MAC sends all received Ethernet frame data to RXFIFO, regardless of the value on the programmed auto-CRC strip option.

The EMAC watchdog timer is enabled by default, frames above 2048 bytes (DA + SA + LT + Dat + pad + FCS) are cut off. This feature can be disabled by the WD bit in the EMAC_MACCTRL register. However, even if the watchdog timer is disabled, frame length greater than 16 KB are cut off and a watchdog timeout event is reported.

Receive checksum offload

Both IPv4 and IPv6 frames are detected for data integrity by setting the IPC bit in the EMAC_MACCTRL register. The EMAC identifies IPv4 or IPv6 frames by checking for the Ethernet type field value. The receive checksum offload calculates IPv4 header checksums and checks that they match the received IPv4 header checksums. The result of the header checksum is indicated by the bit 7 of the receive descriptor (RDES0). The IP header error bit is set either one of the following conditions:

- 1. Ethernet type field does not match the IP header version field
- 2. Received frames are less than the length indicated by the IPv4 header length field
- 3. IPv4 or IPv6 headers less than 20 bytes

The receive checksum offload also identifies a TCP, UDP or ICMP payload in the received IP datagrams (IPv4 or IPv6) and calculates the checksum of such payloads properly, as defined in the TCP, UDP or ICMP specifications. It includes the TCP/UDP/ICMPv6 pseudo-header bytes for checksum calculation and the result of CRC is indicated by the bit 0 in the receive descriptor (RDES0). This bit si set either one of the following conditions:

- 1. Received TCP, UDP or ICMP data length does not match that of the IP headers
- 2. The calculated checksum does not equal the value of the TCP, UDP or ICMP checksum field

Receive flow control

In Full-duplex mode, the MAC detects the receiving Pause frame and pauses the frame transmission according to the delay specified within the received Pause frame.

The ERF bit in the EMAC_MACFCTRL register to enable or disable Pause frame detection function. Once receive flow control is enabled, the EMAC will decode the Pause frames.

During the pause period, if another Pause frame is detected with a zero Pause time value, the MAC clears the PAUSE time and retransmits the data. If it is not a zero Pause time value, the pause time in the frame will be immediately loaded into the pause time counter.

Receive operation multiframe handling

Since the status is available immediately following the data, the RXFIFO is capable of storing any number of frames into it, as long as it is not full.

Receive status word

At thed end of the Ethernet frame reception, the EMAC wil send the receive status to the application (DMA). The detailed information of the receive status is given in the RDES0.

EMAC loopback mode

The EMAC supports loopback of transmitted frames onto its receiver. The loopback mode is very useful to debug the Ethernet communication. This feature is enabled by setting the LM bit in the EMAC MACCTRL register.

Note that the loopback mode is applicable only to the MII interface.

EMAC frame counter

The MAC management counters (MMC) contain a set of registers for gathering statistics on the received and transmitted frames. These include the EMAC_MMCCTR, EMAC_MMCRI, EMAC_MMCRIM, EMAC MMCTI and EMAC MMCTIM registers.

If a frame transmission is aborted due to any of the following errors, this frame will not be counted:

- 1. No carrier/Loss of carrier
- 2. Jabber timeout
- 3. Late collision
- 4. Excessive collision
- 5. Excessive deferral
- 6. Frame overflow

If a frame reception is aborted due to any of the following errors, this frame will not be counted:

- 1. CRC error
- 2. Runt frame (shorter than 64 bytes)
- 3. Alignment error
- 4. Length error (length field value does not match the received frame length)
- 5. Out of range (frame length beyond the maximum size, untagged frame maximum size=1518 bytes, tagged frame maximum size=1522 bytes)
- 6. MII RXER input error

26.2.3 Ethernet frame transmission and reception using DMA

The transmission and reception of the Ethernet frames are scheduled through DMA.

For transmission, the DMA reads out the Ethernet frames from the user system buffer (such as SRAM) via the AHB master interface and forwards them to the TXFIFO. The EMAC core then transfers the data frames in the TXFIFO to the MII/RMII interface.

For reception, the EMAC core sends the received Ethernet frames from the MII/RMII interface to the RXFIFO so that the DMA controller reads out the Ethernet frames from the RXFIFO and transfers them to the user data buffer (SRAM) via the AHB master interface.

DMA control and status register and descriptor table are used to manage the whole transmission and

reception process, which has its respective descriptor list. The descriptor list is usually stored in the system buffer area (SRAM). When the transmission and reception is enabled, the DMA polls the descriptor table through the transmit and receive poll register to start the transmission and reception process. The base address the descriptor list for transmission and reception is stored into the transmit descriptor list register and receive descriptor list register.

There are two descriptor structures: ring structure and chain structure. In a ring structure, each descriptor may point to two buffers. In a chain structure (TDES0[20]=1 is configured for transmission, but RDES1[14]=1 for reception), each descriptor points to the only one buffer. The contents of the TDES3 and RDES3 for the current frames refer to the next descriptor address for transmission and reception.

Figure 26- 11 Descriptor for ring and chain structure Ring Chain Structure Structure Buffer1 Buffer1 Descriptor 0 Descriptor 0 Buffer2 Buffer1 Descriptor 1 Buffer2 Buffer1 Descriptor 1 Buffer1 Descriptor 2 Buffer2 Buffer1 Buffer1 Descriptor 2 Descriptor n Buffer2 **Next Descriptor**

DMA AHB host burst access

The DMA executes a fixed-length burst access on the AHB master interface if the FB bit is set in the EMAC_DMABM register. The maximum burst length is defined by the PBL filed (bit [13: 8] in the EMAC_DMABM register). The receive and transmit descriptors are always accessed in the maximum possible burst size (limited by PBL) for the 16 bytes to read.

The DMA provides the start address and the number of transfers to the AHB master interface before starting one transfer.

Note that one of the following conditions must be respected for transmission:

- 1. TXFIFO space is greater than the programmed burst size
- 2. The number of bytes before the end of a frame is less than the burst size and the TXFIFO can accommodate these bytes

One of the following conditions must be respected for reception:

- 1. The data available in the RXFIO is greater than the programmed burst size
- 2. The number of bytes before the end of a frame is less than the burst size and the end of the frame is detected in the RXFIFO

AHB host data alignment

The DMA always initiates transfers with address aligned to the bus width. But the start address of the buffers can abligned to any of the four bytes.

- Example of buffer read: If the transmit buffer address is 0x2000 0AA3, and 15 bytes are to be transferred, then the DMA will read five words (32 bits) from the address 0x2000 0AA0, but when transferring data to the TXFIFO, the first three bytes and the last two bytes will be ignored. The DMA always ensures that is transfer a 32-bit data to the TXFIFO, unless it is the end of the frame.
- Example of buffer write: If the receive buffer address is 0x2000 0BB2 and 16 bytes are to be transferred, the DMA will read five 32-bit data from the address 0x2000 0BB0. But the first two bytes and the last two bytes are dummy data.

Buffer size calculation

For transmission, software needs to calculate the buffer size. The TXDMA transfers the exact number of bytes programmed by buffer size field in the TDES1 to the EMAC core. If the FS bit is set in the TDES0, the DMA marks the first transfer from the buffer as the start of frame. If the LS bit is set in the TDES0, the DMA marks the last transfer from the buffer as the end of frame.

During a frame reception, if the receive buffer address is word-aligned, the valid length of the buffer refers to the value programmed in the RDES1 if the receive buffer address is not word-aligned, the valid length of the buffer is less than the value configured in the RDES1. The valid length value of the buffer is the value indicated by the RDES1 minus the lower two bit value of the buffer address. For example, if the total buffer size is 1024 bytes and the buffer address is 0x2000 0001, the lower 2-bit value of the address is 0x01, then the valid buffer size is 1023 bytes.

The FS bit is set by the DMA controller when an SOF is received. The LS is set when an EOF is received. If the receive buffer length field is big engouth to accommodate a full frame, then both the FS and LS bits will be set in the same descriptor. The actual length of the received frame is indicated by the FL bit in the RDESO.

DMA arbiter

Two types of arbitrations are used for the arbitration between transmit and receive controller: round-bin, and fixed-priority. When round-robin is selected (DA bit is set in the EMAC_DMABM register), the arbiter allocates the databus according to the ratio set b the PR bit in the EMAC_DMABM register, when both transmit and RXDMA request access to the AHB bus simultaneously. When the DA bit is set, the RXDAM always has prirority over the TXDMA for data access.

Error response to DMA

If an error response is received during DMA transfer, then the DMA stops all operations and updates the error bit and the fatal bus error bit in the EMAC_DMASTS register. The DMA can resume operation after software or hardware resets the Ethernet peripherals and re-initiates the DMA.

DMA initialization

- 1. Configure AT32F407xx bus access parameters in the EMAC DMABM register.
- 2. Mask unnecessary interrupt sources in the EMAC_DMAIE register.
- The application generates the transmit and receive descriptor lists. Then it writes the start addresses of the descriptor lists to both the EMAC_DMARDLADDR and EMAC_DMATDLADDR registers.
- 4. Configure address filtering registers.
- 5. Configure the (EMAC_MACCTRL register to enable the transmit and receive operating modes Program the PS and DM bits according to the auto-negotiation result
- 6. Set the bit 13 and bit 1 in the EMAC DMAOPM register to enable transmission and reception.
- 7. The transmit and receive controllers begin reading descriptors from the corresponding descriptor lists to process receive and transmit operations.

TXDMA operation: non-OSF mode

The TXDMA proceeds as follows, in default moe:

- 1. The application sets up the Enthernet frame data buffer and the transmit descriptor (TDES0-TDES3), and sets the OWN bit (TDES0[31])
- 2. Once the SSTC is set (EMAC_DMAOPM bit [13]), the DMA enables transmission.
- 3. The DMA polls the transmit descriptor to get a frame to be transmitted. If the DMA detects a descriptor that is being owned by the CPU or if an error occurs, transmission is suspended and suspend state is entered, and both the transmit buffer unavailable (EMAC_DMASTS bit 2) and normal interrupt summary bit (EMAC_DMASTS bit 16) are set. The transmit controller jumps to Step 8.
- 4. DMA fetches the data from the AT32F407xx memory based on the transmit descriptor indication and transfers the data to the TXFIFO.
- 5. If the Ethernet frame is stored in multiple descriptors with different descriptor, the DMA will close the intermediate descriptor and fetch the next descriptor. Steps3, 4 and 5 are repeated until the end of frame data is transferred.
- 6. When the frame transmission is complete, if IEEE1588 time stamping was enabled for the frame (as indicated in the transmit status), the time stamp value is written to the transmit descriptor (TDES2 and TDES3) that contains the end-of-frame buffer while the transmit status information is sent to the TDES0. Then the OWN bit is cleared, and the current descriptor is disabled. If time stamping was not eabled for the frame, the DMA only updates the status information to the TDES0 without recording the time stamping
- 7. When the frame transmission is complete, if the Interrupt on Completion (TDES0[30]) is set, then the transmit interrupt bit (EMAC_DMASTS bit [0]) will be set. The DMA then returns to Step 3 and is ready for the next transmission.
- 8. In the suspend state, the DAM tries to re-fetch the descriptor (back to Step 3) when it receives a transmit poll request and the overflow interrupt flag bit is cleared.

TXDMA operation: OSF mode

In this mode, the OSF bit is set (EMAC_DMAOPM bit 2=1). When the current data frame transmission is complete, the DMA immediately polls the transmit descriptor for the second frame without the need of waiting for the status information is written.

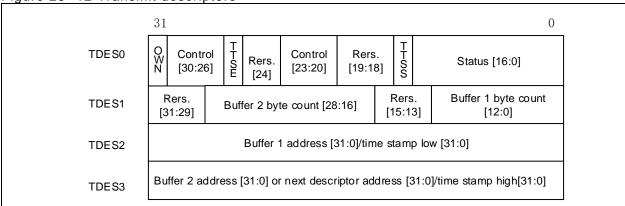
- 1. The DMA operates according to steps 1—6 of the TXDMA.
- 2. The DMA fetches the next descriptor without waiting for the status information update of the last description for the previous frame.
- 3. If the DMA owns the descriptor, then it will decode the transmit buffer address. If the DMA doen not own the descriptor, then it will enter into suspend state and jump to Step 7.
- 4. The DMA fetches the transmit frame data from the AT32F407xx memory and transfer the frame until the end of frame is transferred. if the frame is split among multiple buffers, the DMA will close the intermediate descriptors.
- 5. The DMA waits for the transmit status and time stamp of the previous frame. After the status information is available, the DMA writes the time stamp to TDES2 and TDES3 if such time stampe is captured. The DMA then clears the OWN bit and closes the descriptor. If the time stamping was not enabled for the frame, the DMA will not alter the contents of TDES2 and TDES3.
- 6. If enabled, the transmit interrupt bit is set. The DMA fetches the next descriptor when the status information is normal, and jumps to Step 3. If the previous transmit status shows an underflow error, the DMA enters into suspend state and jumps to Step 7.
- 7. In suspend state, when the DMA receives a pending status information and time stamp, if the time stamping is enabled it will write the time stamp to TDES2 and TDES3, and writes the status to TDES0. It then sets relevant interrupt flag bits and returns to suspend state.
- 8. The DMA can exit suspend state and enter run state only after receiving a transmit poll request (EMAC_DMACTD register).

Transmit frame processing

Ethernet frames stored in the transmit buffer must contain destination address, source address, correct type/length field and valid data. As for whether to include CRC value, it depends on the transmit descriptor. If the transmit descriptor requires the EMAC core to disable CRC or pad insertion, the buffer must contain the CRC.

A frame can be stored in multiple buffers that are linked in chain structure. When the transmission starts, the TDES0 bit 28 must be set in the first descriptor, and then the data are transferred from the memory to the TXFIFO. If the TDES0 bit 29 is set, it indicates the last buffer of the frame. After the last buffer of the data has been completed, the DMA writes back the final status information to the TDES0. If the transmit complete interrupt bit (TDES0[30]) is set, the transmit interrupt bit (EMAC_DMASTS bit 0) is set, the next descriptor is fetched, and the above steps are repeated. Actual frame transmission depends on whether the store-and-forward mode or threshold mode is selected. The descriptor is disabled (TDES0[31] is cleared) when the DMA finishes frame transmission.

Transmit polling suspend


Transmit polling can be suspended by one of the following conditions:

The DMA detects a descriptor owned by the CPU (TDES0[31]=0), and the DMA enters suspend state. A frame transmission is aborted when an underflow is detected. The abnormal interrupt summary bit (EMAC_DMASTS bit 15) and transmit data underflow bit (EMAC_DMASTS bit 5) are set, and the appropriate error bit is set in the TDES0.

TXDMA descriptors

The descriptor structure consists of four 32-bit words. The bit definitions of TDES0, TDES1, TDES2 and TDES3 are as shown below:

Figure 26- 12 Transmit descriptors

TDES0: Transmit descriptor word0

The software must configure the control bits [30: 26]+ [23: 20] and the OWN bit during descriptor initialization. When the DMA updates or writes the descriptor, it clears all the control bits and OWN bit, and report only the status bits.

Bit	Name	Type	Description
			Own bit
			0: The descriptor is owned by the CPU
			1: The descriptor is owned by the DMA
Bit 31	OWN	rw	This bit is cleared by the DMA when the DMA completes the frame transmission or when all the data in the buffer are read completely. The own bit of the frame's first descriptor can be set only after subsequent descriptors for the same frame have been set.
			Interrupt on completion
Bit 30	IC	rw	When set, this bit sets the transmit interrupt bit (EMAC_DMASTS bit [0]) after the present frame has been transmitted. This bit is valid only when the LS bit is set
			Last segment
Bit 29	LS	rw	When set, this bit indicates that the buffer contains the last segment of the frame. When this bit is set, neither TBS1 nor TBS2 cannot be cleared in the TDES1.
Bit 28	FS	rw	First segment

			When set, this bit indicates that the buffer contains the first segment of the frame
			Disable CRC
Bit 27	DC	rw	When set, the MAC does not append a CRC field to the end of the transmitted frame. This bit is valid only when the FS bit is set (TDES0[28]=1).
Bit 26	DP	rw	Disable pad 0: The MAC automatically adds padding to a frame shorter than 64 bytes, and the CRC field is added despite the state of the DC (TDES0[27]). This bit is valid only when the FS bit is set (TDES0[28]).
			1: The MAC does not automatically add padding to a frame shorter than 64 bytes.
			Transmit time stamp enable
Bit 25	TTSE	rw	When this bit is set, the IEEE1588 hardware time stamp is activated for the transmit frame described the descriptor. This bit is valid only when both the TSE (EMAC_PTPTSCTRL[0]) and FS bits (TDES0[28]) are set.
Bit 24	Reserved	resd	Kept at its default value.
			Checksum insertion control
			These two bits control the checksum calculation and insertion, as shown below:
			00: Checksum insertion disabled
Bit 23: 22	CIC	rw	01: Only IP header checksum calculation and insertion are enabled
Dit 23. 22	OIO	1 VV	 IP header checksum and data checksum calculation and insertion are enabled, but pseudo-header checksum is not calculated.
_			11: IP header checksum and data checksum calculation and insertion are enabled, and pseudo-header checksum is calculated.
			Transmit end of ring
Bit 21	TER	rw	When set, it indicates that the descriptor list reached its final descriptor. The DMA returns to the start address of the list, creating a descriptor ring.
			Second address chained
Bit 20	TCH	rw	When set, it indicates that the TBS2 bit in the TDES1 refers to the second descriptor address rather than the second buffer address. TDES0[21] takes precedence over TDES0[20]. This bit is valid onlh when the TDES0[28] is set.
Bit 19: 18	Reserved	resd	Kept at its default value.
			Transmit time stamp status
Bit 17	TTSS	rw	This bit is used as a status bit to indicate that a time stampe is captured for the described transmit frame. When this bit is set, it indicates the time stamp of the transmitted frame described by the descriptor has been captured, which are stored in the TDES2 and TDES3. This bit is valid only when the LS bit is set (TDES0[29]).
Bit 16	IHE	rw	IP header error When set, it indicates that the MAC transmitter detected an error in the IP data packet header. For IPv4 frames, the MAC checks whether the length field in the IPv4 datagram does match the number of he received IPv4 data. If there is a mismatch, an error is given. For IPv6 frames, an error is reported when the header length is not 40 bytes. Furthermore, the length/type field value for an IPv4 or IPv6 frame must match the IP header version. For IPv4 frame, an error is reported and this bit is set if the header length field value is shorter than 0x5.
Bit 15	ES	rw	Error summary This bit indicates the logical OR of the following bits: TDES0[14]: Jabber timeout TDES0[13]: Frame flush TDES0[11]: Loss of carrier TDES0[10]: No carrier
טו זוט	L0	IVV	TDES0[9]: Late collision TDES0[8]: Excessive collision TDES0[2]: Excessive deferral TDES0[1]: Underflow error TDES0[16]: IP header error
			TDES0[12]: IP data error
Bit 14	JT	rw	Jabber timeout

			Transmit buffer 2 size			
Bit 31: 29	Reserve	ed resd	Kept at its default vaue.			
Bit	Name	Туре	Description			
		descriptor				
Bit 0	DB	rw	When set, this bit indicates that the MAC defers frame transmission because of the presence of the carrier. This bit is valid only in half-duplex mode.			
Dit 0	DB	m.,	Deferred bit			
Bit 1	UF	rw	When set, this bit indicates that the MAC stopped the frame transmission because data arrived late from the system memory to the MAC. Underflow error indicates that the DMA encountered an empty transmit buffer while transmitting the frame. The transmission process enters the suspend state and sest bot the bit 5 (TU) in the EMAC_DMASTS register and the transmit interrupt bit (bit 0 in the EMAC_DMASTS register)			
Bit 2	ED	rw	When set, this bit indicates that the transmission ended because of excessive deferall of voer 24288 bit times when the DC bit is set in the EMAC_MACCTRL register. Underflow error			
			Excessive deferral			
Bit 6: 3	CC	rw	Collision count This field indicates the number of collisions experienced before the frame was transmitted. This bit is invalid when the EC bit is set (TDES0[8])). It is valid only in half-duplex mode.			
Bit 7	VF	rw	When set, this bit indicates that the transmitted frame is a VLAN-type frame.			
	\ /F		VLAN frame			
Bit 8	EC	rw	Excessive collision When set, this bit indicates that the frame transmission was aborted after 16 consecutive collisions while attempting to transmit the current frame. If the RD bit (Retry disabled) bit in the EMAC_MACCTRL register is set, then this bit is set after the first collision, and the transmission of the frame is aborted.			
Bit 9	LC	rw	Late collision When set, this bit indicates that frame transmission was aborted due to a collision detected after the collision window (64 byte times, including preamble, in MII mode). This bit is invalid if the underflow error bit is set.			
Bit 10	NC	rw	When set, this bit indicates that the carrier sense signal from the PHY was not set during a frame transmission.			
-			No carrier			
Bit 11	LOC	rw	Loss of carrier When set, this bit indicates that a loss of carrier occurred during a frame transmission (The MII_CRS signal is aactive for one or more transmit clock periods). This bit is valid only for the frame transmitted without collision while the MC operates in half-duplex mode.			
Bit 12	IPE	rw	When set, this bit indicates that the MAC transmitter detected an error in the TCP UDP or ICMP. The transmitter compares the length field received in the IPv4 or IPv6 with the actual number of TCP, UDP or ICMP bytes. This bit is set as an error warning if there is a match.			
Bit 13	FF	rw	When set, this bit indicates that the DMA or MTL flushed the frame in the FIFO due to a flush command given by the CPU. IP payload error			
			register. Frame flushed			
			When set, this bit indicates that the MAC transmitter has experienced a jabber timeout. This bit is set only when the JAD bit is not set in the EMAC_MACCTRL			

Bit	Name	Type	Description
Bit 31: 29	Reserved resd		Kept at its default vaue.
			Transmit buffer 2 size
Bit 28: 16	TBS2	rw	This field indicates the second data buffer size in bytes. When the TDES0[20] bit is set, this field indicates the second descriptor address.
Bit 15: 13	Reserve	d resd	Kept at its default vaue.
Bit 12: 0	TBS1	rw	Transmit buffer 1 size This field indicates the first data buffer size in bytes. If the field is 0, the DMA ignores

this buffer and uses buffer 2 or the next buffer, depending on the TDES0[20] bit.

TDES2: Transmit descriptor word2

TDES2 contains the address pointer to the first buffer of the descriptor or it contains the lower 32-bit time stamp data.

Bit	Name	Туре	Description
			Transmit buffer 1 address pointer / Transmit frame time stamp low This field has two functions:
	TBAP1/T TSL		1: The application indicates to the DMA the location of the Ethernet data in system memory.
D# 04: 0		-rw	2: After all data are transferred, the DMA can use these bits to store the time stamp of the transmit frame.
Bit 31: 0	TBAP1		When the current descriptor is owned by the DMA, these bits indicate the physical address of the buffer 1.
	TTSL		Before it releases the descriptor to the CPU, the DMA writes the 32 least significant bits of the time stamp capture for the corresponding transmit frame to this field. This field has the time stamp only when the TTSE bit in the TDES0 and the LS bit for the frame are set.

TDES3: Transmit descriptor word3

TDES3 contains the address pointer to the second buffer of the descriptor or the next descriptor, or it contains time stamp data.

Bit	Name	Description	
	TBAP2/T TSH		Transmit buffer 2 address pointer (Next descriptor address) / Transmit frame time stamp high This field has two functions:
		!	1: The application indicates to the DMA the location of the Ethernet data in system memory. 2: After all data are transferred, the DMA can use these bits to store the 32 most.
Bit 31: 0			significant bits of the time stamp for the frame.
Dit 31. 0	TBAP2		When the current descriptor is owned by the DMA, these bits indicate the physical address of buffer2 if a descriptor ring structure is used. If a descriptor chain structure is used, these bits indicate the phsycial address of the next descriptor.
			Transmit frame time stamp high
	ттѕн		The DMA updates these bits with the 32 most significant bits of the time stamp captured for the corresponding frame. This field has the time stamp only when the TTSE bit in the TDES0 and the LS bit for the frame are set.

RXDMA configuration

- 1. The application sets up receive descriptors (RDES0~RDES3), sets the OWN bit and then releases the descriptors to the DMA.
- 2. When the SSR bit (EMAC_DMAOPM[1]) is set, the DMA enters run state and attempts to acquire receive descriptors. If the fetched descriptor is not free (owned by the CPU), the DMA enters suspend state and jumps to Step 9.
- 3. The DMA decodes the receive buffer address from the acquired receive descriptors.
- 4. The DMA writes the frame data in the RXFIFO to the receive buffer.
- 5. When the buffer is full or the frame transfer ends, the receive controller will fetch the next descriptor from the descriptor queue.
- 6. If the current frame transfer is complete, the DMA jumps to Step 7. If the OWN bit of the next receive descriptor is cleared while the current frame is not complte (EOF is not received), when the frame flushing function is enabled, the DMA sets the descriptor error bit in the RDES0, closes the current descriptor (OWN=0) and sets the LS bit in the RDES1, and then jumps to Step 8 (Note that the LS bit in the RDES1 will not be set if the frame flushing feature is disabled). When the OWN bit of the next descriptor is set while the current frame transfer is not complete, the DMA then closes the current descriptor, marks it as intermediate and jumps to Step 4.
- 7. If IEEE1588 time stamp is enabled, the DMA writes the time stamp to the current descriptor's RDES2 and RDES3 while it writes the status word to the RDES0, with the OWN bit cleared and

the LS bit set.

- 8. The receive controller checks the latest receive descriptors, if the DMA owns the descriptor, the receive controller will return to Step 4. If the CPU owns the descriptor, the RXDMA will enter suspend state and set the receive buffer unavailable bit, and the controller will flush the received frames if the receive frame flushing feature is enabled.
- 9. The DMA exits the suspend state when a receive poll demand is received or the start of the next frame is available in the receive FIFO. The receive controller fetches the next descriptor and jumps to Step 2.

Receive descriptor acquisition

The RXDMA always attempts to acquire another descriptor. Receive descriptor is attempted if any of the following conditions is satisfied:

- The DMA enters the run state (SSR=1 in the EMAC DMAOPM)
- The buffer of the current descriptor is full before a full or part of the frame being transferred
- The controller has completed the current frame reception, but the current receive descriptor has not yet been closed
- A new frame is received but the receive process is suspended because the descriptor is owned by the CPU
- A receive poll demand received.

Receive frame processing

The MII/RMI interface receives the receive frame and writes it to the RXFIFO. When a programmed threshold is reached, the RXDMA begins transferring the frame data to the receive buffer poited to by the current descriptor. The DMA sets the LS bit in the RDES0 to indicate that this is the first segment of the frame in the buffer. The descriptors are released by clearing the OWN bit when the data buffer fills up or at the end of the frame reception. If the current descriptor buffer is enough to accommodate the comete frame, the current description RDES0 LS and FS bits are set.

The DMA fetches the next descriptor, sets the LS bit in the previous descriptor, writes the receive status word to the previous descriptor and then closes the previous descriptor. Then the DMA sets the receive interrupt bit (EMAC_DMASTS[6]). The same process repeats unless the DMA finds a descriptor as being owned by the CPU. If this occurs, the receive process sets the receive buffer unavailable bit (EMAC_DMASTS[7]) and then enters the suspend state. Before the suspend state is being entered, the current pointer value in the descriptor list is retained, which is used as the start address of a descriptor after exiting the suspend state.

Receive process suspended

If a new receive frame arrives in the RXFIFO while the RXDMA is in suspend state, the DMA re-fetches the current descriptor in the AT32F407xx memory. If the OWN bit of the fetched descriptor is set, the receive process re-enters the run state. If the OWN bit is cleared, the DMA discards the current frame at the top of the RXFIFO and increments the missed frame counter. If more than one frame is stored in the RXFIFO, the process repeats. The flushing or discarding of the frame at the top of the receive FIFO can be avoided by setting the bit 24 (DFRF bit) in the EMAC_DMAOPM register. In this case, the receive process sets the receive buffer unavailable bit and returns to the suspend state.

RXDMA descriptors

The descriptor structure consists of four 32-bit words: RDES0, RDES1, RDES2 and RDES3.

Figure 26- 13 RXDMA descriptor structure 0 RDES 0 Status [30:0] W Ν Contr Rers. Control RDES 1 Buffer 2 byte count [28:16] Rers. Buffer 1 byte count [12:0] [30:29] [15:14] RDES 2 Buffer 1 address [31:0] RDES 3 Buffer 2 address [31:0] or next descriptor address[31:0]

RDES0: Receive descriptor word0

RDES0 contains the receive frame state, the frame length and the descriptor ownership information.

Bit	Name	Type	Description
			Own bit
			0: The descriptor is owned by the CPU
D:+ 04	OVAVAL		1: The descriptor is owned by the DMA
Bit 31	OWN	rw	This bit is cleared by the DMA when the DMA completes the frame transmission or when the buffers associated with this descriptor are full. The descriptor is released to the CPU.
D:+ 00	A = N 4		Destination address filter fail
Bit 30	AFM	rw	When set, this bit indicates that a frame failed the DA filter in the MAC core.
			Frame length
Bit 29: 16	FL	rw	These bits indicate the byte length of the received frame that was transferred to the system memory by the DMA. This field is valid only when the LS bit (RESD0[8]) is set and descriptor error bit is cleared (RDES0[14). If the LS bit is cleared, this field indicates the accumulated number of bytes that have been transferred to the system memory. Whether the frame length includes CRC depends on the bit 7 and bit 25 in the EMAC_MACCTRL register.
			Error summary
			This bit indicates the logical OR of the following bits:
			RDES0[1]: CRC error
	ES		RDES0[3]: Receive error
Bit 15		rw	RDES0[4]: Watchdog timeout
			RDES0[6]: Late collision;
			RDES0[7]: Giant frame or IP checksum error
			RDES0[11]: Overflow error
			RDES0[14]: Descriptor error
			Descriptor error
Bit 14	DE	rw	When set, this bit indicates a frame truncation caused by a frame that does not fit with the current descriptor buffers, and that the DMA does not own the next descriptor. This bit is valid only when the LS bit (RDES0[8])) is set.
			Source address filter fail
Bit 13	SAF	rw	When set, this bit indicates that the received frame failed the SA filter in the MAC core.
			Length error
Bit 12	LE	rw	When set, this bit indicates that the actual length of the received frame does not match the value in the Ethernet length/type field. This bit is valid only when the RDES0[5] bit is cleared. It is invalid when a CRC error occurs.
			Overflow error
Bit 11	OE	rw	When set, this bit indicates that the received frame was damaged due to receive FIFO overflow.
Dit 10	\/ ANI	24	VLAN tag
Bit 10	VLAN	rw	When set, this bit indicates that the frame pointed to by the current descriptor is

			months of an a VI AN frames by the MAC
			marked as a VLAN frame by the MAC.
			First descriptor
Bit 9	FS	rw	When set, this bit indicates that this descriptor contains the first buffer of the frame. If the size of the first buffer is 0, the seond buffer contains the beginning of the frame. If the size of the seond buffer is also 0, the buffer of the next descriptor contains the beginning of the frame.
			Last descriptor
Bit 8	LS	rw	When set, this bit inidicates that the buffers pointed to by this descriptor are the last buffers of the frame.
			IPv header checksum error
Bit 7	IPHCE	rw	When set, this bit indicates an error in the IPv4 or IPv6 header. This error can be due to mismatched Ethernet type filed and IP version field, IPv4 header checksum error or an Ethernet frame lacking the desired number of IP header bytes.
			Late collision
Bit 6	LC	rw	When set, this bit indicates that a late collision has occurred while receiving the frame in half-duplex mode.
			Frame type
Bit 5	FT	rw	When set, this bit indicates that the received frame is an Ethernet frame (the LT field is greater than or equal to 1536). When this bit is cleared, it indicates that the received frame is an IEEE802.3 frame. This bit is invalid when the received frame is a runt frame shorter than 14 bytes.
			Receive watchdog timeout
Bit 4	RWT	rw	When set, this bit indicates the receive watchdog timeout has occurred while receiving the current frame. The current frame is truncated after the watchdog timeout.
			Receive error
Bit 3	RE	rw	When set, this bit indicates that the RX_ER signal is valid while the RX_DV is valid during frame reception.
_			Dribble bit error
Bit 2	DE	rw	When set, this bit indicates that the received frame is not an integer multiple of bytes (odd nibbles) This bit is valid only in MII mode.
			CRC error
Bit 1	CE	rw	When set, this bit indicates a CRC error occurred on the received frame. This bit is valid only when the LS bit is set.
			Payload checksum error
Bit 0	PCE	rw	When set, this bit indicates that the TCP、UDP or ICMP checksum calculated by the MAC core does not match the received TCP, UDP or ICMP checksum field. This bit is also set when the received payload size does not match the length filed value of the IPv4 or IPv6 datagrame in the received Ethernet frame.

Table 26-7 shows the definitions of bit 5, 7 and 0.

Table 26- 7 Receive descriptor 0

Bit 5: Frame type	Bit 7: Checksum error	Bit 0: Payload checksum error	Frame status
0	0	0	IEEE802.3 type frame (length filed value is less than 0x0600)
1	0	0	IPv4/IPv6 type frame, no checksum error detected
1	0	1	IPv4/IPv6 type frame with payload checksum error detected (PCE bit)
1	1	0	IPv4/IPv6 type frame with an IP header checksum error detected (IPC CE bit)
1	1	1	IPv4/IPv6 type frame with both IP header and payload checksum errors detected
0	0	1	IPv4/IPv6 type frame with no IP header checksum error detected and the payload check bypassed due to an unsupported payload

0	1	1	A type frame is neither IPv4 nor IPv6 (the checksum offload bypasses checksum inspection)
0	1	0	Reserved

RDES1: Receive descriptor 1

Bit	Name	Туре	Description
Bit 31	DIC	rw	Disable interrupt on completion When set, this bit prevents setting the Ethernet DMA status register's RECV bit (EMAC_DMASTS) for the received frame pointed to by this descriptor. As a result, this disables the interrupt triggered by the RECV bit. This bit is valid only when the RDES0[8] is set.
Bit 30: 29	Reserved	resd	Kept at its default value.
Bit 28: 16	RBS2	rw	Receive buffer 2 size This field indicate the receive buffer 2 size, in bytes. It is invalid if the RDES1[14 bit is set.
Bit 15	RER	rw	Receive end of ring When set, this bit indicates that the current descriptor is the last one in the descriptor list. The DMA returns to the base address to fetch the next descriptor, creating a descriptor ring.
Bit 14	RCH	rw	Second address chained When set, this bit indicates that the second address in the descriptor is the next descriptor address rather than the second buffer address. When this bit is set, RBS2(TDES1[28: 16]) value can be ignored. RDES0[15] takes precedence over RDES0[14].
Bit 13	Reserved	resd	Kept at its default value.
Bit 12: 0	RBS1	rw	Receive buffer 1 size This field indicates the receive buffer 1 size, in bytes. If this field is 0, the DMA ignores this buffer and uses buffer 2 or next descriptor depending on the RDES[14] value.

RDES2: Receive descriptor word2

RDES2 contains the address pointer to the first data buffer in the descriptor, or it contains time stamp data.

Bit	Name	Type	Description
	RBAP1/R TSL		Receive buffer 1 address pointer /Receive frame time stamp low These bits have two functions. The application uses them to indicate to the DMA where to store the data in memory. After completing data reception, the DMA may use these bits to store frame time stamp.
Bit 31: 0	RBAP1	rw	When this descriptor is owned by the DMA, these bits indicate the physical address of buffer 1.
	RTSL		Before it releases the descriptor, the DMA updates this field with the 32 least significant bits of the time stamp. The timp stamp is written by the DMA only when the time stamp and LS bit are set (indicating that the last segment of the frame is stored in memory).

RDES3: Receive descriptor word3

RDES3 contains the address pointer to the second data buffer in the descriptor, or it contains time stamp data.

Bit	Name	Туре	Description
	RBAP2/R TSH		Receive buffer 2 address pointer (next descriptor address)/Receive frame time stamp high These bits have two functions. The application uses them to indicate to the DMA where to store the data in memory. After completing data reception, the DMA may use these bits to store frame time stamp.
Bit 31: 0	RBAP2	rw	When this descriptor is owned by the DMA, these bits indicate the physical address of buffer 2 when a descriptor ring structure is used. If the second address chained bit (RDES0[14]) is set, these bits point to the physical address of the next descriptor while the next descriptor is present.
	RTSH		Before it releases the descriptor, the DMA updates this field with the 32 most significant bits of the time stamp. The timp stamp is written by the DMA only when the time stamp and LS bit are set (indicating that the last segment of the frame is

stored in memory).

26.2.4 Ethernet frame transmission and reception using DMA

The EMAC enters power-off mode when the PD bit is enabled in the EMAC_MACPMTCTRLSTS register. In this mode, all received frames are dropped by the EMAC and they are not forwarded to the application.

PMT supports the reception of remote wakeup frames and AMD Magic Packet frames and uses them to wake up the EMAC from power-off mode. This is done by setting the ERWF and EMP bits in the EMAC MACPMTCTRLSTS register.

Remote wakeup frame filter register

There are eight wakeup frame filter registers, each of which requires to be configured one by one. The desired values of the wakeup frame filter are loaded by sequentially loading eight times the wakeup frame filter register. The read operation is identical to the write operation. To read the eight values, the user has to read the wakeup frame filter register for consecutive eight times.

Figure 26- 14 Wakeup frame filter register

Wkuppktfilter_reg0	Filter 0 Byte Mask							
Wkuppktfilter_reg1	Filter 1 Byte Mask							
Wkuppktfilter_reg2	Filter 2 Byte Mask							
Wkuppktfilter_reg3	Filter 3 Byte Mask							
Wkuppktfilter_reg4	RESD	Filter 3 Cmd	RESD	Filter 2 Cmd	RESD	Filter 1 Cmd	RESD	Filter 0 Cmd
Wkuppktfilter_reg5	Filter	Filter 3 Offset Filter 2 Offset			Filter 1 Offset Filter 0 Offset			Offset
Wkuppktfilter_reg6	Filter 1 CRC-16				Filter 0 CRC-16			
Wkuppktfilter_reg7	Filter 3 CRC-16					Filter	2 CRC-16	

Filter I byte mask

This register defines which bytes of the filter i (i=0~3) are used to determine whether or not the frame is a wakeup frame. The bit 31 must be zero. The bit j[30: 0] is the byte mask. If the bit j is set, then filter i offset + j of the incoming frame will be processed by the CRC block, otherwise filter i offset + j is ignored.

Filter i command

This is a 4-bit command. Bit 3 defines the address type. When the bit is set, this feature applies to only multicast addresses. When the bit is cleared, this feature applies to only unicast addresses. Bit 2 and bit 1 are reserved. Bit 0 is the filter enable bit. This filter is disabled if the bit 0 is cleared.

Filter i offset

This is an 8-bit register that defines the offset for the filter i first byte to be examined by filter i. The minimum allowed is 12, which refers to the 13th byte of the frame (offset value 0 means the first byte of the frame)

Filter i CRC-16

This register contains the CRC_16 value calculated by the filter, and the byte mask value programmed in the wakeup frame filter regiter block.

Remote wakeup frame detection

This mode is enabled by setting the RRWF bit in the EMAC_MACPMTCTRLSTS register.

PMT supports four programmable filters. If the incoming frame passed the address filtering of the filter, and if the filter CRC_16 matches the examined incoming frame, then the wakeup frame is received. PMT is only responsible for checking length error, FCS error, Dribble bit error, MII error, collision and ensuring that the wakeup frame is not a runt frame.

When a remote wakeup frame is received, the EMAC will move from sleep mode to normal mode. At the same time, the RRWF bit (bit 6) is set in the EMAC_MACPMTCTRLSTS register, indicating that a remote wakeup frame is received. If a remote wakeup interrupt is enabled, an interrupt will be generated when the PMT receives the remote wakeup frame.

Magic Packet detection

Magic Packet detection is enabled by setting the EMP bit in the EMAC_MACPMTCTRLSTS register. The Magic Packet frame contains a specific packet of information that is used to wakeup the stations on the LAN.

Magic Packet frame format: 6 bytes are all 1, followed by a MAC address repeating 16 times, for instance, MAC address of a device is 0x11aabb22cc33, then the Magic Packet used to wake up this frame is shown as follows:

Destination address source addressFFFF FFFF FFFF

11aa bb22 cc33 11aa bb22 cc33 11aa bb22 cc33 11aa bb22 cc33

11aa bb22 cc33 11aa bb22 cc33 11aa bb22 cc33 11aa bb22 cc33

11aa bb22 cc33 11aa bb22 cc33 11aa bb22 cc33 11aa bb22 cc33

11aa bb22 cc33 11aa bb22 cc33 11aa bb22 cc33 11aa bb22 cc33

··· CRC

In Sleep mode, the PMT will constantly detect each frame transferred to the station to determine whether or not the frame meets the Magic Packet format.

When the Magic Packet is received, the RMP bit will be updated in the EMAC_MACPMTCTRLSTS register. Upon the reception of Magic Packet, the PMT will generate an interrupt if enabled.

Precautions on system in DEEPSLEEP mode

In DEEPSLEEP mode, the Ethernet PMT block is still able to detect frames as long as the EXTI 19 is enabled. However, the RE bit has to be set in the EMAC_MACCTRL register because the EMAC needs to detect Magic Packet or a remote wakeup frame.

DEEPSLEEP and wakeup sequences are recommended as follows:

- 1. Disable the TXDMA and wait for all data transmission to complete. These transmissions can be checked by polling the TI bit in the EMAC_DMASTS register.
- 2. Disable the MAC transmitter and MAC receiver by clearing the TE and RE bits in the EMAC MACCTRL register.
- 3. Poll the RI bit in the EMAC_DMASTS register, and wait for the RXDMA to real all the frames in the RXFIFO, and then disable the RXDMA.
- 4. Configure and enable the EXTI19 to generate either an event or an interrupt.
- 5. Enable Magic Packet/remote wakeup frame detection by setting the EMP/ERWF bit in the EMAC MACPMTCTRLSTS register.
- 6. Enable power-down mode by setting the PD bit in the MAC_MACPMTCTRLSTS register.
- 7. Enable the EMAC receiver by setting the RE bit in the EMAC MACCTRL register.
- 8. MCU enters DEEPSLEEP mode.
- 9. Upon receiving Magic Packet/a remote wakeup frame, the Ethernet exits the power-down mode.
- 10. Read the EMAC_MACPMTCTRLSTS register to clear RRWF/RMP, enable the EMAC transmit state machine, and the TXDMA and RXDMA.
- 11. Configure the MCU system clock.

26.2.5 IEEE1588 precision time protocol

The PTP is used to synchronize systems that include clocks of varying precision, resolution and stability (not limited to Ethernet). Refer to IEEE1588 standard for more information.

The PTP block captures the accurate time when a PTP packet is transmitted or received from Ethernet port, and the captured time is returned to the application.

Reference clock source

According to IEEE158 standard, the system requires a reference time in a 64-bit format as the current time record, with the upper 32 bits time information in seconds, and the lower 32 bits time information in nanoseconds.

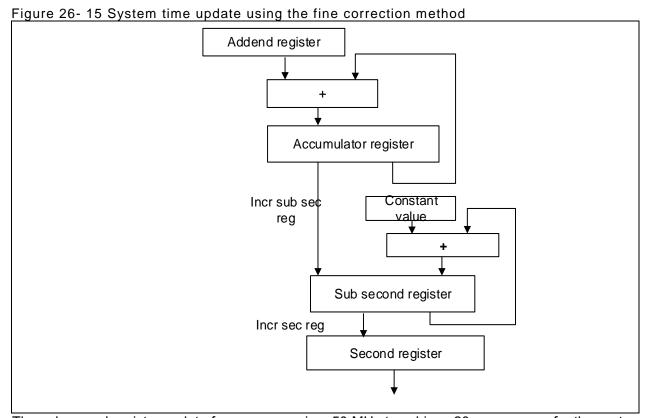
The PTP reference clock is used to generate the system time and to capture time stamps. The frequency of this reference clock must be greater or equal to the resolution of time stamp counter. The synchronization accuracy between the master node and the slave node is abound 100ns.

The time synchronization accuracy depends on the PTP reference clock input period, the frequency drift of the crystal oscillator and that of the synchronization procedure.

Transmission and reception of frames with PTP feature

When the bit 0 is set in the EMAC_PTPTSCTRL register and the bit 25 is also set in the TDES0 register, a frame's SFD is output on the MII, and then a time stamp is captured. The upper 32 bits and the lower 32 bits of the time stamp are stored in the TDES3 and TDES2, respectively so that the time stamp and transmit status work will be returned to the application all together.

When the bit 0 is set in the EMAC_PTPTSCTRL register and the bit 8 is also set in the EMAC_PTPTSCTRL register, the EMAC will capture the time stampe of all the received frames on the MII. The upper 32 bits and the lower 32 bits of the time stamp are stored in the RDES3 and RDES2, respectively so that the time stamp and receive status work will be returned to the application all together.


System time correction methods

The PTP input reference clock is the system clock SYSCLK, which is used to update the 64-bit time stamp of the Ethernet frames being transmitted or received. There are two correction methods: coarse and fine correction.

Coarse correction: the initial value/the offset value is written to the time stamp update registers (EMAC_PTPTSHUD and EMAC_ PTPTSLUD). When the TI bit is set in the EMAC_PTPTSCTRL register, an initialization process starts, and system clock counter is updated with the value in the time stamp upate register. If the TU bit is set in the EMAC_PTPTSCTRL register, a correction process starts, and the time stamp update register value is uses as the offset value, and such offset value is added or subtracted from the system time.

Fine correction: the slave clock (reference clock) frequency drift with respect to the master clock (as defined in IEEE1588) is corrected over a period of time. An accumulator sums up the value of the addend register as shown in Figure 26-15. The pulse generated by the arithmetic carry of the accumulator is used to increment the system time counter. The addend register value depends on the system clock frequency. Both the accumulator and the addend are 32-bit registers.

The subsecond register update frequency requires 50 MHz to achieve 20 ns accuracy for the system clock update circuit. Therefore, if the system clock frequency is 70 MHz, the ratio is calculated as 70/50=1.4. Thus the value written to the addend register is 2³²/1.4, which is equal to 0XB6DB6DB6.

The value in the addend register has to be updated according to the drift of the system clock frequency. If the subsecond register update frequency is 50 MHz, the constant value used to increment the subsecond register is $2^{31}/(50*10^6)=43$.

The software has to calculate the drift of the frequency by mease of Sync, and to update the accumulator register accordingly. Initially, the slave clock addend register is programmed to be FreqCompensationValue0:

FreqCompensationValue0 = 2^{32} /frequency division ratio. If the MasterToSlaveDelay is assumed to be the same for consecutive Sync messages. The algorithm below mentiond must be applied. Affter a few Sync cycles, the frequency is locked. The slave clock can then determine an accurate MasterToSlaveDela value and synchronize the master with the salve clock using the new value. The algorithm is shown as follows:

When the master clock is MasterSyncTime $_n$, the master node sends the slave node a Sync message. The slave node receis this message when its local clock is SlaveClockTime $_n$, and computes MasterClockTime $_n$ as

MasterClockTime_n = MasterSyncTime_n + MasterToSlaveDelay_n

The master clock count for the current Sync cycle, MasterClockCount_n is:

 $\label{eq:masterClockTime} MasterClockTime_n - MasterClockTime_{n-1}, assuming \quad that \quad the \\ MasterToSlaveDelay is the same for Sync cycles n-1$

The slave clock count for the current Sync cycle, SlaveClockCount_n is:

SlaveClockCount n = SlaveClockTimen - SlaveClockTime n-1

The difference between the master clock count and slave clock count for the current Sync cycle, ClockDiffCount₁ is

ClockDiffCount_n= MasterClockCount_n - SlaveClockCount_n

The frequency-ratio factor for a slave clock, FreqScaleFactor_n is

FreqScaleFactor_n = (MasterClockCount_n+ ClockDiffCount_n) / SlaveClockCount_n

171517

AT32F403A/407 Series Reference Manual

The frequency compensation value for the addend register, FreqCompensationValue_n is FreqCompensationValue_n = FreqScaleFactor_n ×FreqCompensationValue_{n-1}

This algorithm comes with a self-correction feature. In theory, the frequency can be locked at a synchronized cycle. However, it may makes several cycles to synchronize the slave device.

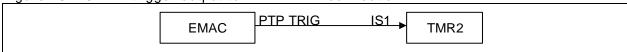
System time initialization procedure

- 1. Mask the time stamp trigger interrupt by setting the bit 9 in the EMAC_MAIMR register.
- 2. Enable the time stamp by setting the bit 0 in the EMAC_PTPTSCTRL register.
- 3. Program the subsecond increment register based on the system time update precision
- 4. If the fine correction method is being used, program the EMAC_PTPTSAD register, set the bit 5 in the EMAC_PTPTSCTRL register, poll the EMAC_PTPTSCTRL register until the bit 5 becomes 0. For the coarse correction method, skip this step and directly jump to step 6.
- 5. To select the fine correction method, program the bit 1 in the EMAC_PTPTSCTR register.
- 6. Write the system time value to be configured to the EMAC_PTPTSHUD and EMAC_PTPTSLUD) registers.
- 7. Set the bit 2 in the EMAC_PTPTSCTRL register, and start initializing the time stamp and polling this bit until this bit becomes 0 (initialization complete).
- 8. The time stamp counter starts running as soon as the initialization is complete.
- 9. Enable the MAC transmitter and receiver for proper time stamping.

Programming steps for system time update using coarse correction method

- 1. Write the offset value (positive or negative) to the Ethernet PTP time stamp high update register (EMAC_PTPTSHUD) and the Ethernet PTP time stamp low update register (EMAC_PTPTSLUD)
- 2. Set the bit 3 (TU) in the Ethernet PTP time stamp control register (EMAC_PTPTSCTRL)
- 3. When the TU bit is cleared, the value in the time stamp update registers is added to or subtracted from the system time.

Programming steps for system time update using fine correction method


- 1. Use the algorithm explained in System time correction methods to calculate the value of the addend register.
- 2. Update the addend register
- 3. Write the target value you want to the target time high and target time low registers, and clear the bit 9 in the Ethernet MAC interrupt mask register (EMAC_MAIMR) to activate the time stamp interrupt.
- 4. Set the bit 4 (TITE) in the Ethernet PTP time stamp control register (EMAC_PTPTSCTRL).
- 5. When this event generates an interrupt, read the EMAC_MAIMR register to clear the corresponding interrupt flag bits.
- 6. Reprogram the EMAC_PTPTSAD register with the old value and set the bit 5 in the EMAC PTPTSCTRL register to update the addend register.

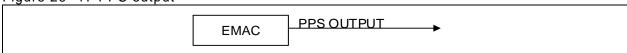
PTP trigger internal connection with TMR2

The EMAC provides a trigger interrupt when the system time is greater than the target time. Using an interrupt introduces an interrupt latency. To obtain an accurate interrupt latency time, a PTP will output a high signal to the TMR2 when the system time becomes greater than the target value. An accurate interrupt latency can be calculated since the the clock of the timer and PTP reference clock are synchronous.

Set the bit 29 in the IOMUX_REMAP register to enable the connection beween the PTP trigger signal and the TIM2 IS1.

Figure 26- 16 PTP trigger output to TMR2 ITR1 connection

PTP second pulse output signal


Refer to the EMAC_PTPPPSCR register descriptor for more information about PTP pulse second output. The following contents are based on the fact wen the emac_pps_sel bit (bit 15) is cleared in the CRM_MISC3 register.

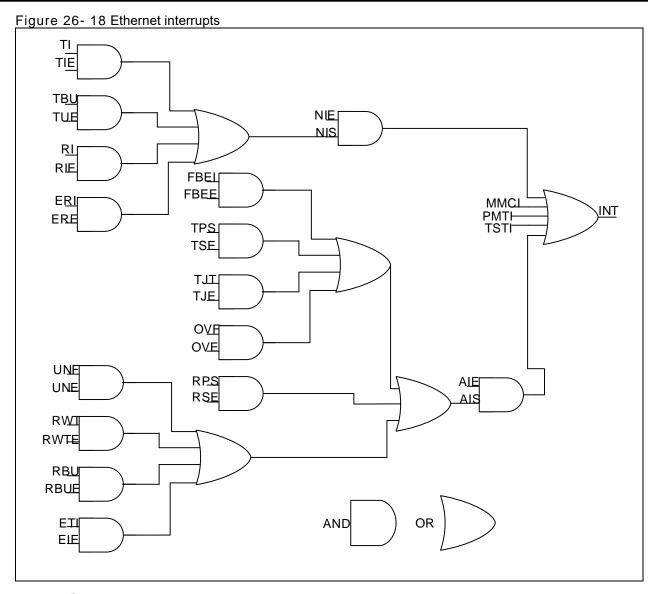
The PPS output frequency is 1 Hz by default, which can be configured to 2PPSFREQ Hz through the PPSFREQ[3: 0] in the EMAC PTPPPSCR register.

If it is 1 Hz, the pulse width of the PPS is 125 ms when the binary rollover control is selected (TSSSR=0 in the EMAC_PTPTSCTRL register); the pulse width of the PPS is 100 ms when the digital rollover control is selected (TSSSR=1).

If it is 2 Hz or over, the duty cycle of the PPS output is 50% when the binary rollover control is selected. Set the bit 30 in the IOMUX REMAP register to enable PPS output feature.

Figure 26- 17 PPS output

26.2.6 EMAC interrupts


The EMAC has two interrupt vectors: one is used for normal Ethernet opertaions and the other for the Ethernet wakeup event (remote wakeup frame or Magic Packet detection) when it is mapped on EXINT line 19.

The first interrupt vector is used for interrupts generated by the MAC and the DMA.

The second interrupt vector is used for interrupts generated by the PMT block on wakeup events. It can cause the AT32F407xx to exit the low-power mode, and generate an interrupt.

When an Ethernet wakeupevent is mapped on the EXINT line19 and the EMAC PMT interrupt is enabled and the EXINT line 19 interrupt, deteted on its rising edge, is also enabled, both interrupts are generated at the same time.

26.3 EMAC registers

Table 26-8 shows the Ethernet register map and its reset values.

The peripheral registers can be accessed by bytes (8-bit), half words (16-bit) or words (32-bit).

Table 26-8 Ethernet register map and its reset values

Register	Offset	Reset value
Negistei	Oliset	Neset value
EMAC_MACCTRL	0x00	0x0000 8000
EMAC_MACFRMF	0x04	0x0000 0000
EMAC_MACHTH	0x08	0x0000 0000
EMAC_MACHTL	0x0C	0x0000 0000
EMAC_MACMIIADDR	0x10	0x0000 0000
EMAC_MACMIIDT	0x14	0x0000 0000
EMAC_MACFCTRL	0x18	0x0000 0000
EMAC_MACVLT	0x1C	0x0000 0000
EMAC_MACRWFF	0x28	0x0000 0000
EMAC_MACPMTCTRLSTS	0x2C	0x0000 0000
EMAC_MACISTS	0x38	0x0000 0000

EMAC_MAIMR	0x3C	0x0000 0000
EMAC_MACA0H	0x40	0x0010 FFFF
EMAC_MACA0L	0x44	0xFFFF FFFF
EMAC_MACA1H	0x48	0x0000 FFFF
EMAC_MACA1L	0x4C	0xFFFF FFFF
EMAC_MACA2H	0x50	0x0000 FFFF
EMAC_MACA2L	0x54	0xFFFF FFFF
EMAC_MACA3H	0x58	0x0000 FFFF
EMAC_MACA3L	0x5C	0xFFFF FFFF
EMAC_MMCCTRL	0x100	0x0000 0000
EMAC_MMCRI	0x104	0x0000 0000
EMAC_MMCTI	0x108	0x0000 0000
EMAC_MMCRIM	0x10C	0x0000 0000
EMAC_MMCTIM	0x110	0x0000 0000
EMAC_MMCTFSCC	0x14C	0x0000 0000
EMAC_MMCTFMSCC	0x150	0x0000 0000
EMAC_MMCTFCNT	0x168	0x0000 0000
EMAC_MMCRFCECNT	0x194	0x0000 0000
EMAC_MMCRFAECNT	0x198	0x0000 0000
EMAC_MMCRGUFCNT	0x1C4	0x0000 0000
EMAC_PTPTSCTRL	0x700	0x0000 2000
EMAC_PTPSSINC	0x704	0x0000 0000
EMAC_PTPTSH	0x708	0x0000 0000
EMAC_PTPTSL	0x70C	0x0000 0000
EMAC_PTPTSH	0x708	0x0000 0000
EMAC_PTPTSL	0x70C	0x0000 0000
EMAC_PTPTSHUD	0x710	0x0000 0000
EMAC_PTPTSLUD	0x714	0x0000 0000
EMAC_PTPTSAD	0x718	0x0000 0000
EMAC_PTPTTH	0x71C	0x0000 0000
EMAC_PTPTTL	0x720	0x0000 0000
EMAC_PTPTSSR	0x728	0x0000 0000
EMAC_PTPPPSCR	0x72c	0x0000 0000
EMAC_DMABM	0x1000	0x0002 0101
EMAC_DMATPD	0x1004	0x0000 0000
EMAC_DMARPD	0x1008	0x0000 0000
EMAC_DMARDLADDR	0x100C	0x0000 0000
EMAC_DMATDLADDR	0x1010	0x0000 0000
EMAC_DMASTS	0x1014	0x0000 0000
EMAC_DMAOPM	0x1018	0x0000 0000
EMAC_DMAIE	0x101C	0x0000 0000

EMAC_DMAMFBOCNT	0x1020	0x0000 0000
EMAC_DMACTD	0x1048	0x0000 0000
EMAC_DMACRD	0x104C	0x0000 0000
EMAC_DMACTBADDR	0x1050	0x0000 0000
EMAC_DMACRBADDR	0x1054	0x0000 0000

26.3.1 Ethernet MAC configuration register (EMAC_MACCTRL)

The Ethernet MAC configuration register defines the receive and transmit operation modes. A delay greater than 4 us is required for two consecutive write accesses to this register.

Bit	Register	Reset value	Type	Description
Bit 31: 24	Reserved	0x00	resd	Kept at its default value.
				Watchdog Disable
Bit 23	WD	0x0	rw	When this bit is set, the MAC disables the watchdog time on the receiver, and can receive frames of up to 16,384 bytes.
				When this bit is cleared, the MAC allows no more than 2048 bytes of the frames being received.
				Jabber Disable When this bit is set, the MAC disables the Jabber timer on
Bit 22	JD	0x0	rw	the transmitter, and can transfer frames of up to 16,384 bytes.
				When this bit is cleared, the MAC cuts of the transmitter if the application sends out more than 2048 bytes of data during transmission.
Bit 21: 20	Reserved	0x0	resd	Kept at its default value.
				InterFrame Gap These bits are used to define the minimum interframe gap between frames during transmission.
	IFG		rw	000: 96 bit times 96 bit times
D: 40 47				001: 88 bit times 88 bit times
位 19: 17		0x0		010: 80 bit times 80 bit times
				111: 40 bit times 40 bit times
				In half-duplex mode, the minimum IFG can be configured as 64 bit times (IFG=100). Lower values are not allowded.
				Disable Carrier Sense
Bit 16	DCS	0x0	rw	When this bit is set, the MAC transmitter will ignore the MII CRS signal during frame transmission in half-duplex mode. No error is reporded due to loss of carrier or no carrier during transmission.
				When this bit is cleared, the MAC transmitter will report errors due to carrier sense and even abort the transmission.
				This bit is reserved in full-duplex mode.
Bit 15	Reserved	0x1	resd	Kept at its default value.
				Fast EMAC Speed This bit indicates the speed of the MII, RMII interface.
Bit 14	FES	0x0	rw	0: 10 Mbps
				1: 100 Mbps
				Disable Receive Own When this bit is set, the MAC disables the frame reception in half-duplex mode if the phy_txen_o is enabled.
Bit 13	DRO	0x0	rw	When this bit is cleared, the MAC will receive all packets that are given by the PHY during transmission.
				This bit is not applicable when the MAC is in full-duplex

				mode.
				This bit is reserved (with default value RO) when the MAC is configured as "For full-duplex mode only" mode.
				Loopback Mode
Bit 12	LM	0x0	rw	When this bit is set, the MAC MII operates in loopback mode. The MII receive clock input (clk_rx_i) is required for the loopback mode to work normally, for the transmit clock is not looped-back internally.
				Duplex Mode
Bit 11	DM	0x0	rw	When this bit is set, the MAC operates in full-duplex mode, in which it can transmit and receive simultaneously.
				IPv4 Checksum When this bit is set, the MAC calculates the 16-bit complement sum of all received Ethernet frames and enables IPv4 header checksum (assuming it is bytes 26-26 or 29-30 (VLANtagged)) for received frames, and gives the status in the receive status information.
Bit 10	IPC	0x0	rw	The MAC also appends the 16-bit checksum of the calculated IP header packets (bytes after the IPv4header), and adds it to the Ethernet frame that has been sent out to the application (when Type 2 COE is deselected).
				When this bit is cleared, this feature is disabled.
			When this bit is set, IPv4 header checksum feature and IPv4 or IPv6 TCP, UDP or ICMP payload checksum feature is enabled while the Type 2 COE is selected. When this bit is cleared, the COE function in the receiver is disabled, and the corresponding PCE and IP HCE status bits are always 0. This bit is reserved (with default value RO) if the IP checksum mechanism is disabled during the core configuration.	
Bit 9	DR	0x0	rw	Disable Retry When this bit is set, the MAC attempts only 1 transmission. When a collision occurs on the MII interface, the MAC will ignore the current frame transmission and report a frame abort because of excessive collision error in the transmit frame status.
				When this bit is cleared, the MAC attempts retries based on the settings of BL ([6: 5]). This bit is applicable only in half-duplex mmode. It is reserved (with default value RO) in "For full-duplex mode only" mode.
Bit 8	Reserved	0x0	resd	Kept at its default value.
Bit 7	ACS	0x0	rw	Automatic pad/CRC Stripping When this bit is set, the MAC strips the pad/FCS field on received frames only when the frame lengh is shorter than 1536 bytes. All received frame with length field greater than or equal to 1536 bytes are passed on to the application without stripping the Pad or FCS field.
				When this bit is cleared, the MAC will forward all received frames to the master without changing its contents.
Rit 6. 5	RI		nu.	Back-off Limit The Back-off limit defines the random integer number (r) of slot time delays (512 bit times for 10/100 Mbps) the MAC waits before retries after a collision. This field is applicable only in the half-duplex mode. It is reserved (RO) in "For full-duplex mode only" mode.
Bit 6: 5	BL	0x0	rw	00: k= min (n, 10) 01: k = min (n, 8) 10: k = min (n, 4) 11: k = min (n, 1) Where n = the number of slot time delays for

				retransmission attempt. r takes the random integer value in the range $0 \le r < 2k$.
				Deferral Check
				When this bit is set, the deferral check function is enabled in the MAC. The MAC issues a frame abort status and sets the excessive deferral error flag bit in the transmit frame status when the transmit state machine is delayed for more than 24288 bit times in 10/100 Mbit/s mode.
Bit 4	DC	0x0	rw	If the Jumbo frame mode is enabled in 10/100 Mbps mode, the deferral threshhold is 155680 bit times. Deferall begins when the transmitter is ready to transmit, but is prevented when an active carrier sense signals is detected on the MII. Deferall time is not cumulative. Fo instance, if the transmitter is deferred for 10000 bit times because that the CRS signals is active first, but then becomes inactive, then transmits, collides, backs off because of collision, and then has to defer again after the completion of back-off, the deferral times resets to 0 and restarts.
				When this bit is cleared, the deferral check function is disabled. The MAC defers until the CRS signal becomes inactive. This bit is applicable only in the half-duplex mode. It is reserved (RO) in "For full-duplex mode only" mode.
Bit 3	TE	0x0	rw	Transmitter Enable When this bit is set, the transmit state machine of the MAC is enabled. when this bit is cleared, the MAC disables the transmit state machine after the completion of the current frame transmission, and does not transmit any further frames (To modify this bit through consecutive commands, if needed, a deferral value greater than 4us is required between two consecutive operations)
-				Receiver Enable
Bit 2	RE	0x0	rw	When this bit is set, the receive state machine of the MAC is enabled. when this bit is cleared, the MAC disables the receive state machine after the completion of the current frame reception, and does not receive any further frames (To modify this bit through consecutive commands, if needed, a deferral value greater than 4us is required between two consecutive operations).
Bit 1: 0	Reserved	0x0	resd	Kept at its default value.

26.3.2 Ethernet MAC frame filter register (EMAC_ MACFRMF)

The Ethernet MAC frame filter register contains the filter control bits for receiving frames. Some of the control bits got to the address check block of the MAC to perform the first level of address filtering.

The second level of filtering is performed on the incoming frames based on other control bits (such as pass bad frames and pass control frames)

Bit	Register	Reset value	Type	Description
Bit 31	RA	0x0	rw	Receive All When this bit is set, the MAC passes all received frames onto the application, irrespective of whether they have passed through the address filter. The result (pass or fail) of the source address or destination address filtering is updated in the corresponding bits of the receive status word. When this bit is cleared, the MAC passes on to the application only those frames that have passed the source address or destination address filtering.
Bit 30: 11	Reserved	0x00000	resd	Kept at its default value.
Bit 10	HPF	0x0	rw	Hash or Perfect Filter) When this bit is set, the address filter passes frames that match the perfect filter or hash filter set by the HMC or

-				HUC bit.
				When this bit is cleared, if the HUC or HMC bit is set, only
				frames that match the hash filter can pass address filter.
Bit 9	SAF	0x0	rw	Source Address Filter When this bit is set, the MAC compares the source address of the received frame with the value programmed in the enabled source address registers. If the comparison mismatches, the MAC will drop this frame. (SAF). When this bit is cleared, the MAC forwards the received frame to the application and updates the source address filter bit (SAF) in the receive status based on the source address comparison.
Bit 8	SAIF	0x0	rw	Source Address Inverse Filtering When this bit is set, the address check block operats in inverse filtering mode. The frame whose source address matches the source address register is marked as failing the source address filter. When this bit is cleared, the frame whose source address does not match the source address register is marked as failing the source address filter.
Bit 7: 6	PCF	0x0	rw	Pass Control Frames These bits control the forwarding of all control frames (including unicast and multicast Pause frames). 00: MAC filters all control frames and prevents them from reaching the application 01: MAC forwards all control frames, except Pause frame, to the application even if they fail the address filter 10: MAC forwards all control frames to the application even if they fail the address filter 11: MAC forwards control frames that pass the address filter to the application The following conditions must be met when dealing with a Pause frame: 1: When the MAC is in full-duplex mode, the bit 2 (REF) is set in the register 6 (flow control register) to enable flow control. 2: When the bit 3 (UP) is set in the register 6 (flow control register), the destination address of the received frames matches the specific multicast address or MAC address 0. 3: Type field of the receive frame is 0x8808, and the OPCODE field is 0x0001.
Bit 5	DBF	0x0	rw	Disable Broadcast Frames When this bit is set, the address filters filter all incoming broadcast frames. In addition, all other filter settings will also be overwritten. When this bit is set, the address filters pass all incomcing broadcast frames.
Bit 4	PMC	0x0	rw	Pass MultiCast When this bit is set, all frames with a multicast destination address (first bit in the destination address is set) are passed. Whent this bit is cleared, the filtering of a multicase frame depends on the HMC bit.
Bit 3	DAIF	0x0	rw	Destination Address Inverse Filtering When this bit is set, the address check block operates in inverse filtering mode for the destination address comparison for both unicast and multicast frames. When this bit is cleared, the filter work normally.
Bit 2	HMC	0x0	7347	When this bit is cleared, the filter work normally. Hash MultiCast
טונ ב	TIIVIC	UXU	rw	When this bit is set, the MAC performs destination address

2021.12.01 Page 455 Ver 2.02

				filtering of the received multicast frames according to the hash table.
				When this bit is cleared, the MAC performs a perfect destination address filtering for multicast frames, that is, it compares the destination address field with the values programmed in the destination registers.
				This bit is reserved if Hash filter is not selected during core configuration.
				Hash UniCast When this bit is set, the MAC performs destination address filtering for unicast frames according to the hash table.
Bit 1	HUC	0x0	rw	When this bit is cleared, the MAC peforms a perfect destination address filtering for unicast frames, that is, it compares the destination address field with the values programmed in the destination registers.
-				Promiscuous Mode
Bit 0	PR	0x0	rw	When this bit is set, the address filters pass all incoming frames regardless of their destination or source address. When the PR is set, the source address or destination address error bits in the receive status word are always 0.

26.3.3 Ethernet MAC Hash table high register (EMAC_MACHTH)

The 64-bit Hash table is used for group address filtering. For Hash filtering, the contents of the destination address of the incoming frame pass through the CRC logic, and the upper 6 bits in the CRC register are used to index the Hash table. The most significant bit of the CRC determines the register to be used (EMAC_MACHTH or EMAC_MACHTL), and the other 5 bits determine which bit in the register is to be used. The Hash value 5b'00000 uses the bit 0 in the selected register, while the Hash value 5b'11111 uses the bit 31 in the selected register.

The Hash value of the destination address is calculated according to the following steps:

- 1. Calculate a 32-bit CRC value of the destination address (see IEEE 802.3, and refer to 3.2.8 section for more details)
- 2. Bit invert the value obtained in Step 1
- 3. Take the upper 6 bits from the values obtained in Step 2

For example, if the destination address of the incoming frame is 0x1F52419CB6AF (0x1F is the first byte received on the MII interface), the calculated 6-bit Hash value is 0x2C and the bit 12 in the EMAC_MACHTH registeris checked for filtering. If the destination address of the incoming frame is 0xA00A98000045, the calculated 6-bit Hash value is 0x07, and the bit 7 in the EMAC_MACHTL register is checked for filtering.

Bit	Register	Reset value	Туре	Description
Bit 31	HTH	0x0000 0000	rw	This bit contains the upper 32 bits of the Hash table.

26.3.4 Ethernet MAC Hash table low register (EMAC_MACHTL)

The EMAC_MACHTL register contains the lower 32 bits of the Hash table. If the Hash filter is disabled or either 128-bit or 256-bit Hash table is selected, both register 2 and register 3 are reserved.

Bit	Register	Reset value	Type	Description
Bit 31	HTL	0x0000 0000	rw	Hash Table Low This bit contains the lower 32 bits of the Hash table.

26.3.5 Ethernet MAC MII address register (EMAC_MACMIIADDR)

The Ethernet MAC MII address register controls the external PHY through the management interface.

Bit	Register	Reset value	Type	Description
Bit 31: 16	Reserved	0x0000	resd	Kept at its default value.
				PHY Address
Bit 15: 11	PA	0x00	rw	This field indicates which of the 32 possible PHY devices are being accessed.
Bit 10: 6	MII	0x00	rw	MII Register This field select the desired MII register in the PHY device.
				Clock Range The CSR clock ranage selection determines the MDC clock frequency based on the used CSR clock frequency. Each value (when bit 5=0) has its corresponding CSR clock frequency range in order to ensure that the MDC
				clock frequency is roughly between 1.0 MHz and 2.5 MHz. 0000: CSR clock frequency is 60–100 MHz, and MDC
				clock frequency is CSR clock/42 0001: CSR clock frequency is 100–150 MHz, and MDC
Bit 5: 2	CR	0x0	rw	clock frequency is CSR clock/62
51. 0. 2	O.C.	one		0010: CSR clock frequency is 20–35 MHz, and MDC clock frequency is CSR clock/16
				0011: CSR clock frequency is 35–60 MHz, and MDC clock frequency is CSR clock/26
				0100: CSR clock frequency is 150–250 MHz, and MDC clock frequency is CSR clock/102
				0101: CSR clock frequency is 250–300 MHz, and MDC clock frequency is CSR clock/124
				0110, 0111: Reserved
Bit 1	MW	0x0	rw	MII Write When this bit is set, it indicates that the EMAC_MACMIIDT register is used for a write operation to the PHY. When this bit is not set, it is a read operation, and the data is loaded to the EMAC_MACMIIDT register.
				MII Busy
				This bit should read a logic 0 before writing to the EMAC_MACMIIADDR and EMAC_MACMIIDT register. During a PHY register access, this bit is set to 1'b1 by software, indicating that a read or write access is in progress. The EMAC_MACMIIDT register is invalid before this bit
Bit 0	МВ	0x0	rw	is cleared by the MAC. Thus, the MII data should be kept valid until this bit is cleared by the MAC during a PHY write operation. Similarily, the EMAC_MACMIIDT value is invalid until this bit is cleared by the MAC during a PHY read operation.
				The previous operation must be completed before performing subsequent read or write operations. This is because that there will be no acknowledgement from PHY to MAC after the completion of a read or write operation, the function of this bit will not change even if the PHY is not present.

26.3.6 Ethernet MAC MII data register (EMAC_MACMIDT)

The Ethernet MAC MII data register stores data to be written to the PHY register located at the address specified in the EMAC_MACMIIADDR register. EMAC_MACMIIDT register also stores data read out from the PHY registers.

Bit	Register	Reset value	Type	Description
Bit 31: 16	Reserved	0x0000	resd	Kept at its default value.
				MII Data
Bit 15: 0	MD	0x0000	rw	This field contains the 16-bit value from the PHY after a read operation, or the 16-bit value to be written to the PHY before a write operation.

26.3.7 Ethernet MAC flow control register (EMAC_MACFCTRL)

The Ethernet MAC flow control register controls the generation and reception of the control frames by the MAC flow control block. Writing 1 to the Busy bit triggers the flow control block to generate a Pause frame. The field of the control frame is selected as defined in the 802.3x specification, and the Pause Time value from this register is used in the Pause Time field of the control frame. The Busy bit remains set before the control frame is transferred onto the cable. The host must make sure that the Busy bit is cleared before writing to the register.

Bit	Register	Reset value	Type	Description
				Pause Time
Bit 31: 16	PT	0x0000	rw	This field contains the value to be used in the Pause Time field of the control frame. If the Pause Time bit is configured to be double-synchronized to the MII clock domain, then consecutive write operations to this register should be performed only after at least four clock cycles in the destination clock domain.
Bit 15: 8	Reserved	0x00	resd	Kept at its default value.
Bit 7	DZQP	0x0	rw	Disable Zero-Quanta Pause When this bit is set, it disables the automatic generation of Zero-quanta Pause frame while the flow control signal of the FIFO layer is disabled.
				When this bit is cleared, normal operation resumes. The automatic generation of Zero-quanta Pause frame is enabled.
Bit 6	Reserved	0x0	resd	Kept at its default value.
50				Pause Low Threshold This field defines the threshold of the Pause timer. The threshold values should always be less than the Pause time defined in the [31: 16] bit. For example, if PT = 100H (256 slot times), and PLT = 01, then a second Pause frame is automatically transmitted if initiated at 228 (256-28) slot times after the first Pause frame is transmitted.
				Threhold selection as follows:
Bit 5: 4	PLT	0x0	rw	00: Pause time minus 4 slot times (PT minus 4 slot times)01: Pause time minus 28 slot times (PT minus 28 slot times)
				10: Pause time minus 144 slot times (PT minus 144 slot times)
				11: Pause time minus 256 slot times (PT minus 256 slot times)
				Slot time is defined as the time taken to transmit 512 bits (64 bytes) on the MII interface.
Bit 3	DUP	0x0	rw	Detect Unicast Pause Frame The Pause frame with a unique multicast address as specified in the IEEE 802.3 will be processed. When this bit is set, the MAC detects the Pause frames with a unicast address specified in the MAC address0 high and MAC

•				address0 low registers.
				When this bit is cleared, the MAC detects only a Pause frame with a unique multicast address.
				Note: If the multicast address of the received frame does not match the unique multicast address, the MAC will not process the Pause frame.
Bit 2	ERF	0x0	rw	Enable Receive Flow control When this bit is set, the MAC decodes the received Pause frame and disables the transmitter for a period of time. When this bit is cleared, the decode function of the Pause frame is disabled.
Bit 1	ETF	0x0	rw	Enable Transmit Flow control In full-duplex mode, when this bit is set, the MAC enables the flow control operation to transmit Pause frames. When this bit is cleared, the flow control of the MAC is disabled, and the MAC does not transmit any Pause frames. In half-duplex mode, when this bit is set, the MAC enables the back-pressure feature. When this bit is cleared, the back-pressure feature is disabled.
				Flow Control Busy/Back Pressure Activate In full-duplex mode, this bit initiates a Pause frame; in half-duplex mode, the back-pressure feature is activated if the TFE bit is set.
Bit 0	FCB/BPA	0x0	rw1c/rw	In full-duplex mode, this bit is read as 1'b0 before writing to the EMAC_MACFCTRL register. The application must set this bit to 1'b1 to initiate a Pause frame. During a control frame transmission, this bit remains set, indicating that a frame transmission is in progress. After the completion of the Pause frame, the MAC resets this bit to 1'b0. The Ethernet MAC flow control register (EMAC_MACFCTRL) should not be written until this bit is cleared.
				In half-duplex mode, when this bit is set (and the TFE is set), the back-pressure feature is activated by the MAC. During back pressure, when the MAC receives a new frame, the transmitter starts sending a JAM mode, resulting a collision. When the MAC is configured to full-duplex mode, the back-pressure (BAP) function is automatically disabled.

26.3.8 Ethernet MAC VLAN tag register (EMAC_MACVLT)

The Ethernet MAC VLAN tag register contains the IEEE 802.1Q VLAN tag to identify the VLAN frames. The MAC compares the 13th and 14th bytes of the received frame (length/type) with 16'h8100, and the following 2 bytes are compared with the VLAN tage. If the comparison matches, the VLAN bit is set in the receive frame status. The legal length of the VLAN frame is increased from 1518 bytes to 1522 bytes.

If the EMAC_MACVLT register is configured to be double-synchronized to the (G)MII clock domain, then consecutive wirte operations to this register should be performed at least four clock cycles in the destination clock domain.

Bit	Register	Reset value	Type	Description
Bit 31: 17	Reserved	0x0000	resd	Kept at its default value.
				Enable 12-bit VLAN tag comparison)
				When this bit is set, a 12-bit VLAN identifier, rather than a
				16-bit VLAN tag, is used for comparison and filtering. The
				bit [11: 0] of the VLAN tag is compared with the
Bit 16	ETV	0x0	ro	corresponding filed in the received VLAN-tagged frame.
				Similarily, if enabled, only a 12-bit VLAN tag is used for
				hash VLAN filtering.
				When this bit is cleared, the 16 bits of the received VLAN
				frame's 15th and 16th bytes are used for comparison and

				VLAN hash filtering.
				VLAN Tag Identifier (for receive frames) This field contains the 802.1Q VLAN tag to identify VLAN frames, which is compared with the 15 th and 16 th bytes of the received VLAN frames, described as follows:
				Bit [15: 13]: User priority
D# 45. 0	VITI	0,,000		Bit 12: Canonical format indicator (CFI) or drop eligible indicator (DEI)
Bit 15: 0	VTI	0x0000	rw	Bit [11: 0]: VLAN tag's VLAN identifier field
				When the ETV bit is set, only the VID ([11: 0]) is used for comparison. If the VL is all zeros (if the ETV is set, then VL[11: 0] is all zeros), the MAC does not check the 15 th and 16 th bytes for VLAN tag comparison, and treats all frames with a type field value of 0x8100 or 0x88a8 as VLAN frames.

26.3.9 Ethernet MAC remote wakeup frame filter register (EMAC_MACRWFF)

The PMT CSR sets the request wakeup events and detects the wakeup events.

Figure 26- 19 Ethernet MAC remote wakeup frame filter register (EMAC_MACRWFF)

						`		
Wkuppktfilter_reg0	Filter 0 Byte Mask							
Wkuppktfilter_reg1		Filter 1 Byte Mask						
Wkuppktfilter_reg2		Filter 2 Byte Mask						
Wkuppktfilter_reg3	Filter 3 Byte Mask							
Wkuppktfilter_reg4	RESD	Filter 3 Cmd	RESD	Filter 2 Cmd	RESD	Filter 1 Cmd	RESD	Filter 0 Cmd
Wkuppktfilter_reg5	Filter 3 Offset Filter 2 Offset			2 Offset	Filter 1	Offset	Filter (Offset
Wkuppktfilter_reg6	Filter 1 CRC-16				Filter 0 CRC-16			
Wkuppktfilter_reg7	Filter 3 CRC-16					Filter	2 CRC-16	

26.3.10 Ethernet MAC PMT control and status register (EMAC_MACPMTCTRLSTS)

The Ethernet MAC PMT control and status register sets the request wakeup events and detects the wakeup events.

Bit	Register	Reset value	Type	Description
Bit 31	RWFFPR	0x0	rw1s	Remote Wakeup Frame Filter Register Pointer Reset When this bit is set, it resets the remote frame filter register pointer to 3'b000. This bit is automatically cleared after one clock cycle.
Bit 30: 10	Reserved	0x000000	resd	Kept at its default value.
Bit 9	GUC	0x0	rw	Global UniCast When this bit is set, it enables all unicast packets filtered by the MAC address filtering to be remote wakeup frames.
Bit 8: 7	Reserved	0x0	resd	Kept at its default value.
Bit 6	RRWF	0x0	rrc	Received Remote Wakeup Frame When this bit is set, it indicates that the power management event was generated because of the reception of a remote wakeup frame. This bit is cleared by

				a read access to this register.
Bit 5	RMP	0x0	rrc	Received Magic Packet When this bit is set, it indicates that the power management event is generated because of the reception of a Magic packet. This bit is cleared by a read access to this register.
Bit 4: 3	Reserved	0x0	resd	Kept at its default value.
Bit 2	ERWF	0x0	rw	Enable Remote Wakeup Frame When this bit is set, it indicates that the power management event is generated due to a remote wakeup frame reception.
Bit 1	EMP	0x0	rw	Enable Magic Packet When this bit is set, it indicates that the power management event is generated due to a Magic packet reception.
Bit 0	PD	0x0	rw1s	Power Down When this bit is set, the MAC receiver will drop all received frames after receiving the expected Magic packet or a remote wakeup frame. Then this bit is automatically cleared and power-down mode is disabled. This bit can also be cleared by software before the expected Magic packet or a remote wakeup frame is received. After this bit is cleared, the MAC forwards the receive frames to the application. This bit must only be set when either the Magic Packet enable bit, global unicast bit or the remote wakeup frame enable bit is set high.

26.3.11 Ethernet MAC interrupt status register (EMAC_MACISTS)

The Ethernet MAC interrupt status register identify the events in the MAC that can generate an interrupt.

Bit	Register	Reset value	Type	Description
Bit 15: 10	Reserved	0x00	resd	Kept at its default value.
				Timestamp Interrupt Status
Bit 9	TIS	0x0	rrc	When this bit is set, it indicates that the sytem time value equals or exceeds the value programmed in the destination time registers. This bit is cleared after the completion of a read operation to this bit.
Bit 8: 7	Reserved	0x0	resd	Kept at its default value.
Bit 6	MTIS	0x0	ro	MMC Transmit Interrupt Status This bit is set when an interrupt event is generated in the EMAC_MMCTI register. This bit is cleared when all bits in the transmit interrupt register are cleared.
Bit 5	MRIS	0x0	ro	MMC Receive Interrupt Status This bit is set when an interrupt is generated in the EMAC_MMCRI register. This bit is cleared when all bits in the receive interrupt register are cleared.
Bit 4	MIS	0x0	ro	MMC Interrupt Status This bit is set whenever any bit of the [7: 5] bit is set high. This bit is cleared only when these bits are set low.
Bit 3	PIS	0x0	ro	PMT Interrupt Status This bit is set when a Magic packet or a remote wakeup event is received in power-down mode (see bits 5 and 6 in the EMAC_MACPMTCTRLSTS register). This bit is cleared when both bits [6: 5] are cleared due to a read access to the EMAC_MACPMTCTRLSTS register.
Bit 2: 0	Reserved	0x0	resd	Kept at its default value.

26.3.12 Ethernet MAC interrupt mask register (EMAC_MAIMR)

The Ethernet MAC interrupt mask register is used to mask the interrupt signal generated due to the corresponding event in the EMAC_MACISTS register

Bit	Register	Reset value	Type	Description		
Bit 15: 10	Reserved	0x00	resd	Kept at its default value.		
Bit 9	TIM	0x0	rw	Timestamp Interrupt Mask When this bit is set, it masks the interrupt signal generated in the time stamp interrupt status bit of the EMAC_MACISTS register. This bit is applicable only when the IEEE1588 time stamp is enabled. this bit is reserved in other modes.		
Bit 8: 4	Reserved	0x00	resd	Kept at its default value.		
Bit 3	PIM	0x0	rw	PMT Interrupt Mask。When this bit is set, it masks the interrupt signal generated in the MPT interrupt status bit of the EMAC_MACISTS register.		
Bit 2: 0	Reserved	0x0	resd	Kept at its default value.		

26.3.13 Ethernet MAC address 0 high register (EMAC_MACA0H)

The EMAC_MACA0H register contains the upper 6 bits of the first 6-byte MAC address of the station. The first DA byte received on the MII interface corresponds to the LS byte (bit [7: 0]) of the MAC address low register. For example, if the 0x112233445566 (0x11 in channel 0 of the first column) is received on the MII interface as the destination address, then the MacAddress0 register [47: 0] is compared with 0x665544332211.

If the MAC address register is configured to be double-synchronized with the MII domain, the synchronization can be enabled only by writing the bit [31: 24] (in little endian mode) or the bit [7: 0] (in big-endian mode) in the Ethernet MAC address 0 low register (EMAC_MACA0L). Consecutive write operations to this address low register must be performed after at least 4 cycles in the desination clock domain so as to achieve an accurate synchronous update.

Bit	Register	Reset value	Type	Description
D:1 0.4	A E	0.0		Adrress
Bit 31	AE	0x0	rrc	Always 1.
Bit 30: 16	Reserved	0x0010	resd	Kept at its default value.
				MAC Address0 [47: 32]
Bit 15: 0	МАОН	0xFFFF	rw	This field contains the upper 16 bits of the first 6-byte MCU address. This is used by the MAC for filtering received frames, and for inserting the MAC address in the transmit flow control frames (Pause).

26.3.14 Ethernet MAC address 0 low register (EMAC_MACA0L)

The Ethernet MAC address 0 low register contains the lower 32 bits of the 6-byte first MAC address.

Bit	Register	Reset value	Type	Description
				MAC Address0 [31: 0]
Bit 31: 0	MAOL	0xFFFF FFFF	rw	This field contains the lower 16 bits of the first 6-byte MCU address. This is used by the MAC for filtering received frames, and for inserting the MAC address in the transmit flow control frames (Pause).

26.3.15 Ethernet MAC address 1 high register (EMAC_MACA1H)

The Ethernet MAC address 1 high register holds the upper 16 bits of the 6-byte second MAC address. If the MAC address register is configured to be double-synchronized with the MII domain, the synchronization can be enabled only by writing the bit [31: 24] (in little endian mode) or the bit [7: 0] (in big-endian mode) in the Ethernet MAC address 1 low register (EMAC_MACA1L). Consecutive write operations to this address low register must be performed after at least 4 cycles in the desination clock domain so as to achieve an accurate synchronous update.

Bit	Register	Reset value	Type	Description
Bit 31	AE	0x0	rw	Address Enable When this bit is set, the address filter uses the second MAC address for a perfect filtering. When this bit is cleared, the address filter will ignore the address for filtering.
Bit 30	SA	0x0	rw	Source Address When this bit is set, the MAC address 1 [47: 0] is used for comparison with the source address field of the received frame. When this bit is cleared, the MAC address 1 [47: 0] is used for comparison with the destination address field of the received frame.
				Mask Byte Control
				These bits are mask control bits for comparison with each of the MAC address bytes.
				When this bit is set, the MAC does not compare the corresponding byte of the received DA/SA with the contents of the MAC address 1 register. Each control bit is used for controlling the mask of the bytes as follows:
Bit 29: 24	MBC	0x00	rw	Bit 29: EMAC_MACA1H [15: 8]
				Bit 28: EMAC_MACA1H [7: 0]
				Bit 27: EMAC_MACA1L[31: 24]
				 Bit 24: EMAC_MACA1L[7: 0]
				It is possible to filter group addresses (that is, group address filtering) by masking one or more bytes of the address.
Bit 23: 16	Reserved	0x00	resd	Kept at its default value.
				MAC Address1 [47: 32]
Bit 15: 0	MA1H	0xFFFF	rw	These bits contain the upper 16 bits (47: 32) of the 6-byte second MAC address.

26.3.16 Ethernet MAC address 1 low register (EMAC_MACA1H)

The Ethernet MAC address 1 low register contains the lower 32 bits of the 6-byte second MAC address.

Bit	Register	Reset value	Type	Description
Bit 31: 0	MA1L	0xFFFF FFFF	rw	MAC Address1 [31: 0] These bits contain the lower 32 bits of the 6-byte second MAC address. The contents of this field is undefined until loaded by the application after the initialization process.

26.3.17 Ethernet MAC address 2 high register (EMAC_MACA2H)

The Ethernet MAC address 2 high register holds the upper 16 bits of the 6-byte second MAC address. If the MAC address register is configured to be double-synchronized with the MII domain, the synchronization can be enabled only by writing the bit [31: 24] (in little endian mode) or the bit [7: 0] (in big-endian mode) in the Ethernet MAC address 2 low register (EMAC_MACA2L). Consecutive write operations to this address low register must be performed after at least 4 cycles in the desination clock domain so as to achieve an accurate synchronous update.

Register	Reset value	Type	Description
			Address Enable
AE	0x0	rw	When this bit is set, the address filter uses the second MAC address for a perfect filtering.
			When this bit is cleared, the address filter will ignore the address for filtering.
C A	0x0	rw	Source Address
SA			When this bit is set, the MAC address2 [47: 0] is used for
	•	AE 0x0	AE 0x0 rw

				comparison with the source address field of the received
				frame.
				When this bit is cleared, the MAC address 2 [47: 0] is used
				for comparison with the destination address field of the received frame.
				Mask Byte Control
				These bits are mask control bits for comparison with each of the MAC address bytes.
				When this bit is set, the MAC does not compare the corresponding byte of the received DA/SA with the contents of the MAC address 2 register. Each control bit is used for controlling the mask of the bytes as follows:
Bit 29: 24	MBC	0x00	rw	Bit 29: EMAC_MACA2H [15: 8]
				Bit 28: EMAC_MACA2H [7: 0]
				Bit 27: EMAC_MACA2L[31: 24]
				Bit 24: EMAC_MACA2L[7: 0]
				It is possible to filter group addresses (that is, group address filtering) by masking one or more bytes of the address.
Bit 23: 16	Reserved	0x00	resd	Kept at its default value.
				MAC Address2 High [47: 32]
Bit 15: 0	MA2H	0xFFFF	rw	These bits contain the upper 16 bits (47: 32) of the 6-byte second MAC address.

26.3.18 Ethernet MAC address 2 low register (EMAC_MACA2L)

The Ethernet MAC address 2 low register holds the lower 16 bits of the 6-byte second MAC address.

Bit	Register	Reset value	Type	Description
Bit 31: 0	MA2L	0xFFFF FFFF	rw	MAC Address2 Low [31: 0] These bits contain the lower 32 bits of the 6-byte second MAC address. The contents of this field is undefined until loaded by the application after the initialization process.

26.3.19 Ethernet MAC address 3 high register (EMAC_MACA3H)

The Ethernet MAC address 3 high register holds the upper 16 bits of the 6-byte second MAC address. If the MAC address register is configured to be double-synchronized with the MII domain, the synchronization can be enabled only by writing the bit [31: 24] (in little endian mode) or the bit [7: 0] (in big-endian mode) in the Ethernet MAC address 3 low register (EMAC_MACA3L). Consecutive write operations to this address low register must be performed after at least 4 cycles in the desination clock domain so as to achieve an accurate synchronous update.

Bit	Register	Reset value	Type	Description
				Address Enable
Bit 31	AE	0x0	rw	When this bit is set, the address filter uses the second MAC address for a perfect filtering.
				When this bit is cleared, the address filter will ignore the address for filtering.
				Source Address
Bit 30	SA	0x0	rw	When this bit is set, the MAC address 3 [47: 0] is used for comparison with the source address field of the received frame.
				When this bit is cleared, the MAC address 3 [47: 0] is used for comparison with the destination address field of the received frame.
-				Mask Byte Control
Bit 29: 24	MBC	0x00	rw	These bits are mask control bits for comparison with each of the MAC address bytes.

				When this bit is set, the MAC does not compare the corresponding byte of the received DA/SA with the contents of the MAC address 3 register. Each control bit is used for controlling the mask of the bytes as follows: Bit 29: EMAC_MACA3H [15: 8] Bit 28: EMAC_MACA3H [7: 0] Bit 27: EMAC_MACA3L[31: 24] Bit 24: EMAC MACA3L[7: 0]
				It is possible to filter group addresses (that is, group address filtering) by masking one or more bytes of the address.
Bit 23: 16	Reserved	0x00	resd	Kept at its default value.
				MAC Address3 High [47: 32]
Bit 15: 0	MA3H	0xFFFF	rw	These bits contain the lower 16 bits (47: 32) of the 6-byte second MAC address.

26.3.20 Ethernet MAC address 3 low register (EMAC_MACA3L)

The Ethernet MAC address 3 low register holds the lower 32 bits of the 6-byte second MAC address.

Bit	Register	Reset value	Type	Description
				MAC Address3 Low [31: 0]
Bit 31: 0	MA3L	0xFFFF FFFF	rw	These bits contain the lower 32 bits of the 6-byte second MAC address. The contents of this field is undefined until loaded by the application after the initialization process.

26.3.21 Ethernet DMA bus mode register (EMAC_DMABM)

The Ethernet DMA bus mode register defines the bus operation modes for the DMA.

Bit	Register	Reset value	Type	Description
Bit 31: 26	Reserved	0x00	resd	Kept at its default value.
Bit 25	AAB	0x0	rw	Address-Aligned Beats When this bit is set and the FB bit equals 1, the AHB interface generates burst transfers aligned to the start address LS bits. If the FB bit equals 0, the first burst transfer (accessing the data buffer's start address) is not aligned, but subsequent burst transfers are aligned to the address.
				This bit is applicable to GMAC-AHB and GMAC-AXI configurations only. It is reserved in other configurations.
				PBLx8 Mode
Bit 24	PBLx8	0x0	rw	When this bit is set, this bit multiples the PBL value programmed (bits [22: 17] and bits [13: 8]) by 8. Thus the DMA transfers data at 8, 16, 32, 64, 128 and 256 beats depending on the PBL value.
				Use separate PBL
Bit 23	USP	0x0	rw	When this bit is set, the Rx DMA uses the value programmed in bit [22: 17] as PBL. The PBL value in bit [13: 8] is applicable to Tx DMA operations only.
				When this bit is cleared, the PBL value in bit [13: 8] is applicable to both Tx DMA and Rx DMA operations.
				Rx DMA PBL
Bit 22: 17	RDP	0x01	n.	This field indicates the maximum number of beats to be transferred in one Rx DMA operation. This is the maximum value that is used for a single write or read operation.
DILZZ. 17	NUF	0.001	rw	The Rx DMA always attempts to perform burst transfer as specified in RPBL each time it starts a burst transfer on the host bus. The RPBL can be programmed with 1, 2, 4, 8, 16 and 32. Any other value result in unexpected behavior.

				These bits are applicable only when the USB bit is set.
Bit 16	FB	0x0	rw	Fixed Burst This bit controls whether the AHB master interface performs fixed burst transfers or not. When this bit is set, the AHB uses only SINGLE, INCR4, INCR8 or INCR16 during start of normal burst transfers. When this bit is cleared, the AHB or AXI interface uses SINGLE and INCR burst transfer operations.
Bit 15: 14	PR	0x0	rw	Priority Ratio These bits control the priority ratio of the round-robin arbitration between Rx DMA and Tx DMA. These bits are valid only when the bit 1 (destination address) is reset. The priority ratio is either Rx: Tx or Tx: Rx, depending on whether the bit 27 (TXPR) is set or reset. 00: 1: 1 01: 2: 1 10: 3: 1
				11: 4: 1
				Programmable Burst Length These bits indicate the maximum number of beats to be transferred in one DMA transaction. This is the maximum that is used for a single write or read operation.
	PBL	0x01	rw	The DMA always attempts to perform burst transfer as specified in PBL each time it starts a burst transfer on the host bus. The RPBL can be programmed with 1, 2, 4, 8, 16 and 32. Any other value result in unexpected behavior.
				When the USP is set, the PBL value is applicable to Tx DMA operations only.
Bit 13: 8				If the number of beats to be transferred is greater than 32, the following steps are required:
Dit 10. 0			1 44	1. Set PBLx8 mode
				2. Set PBL For example, if the maximum value to be transferred is greater than 64, then the PBLx8 should be set first, and then the PBL is set to 8. The PBL values have the following limitations:
				The maximum number of beats possible is limited by the size of the Tx FIFO and Rx FIFO on the MTL layer, as well as the data bus width on the DMA.
				FIFO constraint: The maximum beat supported by the FIFO is half the depth of the FIFO, unless otherwise specified.
Bit 7	Reserved	0x0	resd	Kept at its default value.
				Descriptor Skip Length
Bit 6: 2	DSL	0x00	rw	These bits define the number of words to skip between two unchained descriptors. The address skip starts from the end of the current descriptor to the start of next descriptor.
				When the DSL value equals 0, the descriptor is regarded as contiguous by the DMA in ring mode.
				DMA Arbitration
				These bits specify the arbitration scheme between the transmit path and receive path of channel 0. 0: Rx: Tx or Tx: Rx
Bit 1	DA	0x0	rw	The priority between round-robin channels depends on the priority as specified in the bit [15: 14] (PR) and the priority weight as specified in bit 27(TXPR). 1: Fixed priority
				When the bit 27 (TXPR) is set, Tx has priority over Rx.

				Otherwise, Rx has priority over Tx.
Bit 0	SWR	0x1	rw	Software Reset When this bit is set, the MAC DMA controller resets all nternal registers and MAC logic. This bit is automatically cleared after all reset operations have been completed.

26.3.22 Ethernet DMA transmit poll demand register (EMAC_DMATPD)

The EMAC_DMATPD register enables the Tx DMA to check whether or not the current descriptor is owned by the DMA. ThE Transmit Poll Demand is used to wake up the Tx DMA from suspend mode. The Tx DMA can go into suspend mode due to an underflow error in a transmittd frame or due to the unavailability of descriptors owned by transmit DMA. The Poll demand can be issued at any time, and the Tx DMA will reset this command once it starts re-fetching the current descriptor from the host memory. This register is always read 0.

Bit	Register	Reset value	Type	Description
				Transmit Poll Demand
Bit 31: 0	TPD	0x0000 0000	rrc	When these bits are written with any value, the DMA reads the current descriptor pointed to by the EMAC_DMACTD. If the descriptor is not available (owned by host), the transmission suspends, and the bit 2 (TU) is set in the status register. If the descriptor is available, the transmission resumes.

26.3.23 Ethernet DMA receive poll demand register (EMAC_DMARPD)

The EMAC_DMARPD register enables the Rx DMA to check new descriptors. The Receive Poll Demand is used to wake up the Rx DMA from suspend mode. The Rx DMA can enter suspend mode due to the unavailability of descriptors owned by it.

Bit	Register	Reset value	Type	Description
				Receive Poll Demand
Bit 31: 0	RPD	0x0000 0000	rrc	When these bits are written with any value, the DMA reads the current descriptor pointed to by the EMAC_DMACRD. If the descriptor is not available (owned by host), the reception suspends, and the bit 7 (RU) is set in the status register. If the descriptor is available, the reception resumes.

26.3.24 Ethernet DMA receive descriptor list address register (EMAC_DMARDLADDR)

The EMAC_DMARDLADDR regiser points to the start of the receive descriptor list. The descriptor list is located in the host's physical memory and must be word-aligned. The DMA enables bus-width aligned address by making the corresponding LS bit low. Writing to the register is permitted only when the Rx DMA stops. After the Rx DMA stops, this register must be written before the receive start command is given.

Writing to the register is permitted only when the Rx DMA stops. In other words, the bit 1 (SR) is set 0 in the operation mode register. After the Rx DMA stops, this register can be written with a new descriptor list address.

When the SR bit is set, the DMA uses the newly programmed descriptor base address.

If the SR is cleared and this register remains unchanged, then the DMA will use the previous descriptor address when the Rx DMA stops.

Bit	Register	Reset value	Type	Description
				Start of Receive List
Bit 31: 0	SRL	0x0000 0000	rw	These bits contain the base address of the first descriptor in the receive descriptor list. The LSB bits (1: 0, 2: 0 or 3: 0) for 32/64/128-bit bus width are ignored and taken as

zero by the DMA. Therefore these LSB bits are read only.

26.3.25 Ethernet DMA transmit descriptor list address register (EMAC_DMATDLADDR)

The EMAC_DMATDLADDR regiser points to the start of the transmit descriptor list. The descriptor list is located in the host's physical memory and must be word-aligned. The DMA enables bus-width aligned address by making the corresponding LS bit low.

Writing to the register is permitted only when the Tx DMA stops. In other words, the bit 13 (ST) is set 0 in the register 6 (operation mode register). After the Tx DMA stops, this register can be written with a new descriptor list address.

When the SR bit is set, the DMA uses the newly programmed descriptor base address.

If the SR is cleared and this register remains unchanged, then the DMA will use the previous descriptor address when the Tx DMA stops.

Bit	Register	Reset value	Type	Description
				Start of Transmit List
Bit 31: 0	STL	0x0000 0000	rw	These bits contain the base address of the first descriptor in the transmit descriptor list. The LSB bits (1: 0, 2: 0 or 3: 0) for 32/64/128-bit bus width are ignored and taken as zero by the DMA. Therefore these LSB bits are read only.

26.3.26 Ethernet DMA status register (EMAC_DMASTS)

The EMAC_DMASTS register contains all the status bits the DMA reports to the host. This register is read by the software driver during an interrupt service routine or polling. Most of the bits in this register can trigger the host to be interrupted. The bits in this register cannot be cleared when read. Writing 1'b1 to the bit [16: 0] (unreserved) in this register clears them. Writing 1'b0 has no effect. Each bit (bit [16: 0]) can be masked through the corresponding bit in the interrupt enable mask register.

Bit	Register	Reset value	Type	Description
Bit 31: 30	Reserved	0x0	resd	Kept at its default value.
Bit 29				Timestamp Trigger Interrupt
	ТТІ	0x0	ro	This bit indicates an interrupt event in the time stamp generator block. The software must read the corresponding register to get interrupt sources.
				This bit is applicable only when the IEEE1588 time stamp feature is enabled. Otherwise, this bit is reserved.
				MAC PMT Interrupt
Bit 28	MPI	0x0	ro	This bit indicates an interrupt even in the PMT. The software must read the Ethernet PMT control and status register (EMAC_MACPMTCTRLSTS) to get the interrupt sources and clear them in order to reset this bit to 1'b0.
				This bit is applicable only when the PMT function is enabled. Otherwise, this bit is reserved.
-				MAC MMC Interrupt
Bit 27	ММІ	0x0	ro	This bit indicates an interrupt event in the MMC. The software must read the corresponding register to get interrupt sources and clear them in order to reset this bit to 1'b0.
				This bit is applicable only when the MAC MMC is enabled. Otherwise, this bit is reserved.
Bit 26	Reserved	0x0	resd	Kept at its default value.
				Error Bits
Bit 25: 23	EB	0x0	ro	These bits indicate the type of error that caused a bus error. They are applicable only when the bit 13 (FBI) is set. This filed does not generate an interrupt.
				000: Error during data transfer by Rx DMA
				011: Error during read transfer by Tx DMA

				100: Error during Rx DMA descriptor write access
				101: Error during Tx DMA descriptor write access
				110: Error during Rx DMA descriptor read access
				111: Error during Tx DMA descriptor read access
				Note: 001 and 010 are reserved.
				Transmit Process State
				This field indicates the Tx DMA FSM state. This field does not generate an interrupt.
				3'b000: Stopped; Rest or Stop transmit command issued
				3'b001: Running; Fetching transmit descriptor
				3'b010: Running; Waiting for status
Bit 22: 20	TS	0x0	ro	3'b011: Running; Reading data from host memory buffer and queuing it to Tx FIFO
				3'b100: Time stamp write status
				3'b101: Reserved for furture use
				3'b110: Suspended; Transmit descriptor unavailable or transmit buffer underflow
				3'b111: Running; Closing transmit descriptor
				Receive Process State
				This field indicates the Rx DMA FSM state. This field does not generate an interrupt.
				3'b000: Stopped; Rest or Stop transmit command issued
				3'b001: Running; Fetching receive descriptor
				3'b010: Reserved for future use
Bit 19: 17	RS	0x0	ro	3'b011: Running; Waiting for receive packet
				3'b100: Suspended; Receive descriptor unavailable
				3'b101: Running; Closing receive descriptor
				3'b110: Time stamp write status
				3'b111: Running; Transferring the receive buffer data to host memory
				Normal Interrupt Summary
				The normal interrupt summay value is the logic OR of the following bits when the corresponding interrupt bits are
				enabled in the interrupt enable registers.
				EMAC_DMASTS[0]: Transmit interrupt
Bit 16	NIS	0x0	rw1c	EMAC_DMASTS[2]: Transmit buffer unavailable EMAC_DMASTS[6]: Receive interrupt
				EMAC DMASTS[14]: Early receive interrupt
				Only unmasked bits affect the normal interrupt summary.
				This is a sticky bit and it must be cleared (by writing 1 to
				this bit) each time a corresponding bit (causes NIS to be set) is cleared.
				Abnormal Interrupt Summary
				The abnormal interrupt summay value is the logic OR of the following bits when the corresponding interrupt bits
				are enabled in the interrupt enable registers.
				EMAC_DMASTS[1]: Transmit process stopped
				EMAC_DMASTS[3]: Transmit Jabber timeout EMAC_DMASTS[4]: Receive FIFO overflow
Bit 15	AIS	0x0	rw1c	EMAC_DMASTS[5]: Transmit data underflow
				EMAC_DMASTS[7]: Receive buffer unavailable
				EMAC_DMASTS[8]: Receive process stopped
				EMAC_DMASTS[9]: Receive watchdog timeout
				EMAC_DMASTS[10]: Early transmit interrupt
				EMAC_DMASTS[13]: Fatal bus error
				Only unmasked bits affect the abnormal interrupt

				summary.
				This is a sticky bit and it must be cleared (by writing 1 to this bit) each time a corresponding bit (causes AIS to be set) is cleared.
Bit 14	ERI	0x0	rw1c	Early Receive Interrupt This bit indicates that the DMA has filled the first data buffer of the packet. This bit is cleared when the software writes 1 to this bit or when the bit 6 (RI) bit is set in this register. (Whichever occurs first)
				Fatal Bus Error Interrupt This bit indicates that a bus error occurred as defined in bit
Bit 13	FBEI	0x0	rw1c	[25: 23]. When this bit is set, the corresponding DMA will disable all its bus accesses.
Bit 12: 11	Reserved	0x0	resd	Kept at its default value.
				Early Transmit Interrupt
Bit 10	ETI	0x0	rw1c	This bit indicates that the frame to be transmitted was fully sent to the MTL Tx FIFO.
				Receive Watchdog Timeout
Bit 9	RWT	0x0	rw1c	When this bit is set, it indicates that the receive watchdog timer timeout occurs while receiving the current frame, and the current frame is cut off after the watchdog timeour happens.
				Receive Process Stopped
Bit 8	RPS	0x0	rw1c	This bit is set when the receive process enters the stop state.
				Receive Buffer Unavailable
Bit 7	RBU	0x0	rw1c	This bit indicates that the next descriptor in the receive list is owned by the host and cannot be acquired by the DMA. Thus the receive process is suspended. The host should change the ownership of the descriptor and release the receive poll demand command in order to resume receive process. If no receive poll demand command is issued, the receive process resumes when the DMA receives the next incoming frame. This bit is set only when the previous receive descriptor is owned by the DMA.
				Receive Interrupt
Bit 6	RI	0x0	rw1c	This bit indicates the completion of a frame reception. After the completion of a frame reception, the bit 31 of the RDES1 (interrupt disabled after reset operation) is reset in the last descriptor. Specific frame status information will be posted in the descriptor. Receive process remains in the running state.
				Transmit Underflow
Bit 5	UNF	0x0	rw1c	This bit indicates that the transmit buffer has an underflow during a frame transmission. Transmit process is suspended and the underflow error bit TDES0[1] is set.
				Receive Overflow
Bit 4	OVF	0x0	rw1c	This bit indicates that the receive buffer has an overflow during a frame reception. If the partial frame has been transferred to the application, the overflow status is set in the RDES0[11].
				Transmit Jabber Timeout
Bit 3	TJT	0x0	rw1c	This bit indicates that the transmit Jabber timer will expire when the current frame is greater than 2047 bytes (it is 10240 bytes if Jumbo frame is enabled).
				After the Jabber is expired, the transmit process is aborted and enters stop state, which causes the transmit Jabber timeout flag bit TDES0[14] to be set.
Bit 2	TBU	0x0	rw1c	Transmit Buffer Unavailable

				This bit indicates that the next descriptor in the transmit list is owned by the host and cannot be acquired by the DMA. Then the transmit process is suspended. Bit [22: 20] explains the transmit process state. To resume transmit process, the host should change the ownership of the descriptor by setting the TDES0[31] and issue the transmit poll demand command
D:: 4	TDO	00	4 -	Transmit Process Stopped
Bit 1	TPS	0x0	rw1c	This bit is set when the transmit process stops.
				Transmit Interrupt
Bit 0	ТІ	0x0	rw1c	This bit indicates the completion of a frame transmission. The bit 31 (OWN) is reset in the TDES0. Specific frame status information will be posted in the descriptor.

26.3.27 Ethernet DMA operation mode register (EMAC_DMAOPM)

The EMAC_DMAOPM register defines the receive and transmit operation modes and commands. This register should be the last CSR to be written during DMA initialization. This register is also applicable to GMAC-MTL configuration where the unused and reserved bits are 24, 13, 2 and 1. A delay value greater than 4us is required between two consecutive write accesses to this register.

Bit 31: 27 Reserved 0x00 resd Kept at its default value. Disable Dropping of TCP/IP Checksum Error Fram When this bit is set, the MAC does not drop the fram only have errors detected by the receive checksurengine. Such frames have errors in the encause payload only but do not have errors (including FC in the Ethernet frames received by the MAC. When is cleared, all error frames are dropped if the FI reset. Receive Store and Forward When this bit is set, the MTL reads the Rx FIFO of a full frame is written to the Rx FIFO, ignoring the When this bit is cleared, the Rx FIFO operates through mode and will be subject to the threshold by the RTC. Disable Flushing of Received Frames When this bit is set, the Rx DMA does not flush any frame due to the unavailability of receive described by the RTC. Disable Flushing of Received Frames When this bit is cleared, the DMA receive frames in case of the above-micricumstances. Bit 23: 22 Reserved 0x000 resd Kept at its default value. Transmit Store and Forward When this bit is set, transmission starts when a fire resides in the Tx FIFO, and the TTC values specific.	rames tha um offload capsulated FCS error hen this bi
Bit 26 DT 0x0 rw When this bit is set, the MAC does not drop the fra only have errors detected by the receive checksur engine. Such frames have errors in the enca payload only but do not have errors (including FC in the Ethernet frames received by the MAC. When is cleared, all error frames are dropped if the FI reset. Bit 25 RSF 0x0 rw Receive Store and Forward When this bit is set, the MTL reads the Rx FIFO operates through mode and will be subject to the threshold by the RTC. Disable Flushing of Received Frames When this bit is set, the Rx DMA does not flush any frame due to the unavailability of receive described by the RTC. Bit 23: 22 Reserved 0x000 resd Kept at its default value. Transmit Store and Forward When this bit is set, transmission starts when a find the payload only have errors detected by the encieve checksurenge. When this bit is set, the Rx DMA does not flush any frame due to the unavailability of receive described proceive frames in case of the above-modification. Receive Store and Forward when this bit is set, transmission starts when a find the payload only have errors detected by the encieve checksurenge.	rames tha um offload capsulated FCS error hen this bi
Bit 25 RSF Ox0 rW When this bit is set, the MTL reads the Rx FIFO of a full frame is written to the Rx FIFO, ignoring the When this bit is cleared, the Rx FIFO operated through mode and will be subject to the threshold by the RTC. Disable Flushing of Received Frames When this bit is set, the Rx DMA does not flush any frame due to the unavailability of receive described receive buffers. When this bit is cleared, the DMA receive frames in case of the above-micircumstances. Bit 23: 22 Reserved Ox000 resd Kept at its default value. Transmit Store and Forward When this bit is set, transmission starts when a feature of the start of the Rx FIFO of a full frame is written to the Rx FIFO of	FEF bit is
Bit 25 RSF Ox0 rw a full frame is written to the Rx FIFO, ignoring the When this bit is cleared, the Rx FIFO operates through mode and will be subject to the threshold by the RTC. Disable Flushing of Received Frames When this bit is set, the Rx DMA does not flush any frame due to the unavailability of receive descr receive buffers. When this bit is cleared, the DMA receive frames in case of the above-material circumstances. Bit 23: 22 Reserved Ox000 resd Kept at its default value. Transmit Store and Forward When this bit is set, transmission starts when a feature of the Rx FIFO, ignoring the When this bit is cleared, the Rx FIFO operates through mode and will be subject to the Rx FIFO operates through mode and will be subject to the Rx FIFO operates through mode and will be subject to the Rx FIFO operates through mode and will be subject to the Rx FIFO operates through mode and will be subject to the Rx FIFO operates through mode and will be subject to the Rx FIFO operates through mode and will be subject to the Rx FIFO operates through mode and will be subject to the Rx FIFO operates through mode and will be subject to the Rx FIFO operates through mode and will be subject to the Rx FIFO operates through mode and will be subject to the Rx FIFO operates through mode and will be subject to the Rx FIFO operates through mode and will be subject to the Rx FIFO operates through mode and will be subject to the Rx FIFO operates through mode and will be subject to the through mode and will be subject to the Rx FIFO operates through mode and will be subject to the Rx FIFO operates through mode and will be subject to the Rx FIFO operates through mode and will be subject to the Rx FIFO operates through mode and will be subject to the Rx FIFO operates through mode and will be subject to the Rx FIFO operates through mode and will be subject to the Rx FIFO operates through mode and will be subject to the Rx FIFO operates through mode and will be subject to the Rx FIFO operates through mode and Rate of Rate of Rate	
Bit 24 DFRF Ox0 rw When this bit is set, the Rx DMA does not flush any frame due to the unavailability of receive described receive buffers. When this bit is cleared, the DMA receive frames in case of the above-micircumstances. Bit 23: 22 Reserved Ox000 resd Kept at its default value. Transmit Store and Forward When this bit is set, transmission starts when a feature of the receive described and the properties of the control of	ne RTC bit tes in cut
Bit 24 DFRF 0x0 rw frame due to the unavailability of receive described buffers. When this bit is cleared, the DMA receive frames in case of the above-modification circumstances. Bit 23: 22 Reserved 0x000 resd Kept at its default value. Transmit Store and Forward When this bit is set, transmission starts when a fection of the unavailability of receive described described by the DMA receive buffers. When this bit is cleared, the DMA receive buffers. When this bit is cleared, the DMA receive buffers. When this bit is cleared, the DMA receive buffers. When this bit is cleared, the DMA receive buffers. When this bit is cleared, the DMA receive buffers. When this bit is cleared, the DMA receive frames in case of the above-modification of the properties of the properties of the above-modification of the properties of the properties of the above-modification of the properties of the propert	
Transmit Store and Forward When this bit is set, transmission starts when a forward	criptors o
When this bit is set, transmission starts when a for	
bit [16: 14] are ignored. This bit can be changed or the transmit process stops.	cified in the
Flush Transmit FIFO	
When this bit is set, the Tx FIFO controller logic is its default vaues and thus all data in the Tx FIFO a lost or flushed. This bit is cleared after the comp the flushing operation. the operation mode register not be written before this bit is cleared. The data been received by the MAC transmitter is not flushed going to be transferred, causing data underflow frame transfer (If you want to change this bit consecutive commands, a delay value greater that required between two consecutive operations.)	are either mpletion or ster should ta that has shed and is w and run bit through
. equilibrium servicio operatione.	

2021.12.01 Page 471 Ver 2.02

				Transport Throughold Control
				Transmit Threshold Control
				These bits control the threshold of the Tx FIFO. Transmission starts when the frame size in the Tx FIFO is greater than the threshold. In addition, full frames with a length less than the threshold are also transmitted. These bits are applicable only when the bit 21 (TSF) is reset.
				000: 64
Bit 16: 14	TTC	0x0	rw	001: 128
Dit 10. 14	110	OXO	1 44	010: 192
				011: 256
				100: 40
				101: 32
				110: 24
				111: 16
-				Start or Stop Transmission Command
Bit 13	SSTC	0x0	ΓW	When this bit is set, transmission is in the running state, and the DMA checks the transmit list at the current location and determines the frame to be transmitted. The DMA acquires the descriptor either from the current position in the list (the transmit list base address set by the transmit descriptor list address register) or from the position where the transmit process was stopped previously. If the current descriptor is owned by the DMA, the transmit process enters suspend state, and the bit 2 (transmit buffer unavailable) is set in the statue register. Transmission command is valid only when the transmission is stopped. If the transmit command were issued before setting the transmit descriptor list address register, the DMA will show unpredictable behavior. When this bit is cleared, transmit process enters stop state after the completion of a frame transmission. The next descriptor position in the transmit list is saved, and becomes the current position when transmission gets started. To change the list address, write a new value to the transmit descriptor list address register when this bit is reset. The newly written value becomes effective only when this bit is set again. The Stop Transmission Command is effective only when the current frame transmission is complete or transmit process enters suspend state.
Bit 12: 8	Reserved	0x00	resd	Kept at its default value.
				Forward Error Frames
				1: All frames except runt error frames are forwarded to the DMA
Bit 7	FEF	0x0	rw	0: Rx FIFO drops error frames (CRC error, collision error, giant frame, watchdog timeout and overflow). However, if the frame's start byte point has already been transferred to the application in Threshold mode, then the frames are not dropped. The Rx FIFO drops the error frames whose start bytes have not been transferred to the AHB bus.
				Forward Undersized Good Frames
Bit 6	FUGF	00	rw	When this bit is set, the Rx FIFO forwards undersized good frames including pad bytes and CRC (with no error and length less than 64 bytes)
טונ ט	1 001	0x0	i vv	When this bit is cleared, the Rx FIFO drops all frames with a length less than 64 bytes, unless such a frame has already been transferred to the application due to a lower value than the receive threshold (e.g. RTC=01).
Bit 5	Reserved	0x0	resd	Kept at its default value.
Bit 4: 3	RTC	0x0	rw	Receive Threshold Control

Bit 1				Kept at its default value.
Bit 1				When this bit is cleared, Rx DMA operation is stopped after the completion of a frame reception. The next descriptor position in the receive list is saved, and becomes the current position when reception process is restarted. The Stop Rece[topm Command is effective only when the receive process enters in the running state (waiting for receive packet) or the suspend state.
	SSR	0x0	rw	Start or Stop Receive When this bit is set, the receive process is in the running state, and the DMA attempts to acquire the descriptor from the receive list and processes incoming frames. The DMA acquires the descriptor either from the current position in the list (the receive list base address set by the receive descriptor list address register) or from the position where the receive process was stopped previously. If the current descriptor is owned by the DMA, the receive process enters suspend state, and the bit 7 (receive buffer unavailable) is set in the statue register. Reception command is valid only when the reception is stopped. If the reception command were issued before setting the receive descriptor list address register, the DMA will show unpredictable behavior.
				the first frame is obatained. Start or Stop Receive
Bit 2	OSF	0x0	rw	When this bit is set, it instructs the DMA to process a second frame of transmit data even before the status of
				Operate on Second Frame
				11: 128
				01: 32 10: 96
				00: 64
				These bits are ignored when the RSF bit is set.
				to be 128 bytes. These bits are applicable only when the RSF bit equals 0.
				Value 11 is not applicable if the Rx FIFO size is configured
				These two bits control the threshold of the Rx FIFO. Transfer to DMA starts when the frame in the Rx FIFO is larger than the threshold. In addition, full frames with a length less than the threshold are also automatically transferred.

26.3.28 Ethernet DMA interrupt enable register (EMAC_DMAIE)

The EMAC_DMAIE register enables the interrups reported by the status register. Setting a bit to 1'b1 enables a corresponding interrupt. All interrupts are disabled after a software or hardware reset.

Bit	Register	Reset value	Type	Description
Bit 31: 17	Reserved	0x0000	resd	Kept at its default value.
				Normal Interrupt enable
Bit 16	NIE	0x0	rw	When this bit is set, a normal interrupt summary is enabled. when this bit is cleared, a normal interrupt summary is disabled. This bit enables the following bits (in the statue register)
		OAG .		EMAC_DMASTS[0]: Transmit interrupt
				EMAC_DMASTS[2]: Transmit buffer unavailable EMAC_DMASTS[6]: Receive interrupt
				EMAC_DMASTS[14]: Early receive interrupt
				Abnormal interrupt enable
Bit 15	AIE	0x0	rw	When this bit is set, an abnormal interrupt summay is enabled. When this bit is cleared, an abnormal interrupt summay is disabled. This bit enables the following bits (in

				the status register)
				EMAC_DMASTS[1]: Transmit process stopped
				EMAC_DMASTS[3]: Transmit Jabber timeout
				EMAC_DMASTS[4]: Transmit overflow
				EMAC_DMASTS[5]: Transmit data underflow
				EMAC_DMASTS[7]: Transmit buffer u unavailable
				EMAC_DMASTS[8]: Receive process stopped
				EMAC_DMASTS[9]: Receive watchdog timeout
				EMAC_DMASTS[10]: Early transmit interrupt
				EMAC_DMASTS[13]: Fatal bus error
				Early Receive interrupt Enable
Bit 14	ERE	0x0	rw	When this bit is set with the normal interrupt summary enable bit, the early receive interrupt is enabled. When this bit is cleared, the early receive interrupt is disabled.
				Fatal Bus Error Enable
				When this bit is set with the abnormal interrupt summary
Bit 13	FBEE	0x0	rw	enable bit, the fatal bus error interrupt is enabled. When this bit is cleared, the fatal bus error enable interrupt is disabled.
Bit 12: 11	Reserved	0x0	resd	Kept at its default value.
				Early transmit Interrupt Enable
Bit 10	EIE	0x0	rw	When this bit is set with the abnormal interrupt summary enable bit, the early transmit interrupt is enabled. When this bit is cleared, the early transmit interrupt is disabled.
				Receive Watchdog Timeout Enable
Bit 9	RWTE	0x0	rw	When this bit is set with the abnormal interrupt summary enable bit, the receive watchdog timeout interrupt is enabled. When this bit is cleared, the receive watchdog timeout interrupt is disabled.
				Receive Stopped Enable
Bit 8	RSE	0x0	rw	When this bit is set with the abnormal interrupt summary enable bit, the receive stopped interrupt is enabled. When this bit is cleared, the receive stopped interrupt is disabled.
				Receive Buffer Unavailable Enable
Bit 7	RBUE	0x0	rw	When this bit is set with the abnormal interrupt summary enable bit, the receive buffer unavailable interrupt is enabled. When this bit is cleared, the receive buffer unavailable interrupt is disabled.
				Receive Interrupt Enable
Bit 6	RIE	0x0	rw	When this bit is set with the normal interrupt summary enable bit, the receive interrupt is enabled. When this bit is cleared, the receive interrupt is disabled.
				Underflow Interrupt Enable
Bit 5	UNE	0x0	rw	When this bit is set with the abnormal interrupt summary enable bit, the underflow interrupt is enabled. When this bit is cleared, the underflow interrupt is disabled.
				Overflow Interrupt Enable
				When this bit is set with the abnormal interrupt summary
Bit 4	OVE	0x0	rw	enable bit, the overflow interrupt is enabled. When this bit is cleared, the overflow interrupt is disabled.
				Transmit Jabber Timeout Enable
Bit 3	TJE	0x0	rw	When this bit is set with the abnormal interrupt summary enable bit, the transmit Jabber timeout interrupt is enabled. When this bit is cleared, the transmit Jabber timeout interrupt is disabled.
				Transmit Buffer Unavailable Enable
Bit 2	TUE	0x0	rw	When this bit is set with the normal interrupt summary enable bit, the transmit buffer unavailable interrupt is

				enabled. When this bit is cleared, the transmit buffer unavailable interrupt is disabled.
				Transmit Stopped Enable
Bit 1	TSE	0x0	rw	When this bit is set with the abnormal interrupt summary enable bit, the transmit stopped interrupt is enabled. When this bit is cleared, the transmit stopped interrupt is disabled.
				Transmit Interrupt Enable
Bit 0	TIE	0x0	rw	When this bit is set with the normal interrupt summary enable bit, the transmit interrupt is enabled. When this bit is cleared, the transmit interrupt is disabled.

The Ethernet interrupt is generated only when the TST or PMT bit is set in the DMA status register with other interrupts unmasked, ow when the NIS/AIS is enabled with other interrupts enabled.

26.3.29 Ethernet DMA missed frame and buffer overflow counter register (EMAC_DMAMFBOCNT)

The DMA contains two counters to track the number of missed frames during reception. Tis register reports the current value of the counter. The counter is used for the purpose of diagnosis. The bit [15: 0] indicates the number of missed frames due to the host buffer being unavailable. The bit [27: 17] indicate the number of missed frames due to buffer overflow (MTL and MAC) and runt frames dropped by the MTL.

Bit	Register	Reset value	Type	Description
Bit 31: 29	Reserved	0x0	resd	Kept at its default value.
				Overflow Bit for FIFO Overflow Counter
Bit 28	OBFOC	0x0	rrc	This bit is set whenever an overflow occurs on the overflow frame counter ([27: 17]), that is, the Rx FIFO overflows, and the overflow frame counter reaches its maximum value. In this case, the overflow frame counter is reset to all zeros, and this bit indicates that a toggle has occurred.
				Overflow Frame Counter
Bit 27: 17	OFC	0x000	rrc	These bits indicate the number of frames missed by the application.
Bit 16	OBMFC	0x0	rrc	Overflow Bit for Missed Frame Counter This bit is set whenever an overflow occurs on the missed frame counter ([15: 0]), that is, the DMA ignores incoming frames due to the host receive buffer being unavailable, and the missed frame counter reaches its maximum value. In this case, the missed frame counter is reset to all zeros, and this bit indicates that a toggle has occurred.
				Missed Frame Counter
Bit 15: 0	MFC	0x0000	rrc	This field indicates the number of frames missed by the controller due of the host receive buffer being unavailable. This counter is incremented each time the DMA discards an incoming frame. This bit is cleared when the mci_be_i[0] bit is set to 1'b1.

26.3.30 Ethernet DMA current transmit descriptor register (EMAC_DMACTD)

The EMAC_DMACTD register points to the start address of the transmit descriptor being read by the DMA.

Bit	Register	Reset value	Type	Description
				Host Transmit Descriptor Address Pointer
Bit 31: 0	HTDAP	0x0000 0000	ro	These bits are cleared when reset. The DMA updates the pointer during operation.

26.3.31 Ethernet DMA current receive descriptor register (EMAC_DMACRD)

The EMAC_DMACRD register points to the start address of the receive descriptor being read by the DMA.

Bit	Register	Reset value	Туре	Description
				Host Receive Descriptor Address Pointer
Bit 31: 0	HRDAP	0x0000 0000	ro	These bits are cleared when reset. The DMA updates the pointer during operation.

26.3.32 Ethernet DMA current transmit buffer address register (EMAC DMACTBADDR)

The EMAC DMACTBADDR register points to the transmit buffer address being read by the DMA.

Bit	Register	Reset value	Type	Description
				Host Transmit Buffer Address Pointer
Bit 31: 0	HTBAP	0x0000 0000	ro	These bits are cleared when reset. The DMA updates the pointer during operation.

26.3.33 Ethernet DMA current receive buffer address register (EMAC_DMACRBADDR)

The EMAC DMACRBADDR register points to the receive buffer address being read by the DMA.

Bit	Register	Reset value	Туре	Description
				Host Receive Buffer Address Pointer
Bit 31: 0	HRBAP	0x0000 0000	ro	These bits are cleared when reset. The DMA updates the pointer during operation.

26.3.34 Ethernet MMC control register (EMAC_MMCCTRL)

The EMAC MMCCTRL register defines the operating mode of the management counters.

Bit	Register	Reset value	Type	Description
Bit 31: 4	Reserved	0x0000000	resd	Kept at its default value.
				Freeze MMC Counter
Bit 3	FMC	0x0	rw	When this bit is set, it freezes all the MMC counters to their current value. None of the MMC counters are updated due to any transmitted or received frame until this bit is set to 0. If the Reset on Read bit is set while the MMC counter is being read, the counter is also cleared.
				Reset on Read
Bit 2	RR	0x0	rw	When this bit is set, the MMC counter is reset to 0 after being read. The counter is cleared when the least significant byte bit [7: 0] is read.
-				Stop Counter Rollover
Bit 1	SCR	0x0	rw	When this bit is set, the counter does not roll over to 0 afte it reaches the maximum value.
				Reset Counter
Bit 0	RC	0x0	rw	When this bit is set, all counters are reset. This bit is cleared automatically after 1 clock cycle.

26.3.35 Ethernet MMC receive interrupt register (EMAC_MMCRI)

The EMAC_MMCRI register contains the interrups generated in the following conditions:

- Receive statistic counters reaches half their maximum values (32-bit counter corresponds to 0x8000 0000, and 16-bit counter corresponds to 0x8000)
- Receive statistic counters exceed their maximum values (32-bit counter corresponds to 0xFFFF FFFF, and 16-bit counter corresponds to 0xFFFF)

When the counter stops rolling, an interrupt is set but the counter is still all 1. The EMAC_MMCRI is a 32-bit register. An interrupt bit is cleared when the the MMC counter that generates the interrupt is read. The least significant byte bit [7: 0] of the corresponding counter must be read in order to clear the interrupt bit.

Bit	Register	Reset value	Type	Description
Bit 31: 18	Reserved	0x0000	resd	Kept at its default value.
				Received Good Unicast Frames
Bit 17	RGUF	0x0	rrc	This bit is set when the received good unicast frame counter reaches the maximum value or half the maximum value.
Bit 16: 7	Reserved	0x000	resd	Kept at its default value.
				Received Frames Alignment Error
Bit 6	RFAE	0x0	rrc	This bit is set when the received frame counter with alignment error reaches the maximum value or half the maximum value.
				Received Frames CRC Error
Bit 5	RFCE	0x0	rrc	This bit is set when the receive frame with CRC error reaches the maximum value or half the maximum value.
Bit 4: 0	Reserved	0x00	resd	Kept at its default value.

26.3.36 Ethernet MMC transmit interrupt register (EMAC MMCTI)

The EMAC_MMCTI register contains the interrups generated in the following conditions: when the transmit statistic counters reach half their maximum values (32-bit counter corresponds to 0x8000_0000, and 16-bit counter corresponds to 0x8000), and when the transmit statistic counters exceed their maximum values (32-bit counter corresponds to 0xFFFF_FFFF, and 16-bit counter corresponds to 0xFFFF). When the counter stops rolling, an interrupt is set but the counter is still all 1. The EMAC_MMCTI is a 32-bit register. An interrupt bit is cleared when the the MMC counter that generates the interrupt is read. The least significant byte bit [7: 0] of the corresponding counter must be read in order to clear the interrupt bit.

Bit	Register	Reset value	Type	Description
Bit 31: 22	Reserved	0x000	resd	Kept at its default value.
				Transmitted Good Frames
Bit 21	TGF	0x0	rrc	This bit is set when the transmitted good frame counter reaches its maximum value or half its maximum value.
Bit 20: 16	Reserved	0x00	resd	Kept at its default value.
				Transmitted Good Frames More Single Collision
Bit 15	TGFMSC	0x0	rrc	This bit is set when the transmitted good frame after more than a single collision counter reaches its maximum value or half its maximum value.
				Transmitted Single Collision Good Frame Counter Interrupt)
Bit 14	TSCGFCI	0x0	rrc	This bit is set when the transmitted good frame after a single collision counter reaches its maximum value or half its maximum value.
Bit 13: 0	Reserved	0x0000	resd	Kept at its default value.

26.3.37 Ethernet MMC receive interrupt register (EMAC_MMCRIM)

The EMAC_MMCRIM contains the masks for interrupts generate when the receive statistic counters reach half their maximum values or their maximum values. This register is a 32-bit register.

Bit	Register	Reset value	Туре	Description
Bit 31: 18	Reserved	0x0000	resd	Kept at its default value.
				Received Unicast Good Frame Counter Interrupt Mask
Bit 17	RUGFCIM	0x0	rw	Setting this bit masks the interrupt when the received good unicast frame counter reaches half its maximum value or its maximum value.

Bit 16: 7	Reserved	0x000	resd	Kept at its default value.
				Received Alignment Error Frame Alignment Counter Interrupt Mask
Bit 6	RAEFACIM	0x0	rw	Setting this bit masks the interrupt when the received alignment error frame counter reaches half its maximum value or its maximum value.
				Received CRC Error Frame Counter Interrupt Mask
Bit 5	RCEFCIM	0x0	rw	Setting this bit masks the interrupt when the received CRC error frame counter reaches half its maximum value or its maximum value.
Bit 4: 0	Reserved	0x00	resd	Kept at its default value.

26.3.38 Ethernet MMC transmit interrupt register (EMAC_MMCTIM)

The EMAC_MMCTIM contains the masks for interrupts generate when the transmit statistic counters reach half their maximum values or their maximum values. This register is a 32-bit register.

Bit	Pogiotor	Reset value	Type	Description
	Register		Туре	Description
Bit 31: 22	Reserved	0x000	resd	Kept at its default value.
				Transmitted Good Frame Counter Interrupt Mask
Bit 21	TGFCIM	0x0	rw	Setting this bit masks the interrupt when the transmitted good frame counter reaches half its maximum value or its maximum value.
Bit 20: 16	Reserved	0x00	resd	Kept at its default value.
				Transmitted Multiple Collision Good Frame Counter Interrupt Mask
Bit 15	TMCGFCIM	0x0	rw	Setting this bit masks the interrupt when the transmitted good frame after more than a single collision counter reaches half its maximum value or its maximum value.
				Transmitted Single Collision Good Frame Counter Interrupt Mask
Bit 14	TSCGFCIM	0x0	rw	Setting this bit masks the interrupt when the transmitted good frame after a single collision counter reaches half its maximum value or its maximum value.
Bit 13: 0	Reserved	0x0000	resd	Kept at its default value.

26.3.39 Ethernet MMC transmitted good frame single collision counter register (EMAC_MMCTFSCC)

This register maintains the number of successfully transmitted frames after a single collision in half-duplex mode.

Bit	Register	Reset value	Type	Description
				Transmitted Good Frames Single Collision Counter)
Bit 31: 0	TGFSCC	0x0000 0000	ro	This field maintains the transmitted good frames after a single collision counter.

26.3.40 Ethernet MMC transmitted good frame more than a single collision counter register (EMAC_MMCTFMSCC)

This register maintains the number of successfully transmitted frames after more than a single collision in half-duplex mode.

Bit	Register	Reset value	Type	Description
Bit 31: 0	TGFMSCC	0x0000 0000	ro	Transmitted Good Frame More Than a Single Collision Counter This field maintains the transmitted good frames after more than a single collision counter.

26.3.41 Ethernet MMC transmitted good frames counter register (EMAC_MMCTFCNT)

This register maintains the number of the transmitted good frames.

Bit	Register	Reset value	Type	Description
Bit 31: 0	TGFC	0x0000 0000	ro	Transmitted Good Frames Counter

26.3.42 Ethernet MMC received frames with CRC error counter register (EMAC_MMCRFCECR)

This register maintains the number of the received good frames with CRC error.

Bit	Register	Reset value	Type	Description
Bit 31: 0	RFCEC 0x0000 0000			Received Frames CRC Error Counter
		ro	Received frames with CRC error.	

26.3.43 Ethernet MMC received frames with alignment error counter register (EMAC_MMCRFAECNT)

This register maintains the number of the received frames with alignment error.

Bit	Register	Reset value	Type	Description
Bit 31: 0	RFAEC 0x0000		ro	Received Frames Alignment Error Counter
		0x0000 0000		Received frames with alignment error.

26.3.44 Ethernet MMC received good unicast frames counter register (EMAC_MMCRGUFCNT)

This register maintains the number of the received good unicast frames.

Bit	Register	Reset value	Type	Description
Bit 31: 0	RGUFC	0x0000 0000	ro	Received Good Unicast Frames Counter

26.3.45 Ethernet PTP time stamp control register (EMAC_PTPTSCTRL)

This register controls the generation of system time in the receiver and the generation of time stamp in a PTP packet.

Bit	Register	Reset value	Type	Description
Bit 31: 19	Reserved	0x0000	resd	Kept at its default value.
				Enable MAC Address For PTP Frame Filtering
Bit 18	EMAFPFF	0x0	rw	When this bit is set, the MAC address (matches any of the MAC address registers) is used for PTP frame filtering while the PTP is directly sent by the Ethernet.
				Select PTP Packets For Taking Snapshot
				00: Normal clock
Bit 17: 16	SPPFTS	0x0	rw	01: Boundary clock
				10: End-to-End Transparent Clock
				11: Point-to-Point Transparent Clock
				Enable Snapshot For Message Relevant To Master
Bit 15	ESFMRTM	0x0	rw	When this bit is set, it enables snapshots for messages relevant to master. Otherwise, it enables snapshots for messages relevant to slave.
•				Enable Timestamp Snapshot For Event Messages
Bit 14	ETSFEM	0x0	rw	When this bit is set, it enables time stamp snapshots for event messages only (SYNC, Delay_Req, Pdelay_Req, or Pdelay_Resp). When this bit is cleared, time stamp snapshots are applicable to all the messages except Announce, Management and Signaling.
Bit 13	EPPFSIP4U	0x1	rw	Enable Processing of PTP Frames Sent over IPv4-UDP

				When this bit is set, the MAC receiver processes the PTP encapsulated in UDP over IPv4 packet. When this bit is cleared, the MAC ignores the PTP transferred over UDP-IPv4 packet. This bit is set by default.
				Enable Processing of PTP Frames Sent over IPv6-UDP
Bit 12	EPPFSIP6U	0x0	rw	When this bit is set, the MAC receiver processes the PTP encapsulated in UDP over IPv6 packet. When this bit is cleared, the MAC ignores the PTP sent over UDP-IPv6 packet.
				Enable Processing of PTP over EMAC Frames
Bit 11	EPPEF	0x0	rw	When this bit is set, the MAC receiver processes the PTP that is directly encapsulated in the Ethernet frames. When this bit is cleared, the MAC ignores the PTP over EMAC frames.
				Enable PTP packet Processing for Version 2 Format
Bit 10	EPPV2F	0x0	rw	When this bit is set, it enables PTP packet processing in the format of 1588 V2. Otherwise, 1588 V1 format is used for PTP packet processing. Refer to <i>PTP process and control</i> on page 155 for more detains on IEEE 1588 V1 and V2.
				Timestamp Digital or Binary Rollover Control
Bit 9	TDBRC	0x0	rw	When this bit is set, time stamp low register starts rolling after the 0x3B9A_C9FF value (1 ns precision), and the time stamp (high) second is incremented. When this bit is cleared, the rollover value of the subsecond register is 0x7FFF_FFFF. The subsecond increment must be configured according to PTP reference clock frequency and the value of this bit.
-				Enable Timestamp for All Frames
Bit 8	ETAF	0x0	rw	When this bit is set, it enables time stamp snapshot for all received frames on the MAC.
Bit 7: 6	Reserved	0x0	resd	Kept at its default value.
Bit 5	ARU	0x0	rw	Addend Register Update When this bit is set, the Ethernet PTP time stamp addend register's contents are updated on the PTP block for fine correction. This bit is cleared when the update is completed. This register bit must be read as 0 before being set.
-				Timestamp Interrupt Trigger Enable
Bit 4	TITE	0x0	rw	When this bit is set, a time stamp interrupt is enabled if the system time becomes greater than the value written in the target time register. This bit is cleared when the time stamp trigger interrupt is generated.
				Timestamp Update
Bit 3	TU	0x0	rw	When this bit is set, the system time is updated (added or subtracted from) with the value programmed in the system time second update register and system time nanosecond update register. This bit must be read as 0 before being updated. This bit is cleared after the hardware update is completed. Time
				stamp high word register (if enabled) is not updated.
				Timestamp Initialize
Bit 2	ΤΙ	0x0	rw	When this bit is set, the system time is initialized (overwritten) with the value specified in the system time seond update register and system time nanosecond update register.
				This bit must be read as 0 before being updated. This bit is cleared after the initialization. Time stamp high word register (if enabled) is not updated.
Bit 1	TFCU	0x0	rw	Timestamp Fine or Coarse Update

				When this bit is set, it indicates that the system time is updated using a fine update method. When this bit is cleared, it indicates that the system time is updated using a coarse update method.
Bit 0	TE	0x0	rw	Timestamp Enable When this bit is set, time stamp function is enabled for transmit and receive frames. Once disabled, the time stamp function is not added for transmit and receive frames, and the time stamp generator is suspended as well. Once enabled, the time stamp (system time) should be initialized. On the receive side, the MAC processes 1588 frames only when this bit is set.

Correlation between time	stamp sna	apshot and	register bits
--------------------------	-----------	------------	---------------

SPPFTS Bit 17: 16	ESFMRTM Bit 15	ETSFEM Bit 14	PTP message
00 or 01	Χ	0	SYNC, Follow_Up, Delay_Req, Delay_Resp
00 or 01	1	1	Delay_Req
00 or 01	0	1	SYNC
10	N/A	0	SYNC, Follow_Up, Delay_Req, Delay_Resp
10	N/A	1	SYNC, Follow_Up
11	N/A	0	SYNC, Follow_Up, Delay_Req, Delay_Resp, Pdelay_Req, Pdelay_Resp
11	N/A	1	SYNC, Pdelay_Req, Pdelay_Resp

^{1:} N/A= Not applicable

26.3.46 Ethernet PTP subsecond increment register (EMAC_PTPSSINC)

This register is present only when the IEEE1588 time stamp function is selected without an external time stamp input. In Coarse Update mode (TSCFUPDT bit), the value in this register is added to the system time every clk_ptp_ref_i clock cycle. In Fine Update mode, the value in this register is added to the system time whenever the accumulator has an overflow.

Bit	Register	Reset value	Type	Description
Bit 31: 8	Reserved	0x000000	resd	Kept at its default value.
				Sub-Second Increment Value
Bit 7: 0	SSIV	0x00	rw	The value programmed in this field is incremented with the value of the subsecond register at every clock cycle (of clk_ptp_i). For example, if the PTP clock is 50 MHz (20 ns), when the system time nanosecond register is 1 ns accuracy (by setting the bit 9 in the EMAC_PTPTSCTRL register), the value of these bits should be configured to 20 (0x14). When the TSCTRLSSR is cleared, nano second register resolution is ~0.465ns accuracy. In this case, the value of these bits should be configured to 43 (0x2B), that is, 20ns/0.465.

26.3.47 Ethernet PTP time stamp high register (EMAC_PTPTSH)

System time second register and system time nanosecond register indicate the current value of the system time maintained by the MAC. This value is updated on a continuous basis.

Bit	Register	Reset value	Type	Description
				Timestamp Second
Bit 31: 0	TS	0x0000 0000	ro	This field indicates the second value of the current system time maintained by the MAC.

2021.12.01 Page 481 Ver 2.02

^{2:} X=Irrelevant

26.3.48 Ethernet PTP time stamp low register (EMAC_PTPTSL)

This register contains the lower 32 time bits. It is a read-only register containing the subsecond system time value.

Bit	Register	Reset value	Type	Description
				Add or Subtract Time
Bit 31	AST	0x0	ro	When this bit is set, the time value is subtracted from the value of the update register. When this bit is cleared, the time value is added to the value of the update register.
-				Timestamp Sub Seconds
Bit 30: 0	TSS	0x0000 0000	ro	This field indicates the subseond system time with 0.46 ns accuracy. When the bit 9 is set in the EMAC_PTPTSCTRL register, each bit represents 1 ns, with the value programmed not exceeding the 0x3B9A_C9FF.

26.3.49 Ethernet PTP time stamp high update register (EMAC_PTPTSHUD)

System time second update register and system nanosecond update register initializes or updates the system time maintained by the MAC. It is required to write both registers before setting the TSINIT or TSUPDT bit in the EMAC PTPTSCTRL register.

Bit	Register	Reset value	Type	Description
				Timestamp Second
Bit 31: 0	TS	0x0000 0000	rw	This field indicates the second value that is to be initialized or added to the system time.

26.3.50 Ethernet PTP time stamp low update register (EMAC_PTPTSLUD)

This register is present only when the IEEE1588 time stamp function is selected without an external time stamp input.

Bit	Register	Reset value	Type	Description
				Add or Subtract Time
Bit 31	AST	0x0	rw	When this bit is set, the time value is subtracted from the value of the update register. When this bit is cleared, the time value is added to the value of the update register.
				Timestamp Sub Seconds
Bit 30: 0	TSS	0x0000 0000	rw	This field indicates the subseond system time with 0.46 ns accuracy. When the bit 9 is set in the EMAC_PTPTSCTRL register, each bit represents 1 ns, with the value programmed not exceeding the 0x3B9A_C9FF.

26.3.51 Ethernet PTP time stamp addend register (EMAC_PTPTSAD)

This register value is used only when the system time is configured for Fine update mode. This register value is added to a 32-bit accumulator at every clock cycle (of clk_ptp_ref_i). The system time is updated whenever the accumulator overflows.

Bit	Register	Reset value	Type	Description
				Timestamp Addend Register
Bit 31: 0	TAR	0x0000 0000	rw	This field indicates the 32-bit time value to be added to the accumulator in order to achieve time synchronization.

26.3.52 Ethernet PTP target time high register (EMAC_PTPTTH)

Target time second register and target time subsecond register are used to schedule an interrupt event when the system time exceeds the value programmed in these registers.

Bit	Register	Reset value	Туре	Description
				Target Time Seconds Register
Bit 31: 0	TTSR	0x0000 0000	rw	This register stores the time value in seconds. When the time stamp value equals or exceeds both target time stampe registers, the MAC starts or stops PPS signal output depending on the bit [6: 5] of the PPS control register. An interrupt is generated if enabled.

26.3.53 Ethernet PTP target time low register (EMAC_PTPTTL)

Bit	Register	Reset value	Type	Description
				Target Timestamp Low Register
Bit 31: 0	sit 31: 0 TTLR 0x0000 0000 rw	rw	This register stores the time (signed) in nanoseconds. When the value of the time stamp equals both target time stamp registers, the MAC starts or stops PPS signal output depending on the TRGTMODSEL0 (bit [6: 5]) of the PPS control register. An interrupt is generated if enabled.	
			When the bit 9 (TSCTRLSSR) is set in the MAC_PTPTSCTR register, the value of this field cannot exceed the 0x3B9A_C9FF. The actual time that starts or stops PPT signal output may have an error of up to 1 subsecond increment value.	

26.3.54 Ethernet PTP time stamp status register (EMAC_PTPTSSR)

Bit	Register	Reset value	Туре	Description
Bit 31: 2	Reserved	0x0000 0000	resd	Kept at its default value.
				Timestamp Target Time Reached
Bit 1	TTTR	0x0	ro	When this bit is set, it indicates the value programmed when the system time equals or exceeds the target time second register and target time nanosecond register.
				Timestamp Seconds Overflow
Bit 0	TSO	0x0	ro	When this bit is set, it indicates that the time stamp value (V2 format supported) overflows and has exceeded the 32'hFFFF_FFFF.

26.3.55 Ethernet PTP PPS register (EMAC_PTPPPSCR)

Bit	Register	Reset value	Туре	Description
Bit 31: 4	Reserved	0x0000000	resd	Kept at its default value.
				PPS0 Output Frequency Control
				The output of this field depends on the emac_pps_sel bit (bit 15 in the CRM_MISC2 register)
				Emac_pps_sel=0:
				0000: 1 Hz, use binary rollover control, pulse width is 125 ms; use digital rollover, pulse width is 100 ms
				0001: 2 hz, use binary rollover control, duty cycle is 50% (digital rollover is not recommended)
				0010: 4 hz, se binary rollover control, duty cycle is 50% (digital rollover is not recommended)
				0011: 8 hz, use binary rollover control, duty cycle is 50%(digital rollover is not recommended)
				0100: 16 hz, use binary rollover control, duty cycle is 50% (digital rollover is not recommended)
Bit 3: 0	POFC	0x0	rw	1111: 32.768 khz, use binary rollover control, duty cycle is 50% (digital rollover is not recommended)
				Emac_pps_sel=1:
				0000: 1 Hz, pulse width is one clk_ptp cycle
				0001: For binary rollover, 2hz, duty cycle 50%; For digital
				rollever, 1hz (digital rollover is not recommended)
				0010: For binary rollover, 4hz, duty cycle 50%; For digital rollever, 2hz (digital rollover is not recommended)
				0011: For binary rollover, 8hz, duty cycle 50%; For digital rollever, 4hz (digital rollover is not recommended)
				1111: For binary rollover, 32.768khz, duty cycle 50%; For digital rollever, 16.384khz (digital rollover is not recommended)
				Ditial rollover is not recommended when the PPS is non-zero value, because PPS output waveforms will be irregular (although its averay frequency is always correct in any one-second window) in these cases.

2021.12.01 Page 484 Ver 2.02

27 Debug (DEBUG)

27.1 Debug introduction

Cortex[™]-M4F core provides poweful debugging features including halt and single step support, as well as trace function that is used for checking the details of the program execution. The debug features are implemented with two interfaces: serial wire debug (SWD) and JTAG debug port. Trace information is collected by a single-wire serial wire view interface, or by TRACE interface when a larger trace bandwidth is needed. Trace and debugging interfaces can be combined into one interface.

ARM Cortex™-M4F reference documentation:

- Cortex[™]-M4 Technical Reference Manual (TRM)
- ARM Debug Interface V5
- ARM CoreSight Design Kit revision r1p0 Technical Reference Manual

27.2 Debug and Trace

It is possible to support debugging for different peripherals, and configure the working status of peripherals during debugging. For timers and watchdogs, the user can select whether or not to stop or continue counting during debugging; For CAN, the user can select whether or not to stop or continue updating receive registers during debugging; For I2C, the user can select whether or not to stop or continue SMBUS timeout counting.

In addition, code debugging is supported in Low-Power mode. In Sleep mode, the clock programmed by code remains active for HCLK and FCLK to continue to work. In DeepSleep mode, HICK oscillator is enabled to feed FCLK and HCLK.

There are several ID codes inside the MCU, which is accessible by the debugger using the DEBUG_IDCODE at address 0xE0042000. It is part of the DEBUG and is mapped on the external PPB bus. These codes are accessible using the JTAG debug port or the SWD debug port or by the user software. They are even accessible while the MCU is under system reset.

Two trace interface modes supported: single-pin mode for serial wire view and multi-pin trace interface.

27.3I/O pin control

SWJ-DP is supported in different packages of AT32F403A/407. It uses 5 general-purpose I/O ports. After reset, the SWJ-DP can be immediately used by the debugger as a default function. To ensure that JTAG input pins are not floating (especially SWCLK/JTCK), the JTAG input pins are embedded with internal pull-up or pull-down feature, NJTRST, JTDI and JTMS/SWDIO with internal pull-up feature, and JTCK/SWCLK with internal pull-down feature.

When the user wants to switch to a different debug port or disable debug feature, either IOMUX_MAPR or IOMUX_MAPR7 register can be configured to release these dedicated I/O pins. Once a corresponding debug I/O is released by the user, the GPIO controller takes control, and then these I/Os can be used as general-purpose I/Os.

For trace feature, it is possible to set the TRACE_IOEN and TRACE_MODE bits in the DEBUG_CTRL register to enable trace function and slect trace modes.

Table 27- 1 Trace function enable

TRACE_IOEN	Description
0	No Trace (default state)
1	Trace enabled

Table 27- 2 Trace function mode

TRACE _MODE[1	: 0]	PB3/JTDO/TR ACESWO	PE2/TRAC ECK	PE3/TRAC ED[0]	PE4/TRAC ED[1]	PE5/TRACE D[2]	PE6/TRAC ED[3]
00	Asynchronous trace	TRACES WO	Released (d	can be used	as general-p	uspose I/Os)	
01	Synchronous trace	Released (car	TRAC ECK	TRAC ED[0]	Released (puspose I/C	can be used (s)	as general-
10	Synchronous trace	be used as	TRAC ECK	TRAC ED[0]	TRAC ED[1]	Released (ca general-pusp	
11	Synchronous trace	puspose I/Os)	TRACE CK	TRACE D[0]	TRACE D[1]	TRACE D[2]	TRACE D[3]

27.4DEBUG registers

Table 27-3 shows debug register map and its reset values.

The peripheral registers can be accessed by words (32-bit).

Table 27- 3 DEBUG register address and reset value

Register	Offset	Reset value
DEBUG_IDCODE	0xE004 2000	0xXXXX XXXX
DEBUG_CTRL	0xE004 2004	0x0000 0000

27.4.1 DEBUG device ID (DEBUG_IDCODE)

MCU integrates an ID code that is used to identify MCU's revision. The DEBUG_IDCODE register is mapped on the external PPB bus at address 0xE0042000. This code is accessible by the JTAG debug port or SW debug port or by the user code.

Bit	Register	Reset value	Туре	Description
Bit 31: 0	PID	0xXXXX XXXX ro		PID information

PID [31: 0]	AT32 part number	FLASH size	Packages
0x7005_0240	AT32F403AVCT7	256KB	LQFP100
0x7005_0241	AT32F403ARCT7	256KB	LQFP64
0x7005_0242	AT32F403ACCT7	256KB	LQFP48
0x7005_0243	AT32F403ACCU7	256KB	QFN48
0x7005_0344	AT32F403AVGT7	1024KB	LQFP100
0x7005_0345	AT32F403ARGT7	1024KB	LQFP64
0x7005_0346	AT32F403ACGT7	1024KB	LQFP48
0x7005_0347	AT32F403ACGU7	1024KB	QFN48
0x7005_0249	AT32F407VCT7	256KB	LQFP100
0x7005_024A	AT32F407RCT7	256KB	LQFP64
0x7005_034B	AT32F407VGT7	1024KB	LQFP100
0x7005_034C	AT32F407RGT7	1024KB	LQFP64
0x7005_02CD	AT32F403AVET7	512KB	LQFP100
0x7005_02CE	AT32F403ARET7	512KB	LQFP64
0x7005_02CF	AT32F403ACET7	512KB	LQFP48
0x7005_02D0	AT32F403ACEU7	512KB	QFN48
0x7005_02D1	AT32F407VET7	512KB	LQFP100
0x7005_02D2	AT32F407RET7	512KB	LQFP64
0x7005_0353	AT32F407AVGT7	1024KB	LQFP100
0x7005_0254	AT32F407AVCT7	256KB	LQFP100

27.4.2 DEBUG control register (DEBUG_CTRL)

This register is asynchronously reset by POR Reset (not reset by system reset). It can be written by the debugger under reset.

Bit	Register	Reset value	Туре	Description
				I ² C3 pause control bit
Bit 31	I2C3_SMBUS_TIMEOUT	0x0	rw	0: Work normally
				1: I ² C3 SMBUS timeout control is disabled
				TMR11 pause control bit
Bit 30	TMR11_PAUSE	0x0	rw	0: Work normally
				1: Timer is disabled
				TMR10 pause control bit
Bit 29	TMR10_PAUSE	0x0	rw	0: Work normally
				1: Timer is disabled
,				TMR9 pause control bit
Bit 28	TMR9_PAUSE	0x0	rw	0: Work normally
				1: Timer is disabled
				TMR14 pause control bit
Bit 27	TMR14_PAUSE	0x0	rw	0: Work normally
				1: Timer is halted
				TMR13 pause control bit
Bit 26	TMR13_PAUSE	0x0	rw	0: Work normally
				1: Timer is disabled
	TMR12_PAUSE	0x0	rw	TMR12 pause control bit
Bit 25				0: Work normally
				1: Timer is disabled
Bit 24: 22	Reserved	0x0	resd	Kept at 0
	CAN2_PAUSE	0x0	rw	CAN2 pause control bit
Bit 21				0: CAN2 works normally
				1: CAN2 receive registers do not continue to receive data
		0x0		TMR7 pause control bit
Bit 20	TMR7_PAUSE		rw	0: Work normally
	_ `		IVV	1: Timer is disabled
				TMR6 pause control bit
Bit 19	TMD6 DALICE	0x0	n	0: Work normally
טונ ופ	TMR6_PAUSE	0.00	rw	1: Timer is disabled
				TMR5 pause control bit
D:1.40	TMDE DALIGE			0: Work normally
Bit 18	TMR5_PAUSE	0x0	rw	Timer is disabled
				TMR8 pause control bit
Bit 17	TMR8_PAUSE	0x0	rw	0: Work normally
				1: Timer is disabled
				I ² C2 pause control bit
Bit 16	I2C2_SMBUS_TIMEOUT	0x0	rw	0: Work normally
				1: I ² C2 SMBUS timeout control is disabled
				I ² C1 pause control bit
Bit 15	I2C1_SMBUS_TIMEOUT	0x0	rw	0: Work normally
··		J		1: I ² C1 SMBUS timeout control is disabled
				CAN1 pause control bit
Di+ 1/	CANA DALICE	0.0	ma/	0: CAN1 works normally
Bit 14	CAN1_PAUSE	0x0	rw	CAN1 works normally CAN1 receive registers do not continue to receive data
				1. OANT TECEIVE TEGISTEIS NO HOL CONTINUE TO TECEIVE DATE

		0x0		TMR4 pause control bit
Bit 13	TMR4_PAUSE		rw	0: Work normally
				1: Timer is disabled
				TMR3 pause control bit
Bit 12	TMR3_PAUSE	0x0	rw	0: Work normally
				1: Timer is disabled
-				TMR2 pause control bit
Bit 11	TMR2_PAUSE	0x0	rw	0: Work normally
	-			1: Timer is disabled
				TMR1 pause control bit
Bit 10	TMR1_PAUSE	0x0	rw	0: Work normally
2.1.10		07.0		1: Timer is disabled
				Window watchdog pause control bit
Bit 9	WWDT DALISE	0x0	nu.	Window watchdog works normally
טונ פ	WWDT_PAUSE	UXU	rw	Window watchdog is stopped
				watchdog pause control bit
Bit 8	WDT_PAUSE	0x0	rw	0: Watchdog works normally
				1: Watchdog is stopped
Bit 7: 6	TRACE_MODE			Trace pin assignment control
				00: Asynchronous mode
		0x0	rw	01: Snychronous mode with a data length of 1
				10: Snychronous mode with a data length of 2
				11: Snychronous mode with a data length of 4
				Trace pin assignment enable
Bit 5	TRACE_IOEN	0x0	rw	0: No trace (default state)
				1: Trace is enabled
Bit 4: 3	Reserved	0x0	resd	Kept at 0
				Debug Standby mode control bit
				0: The whole 1.2V digital circuit is unpowered in Standby
D:: 0	OTANIDOV DEDUG			mode
Bit 2	STANDBY_DEBUG	0x0	rw	1: The whole 1.2V digital circuit is not unpowered in Standby mode, and the system clock is provided by the
				internal RC oscillator (HICK)
				Debug Deepsleep mode control bit
Bit 1	DEEPSLEEP_DEBUG	0x0	rw	0: In Deepsleep mode, all clcoks in the 1.2V domain are disabled. When exiting from Deepsleep mode, the internal RC oscillator (HICK) is enabled, and HICK is used as the system clock source, and the software must reprogram the system clock according to application requirements.
				1: In Deepsleep mode, system clock is provided by the internal RC oscillator (HICK). When exiting from Deepsleep mode, HICK is used as the system clock source, and the software must reprogram the system clock. according to application requirements.
				Debug Sleep mode control bit
Bit 0	SLEEP_DEBUG	0x0	rw	0: When entering Sleep mode, CPU HCLK clock is disabled, but other clocks remain active. When exiting from Sleep mode, it is not necessary to reprogram the clock system.
				1: When entering Sleep mode, all clocks keep running.

28 Revision history

Document Revision History

Date	Version	Revision Note
2021.06.30	2.00	Initial release.
2021.10.22	2.01	 Update Figure 4- 1 to make it easier to read; Revised some typos.
2021.12.01	2.02	Revised some typos.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

Purchasers are solely responsible for the selection and use of ARTERY's products and services; ARTERY assumes no liability for purchasers' selection or use of the products and the relevant services.

No license, express or implied, to any intellectual property right is granted by ARTERY herein regardless of the existence of any previous representation in any forms. If any part of this document involves third party's products or services, it does NOT imply that ARTERY authorizes the use of the third party's products or services, or permits any of the intellectual property, or guarantees any uses of the third party's products or services or intellectual property in any way.

Except as provided in ARTERY's terms and conditions of sale for such products, ARTERY disclaims any express or implied warranty, relating to use and/or sale of the products, including but not restricted to liability or warranties relating to merchantability, fitness for a particular purpose (based on the corresponding legal situation in any injudical districts), or infringement of any patent, copyright, or other intellectual property right.

ARTERY's products are not designed for the following purposes, and thus not intended for the following uses: (A) Applications that have specific requirements on safety, for example: life-support applications, active implant devices, or systems that have specific requirements on product function safety; (B) Aviation applications; (C) Auto-motive application or environment; (D) Aerospace applications or environment, and/or (E) weapons. Since ARTERY products are not intended for the above-mentioned purposes, if purchasers apply ARTERY products to these purposes, purchasers are solely responsible for any consequences or risks caused, even if any written notice is sent to ARTERY by purchasers; in addition, purchasers are solely responsible for the compliance with all statutory and regulatory requirements regarding these uses.

Any inconsistency of the sold ARTERY products with the statement and/or technical features specification described in this document will immediately cause the invalidity of any warranty granted by ARTERY products or services stated in this document by ARTERY, and ARTERY disclaims any responsibility in any form.

© 2021 ARTERY Technology - All Rights Reserved.